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a b s t r a c t   

Piezo actuators have very desirable properties, such as a high stiffness and extreme position resolution, but 
suffer from electromechanical resonances that complicate their use in high-speed applications. These re-
sonances can be minimized by using resistive or resistive-inductive damping. 

In this paper a comprehensive theory is presented which describes these piezo resonances, and the 
mechanism by which these resonances are minimized by adding electrical damping components. The 
theory is based on a purely electronic model, and uses an electrical-mechanical transformation to describe 
actual piezo displacements. Using this theory, an ‘optimal’ value of damping resistance is readily identified. 
This optimal resistance causes maximal damping of the primary resonance of the piezo. It is shown that 
damping with a combination of a resistor and an inductor can theoretically be even better. 

An optical displacement setup was developed, and frequency- and time-domain measurements were 
performed that validate the theory. The mechanical damping of the piezo actuator needs to be included in 
the theory to obtain a good fit with the electrical and mechanical behavior of an actual piezo actuator. 

© 2021 The Author. Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

Piezoelectric crystal actuators (piezos in short) are used in many 
precision positioning applications. They provide a high stiffness, 
high force, and a high maximum operating frequency, while at the 
same time allowing for a very high positioning resolution. Compared 
to most other actuators, their stroke (maximum displacement) is 
relatively low. Despite their excellent properties, it is difficult to use 
piezos in high-speed applications, because they suffer from large 
electromechanical resonances [1]. In the current paper a compre-
hensive theory of electronic damping of piezo actuator resonances 
using R- (resistor) and RL-(resistor-inductor) compensation is pre-
sented in purely electronic terms. This theory allows the calculation 
of the mechanical response of the piezo and optimal damping 
component values. It is validated by a comparison of the predictions 
of the theory and corresponding experiments. 

Early work on driving piezos electrically came from the radio 
engineering community, which uses piezos to stabilize the fre-
quency of oscillators. For a frequency-stable oscillator, damping 
should be minimized, and the resultant quality factor Q of the piezo 
should be as high as possible [2]. The need to actually damp piezo 

actuator resonances instead of enhancing the Q came with their use 
as precision actuators and in passive damping systems. Most of the 
public literature is concerned with piezos used as passive dampers 
for vibration isolation, not with piezos used primarily for actuation. 
For an overview of passive piezo damping options, see Moheimani 
and Fleming [3]. Seen from a systems point of view, the two are very 
similar. The resistive and resistive-inductive compensation techni-
ques discussed in the current paper are common to both. 

The material science and mechanical properties of piezos are 
well-known, see e.g. Moulson and Herbert [4]. In comparison, rela-
tively little literature is available dealing exclusively with the elec-
tronic properties of piezos. A piezo has many higher harmonic 
resonances modes [5,6], but in most cases only the ‘fundamental’ 
resonance is taken into account, because it is usually the strongest 
one. The electromechanical modeling of piezo actuators started with 
the derivation of the Butterworth–van Dyke electrical model of the 
fundamental resonance of a piezo, which was devised in the 
1920s [7]. 

Several versions of this model were used to describe the prop-
erties of piezos, see e.g. Stutts [8], Queiros et al. [9], Fernandez- 
Afonso et al. [10] and Sriratana et al. [11]. Prokic [12] presents the 
effect of a damping series resistor in graphical form. He also re-
cognizes the importance of the ‘mechanical current’, discussed in  
Section 2, as a measure for the piezo velocity. Thomas et al. [13] 
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address the passive reduction of structural vibration by means of 
shunted piezoelectric patches in great depth. Contrary to the ap-
proach followed in the current paper, they mathematically follow a 
mechanical resonance framework instead of the electronic descrip-
tion presented here. Even though they do not consider piezos for 
actuation, only for passive damping, they obtain equations de-
scribing important features of piezo damping, such as peak shift, 
quality factor reduction, and the ‘saddle’ that is characteristic of 
resistor-inductor compensation. 

The current paper fills the gap between the passive-mechanical 
approach in the literature, and the less comprehensive electronic 
treatments of piezo actuators to date. It also serves as the back-
ground to choose an optimal electronic damping strategy for actual 
experiments that include a piezo actuator. We start with a descrip-
tion of the piezo connected directly to a low impedance ‘hard’ vol-
tage source piezo driver. It is shown that this results in a high, sharp 
mechanical resonance peak. It is much better to connect the piezo to 
its driver via a suitable coupling network, consisting of either a re-
sistor, or a resistor and an inductor. A ‘midpoint’ resistor value for 
highest damping can be derived, and it is shown that combining it 
with a properly chosen inductor is even better theoretically. The 
theoretical results are compared to experimentally obtained data on 
an actual piezo actuator and shown to be in excellent agreement 
both electrically and mechanically. This allows the users of piezo 
actuators to obtain an optimized damped response using a simple 
procedure. 

2. The Butterworth–van Dyke model and the theory of the 
resistively coupled piezo without mechanical damping 

The Butterworth–van Dyke electrical model of a piezo [7] in Fig. 1 
is an example of a coupled electromechanical system. The me-
chanical behavior of the mass-spring system (corresponding to the 
piezo with mass, stiffness and damping) causes an electrical effect 
modeled by an inductance Lm, a capacitance Cm, and a resistive 
damping term Rm. These are coupled to the electrical capacitance Co 

of the piezo, which can be measured between the electrodes at 
frequencies which are low compared to the resonance frequency. 
The combined electromechanical system is not a standard second 
order system due to the coupling with Co. 

