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A B S T R A C T

To examine the reliability or performance of marine systems related to dynamic time-varying responses, time
domain simulation may be required. But for long durations, brute-force simulation is clearly not feasible
from a computational point of view to examine converged extreme value statistics. An additional challenge is
defining a set of mutually exclusive and exhaustive wave excitation records which excite the desired extreme
response(s). To address these challenges, this work develops a non-linear Design Loads Generator (NL-DLG)
process which links wave profiles targeted for extreme responses generated via response-conditioning wave
techniques to a probabilistic framework which examines the possible correlation or mutual exclusivity between
those wave profiles. The end result is an ensemble of short targeted wave profiles which excite converged
extreme value return-period statistics of a defined response that may be excited by multiple correlated
processes. The method of the NL-DLG process is explained by applying it towards rare wave groups, where
the result is an ensemble of short wave profiles which contain extreme occurrences of different wave groups
targeted for the defined exposure duration. These generated wave excitation profiles are compared to physical
data from the Pt. Reyes buoy and then numerical simulations are employed to consider rarer events.
1. Introduction

Considering extreme ocean environments is necessary for under-
standing the associated risk and performance of marine systems which
operate in such climates. To link hydrostatic and structural codes or to
consider dynamic time-varying responses the wave excitation profiles
which excite extreme events must also be known. As we examine rarer
events, the challenge is how to appropriately design testing regimes to
evaluate system performance when there are multiple relevant inputs
to consider that may in fact be correlated and whose correlation
may change when considering more extreme joint occurrences. There
may also be interest in examining the extreme environments them-
selves, particularly wave forms expected to excite extreme dynamic
responses. The desire to retain the wave profiles associated with the
extreme events suggests a simulation-based approach, but brute-force
simulation clearly becomes infeasible for longer return periods.

To address these challenges, this paper presents a non-linear Design
Loads Generator (NL-DLG) process to assemble an ensemble of wave
profiles targeted for a defined response for long return-periods. As an
example of such a response, consider vessel parametric roll, which may
be excited by group-like behavior in the ocean excitation: specifically
wave groups where the period between successive wave crests is nearly
half the vessel roll natural period. Here, nonlinear time domain simula-
tion may be crucial for assessing the risk of extreme roll responses, but

E-mail address: H.C.Seyffert@tudelft.nl.

as noted by Themelis and Spyrou (2007) and Kim and Troesch (2015),
identifying an ensemble of mutually exclusive and exhaustive wave
groups expected to lead to extreme vessel parametric roll responses is
extremely challenging. Kim and Troesch further note the difficulty of
defining mutually exclusivity for random time histories, and specifically
of calculating the joint occurrence of different wave groups.

Motivated by such challenges, the presented NL-DLG process uti-
lizes a response-conditioning wave technique to generate specific wave
sequences targeted for extreme responses, then applies a probabilis-
tic framework to construct an ensemble of exhaustive and mutually
exclusive wave profiles targeted for a defined return-period extreme
response. The NL-DLG process, extended and completely formalized
from its original presentation in (Seyffert, 2018), is illustrated by con-
structing wave time series which contain rare wave groups and excite
distributions of joint extreme rare wave group occurrences. The clear
follow-up is applying these joint wave group occurrences to parametric
roll responses, though for now only the problems of defining mutually
exclusive targeted wave excitations and joint wave group occurrences
are considered, while parametric roll excited by such wave groups is
left to future work.

To determine the quality of the resulting ensemble of NL-DLG wave
profiles, distributions of joint extreme rare wave group occurrences
vailable online 20 December 2021
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resulting from the NL-DLG wave profiles are compared with empir-
ical distributions measured from physical oceanographic data. Then,
brute-force simulations are used for comparison with a longer return
period.

This work is structured as follows: Section 2 discusses the relevant
background literature. Section 3 introduces the physical oceanographic
data which provides the comparison with the wave elevation time
series generated via the NL-DLG process. Section 4 presents the method
to assemble the ensemble of targeted wave profiles and resulting joint
occurrences of extreme responses, which is illustrated via distributions
of joint extreme wave group occurrence in Section 5. Finally, Sec-
tion 6 offers some conclusions and the accompanying appendix gives
an in-depth description of the probabilistic framework used within the
NL-DLG process.

2. Background

The NL-DLG process generates an ensemble of exhaustive and mutu-
ally exclusive wave profiles targeted for rare wave group occurrences,
where the wave ensemble statistics mimic the converged extreme value
statistics of brute-force simulations for a defined return-period. This
section therefore provides relevant background on wave groups (which
provide the application example to describe the NL-DLG process),
response-conditioning wave techniques (which are used within the NL-
DLG process to target for extreme responses), and joint distributions of
random variables (which are a product of the NL-DLG generated wave
profiles).

2.1. Identification of wave groups

Many definitions of wave groups exist, based on, e.g., Gaussian
andom processes, envelope threshold crossings and generally narrow-
anded spectra (Longuet-Higgins, 1957; Ewing, 1973), a narrow-
anded assumption with possible dependence between successive
aves conditioned on waves exceeding the significant wave height,
𝑠 (Rye, 1974; Goda, 1976), linear theory with narrow-banded spec-

ra (Liu et al., 1993), and the theory of quasi-determination (Boccotti,
015; Fedele, 2005a,b). But as discussed by Bassler et al., wave groups
hich are restricted to a successive threshold crossing requirement will
ot include more probable wave group sequences allowing possible
own-crossings below the required threshold (Bassler et al., 2010).
hese groups of waves, which may satisfy the threshold requirement

n a mean sense but not in total, can cause significant system responses
hrough resonant excitation, since this definition can then include some
rescribed time between successive wave peaks, which when tuned to
vessel natural period can excite parametric resonance.

Such wave group occurrences can be identified using a Gaussian
erived process 𝙻𝑗 (𝑡), which is a characteristic process of the ocean
xcitation that indicates group-like behavior of the input, namely the
ccurrence of a wave group of 𝑗 waves (Kim et al., 2014). This ex-
ression identifies rare wave group occurrences by identifying the
aximum value of 𝙻𝑗 (𝑡) over some exposure time, which targets for
large wave peaks (no threshold requirement) separated in time by a
ser-defined period 𝜏, as in Eq. (1):

𝑗 (𝑡) =
𝑗
∑

𝑝=1
𝜂(𝑡 + (𝑝 − 1)𝜏) (1)

here

𝑗 (𝑡) = Gaussian derived process indicating group-like behavior, 𝑗 waves
𝜂(𝑡) = wave elevation at a specific spatial coordinate
𝜏 = defined period of interest in seconds
𝑗 = wave group index (number of waves in group)

Using Eq. (1) as a filter on a wave excitation record 𝜂(𝑡) identifies
otential instances of wave groups of 𝑗 waves separated in time by 𝜏
2

econds based on return-period extreme values of 𝙻𝑗 (𝑡), denoted here
s �̂�𝑗 . It has been shown using Fourier Transform theory and the
iener–Khintchine relations that the mathematical formulation for the

xpected shape of a wave group conditioned on extreme values of 𝙻𝑗 (𝑡)
has a closed-form expression which matches numerical simulations and
physical oceanographic data (Seyffert et al., 2016). This expected wave
group shape for 𝑗 waves is proportional to the sum of 𝑗 autocorrelation
functions of the wave spectrum, separated in time by (𝑝 − 1)𝜏 seconds,
= 1,… , 𝑗. The constant of proportionality is the value of the expected
xtreme value of 𝙻𝑖(𝑡) over the exposure period, �̂�𝑗 , normalized by
he derived process variance, 𝜎2𝙻𝑗 . Thorough reviews of wave group
tatistics using this definition are given in Seyffert and Troesch (2016a),
eyffert et al. (2016).

.2. Response-conditioning wave techniques

Response-conditioning wave techniques (RCWT) can be used to
onstruct wave profiles that excite a specific linear response value at a
re-determined time. Consider a stochastic wave elevation time series
(𝑡):

(𝑡) =
𝑁
∑

𝑚=1
𝑎𝑚𝑐𝑜𝑠(𝜔𝑚𝑡 + 𝜙𝑚) (2)

here

𝑎𝑚 =
√

2𝑆(𝜔𝑚)𝛥𝜔

𝑆(𝜔) = single-sided wave energy spectrum
𝜙𝑚 = phase between −𝜋 and 𝜋

If the phases 𝜙 are uniformly distributed between −𝜋 and 𝜋, as
𝑁 → ∞ the random variable 𝐻 expressed by the random process 𝜂(𝑡)
approaches a Gaussian random variable. RCWT’s condition a wave to
lead to a pre-determined response value at a pre-determined time, say
𝑡 = 0. In this case, the phases 𝜙 are tuned based on a transfer function
of the desired response. Consider now a response of interest 𝙻𝑗 (𝑡), say,
a rare wave group of 𝑗 waves like defined in Eq. (1), which is excited
by the wave elevation 𝜂(𝑡):

𝙻𝑗 (𝑡) =
𝑁
∑

𝑚=1
𝑎(𝜔𝑚)𝑀𝙻𝑗

(𝜔𝑚)𝑐𝑜𝑠(𝜔𝑚𝑡 + 𝜙𝑚 + 𝜓𝑚) (3)

where

𝑎(𝜔𝑚) =
√

2𝑆(𝜔𝑚)𝛥𝜔

𝑆(𝜔) = single-sided wave energy spectrum

𝐻𝙻𝑗
(𝜔) =

𝑗
∑

𝑝=1
𝑒𝑥𝑝(𝑖𝜔(𝑝 − 1)𝜏)

𝑀𝙻𝑗
(𝜔𝑚) = |𝐻𝙻𝑗

(𝜔𝑚)|

𝜙𝑚 = wave phase between −𝜋 and 𝜋 from Eq. (2)
𝜓𝑚 = 𝑎𝑟𝑔(𝐻𝙻𝑗

(𝜔𝑚))

RCWT’s focus on defining the phases 𝜙 such that the resulting
𝙻𝑗 (𝑡 = 0) response is a rare occurrence. Many different RCWT’s exist
to define such waves, e.g., Lindgren (1970), Tromans et al. (1991),
Taylor et al. (1997), Friis-Hansen and Nielsen (1995), Torhaug (1996),
Adegeest et al. (1998) and Dietz (2004) and generally assume perfect
phase alignment of the frequency components in Eq. (3). The RCWT
used in this paper is the Design Loads Generator (DLG), which instead
of assuming perfect phase alignment to focus the frequency components
estimates a distribution of phases leading to extreme responses 𝙻𝑗 (𝑡 =
0). This is accomplished by using a modified Gaussian distribution as
the initial guess of this phase distribution leading to extreme responses
(see Alford and Troesch, 2009) and an acceptance–rejection algorithm
for ensuring that the chosen phases do in fact excite a distribution of
return-period extreme responses (see Kim, 2012). The efficacy of the
DLG as a RCWT was positively evaluated in Seyffert et al. (2020).
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Fig. 1. Available 30-min records from Pt. Reyes buoy and chosen subset of records for
analysis.