The current imech that flows through the series impedance of Rm, 
Lm, and Cm is a direct measure of the velocity u of the piezo actuator  
[12]. Knowing the electrical circuit parameters, we can calculate the 
velocity response u of the piezo element to a driving voltage v and 
current i, and hence also the displacement amplitude d, because the 
displacement is the integral over time of the velocity, =d udt . 
Therefore, we have the possibility to model the mechanical response 
of the piezo as a purely electronic phenomenon, and afterwards 
derive the mechanical response by assessing imech. Van Dyke [7] ar-
rives at the model of Fig. 1 by considering that the equivalent me-
chanical current is related to the velocity of the piezo. An alternative 
derivation of the Butterworth–van Dyke electrical model of a piezo is 
given in [14]. 

In the current paper, we will use increasingly more complex 
electrical models of the piezo and its drive circuitry to describe the 
mechanical response of the piezo system to an electrical voltage 
stimulus using the imech concept. More elaborate electronic models 
than the Butterworth–van Dyke model have also been proposed [15], 

but it will be shown in the experimental Sections 6 and 7 that they 
are not needed for an accurate understanding of the behavior of a 
typical piezo actuator. Verbiest et al. [16] have also shown that using 
the Butterworth–van Dyke model results in a very good fit of the 
measured piezo primary resonance. 

In a typical setup a piezo actuator is driven by a voltage source 
with output voltage v. This voltage source can be e.g. the output of a 
high voltage amplifier (often also called “piezo driver”). Usually the 
piezo is directly connected to the output of the amplifier, effectively 
creating a piezo system directly driven from a ‘hard’ voltage source. 
But to minimize mechanical resonances it is much better to use a 
resistance Ra in series with the piezo [3]. In the following theoretical 
section, it will be shown, using the electronic model, why this is 
the case. 

We start with the simplest model of the system that displays the 
required behavior, to keep the algebra tractable. In Fig. 2, the elec-
trical model of the piezo with series resistance Ra is shown. The 
mechanical damping resistor Rm of Fig. 1 is assumed here to be 
negligibly small, so it has been omitted from this first model. Its 
effect will be calculated later in the paper. The impedance Zmech of 
the mechanical branch of the piezo is the series impedance of Lm 

and Cm 

= + =Z j L
j C

C L
j C

1 1
mech m

m

m m

m

2

(1)  

The impedance of the piezo, including Co, is the parallel circuit of 
Zmech and Co, calculated as 

= =
+

=
+

Z Z Z
Z Z
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1
( )
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The total impedance Ztotal seen by the voltage source is the im-
pedance of the piezo Zpiezo and the resistor Ra in series, given by 

= + = + +
+

Z Z R
C L j R C C C C L

j C C C C L
1 ( )

( )
total piezo a

m m a m o m o m

o m o m m

2 2

2 (3)  

As a result, a current i will flow through Ztotal in response to a 
voltage source with output voltage v, given by Ohms law as 

= = +
+ +

i
v

Z
j C C C C L

C L j R C C C C L
v

( )
1 ( )

·
total

o m o m m

m m a m o m o m

2

2 2 (4)  

We obtain the physical, real current with magnitude |i|, which 
can actually be measured, from the complex current by taking the 
square root of the complex current times its complex conjugate. This 
corresponds to the length of the current vector in the complex plane, 
and is 

= +
+ +

i
C C C C L

C L R C C C C L
v| |

( )
(1 ) ( )

·o m o m m

m m a m o m o m

2 2 2

2 2 2 2 2 2 (5)  
Fig. 1. Butterworth–van Dyke equivalent schematic of a piezo actuator.  

Fig. 2. Equivalent circuits of the voltage source driven piezo with added series re-
sistance Ra. 
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Using the complex current i and the impedance Zpiezo of the 
piezo, the voltage vpiezo across the piezo is calculated, again with 
Ohms law, as 

= = +
+ +

+

v i Z
j C C C C L

C L j R C C C C L

C L
j C C C C L

v

·
( )

1 ( )

·
1

( )
·

piezo piezo
o m o m m

m m a m o m o m

m m

o m o m m

2

2 2

2

2

=
+ +

C L
C L j R C C C C L

v
1

1 ( )
·m m

m m a m o m o m

2

2 2 (6)  

The corresponding magnitude of the physical voltage across the 
piezo that can be actually measured, is again obtained by taking the 
square root of the complex current times its complex conjugate 

=
+ +

v
C L

C L R C C C C L
v| |

(1 )
(1 ) ( )

·piezo
m m

m m a m o m o m

2 2

2 2 2 2 2 2 (7)  

The voltage vpiezo across the piezo is directly across the me-
chanical branch Zmech in the piezo model, and the ‘mechanical’ cur-
rent imech flowing through this branch can be calculated using Ohms 
law as well, 

= =
+ +

i
v

Z
C L

C L j R C C C C L
j C

C L
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The corresponding magnitude of the mechanical current is 

=
+ +

i
C

C L R C C C C L
v| |

(1 ) ( )
·mech

m

m m a m o m o m

2 2

2 2 2 2 2 2 (9)  

In the Butterworth–van Dyke model, the magnitude of the me-
chanical current |imech| thus obtained is linearly related to the 
magnitude of the velocity |u| of the piezo. The displacement d of the 
piezo is the integral =d udt of the velocity u with respect to time t 
for every conceivable velocity u. If we assume the piezo velocity to 
be =u tcos ( ), the displacement is 

= =d t dt tcos ( )
1

sin( ) (10)  

As there is a linear relation between the magnitude of the me-
chanical current |imech| and the magnitude of the velocity |u|, Eq. (10) 
means that there must also be a linear relation between i| |/mech and 
the displacement magnitude d| |, which can be said, without loss of 
generality, to be linked by a proportionality constant : 

= =
+ +

d i
C

C L R C C C C L
v| | ·| |

(1 ) ( )
·mech

m

m m a m o m o m

2 2

2 2 2 2 2 2

=
+ +

C
C L R C C C C L

v
1

(1 ) ( )
·m

m m a m o m o m
2 2 2 2 2 2 (11)  

The value of the proportionality constant is obtained by as-
sessing the piezo displacement to an actuation voltage for 0, the 
static displacement to an actuation voltage. This property of a piezo 
is given by the manufacturer as the ‘piezo travel’ or sensitivity, ty-
pically in μm/V. If we evaluate the equation for d| | given above for 

0, we obtain 

=d C v| | ·m (12) 

which shows that the proportionality constant corresponds to the 
piezo travel, divided by the mechanical capacitance Cm. 

To present the theory above in figures, numbers need to be in-
serted in the respective equations. The values used were obtained by 
fitting the theory to the experimentally obtained results as discussed 
in Section 6. For these experiments, the Physik Instrumente P-820.20 
piezo was used. These experimentally obtained values corre-
sponding to the Butterworth–van Dyke model are given in Table 1. 

Using the values given in Table 1, but with Rm = 0, the theory 
presented above is illustrated in Figs. 3–6. For calibrating the piezo 
displacement given in Fig. 6 the fact is used that the static sensitivity 
of the piezo is given by the manufacturer as 0.3 µm/V  ±  20% [17]. 

It can be seen that when the piezo is driven by a hard voltage 
source (Ra = 0 Ω), the current drawn by the piezo first goes through a 
maximum. This maximum is at the ‘primary resonance frequency’ of 
the piezo. This is the purely mechanical resonance defined by Cm and 
Lm. At the primary resonance, the mechanical current and hence the 
velocity and displacement magnitude of the piezo are very high and 
only limited by the mechanical damping resistance Rm. Driving the 
piezo at this frequency without an added series resistance highly 
stresses both the piezo actuator and the high voltage amplifier 
driving it. At a somewhat higher frequency, the parallel ‘anti- 

Table 1 
Fitted P-820.20 piezo model parameters.    

Component Value  

Cm 19.2 nF 
Lm 0.50 mH 
Rm 2.5 Ω 
Co 0.48 μF    

Fig. 3. Theoretical current |i| through Ra and Zpiezo in series; no mechanical 
damping Rm. 

Fig. 4. Theoretical voltage |v| over the piezo, modeled by Zpiezo; no mechanical 
damping Rm. 
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resonance’ is visible, where Cm, Lm and Co all play a role. At this 
frequency, no extra current is drawn by the piezo when Ra = 0 Ω. In 
this case, there is no extra mechanical current, and hence no me-
chanical resonance is present at the anti-resonance frequency. 

When the series resistance R 0a , the voltage across the piezo is 
not constant, and the voltage vpiezo over the piezo will start to gra-
dually decrease with increasing frequency due to the low-pass filter 
formed by Ra and Co. But near the primary resonance it will drop 
further, because the extra current drawn by the piezo resonance 
creates an extra voltage drop across Ra. As a result, the full voltage is 
no longer available to drive the primary resonance. The net effect is a 
lowering the peak of the primary resonance visible in the mechan-
ical current and displacement curves, and a shift of this lowered 
primary resonance peak to a higher frequency. 

As Ra continues to increase, the drive to the piezo becomes 
progressively more similar to a current source. Now only at the anti- 
resonance there is a significant voltage across the piezo. The me-
chanical current |imech| will have a maximum at the anti-resonance 
frequency, with an amplitude defined by the envelope of the primary 
resonance curve for =R 0a . This is also true for the displacement |d| 
of the piezo at the anti-resonance frequency. 

Both very low and very high Ra values will give rise to a sharp 
mechanical resonance, at the electrical resonance and anti-re-
sonance frequencies respectively. The amplitude of the mechanical 
resonance is lower at the electrical anti-resonance, but as we have 
seen the resonance still has a high quality factor Q. Between them, 
there is an Ra for which maximum damping is obtained. To use a 
piezo actuator with a mechanical resonance as low as possible, 
driving it with a voltage source including series resistance Ra close to 

the value required for maximum damping is highly desirable. As 
shown in Appendix A, the value of this specific Ra, which we will call 
Ra,mid, is 

=
+

R
C L

C C C
2

(4 )a mid
m m

o o m
,

(13)  

The value of Ra,mid is not significantly affected by the size of the 
piezo. As Cm, Lm, and Co all three change by roughly the same factor 
when a piezo is made smaller or larger, the ratio given for Ra,mid will 
remain the same. This means the optimal Ra,mid has, to first order, a 
similar value for all sizes of piezo actuators made of the same ma-
terial. Using the values of Table 1, its value evaluates to Ra,mid ≅ 20 Ω 
for PZT (Lead Zirconate Titanate) based piezo actuators such as the 
P-820.20 used for the experiments. Different piezo materials, such as 
quartz, will generally result in a different value for Ra,mid. 

The addition of the piezo series resistance Ra results in a low-pass 
filtered response, determined by Ra and Co. The question may arise 
whether separately low-pass filtering the drive signal may be just as 
effective as adding a damping resistor directly at the piezo, but this 
is not the case. A low-pass filter will lower the amplitude of both the 
resonance and the desired response, but will not change the quality 
factor Q of the resonance. It will also result in a lower amplitude of 
the resonance, but the resonance will not ‘die out’ as quickly as the 
resistively damped piezo response. 

This can be seen as follows. A separate low pass filter with re-
sistor Rf and capacitor Cf will at its output have a frequency-de-
pendent voltage with magnitude |vf | that is lower than the drive 
voltage magnitude |v| by 

=
+

v
R C

v| |
1

1
| |f

f f
2 2 2

(14)  

In the case of a separate RC filter hence all that will happen is a 
reduction of the resonance amplitude and a phase lag, but the piezo 
resonance quality factor will not be affected. The response will still 
go (ideally) to infinity at the primary resonance, contrary to the case 
of resistive damping directly at the piezo. This important difference 
is shown experimentally in Section 8. 