2.3. Joint distributions of random variables

To determine whether the ensemble of wave profiles generated by
the NL-DLG process do in fact mimic converged return-period statis-
tics as from full-length realizations, we examine joint distributions of
random variables which are excited by these generated time series.
Specifically for the example of this paper, we examine joint distribu-
tions of rare wave group occurrences, with wave groups of 𝑗 waves
defined by Eq. (1) and with extreme wave group occurrences indicated
by occurrences of �̂�𝑗 .

Many different methods exist to estimate joint distributions and
joint extreme occurrences of random variables, e.g., copula techniques
(de Waal and van Gelder, 2005; Bastian et al., 2009; Bartoli et al., 2011;
Vanem, 2020), a conditional extreme model (Heffernan and Tawn,
2004), the concepts of max-stability of asymptotic distributions (Ewans
and Jonathan, 2014), multivariate extreme value modeling (Gouldby
et al., 2017), statistical emulators (Jones et al., 2018), and of course
environmental contour methods (Haver, 1987; Winterstein et al., 1993;
Jonathan et al., 2014; Huseby et al., 2015; Vanem, 2017; Haselsteiner
et al., 2017; Chai and Leira, 2018). But the desire of the NL-DLG
process specifically is to assemble an ensemble of mutually exclusive
and exhaustive short wave profiles targeted for rare responses which
could be used for efficient simulations. Joint distributions of extreme
responses are therefore a useful output and point of comparison for
these generated targeted wave profiles.

3. Environmental wave data

To evaluate the NL-DLG wave profiles based on the generated
distributions of joint wave groups occurrences (using the wave group
definition from Eq. (1)), similar empirical distributions will be made
from physical oceanographic data measured by the Pt. Reyes buoy, op-
erated by the Coastal Data Information Program (CDIP, 0000). Detailed
background about the operation of this buoy can be found in Seyffert
and Troesch (2016a). Here a subset of the available data is examined,
as indicated in Fig. 1 and described by Table 1, relating to 3026 h of
buoy data. The smoothed average spectrum relating to these chosen
buoy records is given in Fig. 2.

3.1. Joint occurrence of wave groups in physical oceanographic data

The NL-DLG process uses a RCWT to generate short wave pro-
files targeted for a specific response, then links these waves within a
probabilistic framework which considers how those wave profiles are
correlated, indicated by some joint extreme event occurrence. As an
3

Fig. 2. Representative and smoothed average spectrum of examined Pt. Reyes buoy
wave records.

Fig. 3. Pt. Reyes buoy time series from January 23, 1997 08:52, showing clustered
wave groups of 1, 2, and 3 peaks.

Table 1
Ranges of significant wave height 𝐻𝑠 and peak modal period 𝑇𝑝 for
examined time series.
Parameter Value

𝐻𝑠 Range 2.8 → 3.4 m
𝑇𝑝 Range 7.8 → 9.3 s
Number of 30-min time series 6052
Total record time 3026 h

example of such a joint occurrence, consider Fig. 3, which shows a
record from the Pt. Reyes buoy, captured on January 23, 1997 starting
at 08:52. The top inset shows the wave elevation record in blue,
with the largest wave peak in the 30-min record highlighted in red,
identified by the time when 𝙻1(𝑡) from Eq. (1) is at a 30-min maximum,
or when �̂�1 occurs. The middle inset shows the same wave record in
blue, and highlights in red the largest wave group of 2 waves in this
record, with the waves separated in time by 8.55 sec, the average peak
modal period for the chosen subset of buoy records. This wave group
is identified by the time of �̂�2 occurrence. The bottom inset shows
the same record and when the largest wave group of 3 waves occurs,
identified when �̂� occurs with 𝜏 = 8.55 sec, highlighted in red.
3



Ocean Engineering 243 (2022) 110172H.C. Seyffert

̂

Fig. 4. 𝙻1(𝑡), 𝙻2(𝑡), and 𝙻3(𝑡) with 𝜏 = 8.55 sec from Pt. Reyes buoy time series January
23, 1997 08:52. Extreme values of the derived processes, �̂�1, �̂�2, and �̂�3 indicate the
occurrence of a rare wave group of 1, 2, and 3 peaks.

Fig. 4 further shows the time series of the derived processes 𝙻1(𝑡),
which is in fact the wave elevation record, 𝙻2(𝑡), and 𝙻3(𝑡) from the
same Pt. Reyes buoy record from January 23, 1997 08:52, all with
𝜏 = 8.55 sec. The derived process 𝙻𝑗 (𝑡) acts as a moving-average filter
on the wave elevation 𝜂(𝑡) based on the defined peak separation period
𝜏. Extreme values of the derived process �̂�𝑗 indicate the start of a rare
wave group of 𝑗 waves separated in time by 𝜏 seconds.

Notice that the largest wave group of 3 waves for this 30-min record
also contains the largest wave groups of 2 waves and 1 wave. This
phenomenon highlights the need to consider the probability of joint
wave group occurrence, as return-period extreme wave groups of differ-
ent wave index (or number of wave peaks) may occur simultaneously.
When considering the effects of wave groups on dynamic performance
of marine systems, such as parametric rolling of ships (Shin et al.,
2005), excitation of wave energy converters, or extreme pitch response
of spar platforms (Seyffert and Troesch, 2016b), the probability of
joint wave group occurrences may be required to examine overall
system performance. The underlying wave profiles, like in Fig. 3 would
therefore be useful for more in-depth non-linear time simulation tools.

The NL-DLG process generates such an ensemble of exhaustive and
mutually exclusive wave profiles targeted for such extreme responses.
Here, exhaustive means exhaustive over a defined range of potentially
interesting excitation inputs (e.g., wave groups of defined groups in-
dices). It would indeed be useful to have an ensemble of wave profiles
targeted for extreme wave group occurrences of varying group index,
with a group period prescribed to a vessel natural period, like half
roll, because wave groups of different wave index might all have some
impact on extreme parametric responses, as noted by Kim and Troesch
(2015). The need for mutually exclusive wave profiles is motivated by
the fact that targeting for rare wave group occurrence might lead to
repeating time series which excite extreme values of different wave
group indices.

4. Methods

The aim of the NL-DLG process is to generate an ensemble of
targeted mutually exclusive and exhaustive wave profiles which excite
maxima of a number of surrogate processes relevant for a system
response and relating to a defined return-period. Surrogate processes
act as indicators of other processes of interest; e.g., extrema of the
derived (surrogate) process in Eq. (1) indicate occurrences of wave
groups of 𝑗 waves, and wave groups themselves are expected to be
a surrogate process for extreme roll responses. This surrogate process
is an easier way to identify group-like behavior than threshold cross-
ings but still indicates when group-like behavior is expected in the
underlying process.

The resulting NL-DLG wave profiles are called targeted because
they focus specifically on the times in the wave excitation which are
expected to excite extrema of the surrogate processes. The result is an
ensemble of short wave profiles targeted for return-period maxima of
defined surrogate processes, but with simulation time far shorter than
the return-period. This is accomplished within the NL-DLG process by
generating excitation time series targeted for surrogate process extrema
by response-conditioning wave techniques and linking these excitation
4

time series via a probabilistic framework which considers the possibility
that extrema of different surrogate processes occur clustered together
over the return-period, like in Fig. 3.

The full process is described in the Appendix and implemented in
the accompanying code (Seyffert, 2021), but the steps are generally
described here and illustrated in Figs. 5–6, continuing the example
of considering 30-min maxima of wave groups of 1, 2, and 3 waves
with separation period 𝜏 = 8.55 sec. Note that the numbered steps in
Figs. 5–6 relate to the steps in the Appendix.

4.1. Generation of excitation time series via response-conditioning wave
techniques

Response-conditioning wave techniques, as first described in Sec-
tion 2.2, are used in the NL-DLG process to generate an ensemble of
wave profiles targeted for extrema of defined surrogate processes. In
this example, the DLG is used as the RCWT and generates waves, called
𝜂𝑗 (𝑡) which excite maxima of 𝙻𝑗 (𝑡), that are (user-defined) 70 sec long,
𝑡 ∈ [−10, 60], with the extreme event at 𝑡 = 0. The constructed wave
profiles have the smoothed average wave energy spectrum measured
from the Pt. Reyes buoy records, shown in Fig. 2, with 300 frequency
components ranging from 0 to 2.45 rad/s.

Within the NL-DLG process, the DLG generates an ensemble of wave
excitation records (Fig. 5 point (1)) which excite a distribution of 30-
min extreme values of 𝙻1(𝑡), 𝙻2(𝑡), and 𝙻3(𝑡) with 𝜏 = 8.55 sec, �̂�1, �̂�2, and
𝙻3 (Fig. 5 point (1a)). The question is: do the DLG waves constructed for
specific realizations of surrogate process exposure-period maxima also
excite extreme realizations of other surrogate processes (Fig. 5 point
(1b))? Fig. 3 suggests that 30-min extremes of 𝙻1(𝑡), 𝙻2(𝑡), and 𝙻3(𝑡) may
sometimes be clustered, though this is not expected to always be the
case.

4.2. Probabilistic framework to link excitation time series

Therefore to ensure the RCWT-generated wave profiles are mutually
exclusive and exhaustive, the NL-DLG process employs a probabilistic
framework to determine the probability that the realizations of dif-
ferent surrogate process maxima cluster together over the exposure.
Examining the ensemble of DLG waves, e.g., 𝜂1(𝑡) constructed to excite
extrema of 𝙻1(𝑡), it is possible to determine the probability that these
waves also excite exposure-period maxima of 𝙻2(𝑡) and 𝙻3(𝑡); the same
can be done for the 𝜂2(𝑡) and 𝜂3(𝑡) waves (Fig. 6 point (2) following
notation in Appendix, Eq. (10)). By considering the possible ways that
surrogate process maxima can cluster together over an exposure (the
maxima configurations described in Fig. 6 point (3)) it is possible to
relate the probabilities of how the surrogate process maxima cluster
(Fig. 6 point (3a)) to the probabilities that an exposure fits one of the
exposure-period maxima configurations (Fig. 6 points (3b)–(4)).

This is accomplished by combining probability spaces relating to
the ensembles of 𝜂1(𝑡), 𝜂2(𝑡), and 𝜂3(𝑡) wave record realizations into a
single probability space representing how multiple surrogate process
maxima realizations may potentially cluster over an exposure. This final
probability space is based on the fact that over a single exposure, each
surrogate process experiences a single maximum which may or may not
occur clustered together with other surrogate process maxima.