Control-based damping [18] is also described in literature to 
optimize the piezo response. Electronic damping as discussed in the 
current paper and control-based damping are complementary. A 
better damped physical system can be modeled better and will be-
have more like the model under varying circumstances, such as 
temperature changes. Hence the better the direct electronic 
damping, the easier it is to further compensate the resonance by 
control-based damping. 

The addition of acoustic damping (e.g. by the inclusion of rubber- 
like materials in the mechanical loop) is beneficial to lower the piezo 
resonance amplitude also [3]. This increases the value or Rm, which 
lowers the resonance amplitude, as it lowers the current flowing 
between Lm and Cm, and between Lm and Co. Acoustic damping is 
hence a complementary method to the electronic damping method 
presented in the current paper. Both acoustic and electronic 
damping can be combined to create a well-behaved system that can 
be further optimized by using control-based drive signals. 

3. The theory of the resistively coupled piezo with mechanical 
damping 

The theory presented until now suffices to understand in general 
terms what is happening in a system consisting of a piezo with series 
resistance Ra. It has also allowed us to calculate a recommended 
value of a series resistance that results in optimal damping of the 
electromechanical resonances of the piezo. However, if the theory as 
presented is fitted to the response of an actual piezo, it will be found 
that the resonances predicted for low and high Ra values are off by a 

Fig. 5. Theoretical current |imech| through the mechanical piezo resonator Zmech; no 
mechanical damping Rm. 

Fig. 6. Theoretical piezo displacement |d|; no mechanical damping Rm.  
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significant amount. Indeed, the electromechanical resonances of the 
piezo are not infinitely sharp, and for a good fit the model of the 
mechanical impedance Zmech of the piezo needs to be modified to 
include the mechanical resistance Rm of the Butterworth–van Dyke 
model. This makes the algebra harder, but in principle the exact 
same procedure is followed. We now start with the mechanical 
impedance including mechanical damping, with subscript md, de-
noted Zmech,md, as 

= + +Z R j L
j C

1
mech md m m

m
,

(15)  

Using the same steps as before, the following expressions are 
obtained with mechanical damping. We define the magnitude of the 
current |imd| which flows through Ra and the piezo, the magnitude of 
the voltage |vpiezo,md| over the piezo, the magnitude of the mechan-
ical current |imech,md|, and finally the mechanically damped piezo 
displacement magnitude |dmd|. 
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+ + + +
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It will be shown in Section 6 that these expanded equations, 
which include Rm, describe the actual piezo behavior with any value 
of series resistor extremely well. This is true both in the electronic 
and the mechanical domain. 

4. The theory of the RL-coupled piezo with mechanical damping 

Although a series resistor with value Ra,mid minimizes the elec-
tromechanical resonance of the piezo, and places it midway between 
the primary resonance and the anti-resonance, it does not com-
pletely eliminate it. Therefore, sometimes a series inductor La is 
added to the series resistance, resulting in a configuration called RL- 
compensation [3], see Fig. 7. When the value of the inductor is 
chosen such, that L Rmid a a mid, , the remaining resonance peak of 
the piezo will be flattened further. Depending on the sharpness of 
the resonance, it will be either flattened as a whole, or a ‘saddle’- 
shape will be created, where the piezo resonance is replaced by two 
resonances on either side of the original resonance frequency. 
However, it is easy to create resonances with RL-compensation that 
are actually larger than the already minimized resonance using Ra,mid 

that one is trying to remove. This approach is therefore only to be 

recommended in situations where the electromechanical system is 
extensively studied and its properties well-known. 

The same procedure followed previously can be employed to find 
the magnitude of the displacement including the series resistance Ra 

and now also the series inductance La. The total impedance seen by 
the voltage source is in the case of RL-compensation without Rm is 

= + +Z R j L Ztotal L a a piezo, (20)  

This results in a displacement |dL| with La present given by 

=
+ +

+ +

d C
C L L C L C C L L

R C C C C L

v| |
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( )

·L m
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2 2 2
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When this equation is plotted as a function of the compensation 
inductance La, it is found that the highest damping is obtained if Ra is 
lowered somewhat with respect to its optimal value without La. In  
Fig. 8, we see there is an optimal value of La, where the resonance 
peak becomes ‘maximally flat’. Beyond this value the resonance 
splits, and the curve obtains a saddle point. The sharpness of the two 
resonances thus obtained increase when La is increased further. 

RL-compensation is highly sensitive to the exact value of La. In  
Fig. 8, we see the effect of tuning La over a relatively narrow range 
while keeping Ra constant. If La is too low, no beneficial effect will be 
observed, while if La is too large, the resulting resonances are worse 
than the resonance RL-compensation was supposed to solve. 

For piezo actuators used at low frequencies, far below the me-
chanical resonance, the addition of both series resistance and in-
ductance again results in a low-pass filtered response. As RL- 
compensation only works with low resistance values close to Ra,mid, 
its effect at frequencies far below the resonance of the piezo will 
usually be small. 

Fig. 7. The voltage source driven piezo with added series resistance Ra and series 
inductance La. 

Fig. 8. Theoretical piezo displacement |dL| for RL-compensation, no mechanical 
damping Rm. 
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As shown in Fig. 9, changing Ra in RL-damped scheme will result 
in a situation where there are two relatively large resonances if Ra is 
too small, and a case similar to resistive compensation alone if Ra is 
too high. This means that RL-compensation is much more sensitive 
to the exact component values, and hence also more sensitive to 
drift in the piezo parameters, than compensation with a series re-
sistor Ra alone. The piezo properties are known to change with ac-
tuation voltage, temperature, and aging. In practice, it will be 
necessary to do a thorough assessment of parameter drift if this 
more advanced compensation is utilized. Otherwise, the further 
optimization with RL-compensation may in fact make matters worse 
under some operation conditions. 