The probabilistic framework of the NL-DLG process is used to com-
bine information about surrogate process maxima clustering from mul-
tiple ‘‘experiments’’, i.e., the ensembles of 𝜂1(𝑡), 𝜂2(𝑡), and 𝜂3(𝑡). These
DLG wave ensembles 𝜂𝑖(𝑡) each lead to a sample space (Eq. (13)) and
collect some overlapping information; e.g., the probability that extrema
of 𝙻1(𝑡) and 𝙻2(𝑡) occur clustered is estimated from the ensemble of 𝜂1(𝑡)
and 𝜂2(𝑡) waves (orange slices of pie charts, Fig. 6 point (2)). But these
individual sample spaces do not capture the information regarding
how all surrogate process maxima may occur clustered together over
a single exposure; e.g., the 𝜂1(𝑡) waves by definition cannot say how
extrema of 𝙻2(𝑡) and 𝙻3(𝑡) may occur clustered together but separate

from an extrema of 𝙻1(𝑡), over an exposure. This probability can only
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Fig. 5. Generation of ensemble of waves 𝜂1(𝑡), 𝜂2(𝑡), and 𝜂3(𝑡) from a RCWT (1) which excite a distribution of exposure-period maxima of the defined surrogate process (1a), and
potentially also exposure-period maxima of other surrogate processes (1b).
̂

be determined from the 𝜂2(𝑡) and 𝜂3(𝑡) waves (green slices of pie charts,
Fig. 6 point (2)).

The probabilistic framework of the NL-DLG process therefore com-
bines information from the individual sample spaces stemming from the
𝜂1(𝑡), 𝜂2(𝑡), and 𝜂3(𝑡) wave record realizations which give overlapping
information, but which individually cannot fully describe how all the
surrogate process maxima may cluster over an exposure period. This
framework results in some number, 𝑛𝑢𝑚𝚃, of mutually exclusive and
exhaustive wave profiles which target for surrogate process exposure-
period-maxima but are significantly shorter than that return-period and
are meant to mimic the statistics from 𝑛𝑢𝑚𝚃 full-length simulations. An
algorithm to calculate the number 𝑛𝑢𝑚𝚃 is given in the Appendix.

5. Application to joint occurrence of rare wave groups

Using the DLG as a RCWT, the NL-DLG process assembles an ensem-
ble of mutually exclusive and exhaustive short wave profiles targeted
for specific rare wave group occurrences, based on a defined return-
period and group indices of interest. These NL-DLG waves generate
joint distributions of rare wave group occurrences, with each sample re-
lating to a unique wave profile which targets for return-period statistics
but is much shorter than the return-period. Such distributions of rare
joint wave group occurrences are also assembled from the Pt. Reyes
buoy data, and from brute-force simulations for longer return-periods
for comparison.

5.1. 30-Minute wave group statistics

First the statistics relating to 30-min extreme wave groups are
examined, as identified in the 30-min Pt. Reyes buoy records using
Eq. (1) and as constructed by the DLG targeted for 30-min rare wave
group statistics. 30-min extreme wave groups of 𝑗 waves occur when
𝙻𝑗 (𝑡) attains its 30-min maximum value, denoted as �̂�𝑗 . The separation
period between wave peaks is 𝜏 = 8.55 sec.

From the Pt. Reyes buoy records, Eq. (1) is used to identify the
largest wave group of 𝑗 waves in each record. Then, the most-likely ex-
treme 30-min value, the target extreme value or TEV, is estimated from
5

the Pt. Reyes records by finding the Gaussian extreme value distribution
with the best-fit to the empirical histogram. This best-fit is measured by
the Kullback–Leibler divergence, which measures the information lost
when one probability distribution is used to approximate another; the
best possible fit is when the divergence is zero. In this way, it is possible
to estimate the 30-min most-likely extreme wave group value, TEV, of
the Pt. Reyes wave records. This TEV is used by the DLG to tune the
magnitude of extreme responses excited by the generated ensemble of
wave profiles.

Fig. 7 gives the empirical probability density function (𝑝𝑑𝑓 ) and
cumulative distribution function (𝑐𝑑𝑓 ) of the 30-min maximum derived
process values �̂�𝑗 normalized by the respective standard deviation
𝜎𝙻𝑗 from the 1000 DLG waves 𝜂𝑗 (𝑡) constructed for each surrogate
process 𝙻𝑗 (𝑡) and from the 6052 Pt. Reyes buoy records for wave group
indices 𝑗 = 1, 2,… , 6. Fig. 7 already indicates that the wave group
statistics measured from the Pt. Reyes buoy records deviate from the
expected Gaussian distributions assembled by the DLG, even more so
for increasing wave group index 𝑗. This was also noted in Seyffert et al.
(2016), that successive local maxima of 𝙻𝑗 (𝑡) and their arrival rates are
not independent and their dependence increases with increasing wave
group index 𝑗. This clustering of peaks of 𝙻𝑗 (𝑡) impacts the threshold-
crossing rate (Wirsching et al., 2006) and therefore the estimation of
extreme values.

Fig. 8 gives the average �̂�𝑗 value normalized by 𝜎𝙻𝑗 and group index
𝑗 from the Pt. Reyes buoy wave records (×) and the DLG wave time
series 𝜂𝑗 (𝑡) generated for use within the NL-DLG process (◦). This figure
indicates that the relative difference in extreme values of the derived
process, indicating the occurrence of a rare wave group, decreases for
increasing wave group index 𝑗. Accordingly, one might expect that
wave groups of higher group index 𝑗 have a higher correlation than do
wave groups of lower index, since the difference between �̂�𝑗∕(𝑗 × 𝜎𝙻𝑗 )
diminishes for increasing 𝑗 and wave sequences which might excite
an extreme value �̂�𝑗 might similarly excite extreme values of other
𝙻𝑗±1, �̂�𝑗±2, etc. Fig. 8 therefore suggests that the dependence structure
between different wave group indices will depend on those indices.
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Fig. 6. Probabilistic framework within the NL-DLG process which determines how surrogate process maxima excited by 𝜂𝑖(𝑡) cluster with other surrogate maxima (2), then relating
the possible maxima configurations defined for the number of surrogate processes 𝑛 by the Stirling number of the second kind S(n,k) (3) with the probabilities of these surrogate
maxima clustering (3a) to define the probability of experiencing these different maxima configurations over the exposure period (3b)–(4).
Fig. 7. Empirical 𝑝𝑑𝑓 (left y-axis) and 𝑐𝑑𝑓 (right y-axis) of 30-min maximum derived process values (�̂�𝑗 ) normalized by the respective standard deviation (𝜎𝙻𝑗 ) from 1000 DLG
waves 𝜂𝑗 (𝑡) for each index 𝑗 (with TEV based on Pt. Reyes buoy records) and 6052 Pt. Reyes buoy records.
5.1.1. Joint occurrence of 2 wave groups
Now, joint occurrences of wave groups of two different group

indices 𝑗 and 𝑘 are considered, e.g., whether the largest wave group
of 2 waves and the largest wave group of 3 waves occurs during
the same segment of a 30-min return-period so as to be considered a
single event, like illustrated in Fig. 3. The NL-DLG process assembles
30-min joint wave group statistics first by constructing an ensemble
of waves 𝜂 (𝑡) from the DLG that excite �̂� values for 𝑗 = 1, 2,… , 6.
6

𝑗 𝑗
Joint wave group statistics for wave groups of 𝑗 and 𝑘 waves are then
examined via the NL-DLG process waves when considering only two
surrogate processes, 𝙻𝑗 (𝑡) and 𝙻𝑘(𝑡). The resulting ensemble of NL-DLG
process wave realizations then gives a distribution of joint wave group
statistics, where some of these extreme wave groups occur clustered
together.

To construct the joint distributions of wave group occurrences from
the Pt. Reyes buoy with a 30-min return period, first the largest wave
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Fig. 8. Average 30-min maximum derived process value �̂�𝑗 , normalized by wave group
index 𝑗 and standard deviation (also, 𝑧𝑗𝑗∕𝑗, see Eq. (8)), from 1000 DLG time series
𝜂𝑗 (𝑡) for each index 𝑗 and 6052 Pt. Reyes buoy records.

Fig. 9. Probability that 30-min �̂�𝑗 and �̂�𝑘 occur clustered together within record,
NL-DLG process (◦) as compared to Pt. Reyes buoy records (×).

group of 𝑗 waves for 𝑗 = 1, 2,… , 6 wave peaks with 𝜏 = 8.55 sec between
wave peaks is identified for each record using Eq. (1). For each 30-min
record, a joint occurrence is recorded if the index of a wave group of 𝑘
waves occurs at maximum 10 sec before or 60 sec after the largest wave
group of 𝑗 waves within that record,1 for 𝑗, 𝑘 = 1, 2,… , 6 and 𝑗 ≠ 𝑘.
If the largest wave groups of 𝑗 and 𝑘 waves for 𝑗, 𝑘 = 1, 2,… , 6 and
𝑗 ≠ 𝑘 occur outside this 𝑡 ∈ [−10, 60] sec interval, no joint occurrence
is recorded. Instead, the extreme values for these realizations of wave
groups of 𝑗 and 𝑘 waves are recorded separately.

Fig. 9 shows the probability that �̂�𝑗 and �̂�𝑘 occur clustered together
over the record length, as estimated by the NL-DLG process (◦) and
compared to the Pt. Reyes buoy records (×). For example, the darkest
blue line gives the probability that �̂�1, the largest wave peak of the
record, occurs together with �̂�𝑘 for 𝑘 = 1, 2,… , 6. As the index of �̂�𝑘
increases (increasing x-axis), the examined �̂�𝑘 values (colored lines) are
evaluated for 𝑗 = 𝑘,… , 6, as �̂�𝑘 values for 𝑘 < 𝑗 are examined in the
previous lines.

Fig. 9 indicates that it is more likely that 30-min extreme wave
groups occur clustered together when both group indices are high, as
also suggested from Fig. 8, though the NL-DLG process slightly under-
estimates this probability as compared to the Pt. Reyes buoy records for
lower group indices. The NL-DLG process wave profiles best estimate

1 The DLG wave records are 𝑡 = 70 sec long, 𝑡 ∈ [−10, 60] sec, with the
extreme event occurring at 𝑡 = 0 seconds. Since the clustered extreme wave
group occurrences identified by �̂�𝑗 and �̂�𝑘 can occur potentially clustered over
each 70-sec DLG record, we do a similar comparison in the Pt. Reyes buoy
records and look for an extreme occurrence of a wave group of 𝑘 waves that
occurs at maximum 10 sec before to 60 sec after the occurrence of an extreme
wave group of 𝑗 waves.
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the Pt. Reyes probabilities that the 30-min extreme wave groups of 𝑗
and 𝑘 waves occur clustered together during the records when at least
one of the group indices is small. This is unsurprising considering Fig. 8,
as there is a stronger distinction between the extreme values which
indicate rare wave groups of fewer waves, versus larger group indices.