Without Rm the fit of this simple model to actual measured piezo 
data is again not perfect, because, at least for PZT based piezos, the 
optimal compensation resistance Ra,mid is not orders of magnitude 
larger than the mechanical damping term Rm. The total impedance 
seen by the voltage source for RL-compensation including Rm is 

= + +Z R j L Ztotal md L a a piezo md, , , (22)  

Performing the same steps as before results in the following 
equation for the displacement |dmd,L| with mechanical damping and 
RL-compensation introduced. Note that, compared to the situation 
with Rm but without La in Section 3, only the denominator has 
changed. 

=

+

+ + + + +

+ + + +

+ + +

+ + +

+ + +

d C

R C C L

C R R C R C R R C L L C L
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2
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(23)  

5. Experimental setup 

The theory presented above was verified with an in-house de-
veloped miniature optical detection setup. The whole setup is very 
compact to minimize the length of the mechanical loop [1] which in 
turn minimizes the parasitic mechanical resonances present in the 
system. Preliminary tests were performed with a proximity detector 
approach [19], using miniature optical tables made out of aluminum 
and granite and an optical mirror glued onto the piezo. But these 
experiments mainly showed parasitic mechanical resonances, and 
the proximity detector magnified the lateral bending motion of the 
piezo actuator, aggravated by the slightly off-axis mirror. Therefore, 
in the final version of the setup, which was used for the experiments 

reported on in this paper, a 10 × 6 × 4 cm solid block of lead (a very 
heavy and highly damping material), on rubber feet, was used as the 
optical table. The proximity detector was replaced by a miniature 
interferometer setup. To minimize the added mass and its associated 
axial asymmetry, only a partially reflective low mass piece of ad-
hesive tape was glued onto the moving end of the piezo (Fig. 10). The 
laser diode module in the setup is a miniature 1 mW Picotronic 
DGI650-1-5(7 × 14)-F35-C125. This laser is meant to be used in 
pointing applications, such as the previously mentioned proximity 
sensor. It is not specified for interferometric applications, but be-
cause the optical path length is only a few centimeters here, shorter 
than the laser coherence length, it works very well in this setup. 

When the free end of the piezo is displaced by half a wavelength, 
the pattern on the detector will change from maximum constructive 
interference to maximum destructive interference, and back. The 
intensity variations caused by these changes in interference are re-
corded by the photodetector. By adjusting the setup to be on the 
slope of the interference changes, a small signal is obtained that is 
linear in the displacement. If the displacement is a significant frac-
tion of half the laser wavelength (which is 633 nm for the red laser 
diode module used in the setup), the signal becomes nonlinear and 
can even become periodic. Care should be exercised that the piezo 
displacement does not become too large. 

The miniature optical setup is very stable against parasitic me-
chanical resonances, but its simplicity caused it to drift in and out of 
the region of maximum sensitivity once every few minutes. 
Therefore, the individual displacement measurement frequency 
sweeps had to recorded within one minute each. Because in this 
setup there is no absolute measurement of the displacement, the 
piezo displacement was normalized for the low-frequency response 
without series resistor. The sensitivity was not exactly the same 
every time the setup drifted in and out of the region of maximum 
sensitivity. Because not every individual displacement measurement 
frequency sweep was recorded the same sensitivity, the normal-
ization had to be done independently for every measured curve. 
Other than this, no processing was performed on the measured data. 

The frequency responses of the current through the piezo, the 
voltage across the piezo, and the displacement of the piezo were 
recorded with a computer-controlled HP 4194 A network analyzer. 
The setup is shown in Fig. 11. The current through the piezo was 
recorded by measuring the voltage drop that this current caused 
over a 0.2 Ω resistance in series with the piezo. This 0.2 Ω resistance 
was small enough not to affect the measurements. The voltage 
across the piezo was buffered and amplified by a 1 MΩ input Tek-
tronix 7A26 preamplifier in a Tektronix 7904 A mainframe before it 
was sent to the network analyzer to prevent the network analyzer 
50 Ω input from influencing the voltage across the piezo. The small 

Fig. 9. The theoretical damping using RL-compensation is very sensitive to the exact 
value of the series resistance Ra. 

Fig. 10. Miniature optical table with interferometer to measure the piezo displace-
ment curves. 
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signal current of the photodetector signal was amplified by an in- 
house developed I/V-converter and then sent to the network ana-
lyzer. The piezo actuator was driven by an in-house developed ‘hard 
voltage source’ circuit that buffered and amplified the output voltage 
of the network analyzer. The output voltage of the source was 
2.5 mVrms, irrespective of the frequency. Different values of Ra could 
be switched in series with the piezo using a 10-fold dip-switch. The 
available Ra values were 0, 2, 5, 10, 22, 36, 50, 100, 300 and 1000 Ω. 
For the RL-compensation experiments, small inductors with negli-
gible series resistance were soldered in series with Ra by hand. The 
inductance values used were 0, 100, 150, 220, 320, and 440 μH. 

The piezo actuator used for the experiments was the Physik 
Instrumente P-820.20, a preloaded piezo actuator for light and 
medium loads. A preloaded piezo has a built-in restoring force, 
which assures that the brittle piezoceramic crystal will not break 
under moderate tensile forces. This improves the resistance of the 
piezo against cracking when used in frequency sweeps up to high 
frequencies. After all, the velocity, and hence the force on the piezo 
exerted by its own accelerating mass, increases linearly with fre-
quency for a constant actuation voltage. The experiments performed 
for this paper drive the piezo actuator to very high frequency mo-
tion. A comparable, but not preloaded piezo actuator was actually 
damaged during early high frequency testing. The preload does not 
alter the theory presented above. In Table 2, the properties of the 
piezo are shown, as given by the manufacturer. 