Fig. 10 gives the distributions of joint 30-min �̂�2∕𝜎𝙻2 and �̂�3∕𝜎𝙻3
values, corresponding to the largest wave group occurrence of wave
groups of 2 and 3 waves in the 30-min exposure, from the NL-DLG
process (left inset) and Pt. Reyes buoy records (middle inset); the
marginal 30-min distributions of �̂�2∕𝜎𝙻2 and �̂�3∕𝜎𝙻3 values are given
in the right inset. The NL-DLG process constructs 𝑛𝑢𝑚𝚃 = 1365 targeted
wave profiles approximating 30-min statistics of wave groups of 2 and 3
waves, so 1365 Pt. Reyes buoy time series are examined (see Algorithm
1 in the Appendix for calculating 𝑛𝑢𝑚𝚃). The total simulation time
associated with the 1365 NL-DLG process wave profiles is 75.5 hr; the
total time associated with the 1365 Pt. Reyes buoy records is 682.5 hr
(i.e., 𝑛𝑢𝑚𝚃 × 0.5 hr/record).

Note that each point in the distributions in Fig. 10 is associated with
a unique wave profile, from either the NL-DLG process or the Pt. Reyes
buoy, which excites this 30-min joint extreme wave group occurrence.
These wave profiles could be used in a dynamic assessment where time
domain simulations may be useful to examine the performance of a
marine system. For these 30-min joint wave group statistics, the NL-
DLG process assembles a quite similar distribution of joint extreme
occurrences of wave groups of 2 and 3 waves with over 9 times
less required simulation time relating to the time series realizations
containing those joint occurrences.

The NL-DLG process and Pt. Reyes buoy waves both indicate bi-
modal behavior in the joint occurrence of rare wave groups of 2
and 3 waves relating to around 2.9𝜎𝙻2∕2.9𝜎𝙻3 and 3.3𝜎𝙻2∕3.3𝜎𝙻3 . While
not perfect, the NL-DLG process estimation of the joint rare wave
group occurrences are quite reasonable when considering the reduced
simulation time associated with these joint occurrences. Such a sav-
ing in required simulation time for converged statistics offers major
advantages, as high-fidelity modeling tools can be directed exclusively
to times when interesting responses are expected to occur (identified
within the targeted NL-DLG process wave profiles) versus examining
the entire return-period-length record for extreme responses (as done
with the Pt. Reyes buoy records).

5.2. 30-Minute statistics based on theory

As the NL-DLG process utilizes a Gaussian RCWT to generate the
wave profiles, an important question to consider is whether differences
in the estimation of joint wave group occurrences stem from assump-
tions in the probabilistic framework of the NL-DLG process or from
that Gaussian assumption. Clearly, Fig. 7 suggests that the extreme
values �̂�𝑗 indicating rare wave group occurrence from the Pt. Reyes
buoy records already deviate from the expected Gaussian distribution
even based on the same target extreme value, TEV. Therefore, this
section compares 30-min rare wave group statistics assembled from
brute-force Monte Carlo Simulations (MCS) with statistics from the
NL-DLG process. Now, the TEV which defines the magnitude of the
surrogate process extrema that condition the DLG waves is estimated by
theory. This theoretical TEV is based on the return-period and spectral
parameters of the derived Gaussian processes 𝙻𝑗 (𝑡) by Eq. (4). Eq. (4)
does not depend on the bandwidth parameter of the spectrum of 𝙻𝑗 (𝑡),
though it is dependent on a large number of observations (i.e., a long
return-period) (Ochi and Motter, 1973).
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Fig. 10. Joint probability distribution for 30-min occurrence of wave groups of 2 and 3 waves, based on joint 30-min �̂�2∕𝜎𝙻2 and �̂�3∕𝜎𝙻3 values, from the NL-DLG process (left) and
Pt. Reyes buoy records (middle), both using the same colorbar. Marginal 𝑝𝑑𝑓 ’s are in the right inset. Both the NL-DLG process and Pt. Reyes buoy distributions use 𝑛𝑢𝑚𝚃 = 1365
samples (relating to 1365 unique wave profiles).
where
𝑇𝐸𝑉𝙻𝑗 = target extreme value for wave group of 𝑗 waves

over return-period T
�̂�𝑗 = return-period extreme value of 𝙻𝑗 (𝑡)
𝜎𝙻𝑗 =

√

𝑚0𝙻𝑗
= standard deviation of 𝙻𝑗 (𝑡)

𝑇 = return-period in sec
𝑚0𝙻𝑗

= zeroth spectral moment of 𝙻𝑗 (𝑡)

𝑚2𝙻𝑗
= second spectral moment of 𝙻𝑗 (𝑡)

Figs. 11–12 compare the empirical distributions of extreme values
𝙻𝑗 for 𝑗 = 1, 2,… , 6 and the average normalized derived process value
from 1000 DLG records for each group index based on the theoretical
TEV, Eq. (4), and 6052 30-min MCS. Fig. 11 indicates that the dis-
tribution of extreme values �̂�𝑗 collected from the 30-min MCS gives
a significantly closer match to the distribution of �̂�𝑗 assembled from
the DLG waves based on the theoretical TEV, as expected since both
these DLG and MCS waves are based on a Gaussian assumption. Fig. 12
similarly shows that the average normalized derived process values
from the MCS and DLG waves are nearly identical; the magnitudes
of these average normalized values are quite similar to the respective
values in Fig. 8, but here there is much closer agreement between the
DLG and MCS.

Similar to Fig. 9, Fig. 13 shows the probability that �̂�𝑗 and �̂�𝑘
occur clustered together over the record length, as estimated by the
NL-DLG process (◦) and compared to the 30-min MCS (×). Here, the
NL-DLG process overall gives better estimates of the probabilities that
the rare wave groups cluster over the 30-min return-period, when
compared with the 30-min MCS versus the Pt. Reyes buoy records.
When compared with the Pt. Reyes buoy records, the NL-DLG process
gave slightly better estimates of this probability for low wave group
indices, but compared to the MCS, the NL-DLG process overall gives
more accurate probability estimates for most comparisons of group
indices, including larger group indices.

Finally, Fig. 14 gives the distributions of joint 30-min �̂�2∕𝜎𝙻2 and
𝙻3∕𝜎𝙻3 values from the NL-DLG process (left inset) and 30-min MCS
(middle inset) with the marginal 30-min extreme distributions in the
right inset. This NL-DLG process joint distribution is based on 𝑛𝑢𝑚𝚃 =
1350 samples, relating to 75.2 hr of simulation time, versus 1350
30-min MCS, relating to 675 hr of simulation.

Figs. 11–14 suggest that the performance of the NL-DLG process
depends on how well the RCWT realizations approximate the expected
surrogate process statistics. Clearly though, there is still some small
discrepancy in how the NL-DLG process estimates the mutual exclu-
sivity of wave records, relating to step 2 of the full method in the
Appendix, which can be further refined. In this case, the slightly
8

non-Gaussian wave group statistics from the Pt. Reyes buoy records
may stem from the relatively short record length and the dependence
between successive wave peaks for higher wave group indices. When
the RCWT realizations well approximate the marginal distributions of
surrogate process extrema, as examined in this sub-section by MCS, the
NL-DLG process well estimates joint distributions of rare wave group
occurrences with significantly reduced simulation time relating to the
resulting wave profiles.

5.3. 25-Hour statistics

Finally, a longer return-period is examined, this time comparing
the joint statistics assembled by the NL-DLG process with statistics of
1000 25-hr MCS defined by the smoothed average spectrum in Fig. 2.
Note that a longer return-period may not satisfy traditional stationarity
requirements, e.g., a 3-hr sea state. However, for Gaussian statistics,
longer exposure periods can also be used to examine extreme values
associated with a shorter exposure and an applied risk parameter or
allowable probability of exceedance, see Ochi (1990).

Fig. 15 gives the statistics of the average normalized 25-hr maxi-
mum derived process values from the 25-hr MCS (×) and DLG waves
targeted for 25-hr �̂�𝑗 occurrences (◦), overlaid with this comparison for
the 30-min statistics from Fig. 8, comparing the 30-min DLG records
with the 30-min MCS. For the 25-hr return-period, the trend of the
average normalized 25-hr maximum derived process values is very
similar as the trend for 30-min statistics. However, the successive
difference between the normalized derived process maxima values for
increasing group index is larger for the 25-hr statistics than for the
30-min statistics.

Given this larger distinction between extreme values which indicate
rare wave group occurrence for 25-hr vs. 30-min statistics, Fig. 16
shows that the NL-DLG process (◦) closely estimates the probability that
the 25-hr extreme wave groups of group index 𝑗 and 𝑘 occur clustered
together over the exposure, compared with 25-hr MCS (×). For this
longer return-period, there is a lower probability that the extreme wave
groups of different group index occur together, as might be expected.
Figs. 15–16 when directly compared to Figs. 12–13 strongly suggest
that the dependence structure between extreme wave groups depends
both on the group indices and the return-period.

Fig. 17 gives the joint 25-hr distributions of �̂�2∕𝜎𝙻2 and �̂�3∕𝜎𝙻3 val-
ues from the NL-DLG process (left inset) and 25-hr MCS (middle inset),
and the marginal 25-hr extreme distributions (right inset). As only 1000
25-hr MCS were constructed, only 1000 NL-DLG process wave profiles
are examined (out of the possible 𝑛𝑢𝑚𝚃 = 1119 realizations).

The total time associated with the 1000 NL-DLG process wave
profiles is 74.1 hr while the total time associated with the 1000 25-
hr MCS is 25,000 hr. Now the power of the NL-DLG process is truly
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Fig. 11. Empirical 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of 30-min maximum derived process values (�̂�𝑗 ) normalized by the respective standard deviation (𝜎𝙻𝑗 ) from 1000 DLG waves 𝜂𝑗 (𝑡) for each index
𝑗 (with TEV based on theory) and 6052 30-min MCS.
Fig. 12. Average 30-min maximum derived process value �̂�𝑗 , normalized by wave
group index 𝑗 and standard deviation (also, 𝑧𝑗𝑗∕𝑗, see Eq. (8)), from 1000 DLG time
series 𝜂𝑗 (𝑡) for each index 𝑗 (with TEV based on theory) and 6052 30-min MCS.

Fig. 13. Probability that 30-min �̂�𝑗 and �̂�𝑘 occur clustered together within record,
NL-DLG process (◦) as compared to 6052 30-min MCS (×).

displayed, as the simulation time of the wave profiles associated with
the distribution of joint extreme wave group occurrences is again
9

directed only to the times when these joint extreme occurrences are
expected, leading to a relatively low required simulation time for these
25-hr statistics. In contrast, the samples in Fig. 17 from the 25-hr MCS
represent significantly more simulation time. Now, the NL-DLG process
wave profiles exciting 25-hr statistics represent almost 340 times less
simulation time than the same number of 25-hr MCS.

Fig. 17 also offers a striking comparison to Fig. 14, as they both
consider the distribution of joint extreme occurrences of wave groups of
2 and 3 waves, but for different return-periods. Clearly the correlation
between wave groups is dependent on the rareness of the wave groups
themselves.

5.4. Computational effort of the NL-DLG process

The computational effort to run the NL-DLG process depends on the
generation of the excitation profiles and the probabilistic framework
linking those excitation realizations to the 𝑛𝑢𝑚𝚃 NL-DLG wave profiles.
Here, the DLG was used for the RCWT, and the computational effort
is mainly directed towards estimating the distribution of phases 𝜙 in
Eq. (3) which excite extreme 𝙻𝑗 (𝑡 = 0) values. The computational
time for the DLG to estimate this phase distribution and generate the
time series realizations is not dependent on the return-period, and only
slightly dependent on the number of wave realizations to generate. To
generate an ensemble of 1000 𝜂𝑗 (𝑡) DLG wave realizations targeted to
excite �̂�𝑗 values takes about 2 min, regardless of the return-period.
The computational time for the probabilistic framework of the NL-
DLG process takes about 3 min to run. Therefore, about 15 min of
computational time on a MacBook Pro 2.3 GHs Intel Core i5 generated
the statistics and NL-DLG wave profiles relating to any combination
of joint wave group occurrences of 1 to 6 waves. In contrast, on the
same computer, it took about 21 min to run the 6052 30-min brute-
force MCS.2 In this case, the NL-DLG process’s computational time is
less than 70% of the computational time based on brute-force MCS.

For the 25-hr wave group statistics, the computational time of
the NL-DLG process remains unchanged: 15 min for the wave group

2 note 6052 30-min MCS were run to give a direct comparison to the 6052
available Pt. Reyes buoy records
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Fig. 14. Joint probability distribution for 30-min extreme occurrence of wave groups of 2 and 3 waves, based on joint 30-min �̂�2∕𝜎𝙻2 and �̂�3∕𝜎𝙻3 values, from the NL-DLG process
(left) and Pt. Reyes buoy records (middle), both using the same colorbar. Marginal 𝑝𝑑𝑓 ’s are in the right inset. Both the NL-DLG process and Pt. Reyes buoy distributions use
𝑛𝑢𝑚𝚃 = 1350 samples (relate to 1350 unique wave profiles).
Fig. 15. Average 30-min and 25-hr maximum derived process values normalized by
wave group index 𝑖 (𝑧𝑖𝑖∕𝑖), from 1000 DLG time series 𝜂𝑗 (𝑡) for each index 𝑗 and 6052
30-min MCS/1000 25-hr MCS.

Fig. 16. Probability that 25-h �̂�𝑗 and �̂�𝑘 occur clustered together within record, NL-DLG
process (◦) as compared to MCS (×).

statistics and generating the resulting NL-DLG wave profiles. For 1000
25-hr brute-force MCS, the computational time was about 30-min.
Clearly, the NL-DLG process can efficiently simulate statistics of joint
extreme occurrences with reduced computational effort from brute-
force methods, and the savings increase for longer return periods.
However, as noted earlier the major efficiency the NL-DLG process
offers is in the reduced simulation time relating to the generated NL-
DLG wave profile realizations, versus an equivalent number of full
return-period length simulations.
10
6. Conclusions

This paper presented and formalized the NL-DLG process as a
method to assemble an ensemble of mutually exclusive and exhaustive
short excitation profiles which excite joint extreme values of surro-
gate processes interesting for design responses. The NL-DLG process
was applied specifically to assemble wave profiles which contained
instances of rare wave groups. The ensemble of generated wave profiles
was evaluated by comparing resulting distributions of joint extreme
wave group occurrences with distributions of extreme wave group
occurrences measured from physical oceanographic data via the Pt.
Reyes buoy.

To determine whether discrepancies in the comparisons stemmed
from Gaussian assumptions or assumptions in the probabilistic frame-
work of the NL-DLG process itself, brute-force Monte Carlo Simulations
were also performed. Here, the NL-DLG process gave an improved
estimate of joint wave group occurrence probabilities, as compared to
the physical data from the Pt. Reyes buoy. Though there may still be
ways to refine the assumptions of the probability framework of the
NL-DLG process, this comparison suggests that the NL-DLG process can
at least reasonably estimate joint Gaussian statistics, with even better
performance and computational and simulation-time for longer return
periods. The capability offered by the NL-DLG process, specifically
based on the ensemble of short wave profiles targeted for specific
surrogate process extrema, offers engineers a way to define an efficient
testing regime targeted for extreme events and quickly estimate joint
statistics of potentially correlated environmental phenomena like rare
wave groups.
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Fig. 17. Joint probability distribution for 25-hr extreme occurrence of wave groups of 2 and 3 waves, based on joint 25-hr extreme 𝙻2∕𝜎𝙻3 and 𝙻3∕𝜎𝙻3 values, from the NL-DLG
process (left) and 25-h MCS (middle), both using the same colorbar. Marginal 𝑝𝑑𝑓 ’s are in the right inset. Both the NL-DLG process and MCS distributions use 𝑛𝑢𝑚𝚃 = 1000 samples.
Appendix

A.1. Constructing joint wave group occurrence distribution via the NL-DLG
process

To generate an ensemble of mutually exclusive and exhaustive wave
profiles targeted for return-period extreme events of multiple poten-
tially correlated surrogate processes, the NL-DLG process is employed.
The NL-DLG process was partially developed in Seyffert (2018) to
estimate the lifetime failure probability of a complex non-linear system
subject to combined, potentially correlated, stationary, non-Gaussian
loading where a multi-dimension, potentially non-linear limit surface
describes load combination levels which indicate instances of failure.
This work formalizes the process give in Seyffert (2018) and for the
first time generalizes the expressions to consider any number of possible
load combinations, or surrogate processes.

The NL-DLG process constructs an ensemble of short excitation
records (wave profiles) representative of the specific operational con-
dition which lead to the most-likely exceedances of a defined limit
surface (henceforth referred to as ‘‘failures’’) over the defined return-
period. The definition of what counts as a failure is subjective, and
can be exploited to the situation at hand. In Seyffert et al. (2019)
the NL-DLG process was used to assemble waves expected to excite
the most-likely collapse mechanism of a stiffened ship panel under
combined loading; in that example failure was literal collapse. For the
example in this paper, ‘‘failures’’ are defined as the most extreme wave
group occurrences over a defined return period, so the NL-DLG process
will be used to assemble an ensemble of waves which contain these
most extreme wave group occurrences expected over the return period.

This ensemble of NL-DLG process wave record realizations can be
interpreted as ‘‘abridged Monte Carlo Simulations’’ because they are
meant to excite the same statistical response of the system as would
an equivalent number of full-length Monte Carlo Simulations, but with
major savings in simulation time, as the NL-DLG process wave focus
solely on times when failures are expected to occur, even for long
return-periods.

A.1.1. Identifying surrogate processes
Consider a complex system which is excited by combined, stochas-

tic, and potentially non-Gaussian excitation. This excitation and the
subsequent responses of interest may be non-linear functions of a
global, Gaussian input, 𝜂(𝑡) (e.g., wave excitation). Given that all system
responses are excited by this excitation input 𝜂(𝑡), they likely have some
level of (potentially unknown) correlation. These non-linear responses
can be considered the vector 𝐍𝐋(𝑡). A limit surface 𝐺 describes all
combinations of the non-linear responses which result in failure, as
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shown in Eq. (5). System failure is the event that the load vector 𝐍𝐋(𝑡)
exceeds the limit surface 𝐺 within some time duration 𝑇 , given by
Eq. (6).

𝜂(𝑡) = time series of the Gaussian input which excites the complex system

𝙽𝙻𝑗 (𝑡) = 𝑗th response time series resulting from a potentially non-linear

transformation of 𝜂(𝑡)

𝐺(𝙽𝙻1,… , 𝙽𝙻𝑚) = 0 ≡ 𝑚−dimension limit surface, which may be a

non-linear function of 𝑚 non-linear responses

(5)

𝐍𝐋(𝑡) = vector of 𝑛 non-linear load/ load effect time series
𝑁𝐺(𝑇 ) = the number of up-crossings of 𝐺 by 𝐍𝐋(𝑡) in [0,T]
𝑝(F) = 𝑝(𝑁𝐺(𝑇 ) ≥ 1) = probability of failure

(6)

While many methods exist to solve a problem such as presented in
Eq. (6), see e.g., Rice (1944), Winterstein et al. (1993), Giske et al.
(2017) and Jensen (2007), here the desire is to estimate the failure
probability while retaining a link with the excitation records (wave
profiles) which excite such failures. To do so, the NL-DLG process first
makes use of surrogate processes, similar to reduced order modeling,
in that only essential physics of a system are retained, thus producing
a system that exhibits relevant behavior. Surrogate processes can be
defined as indicators of extreme behavior of some linear or non-linear
responses of interest, as in Eq. (7). Here, the surrogate processes
are defined as weighted sums of the Gaussian derived process whose
extreme values indicate the occurrence of rare wave groups:

𝑧𝑖(𝑡) = 𝛼
𝙻1(𝑡)
𝜎𝙻1

+ 𝛽
𝙻2(𝑡)
𝜎𝙻2

+⋯ + 𝛾
𝙻𝑛(𝑡)
𝜎𝙻𝑛

(7)

where
𝑧𝑖(𝑡) ≡ 𝑖th surrogate process composed of weighted, standard

deviation-normalized derived processes 𝙻𝑖(𝑡), 𝑖 = 1,… , 𝑛

𝛼, 𝛽,… , 𝛾 = 𝑛 weighting factors

𝙻𝑖(𝑡) = linear function that best indicates the extreme behavior of a

potentially non-linear response 𝙽𝙻𝑖(𝑡); here extreme values of 𝙻𝑖(𝑡)

from Eq.(1) indicate the occurrence of a rare wave group of 𝑖 waves

𝜎𝙻𝑖 = standard deviation of 𝙻𝑖(𝑡)

By varying the weighting factors 𝛼, 𝛽, …, 𝛾 it is possible to empha-
size some of the derived processes 𝙻𝑖(𝑡) while de-emphasizing others.
To examine the joint occurrence of rare wave groups of different group
indices, simplify the surrogate processes by Eq. (8):

𝑧𝑖(𝑡) =
𝙻𝑖(𝑡) (8)

𝜎𝙻𝑖



Ocean Engineering 243 (2022) 110172H.C. Seyffert
𝑔(𝑧𝑖,𝑇 ) = extreme value distribution of the surrogate process 𝑧𝑖(𝑡), based on the exposure period, 𝑇 (9)
𝜂𝑖(𝑡) = ensemble time series realization constructed to lead to an exposure-period-maximum of the surrogate process 𝑧𝑖(𝑡)
𝑧𝑖𝑖(𝑡) = ensemble time series realization of the surrogate process 𝑧𝑖(𝑡) excited by 𝜂𝑖(𝑡)
𝑧𝑖𝑖 = maximum of 𝑧𝑖𝑖(𝑡), which is a member of the exposure-period extreme value distribution of 𝑧𝑖(𝑡);𝑖.𝑒., 𝑧𝑖𝑖 ∈ 𝑔(𝑧𝑖,𝑇 )

𝑧𝑖𝑗 (𝑡) = ensemble time series realization of the surrogate process 𝑧𝑗 (𝑡) excited by 𝜂𝑖(𝑡)
𝑧𝑖𝑗 = ensemble maximum of 𝑧𝑖𝑗 (𝑡) realization

Box I.
Therefore, each surrogate process, 𝑧𝑖(𝑡), 𝑖 = 1,… , 𝑛 mimics the
extreme behavior of the associated response of interest (for this paper
specifically: the occurrence of a rare wave group of 𝑖 waves, indicated
by an extreme value of 𝙻𝑖(𝑡)). Then the DLG can be used to construct en-
sembles of short excitation time series 𝜂𝑖(𝑡) which excite return-period
extreme values of the associated surrogate process 𝑧𝑖(𝑡), and which are
expected to excite extreme values of the associated (potentially non-
linear) response of interest. Relating extreme behavior of the non-linear
responses to extreme behavior of the associated surrogate processes in
this way is not an unusual choice. A similar assumption is the basis
of wave conditioning techniques and the critical wave episode model,
in that non-linear responses are associated with (and specifically are
corrections of) linear responses (Drummen et al., 2009; Torhaug, 1996).