6. The resistively coupled piezo: experimental results 

A full set of curves was recorded to illustrate and validate the 
theory presented in Sections 2–4. The magnitude of the current 
through the piezo was recorded for different values of Ra (Fig. 12), 
and the equation for |imd| given in Section 3 (Eq. 16) was fitted to the 
measured data to extract the piezo parameters Rm, Cm, Lm, and Co as 
given before in Table 1. The theoretical fit using these data is shown 
for different values of Ra in Fig. 13. The parameters describing the 
piezo could in principle be determined from the data of Fig. 12 by 
curve fitting. However, Eq. (16) contains so many terms that it is 
difficult to make a curve fit procedure converge properly. Therefore, 
an iterative process of repeated educated guesses and plotting of 
curves was used instead. The starting values for this procedure were 
taken from the manufacturer’s documentation that came with the 
piezo as given in Table 2. 

The agreement between theory and current measurement ex-
periment is extremely good, proving that the Butterworth–van Dyke 
model describes the electronic behavior of the piezo actuator to a 
very high degree. 

In the next experiment, the magnitude of the voltage |vpiezo,md| 
across the piezo was recorded for different values of Ra (Fig. 14). As 
the current through the piezo and Ra in series follows the theory, the 
same should be the case for the voltage, and indeed the fit is ex-
cellent (Fig. 15). Only with Ra = 0 Ω, there is a small resonance pre-
sent. This reflects the small remaining output resistance of the ‘hard’ 
voltage source used to drive the piezo. But its effect is much smaller 
than even the Ra of just 2 Ω. No adjustments were made to the piezo 
model parameters to fit these curves. 

The magnitude of the displacement |dmd| of the piezo actuator 
was measured using the interferometer (Fig. 16). The amplitude in 
these figures has been calibrated to the static sensitivity of the piezo. 
The static sensitivity is found by noting that the piezo travels 30 µm 

Fig. 11. Displacement transfer function measurement setup.  

Table 2 
Properties of the P-820.20 preloaded piezo, given by the manufacturer [17].    

Property Value  

Travel (0–100 V) 30 µm ±  20% 
Large signal stiffness 7 N/μm ±  20% 
Piezo mass (not the effective moving mass!) 11 g ±  5% 
Resonance frequency 15 kHz ±  20% 
Maximum pull force 10 N 
Maximum push force 50 N 
Electrical capacitance 0.7 μF ±  20%    

Fig. 12. Measured current through the piezo.  

Fig. 13. Measured current through the piezo and theoretical fit.  
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per 100 V actuation voltage as given by the manufacturer of the 
piezo (see Table 2). This results in 0.3 µm/V static sensitivity, accu-
rate to within ± 20%. The agreement between theory and experiment 
shows that the displacement of the piezo with the integral of the 
mechanical current |imech,md| is a good approach (Fig. 17). It should be 
noted that the theoretically found ‘optimum’ Ra, being Ra,mid ≅ 20 Ω 
is easily spotted in Fig. 13, and corresponds to the experimentally 
used value of Ra = 22 Ω. This also validates the new theory presented 
in Appendix A. 

This is an important result. Because the primary resonance grows 
much faster if Ra <  Ra,mid than the anti-resonance if Ra >  Ra,mid, it may 

be advisable to use some margin on Ra,mid in practice. This results in 
a slightly larger recommended value of Ra,mid for most applications. 
If the details of the resonant system are not important in their own 
right, but only a high damping of the piezo resonance is required, a 
series resistance Ra with a value of e.g. 50 Ω can be considered a good 
choice. This series resistance can be implemented as a stand-alone 
power resistor in series with a piezo driver with a low output im-
pedance, but is already implemented in the output stage of some 
commercial high voltage amplifiers. Interestingly, Schitter et al. [20] 
also advocate the use of a 50 Ω resistance in series with the (com-
pletely different) piezo actuator that they use in an AFM (atomic 
force microscope) system. They attribute the effect to the low-pass 
filter formed by this resistor and the piezo capacitance, but in their 
frequency sweep figures the suppression of the primary resonance 
as per the above theory is very visible. 

Note that in Fig. 16 a number of sharp, but much lower amplitude 
mechanical resonance peaks are visible around 5 kHz and 10 kHz. 
These peaks completely dominated the experiments when the setup 
was still using a proximity sensor. The proximity sensor is much 
more sensitive to lateral displacements than an interferometer. 
These peaks did not significantly change with the material (alu-
minum, granite or lead) of the optical table. It is therefore thought 
that these peaks represent mechanical (bending) resonances of the 
piezo housing. They are presumably not caused by the piezo crystal 
itself, as the quality factor Q of these peaks does not depend on Ra. 
Apart from these bending modes, additional noise is observed in the 
measured displacement curves, caused by three effects. To keep the 
added mass to a minimum, an only partially reflective piece of ad-
hesive tape is used as the ‘mirror’ on the piezo as stated before. This 
lowers the available light intensity for interference significantly, but 
minimizes the excitation of the piezo bending modes. The amplitude 
of the displacement also has to be kept very small, due to the in-
terferometric measurement. At the highest amplitude point of the 
resonance curve, the displacement should still be smaller than half 
the laser wavelength, or <  300 nm. The displacements in the mea-
surements with the large series resistances are even smaller than 
those of the lowly damped measurements. This is caused by the low- 
pass filtering effect discussed in Section 2. 