Note that the Gaussian inputs constructed by the DLG to produce
exposure-period-maxima of 𝑧𝑖(𝑡) may also excite extreme values of the
other surrogate processes 𝑧𝑗 (𝑡). Based on the correlation between the
surrogate processes, it is possible that extrema of 𝑧𝑖(𝑡) and 𝑧𝑗 (𝑡) are
excited by the same Gaussian inputs. The potential overlap between
the 𝑖th and the 𝑗th surrogate process maxima is accounted for by the
variables in Eq. (9) given in Box I.

A.1.2. Sensitivity of surrogate process choice
The NL-DLG process is sensitive to the omission of important sur-

rogate processes, as the resulting NL-DLG wave profiles are targeted to
excite return-period extreme values of the defined surrogates. There-
fore, if a surrogate process which has an important contribution to the
system response is omitted, the NL-DLG process waves will similarly
omit wave sequences targeted for these important events. In the same
way, if a surrogate process is a poor indicator of the associated non-
linear load/ load effect, the usefulness of the resulting NL-DLG process
waves will suffer. On the other hand, including erroneous surrogate
processes will not negatively effect the resulting NL-DLG process waves,
apart from adding unnecessary simulation time to the resulting NL-
DLG process waves. The probabilistic framework of the NL-DLG process
will consider how the exposure-period maxima of this unnecessary
surrogate cluster with the maxima of the other surrogates, and con-
struct the resulting NL-DLG waves according to how these maxima
cluster, regardless of whether these maxima are interesting to the
system response. The derived Gaussian process defined by Eq. (1) has
been shown theoretically and based on physical data and numerical
simulations to be a good surrogate process to indicate the occurrence of
rare wave groups (Seyffert and Troesch, 2016a; Seyffert et al., 2016).
Similar investigations should be performed to evaluate the choice of
surrogates for other applications.

A.1.3. Clustering of surrogate process maxima
Over a full exposure period, all surrogate processes experience an

exposure-period-maximum. However, depending on the relation be-
tween the surrogate processes, those maxima may be excited by the
same segment of the global, Gaussian system excitation 𝜂(𝑡) and may
cluster together. For a total of 𝑛 different surrogate processes that act
as indicators of extreme behavior for 𝑛 non-linear responses, there are
12
multiple types of events, here called maxima clusters, that describe the
potential clustering of surrogate process exposure-period-maxima, as
given in Eq. (10) in Box II.

Only three types of clusters have been defined in Eq. (10) for
brevity. Given 𝑛 surrogate processes, similar events can be defined for
surrogate process maxima in clusters of 1 to 𝑛 maxima. Maxima clusters
which contain more than one surrogate process maxima may come from
more than one event, meaning the cluster can be excited by more than
one type of excitation time series as shown in Eq. (11):

𝑍𝑖 comes from only a 𝑍𝑖 event

𝑍𝑖𝑍𝑗 comes from a 𝑍𝑖𝑍𝑗 or 𝑍𝑗𝑍𝑖 event

𝑍𝑖𝑍𝑗𝑍𝑘 comes from a 𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑗𝑍𝑖𝑍𝑘, or 𝑍𝑘𝑍𝑖𝑍𝑗 event

(11)

Using the notation in Eq. (10)–(11), it is possible to describe the
potential clustering of surrogate process maxima over an exposure pe-
riod. As an example, consider a scenario when there are three responses
of interest, e.g., the occurrence of a rare wave group with 1, 2, or 3
waves, represented by three surrogate processes 𝑧1(𝑡), 𝑧2(𝑡), and 𝑧3(𝑡).
Each surrogate process experiences its maximum over the exposure, but
those maxima may be clustered depending on the relationship between
the surrogate processes (as indicated in Fig. 3).

There are five ways for three surrogate process maxima to cluster
over a full exposure in which the order of the maxima clusters does
not matter; call these possible groupings maxima configurations C𝑖
with 𝑖 = 1, 2,… , 5. All three maxima may occur clustered together,
defined by C1 ∶ {𝑍1𝑍2𝑍3}. There are three ways that two surrogate
process maxima may cluster together with the third separate, defined
by C2 ∶ {𝑍1𝑍2, 𝑍3}, C3 ∶ {𝑍1𝑍3, 𝑍2}, and C4 ∶ {𝑍2𝑍3, 𝑍1}. Or, all
three maxima may occur un-clustered, defined by C5 ∶ {𝑍1, 𝑍2, 𝑍3}.

These maxima configurations make up the partitions of a finite set
of 𝑛 surrogate process maxima. Therefore, the total number of possible
maxima configurations given 𝑛 surrogate processes is the Bell number,
𝐵𝑛 (Bell, 1938). With 𝑛 defined surrogate processes, these 𝐵𝑛 maxima
configurations are an exhaustive definition of how 𝑛 surrogate process
exposure-period-maxima may cluster over an exposure, Eq. (12):

𝑝(C1) + 𝑝(C2) +⋯ + 𝑝(C𝐵𝑛) = 1 (12)

where
C1,C2,… ,C𝐵𝑛 ≡ maxima configuration 1, 2,… , 𝐵𝑛

𝑝(C𝑖) = probability that an exposure is described by the maxima
configuration C𝑖 with 𝑖 = 1, 2,… , 𝐵𝑛

𝐵𝑛 = total number of possible configurations, given by the
Bell number for the number of surrogate processes, 𝑛

=
𝑛
∑

𝑘=0

{

𝑛
𝑘

}

=
𝑛
∑

𝑘=0

1
𝑘!

𝑘
∑

𝑗=0
(−1)(𝑘−𝑗)

(

𝑘
𝑗

)

𝑗𝑛

A.1.4. Probability spaces of maxima configurations
Continuing the example in which three responses and associated

surrogate processes are defined, the DLG constructs ensembles of 𝜂 (𝑡),
1
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𝑍𝑖 = this cluster realization comes from 1 type of event and can be excited only by 𝜂𝑖(𝑡) excitation (10)

(1) 𝑍𝑖, from 𝜂𝑖(𝑡): 𝑧𝑖𝑖 ∈ 𝑔(𝑧𝑖,𝑇 ), and all 𝑧𝑖𝑗 < 𝑧𝑗𝑗 at PNE of 𝑧𝑖𝑖 for 𝑗 = 1,… , 𝑛 and 𝑗 ≠ 𝑖

𝑍𝑖𝑍𝑗 = this cluster realization comes from 2 types of events and can be excited by 𝜂𝑖(𝑡) or 𝜂𝑗 (𝑡) excitation:

(1) 𝑍𝑖𝑍𝑗 , from 𝜂𝑖(𝑡): 𝑧𝑖𝑖 ∈ 𝑔(𝑧𝑖,𝑇 ); 𝑧𝑖𝑗 > 𝑧𝑗𝑗 at PNE of 𝑧𝑖𝑖; and all 𝑧𝑖𝑘 < 𝑧𝑘𝑘 at PNE of 𝑧𝑖𝑖 for 𝑘 = 1,… , 𝑛 and 𝑘 ≠ 𝑖, 𝑗

(2) 𝑍𝑗𝑍𝑖, from 𝜂𝑗 (𝑡): 𝑧𝑗𝑗 ∈ 𝑔(𝑧𝑗,𝑇 ); 𝑧𝑗𝑖 > 𝑧𝑖𝑖 at PNE of 𝑧𝑗𝑗 ; and all 𝑧𝑗𝑘 < 𝑧𝑘𝑘 at PNE of 𝑧𝑗𝑗 for 𝑘 = 1,… , 𝑛 and 𝑘 ≠ 𝑖, 𝑗

𝑍𝑖𝑍𝑗𝑍𝑘 = this cluster realization comes from 3 types of events and can be excited by 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡), or 𝜂𝑘(𝑡) excitation:

(1) 𝑍𝑖𝑍𝑗𝑍𝑘, from 𝜂𝑖(𝑡): 𝑧𝑖𝑖 ∈ 𝑔(𝑧𝑖,𝑇 ); 𝑧𝑖𝑗 > 𝑧𝑗𝑗 at PNE of 𝑧𝑖𝑖; 𝑧𝑖𝑘 > 𝑧𝑘𝑘 at PNE of 𝑧𝑖𝑖 & all 𝑧𝑖𝑝 < 𝑧𝑝𝑝 at PNE of 𝑧𝑖𝑖 for 𝑝 = 1,… , 𝑛 and 𝑝 ≠ 𝑖, 𝑗, 𝑘

(2) 𝑍𝑗𝑍𝑖𝑍𝑘, from 𝜂𝑗 (𝑡): 𝑧𝑗𝑗 ∈ 𝑔(𝑧𝑗,𝑇 ); 𝑧𝑗𝑖 > 𝑧𝑖𝑖 at PNE of 𝑧𝑗𝑗 ; 𝑧𝑗𝑘 > 𝑧𝑘𝑘 at PNE of 𝑧𝑗𝑗 & all 𝑧𝑗𝑝 < 𝑧𝑝𝑝 at PNE of 𝑧𝑗𝑗 for 𝑝 = 1,… , 𝑛 and 𝑝 ≠ 𝑖, 𝑗, 𝑘

(3) 𝑍𝑘𝑍𝑖𝑍𝑗 , from 𝜂𝑘(𝑡): 𝑧𝑘𝑘 ∈ 𝑔(𝑧𝑘,𝑇 ); 𝑧𝑘𝑖 > 𝑧𝑖𝑖 at PNE of 𝑧𝑘𝑘, 𝑧𝑘𝑗 > 𝑧𝑘𝑘 at PNE of 𝑧𝑘𝑘 & all 𝑧𝑘𝑝 < 𝑧𝑝𝑝 at PNE of 𝑧𝑘𝑘 for 𝑝 = 1,… , 𝑛 and 𝑝 ≠ 𝑖, 𝑗, 𝑘

Box II.
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𝜂2(𝑡), and 𝜂3(𝑡) time series. Consider that the 𝜂1(𝑡) time series are
constructed so that each 𝑧11(𝑡) time series has a maximum 𝑧11 ∈ 𝑔(𝑧1,𝑇 ).