7. The RL-coupled piezo: experimental results 

In the last set of frequency sweep experiments, the validity of the 
RL-compensation theory was investigated. These experiments were 
carried out immediately after those of Fig. 16 so that the system had 
no time to drift. In Fig. 18, the measured results are presented of the 
displacement magnitude |dmd,L|. The primary resonance with Ra = 0 Ω 
is shown as a reference, in conjunction with several curves with the 
series resistance value closest to Ra,mid ≅ 20 Ω, being Ra = 22 Ω. This 

Fig. 14. Measured voltage across the piezo.  

Fig. 15. Measured voltage across the piezo and theoretical fit.  

Fig. 16. Measured piezo displacement.  

Fig. 17. Measured piezo displacement and theoretical fit.  
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resistance value was used with several values of La in series, re-
sulting in a further flattening of the curve, and a shift of the re-
maining resonance towards the anti-resonance frequency. The 
optimal value of La that was experimentally found is 220 μH. At the 
midpoint frequency mid = 2·π·17.5 kHz between the primary re-
sonance and the anti-resonance, the impedance of La is Lmid a = 24 Ω, 
which is indeed very close to Ra,mid. 

It should be noted that the theoretical fits of the RL-compensa-
tion theory are less exact than those of the earlier measurements. 
This is caused by the fact that the compensation is much more 
sensitive to component values compared to the situation where only 
Ra is present. Some further tweaking of the values of Ra,mid and La 

will possibly create a symmetrical ‘saddle-like’ double peak with 
very low amplitude in Fig. 18. The main reduction of the resonance 
amplitude however is caused by the choice of the proper Ra value. 
Indeed, the remaining peaking in the displacement without La is 
only a factor 2. If the mechanical damping Rm of a piezo actuator is 
lower than it is for the piezo used in this experiment, RL-compen-
sation may be more beneficial, but at the same time, the sharper 
resonances will impose stricter requirements on the exact values of 
Ra and La. 

8. Time domain measurements 

The suppression of the resonance peak in the piezo displacement 
transfer functions (Figs. 16 and 18) is equivalent to the minimization 
of ‘ringing’ in the time domain. Experiments were performed with R- 
and RL-coupling to illustrate how the step response of the piezo 
displacement is improved by the suppression of the resonance peak. 

The step response drive signal was a 1 kHz, 100 mVpp square wave 
generated by a National Instruments USB-6211 data acquisition system 
that for this experiment replaced the network analyzer. To prevent 
damage to the piezo, which could be caused by the high-frequency 
energy of the square wave, a 30 kHz first order low pass filter was used 
in the piezo driver circuitry. 

Electric and acoustic interference were rejected by placing the 
setup in a sound-proof Faraday cage and by running the piezo driver 
and photodiode circuits on batteries. The signal from the photodiode 
circuit was amplified using a Falco Systems RVPA-442 low noise 
voltage preamplifier. To improve the signal-to-noise ratio of the time 
domain measurements further, the step response was recorded 
10,000x and averaged, thereby increasing the signal-to-noise ratio 
by √10,000 = 100 times. 

After the measurement was performed, the piezo on the optical 
table was turned in such a way that its light beam was no longer 
reflected onto the photodiode. The remaining electrical cross-talk 
was recorded in the same way as in the measurement itself and 
subtracted from the step response measurements. The setup is 
shown in Fig. 19. 

The use of R- and RL- coupling indeed improves the damping of 
the piezo step response, as expected. This is shown in Figs. 20 
and 21. 

The step response for actuation with 0 Ω series resistance in  
Fig. 20 shows a high amplitude ringing that slowly damps out. This is 
consistent with the high resonance peak for the 0 Ω frequency re-
sponse curve in Fig. 16. The case of optimal damping, 22 Ω, as cal-
culated in Eq. (26), has a fast step response and much reduced 
ringing. However, the 50 Ω step response curve is almost as fast and 
has a lower maximum overshoot, so it may be more desirable for 
many applications. The step response with 300 Ω series resistance is 
much slower due to the pronounced low-pass filtering effect. In 
addition, the low pass filtered but relatively high Q ringing of the 
anti-resonance is slightly visible in the 300 Ω curve on top of the 
slow step response. 

In Fig. 21, it can be seen that the introduction of the optimum 
value inductor for the case of RL-coupling hardly lowers the ringing 
compared to R-coupling alone. The effect is much smaller than the 
difference between 0 Ω and 22 Ω resistive damping. Also visible in  
Figs. 20 and 21 is a lower frequency resonance superimposed on the 
step response. This resonance is associated with the sharp parasitic 
resonance peak of the setup near 5 kHz that is also visible in Fig. 16. 

Fig. 18. Measured piezo displacement versus compensation inductance La and theo-
retical fit. 

Fig. 19. Time domain measurement setup.  

Fig. 20. Measured damping of the displacement step response ringing due to R- 
coupling. 
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Separate low-pass filtering of the input signal is not nearly as 
effective as electronic damping at the piezo, as theoretically dis-
cussed in Section 2. This is shown in the measurement of Fig. 22. The 
optimal resistance of 22 Ω together with the piezo capacitance of 
0.67 μF forms an RC filter with a resonance frequency of −3 dB at 
10.6 kHz that will lower the resonance amplitude even in the ab-
sence of electronic damping. An equivalent RC filter of 220 Ω and 
68 nF (resonance frequency also 10.6 kHz) was added to the input 
signal circuitry (see Fig. 19) and the piezo driven without series re-
sistance. In the case of separate low-pass filtering, the resonance 
amplitude is reduced somewhat, but the ringing time is still long, as 
expected. 