hese 𝜂1(𝑡) time series also excite 𝑧12(𝑡) and 𝑧13(𝑡) time series, whose
resulting maxima may also be exposure-period-extreme values. In this
way, the maxima 𝑧11 can be classified into disjoint and exhaustive
groups depending on whether the 𝜂1(𝑡) time series which lead to
𝑧11 ∈ 𝑔(𝑧1,𝑇 ) also lead to 𝑧12 ∈ 𝑔(𝑧2,𝑇 ) and/ or 𝑧13 ∈ 𝑔(𝑧3,𝑇 ), as
described by the criteria in Eq. (10). Each 𝜂1(𝑡) time series can be seen
as an individual trial of an experiment with the possible outcomes:
{𝑍1, 𝑍1𝑍2, 𝑍1𝑍3, 𝑍1𝑍2𝑍3}. Then, a measurable probability space,
(𝛺𝑖,𝑖, 𝑃𝑖), for the possible event outcomes from an 𝜂𝑖(𝑡) time series is
defined:

𝛺𝑖 = {𝑍𝑖, 𝑍𝑖𝑍𝑗 , 𝑍𝑖𝑍𝑘, 𝑍𝑖𝑍𝑗𝑍𝑘}

𝑖 = {𝛺𝑖, ∅, 𝑍𝑖, 𝑍𝑖𝑍𝑗 , 𝑍𝑖𝑍𝑘, 𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑖 ∪𝑍𝑖𝑍𝑗 , 𝑍𝑖 ∪𝑍𝑖𝑍𝑘, 𝑍𝑖 ∪𝑍𝑖𝑍𝑗𝑍𝑘,

𝑍𝑖𝑍𝑗 ∪𝑍𝑖𝑍𝑘, 𝑍𝑖𝑍𝑗 ∪𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑖𝑍𝑘 ∪𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑖 ∪𝑍𝑖𝑍𝑗 ∪𝑍𝑖𝑍𝑘,

𝑍𝑖 ∪𝑍𝑖𝑍𝑗 ∪𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑖 ∪𝑍𝑖𝑍𝑘 ∪𝑍𝑖𝑍𝑗𝑍𝑘, 𝑍𝑖𝑍𝑗 ∪𝑍𝑖𝑍𝑘 ∪𝑍𝑖𝑍𝑗𝑍𝑘}

𝑃𝑖 = {𝑝({𝑍𝑖}), 𝑝({𝑍𝑖𝑍𝑗}), 𝑝({𝑍𝑖𝑍𝑘}), 𝑝({𝑍𝑖 ∪𝑍𝑖𝑍𝑗}),…}

(13)

where
𝛺𝑖 = sample space of all possible outcomes from

a 𝜂𝑖(𝑡) time series

𝑖 = event space, which is a 𝜎-algebra

𝑃𝑖 = probability measure

𝑝({𝑍𝑖}) =
number of 𝜂𝑖(𝑡) time series which satisfy 𝑍𝑖 condition

number of 𝜂𝑖(𝑡) time series

𝑝({𝑍𝑖𝑍𝑗}) =
number of 𝜂𝑖(𝑡) time series which satisfy 𝑍𝑖𝑍𝑗 condition

number of 𝜂𝑖(𝑡) time series

({𝑍𝑖𝑍𝑗𝑍𝑘}) =
number of 𝜂𝑖(𝑡) time series which satisfy 𝑍𝑖𝑍𝑗𝑍𝑘 condition

number of 𝜂𝑖(𝑡) time series
𝑝({𝑍𝑖}) + 𝑝({𝑍𝑖𝑍𝑗}) + 𝑝({𝑍𝑖𝑍𝑘}) + 𝑝({𝑍𝑖𝑍𝑗𝑍𝑘}) = 1, by definition

The probability measure for any union of the events in the (𝛺𝑖,𝑖, 𝑃𝑖)
pace is a simple sum because all of the events are by definition
utually exclusive. Measurable probability spaces for the possible

vent outcomes from the excitation time series 𝜂𝑗 (𝑡), (𝛺𝑗 ,𝑗 , 𝑃𝑗 ), and
𝑘(𝑡), (𝛺𝑘,𝑘, 𝑃𝑘), can similarly be defined. As shown in Eq. (10), the
axima cluster realizations may be excited by different excitation time

eries 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡), or 𝜂𝑘(𝑡). The events in the (𝛺𝑖,𝑖, 𝑃𝑖) spaces are the
events which can lead to the maxima clusters, as described in Eq. (11).
For example, the above defined maxima configuration C4 ∶ {𝑍2𝑍3, 𝑍1}
may occur as {𝑍2𝑍3, 𝑍1} or {𝑍3𝑍2, 𝑍1} where the order of the two

axima clusters does not matter. This maxima configuration simply
escribes the event that the exposure-period-maximum of 𝑧 (𝑡) occurs
13

1

nclustered over a full exposure, and that the exposure-period-maxima
f 𝑧2(𝑡) and 𝑧3(𝑡) cluster together over an exposure.

.1.5. Constructing ensemble of excitation time series from the NL-DLG
rocess

To determine the probability that surrogate process maxima occur
lustered over the exposure and construct the ensemble of NL-DLG
rocess wave realizations, the following steps are employed: Instances
f extreme values of the potentially non-linear responses of interest
re approximated by defining surrogate processes which indicate ex-
remes of those responses. A RCWT is used to generate an ensemble
f excitation time series which excite a return-period extreme value
istribution of the defined surrogate processes. Then, the excitation
ime series realizations are examined, Eq. (10)–(12) describe how these
ealizations can be grouped into potential maxima configurations, and
he probability of experiencing each maxima configuration over an
xposure period is estimated. Given the probability of these maxima
onfigurations, time series generated by the RCWT and belonging to
ach specific maxima configuration type can be drawn based on their
pecific distribution to assemble an ensemble of excitation time series
hich approximate return-period statistics. Each step of the NL-DLG
rocess is described below for any number of 𝑛 non-linear responses of
nterest (𝙽𝙻𝑖(𝑡) for 𝑖 = 1,… , 𝑛), relating to 𝑛 surrogate processes (𝑧𝑖(𝑡)
or 𝑖 = 1,… , 𝑛) which act as indicators of extreme behavior for the
non-linear responses. Supplementary code is linked to this paper to

erform these calculations given excitation time series constructed by
RCWT for the desired return period (Seyffert, 2021).

1. Construct a sufficient number of RCWT time series 𝜂𝑖(𝑡) for 𝑖 =
1,… , 𝑛. The simulation length should be based on the wave
spectrum autocorrelation period.

2. Group these excitation simulation records into the maxima clus-
ters described by Eq. (10)–(11). To determine whether an exci-
tation record 𝜂𝑖(𝑡) excites maxima of other surrogate processes
(i.e., whether there is a 𝑍𝑖, 𝑍𝑖𝑍𝑗 , or 𝑍𝑖𝑍𝑗𝑍𝑘 event, following
the notation from Eq. (10)–(11)), the following criterion is used:
The extreme values 𝑧𝑖𝑖 excited by 𝜂𝑖(𝑡) can be ordered based
on increasing probability of non-exceedance, PNE; these 𝜂𝑖(𝑡)
wave realizations can excite time series of the other surrogate
processes. Then, those other surrogate process maxima, 𝑧𝑖𝑗 and
𝑧𝑖𝑘, are compared to the values 𝑧𝑗𝑗 and 𝑧𝑘𝑘, respectively, at the
same PNE corresponding to the 𝑧𝑖𝑖 value. If the values 𝑧𝑖𝑗 and
𝑧𝑖𝑘 conditioned on 𝑧𝑖𝑖 occurrence at a certain PNE are larger
than the respective 𝑧𝑗𝑗 and 𝑧𝑘𝑘 values at the same PNE, it is
said that the surrogate process maxima cluster. Essentially, this
criterion compares the maximum value of a surrogate process
𝑧𝑗 (𝑡) excited by a wave record 𝜂𝑖(𝑡), meaning it is conditioned on
the occurrence of the exposure-period-maximum 𝑧 with 𝑖 ≠ 𝑗,
𝑖𝑖
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to the value of the extreme value distribution of 𝑧𝑗 (𝑡) (𝑔(𝑧𝑗,𝑇 )) at
the same PNE to decide whether that specific maxima occurrence
of 𝑧𝑗 (𝑡) occurs clustered with a maxima occurrence of 𝑧𝑖(𝑡).

3. For 𝑘 = 1,… , 𝑛, partition the 𝑛 surrogate process maxima into
𝑘 groups, in which each surrogate process maximum occurs ex-
actly once and the order of maxima clusters does not matter. This
generates the maxima configurations described previously. The
number of possible partition schemes for 𝑛 surrogate maxima
clustered into 𝑘 groups is 𝑆(𝑛, 𝑘), the Stirling number of the
second kind. All partitions over 𝑘 = 1,… , 𝑛 describe the maxima
configurations C𝑖 with 𝑖 = 1, 2,… , 𝐵𝑛 (i.e., ∑𝑛

𝑘=1 𝑆(𝑛, 𝑘) = 𝐵𝑛).
For 1 < 𝑘 < 𝑛 there is more than one possible partition scheme
for the 𝑘 groups of 𝑛 surrogate process maxima. For example,
given 𝑛 = 3 and 𝑘 = 2, there are 𝑆(3, 2) = 3 possible partition
schemes to group 𝑛 = 3 surrogate process maxima into 𝑘 = 2
groups (i.e., C2 ∶ {𝑍1𝑍2, 𝑍3}, C3 ∶ {𝑍1𝑍3, 𝑍2}, and C4 ∶
{𝑍2𝑍3, 𝑍1}).
For a given maxima configuration C𝑖 which has 𝑘 maxima clus-
ters, call each of the 𝑘 clusters, as defined by Eq. (10), 𝛾𝑎𝑐𝑖 where
𝑎 = 1,… , 𝑘. The size of each cluster, |𝛾𝑎𝑐𝑖 |, relates to the number
of surrogate process maxima contained within that cluster. For
example, the cluster 𝑍1𝑍2 has size 2. For a configuration C𝑖
which has 𝑘 maxima groups:
𝑘
∑

𝑎=1
|𝛾𝑎𝑐𝑖 | = 𝑛 (14)

Note that |𝛾𝑎𝑐𝑖 | ≤ 𝑛 for all 𝑎 = 1,… , 𝑘, meaning that the size of a
group cannot exceed the number of surrogate processes, 𝑛.

(a) Determine the probability the surrogate process maxima
cluster together as described by 𝛾𝑎𝑐𝑖 :

• If |𝛾𝑎𝑐𝑖 | = 1, the cluster contains a single surrogate process
maximum; e.g., if 𝛾𝑎𝑐𝑖 = 𝑍𝑖 = 𝑍𝑖 where 𝑖 = 1, 2,… , 𝑛, then:

𝑝(𝛾𝑎𝑐𝑖 ) = 𝑝(𝑍𝑖) = 𝑝(𝑍𝑖) (15)

• If |𝛾𝑎𝑐𝑖 | > 1, the cluster contains more than one surrogate
process maximum. The probability of experiencing the
cluster, 𝛾𝑎𝑐𝑖 , is the sum of the probability of experiencing
that cluster given it is excited by any excitation record
𝜂𝑖(𝑡) 𝑖 = 1,… , 𝑛 which could lead to that specific clustering
of maxima. For example, say 𝛾𝑎𝑐𝑖 = 𝑍1𝑍2𝑍3. Then:

𝑝(𝛾𝑎𝑐𝑖 ) = 𝑝(𝑍1𝑍2𝑍3)

= 𝑝(𝑍1𝑍2𝑍3) + 𝑝(𝑍2𝑍1𝑍3) + 𝑝(𝑍3𝑍1𝑍2)
(16)

The probability of experiencing the cluster, 𝛾𝑎𝑐𝑖 = 𝑍𝑖𝑍𝑗𝑍𝑘,
is the sum of the probabilities of experiencing that cluster
of surrogate process maxima from any of the 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡), or
𝜂𝑘(𝑡) records.

(b) Find the unconditioned probability of experiencing the
maxima configuration 𝑐𝑖 which contains 𝑘 maxima groups:

𝑝(𝑐𝑖) =
𝑘!(𝑛 − 𝑘)!

𝑛!

𝑘
∏

𝑎=1
𝑝(𝛾𝑎𝑐𝑖 ) (17)

This probability is not yet conditioned on the fact that
only physically-realizable maxima configuration types (C𝑖)
are considered, hence the different script to describe the
configuration, 𝑐𝑖.

4. The probability of experiencing a maxima configuration over a
full exposure must be conditioned on being a physically possible
maxima configuration. This normalization is necessary because
the maxima configurations for 𝑛 surrogate processes are de-
fined by drawing a sample from the sample spaces 𝛺 for 𝑖 =
14

𝑖 b
1,… , 𝑛, as in Eq. (13). This leads to another probability space,
representing each possible drawing of events composed of a
single event from 𝛺1, 𝛺2,…, and then 𝛺𝑛. This probability space,
though, also includes maxima configurations which are not phys-
ically realizable, i.e., configurations where surrogate process
exposure-period-maxima may occur more than once. Ignoring
these non-physically-realizable maxima configurations requires
the normalization performed in Eq. (18):

𝑝(C𝑖) = 𝑝(𝑐𝑖)
∑𝐵𝑛
𝑖=1 𝑝(𝑐𝑖)

(18)

A.1.6. Generating ensemble of NL-DLG process wave profiles
Based on the maxima configuration probabilities given in Eq. (18)

time series can be drawn from the original ensembles of 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡),
and 𝜂𝑘(𝑡) realizations which satisfy the maxima configuration clusters
eferenced in Eq. (10). Based on the maxima configuration probabilities
nd the number of time series which fit each maxima cluster, excitation
ime series from the RCWT will be linked to create 𝑛𝑢𝑚𝚃 NL-DLG pro-

cess waves that are meant to approximate the return-period statistics of
𝑛𝑢𝑚𝚃 full-length Monte Carlo Simulations. The number 𝑛𝑢𝑚𝚃 is limited
to prevent oversampling of the distributions of the maxima clusters and
can be calculated by Algorithm 1 which is also implemented in the
accompanying code.

ALGORITHM 1: Calculate 𝑛𝑢𝑚𝚃.
Input : n – number of surrogate processes

𝛾𝑎𝑐𝑖 – possible maxima clusters defined by Eq. (10)
Output: 𝑛𝑢𝑚𝚃 – number of NL-DLG process wave profiles that can be

assembled

1 K ← [1, 2,… ,n] /* possible number of maxima clusters */
2 for k ← K do
3 num ← [1, 2,… , 𝑆(𝑛, 𝑘)] /* number of possible maxima

configurations of 𝑛 surrogate processes clustered in 𝑘
groups; 2𝑛𝑑 Stirling number */

4 for e ← num do
/* go over 𝑛𝑢𝑚 maxima configurations with 𝑘 clusters */

5 A ← [1, 2,… , 𝑘] /* go over 𝑘 maxima clusters, 𝛾𝑎𝑐𝑖 within
each maxima configuration */

6 for a ← A do
7 L ← count(𝛾𝑎𝑐𝑖 ) /* number of 𝛾𝑎𝑐𝑖 clusters identified

in all RCWT waves */

8 P ←
∑𝐵𝑛
𝑖=1 𝑝(C𝑖

∗) /* sum of configuration
probabilities, only considering maxima
configurations which include this specific maxima
cluster */

9 g ← 𝑓𝑙𝑜𝑜𝑟(𝐿∕𝑃 ) /* maximum possible number of NL-DLG
waves which could accommodate the required number
of 𝛾𝑎𝑐𝑖 maxima clusters (L) based on the total
probability of experiencing this cluster over an
exposure (P) */

10 end
11 end
12 end
13 𝑛𝑢𝑚𝚃 ← min(g) /* 𝑛𝑢𝑚𝚃 is the minimum over the maximum possible

number of NL-DLG waves that can accommodate the sampled 𝛾𝑎𝑐𝑖
maxima clusters, calculated in line 9 over each loop, when
considering all maxima clusters */

A.1.7. Linking ensemble of excitation time series to system failure
The ensemble of excitation time series constructed by the NL-DLG

process can also be used as input to quickly estimate system failure
probability given a defined limit surface, 𝐺, as in Eq. (5). In this
case, the non-linear responses of interest should be chosen to empha-
size 𝑛 different regions of 𝐺. As described above, surrogate processes

hich indicate extreme responses of the non-linear responses should
e defined and a RCWT used to generate ensembles of excitation time
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𝑝

R

A

𝑝(𝑍𝑖
𝐹 𝑐
) =

number of 𝑍𝑖
𝐹 𝑐

events
number 𝑍𝑖 events

(19)

𝑝(𝑍𝑖𝑍𝑗
𝐹 𝑐
) =

number of 𝑍𝑖𝑍𝑗
𝐹 𝑐

events

number of 𝑍𝑖𝑍𝑗 events
=

number of 𝑍𝑖𝑍𝑗
𝐹 𝑐

events + number of 𝑍𝑗𝑍𝑖
𝐹 𝑐

events

number of 𝑍𝑖𝑍𝑗 events + number of 𝑍𝑗𝑍𝑖 events

𝑝(𝑍𝑖𝑍𝑗𝑍𝑘
𝐹 𝑐
) =

number of 𝑍𝑖𝑍𝑗𝑍𝑘
𝐹 𝑐

events

number of 𝑍𝑖𝑍𝑗𝑍𝑘 events
=

number of 𝑍𝑖𝑍𝑗𝑍𝑘
𝐹 𝑐

events + number of 𝑍𝑗𝑍𝑖𝑍𝑘
𝐹 𝑐

events + number of 𝑍𝑘𝑍𝑖𝑍𝑗
𝐹 𝑐

events

number of 𝑍𝑖𝑍𝑗𝑍𝑘 events + number of 𝑍𝑗𝑍𝑖𝑍𝑘 events + number of 𝑍𝑘𝑍𝑖𝑍𝑗 events

where

𝑍𝑖
𝐹
, 𝑍𝑖𝑍𝑗

𝐹
, 𝑍𝑖𝑍𝑗𝑍𝑘

𝐹
≡ event that system fails when excited by the 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡), or 𝜂𝑘(𝑡) time

series associated with the corresponding 𝑍𝑖, 𝑍𝑖𝑍𝑗 , or 𝑍𝑖𝑍𝑗𝑍𝑘 event

𝑍𝑖
𝐹 𝑐
, 𝑍𝑖𝑍𝑗

𝐹 𝑐
, 𝑍𝑖𝑍𝑗𝑍𝑘

𝐹 𝑐
≡ event that system does not fail when excited by the 𝜂𝑖(𝑡), 𝜂𝑗 (𝑡), or 𝜂𝑘(𝑡) time

time series associated with the corresponding 𝑍𝑖, 𝑍𝑖𝑍𝑗 , or 𝑍𝑖𝑍𝑗𝑍𝑘 event

Box III.
A
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B

B

B

B

C

C

d

D

D

E

E

F

F
F

G

G
G

H

H

eries which lead to a distribution of extreme return-period surrogate
rocess values. Then the surrogate process extrema are grouped into
he maxima configurations, C𝑖 for 𝑖 = 1,… , 𝐵𝑛, based on the maxima
lusters described in Eq. (10).

In each type of maxima configuration, the system is excited by
t least one and up to 𝑛 maxima clusters. Rather than determine the
rder and probability of multiple failures due to the multiple maxima
lusters, which would be problematic if not impossible, it is easier to
onsider the null problem. So, given each maxima configuration type,
conditional non-failure probability can be determined using those

rouped excitation records, as in Eq. (19) (see Box III on the next page).
or the excitation simulations that fit into a cluster type, determine
he probability of system non-failure given the system is excited by
his group of simulations. This is done simply by exciting the system
ith that group of excitation simulations, and collecting the number of
on-failures that result.

Then, find the probability of non-failure for the system given an
xposure to the given maxima configuration C𝑖. The maxima events are
efined so that any maxima clusters within a type of maxima configu-
ation (e.g., 𝑍1𝑍2 and 𝑍3 are clusters within the maxima configuration
2) are, by definition, unclustered. Therefore, the probabilities of non-

ailure due to excitation which leads to the realization of the clusters
ithin a maxima configuration are independent. So, the probability of
on-failure given a specific maxima configuration is given by Eq. (20),
tarting by first defining the probability of failure given a specific
axima configuration, 𝑝(F|C𝑖), via cluster failure probabilites 𝑝(𝛾𝐹𝑎𝑐𝑖 |C𝑖):

𝑝(F|C𝑖) = 𝑝(∪𝑘𝑎=1𝛾
𝐹
𝑎C𝑖

|C𝑖)

= 1 − 𝑝 (F𝑐 |C𝑖)

= 1 − 𝑝
((

∪𝑘𝑎=1𝛾
𝐹
𝑎𝑐𝑖

)𝑐
|C𝑖

)

= 1 − 𝑝
(

∩𝑘𝑎=1𝛾
𝐹 𝑐
𝑎𝑐𝑖

|C𝑖
)

𝑝(F𝑐 |C𝑖) = 𝑝
(

𝛾𝐹
𝑐

1𝑐𝑖
|C𝑖

)

𝑝
(

𝛾𝐹
𝑐

2𝑐𝑖
|C𝑖

)

⋯ 𝑝
(

𝛾𝐹
𝑐

𝑘𝑐𝑖
|C𝑖

)

(20)

Then, the overall system failure, 𝑝(F), is estimated considering all
ossible maxima configurations, using Eqs. (18) and (20):

(F) = 1 −

( 𝐵𝑛
∑

𝑖=1
𝑝(F𝑐 |C𝑖)𝑝(C𝑖)

)

(21)
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