9. Conclusions 

Piezo actuators are very powerful and precise actuators, but are 
commonly plagued by electromechanical resonances that compli-
cate their use. In this paper a comprehensive theory of electronic 
damping of piezo actuator resonances using resistor and resistor- 
inductor compensation is presented as seen purely from the elec-
tronic domain. The importance of associating the current through 
the ‘mechanical’ branch of the Butterworth–van Dyke model of a 
piezo with its velocity has been stressed, as this allows one to cal-
culate the displacement of the piezo as a function of frequency using 
only calculations commonly used in the electronic domain. For a 
good description of the behavior of an actual piezo actuator, the 
mechanical damping of the piezo should not be neglected, but a 
simple theory (Section 2) is enough to illustrate the basic features of 
the piezo system with series resistance. Using these equations, we 
have found that an optimum series resistance can be calculated 

(Appendix A), which is ~20 Ω for PZT (Lead Zirconate Titanate) based 
piezo actuators, irrespective of the exact piezo used. The addition of 
the mechanical damping term in the theory results in more complex 
algebra to describe this damping. This inclusion of mechanical 
damping results in an almost exact fit to actual piezo actuator be-
havior. 

For the experimental sections, a miniature optical table with 
interferometer setup was developed in-house to assess the me-
chanical displacement of the piezo under different electrical stimuli. 
The theory was illustrated by electronic measurements of the cur-
rent through and the voltage across the piezo. The interferometer 
allowed a direct measurement of the displacement of the piezo as a 
function of frequency. 

It has been found that the damping of the resonances of a piezo 
in both the electrical domain (current, voltage) and the mechanical 
domain (displacement) are very accurately described by the theory 
presented in this paper. If the series resistance between the voltage 
source and the piezo is low, a large mechanical resonance is ob-
served at the primary resonance frequency of the piezo. If the series 
resistance is large, the resonance is observed at the slightly higher 
anti-resonance frequency, again with a high quality factor. In be-
tween lays the series resistance required for optimum damping. The 
fits of the theory to the experimentally obtained frequency response 
curves are excellent. This feat warrants a strong recommendation of 
the use of the Butterworth–van Dyke model in the way presented in 
this paper for the assessment of the mechanical response of piezo 
actuator systems. Step response measurements show that the 
damping features of the model in the frequency domain correlate to 
similar improvements in the time domain. Separate low-pass fil-
tering of the input signal is not nearly as effective as direct electronic 
damping of the piezo. 

It has been both theoretically and experimentally determined 
that a value of the series resistor that is less than the optimum value 
results in a much higher amplitude resonance than if the value of the 
series resistance is a bit too high. It is therefore recommended, in 
most cases, to use a series resistor of a value that is slightly larger 
than the calculated optimum, e.g. 50 Ω, if the piezo actuator is to be 
used with minimal electromechanical resonances. Compensation 
with the exactly optimal calculated resistance value, and resistor- 
inductor compensation, can only be recommended if a significant 
effort is spent on the exact electromechanical piezo actuator system 
and its mechanical response on a case-to-case basis. 

Author statement 

This work has been fully carried out by W. Merlijn van Spengen as 
the sole author. 

Declaration of Competing Interest 

The author declares that he has no known competing financial 
interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

The author would like to thank The Rijksdienst voor 
Ondernemend Nederland, part of the Dutch Ministry of Economic 
Affairs and Climate Policy, The Netherlands, for financial support in 
the WBSO framework under grant number SO20001246.   

Fig. 21. The effect of RL-coupling on the measured displacement step response.  

Fig. 22. Comparison of electronic damping and low-pass filtering the input signal.  
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Appendix A. Derivation of the series resistance for optimal damping of the piezo 

We can approximate the specific Ra for maximum damping, which we will call Ra,mid, by noting that this optimal Ra will be very close to the 
Ra required to bring the resonance peak frequency halfway in between the undamped primary resonance and the undamped anti-resonance 
frequency. For a treatment in the mechanical domain, see [12]. With the primary resonance being defined by the first term in the denominator 
of the calculation of the mechanical current |imech|, its frequency ωprim is found by stating 

=C L1 0prim m m
2

(24)  

=
C L

1
prim

m m

2

(25)  

Likewise, the undamped anti-resonance frequency ωanti is found from the second term in the denominator as follows 

+ =C C C C L 0o m anti o m m
2 (26)  

= +C C
C C Lanti

o m

o m m

2

(27)  

The Ra for maximum damping shifts the resonance frequency roughly halfway in between the two, to a frequency ωmid given by 

=
+
2mid

prim anti

(28)  

By recognizing that prim anti, we can also write 

+
2mid

prim anti2
2 2

(29)  

By inserting the equations for the respective resonance frequencies, we find 

+C C
C C L

2
2mid

o m

o m m

2
(30)  

To find the midpoint value of the resistance Ra,mid, we use the following procedure. We need an equation that gives the position of the 
resonance peak in the frequency spectrum as a function of Ra, after which we can set ω = ωmid to obtain Ra,mid. Note that at the resonance 
frequency the denominator of the mechanical current ∣imech| is the lowest because the resonance amplitude described by this denominator is 
the highest there. So, to find the position of the resonance peak, we are looking for the minimum of 

= + +f C L R C C C C L( ) (1 ) ( )m m a o m o m m
2 2 2 2 2 2 (31)  

At the top of the resonance, the derivative of this function is zero. To find the correct equation, we have to differentiate f(ω) and set this 
derivative to zero. By noting that 

= + = + +f g f g fg f g h f gh fg h fgh( · ) and ( · · ) (32) 

the differentiation of f ( ) can be carried out. We use = =f g C L1 m m
2 for the first part, and =f Ra

2 2, but = = +g h C C C C Lo m o m m
2 for 

second part of the equation respectively, and obtain 
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Hence Ra
2 is found to be 
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By inserting 
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(35) 

and simplifying the resulting algebra, we find for the midpoint Ra = Ra,mid, for maximum damping 
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and finally 
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