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Abstract
Stiffened shells and plates are widely used in engineering. Their performance is highly influenced by the arrangement, or 
layout, of stiffeners on the base shell or plate and the geometric features, or topology, of these stiffeners. Moreover, modular 
design is beneficial, since it allows for increased quality control and mass production. In this work, a method is developed 
that simultaneously optimizes the topology of stiffeners and their layout on a base shell or plate. This is accomplished by 
introducing a fixed number of modular stiffeners, which are subject to density-based topology optimization and a mapping 
of these modules to a ground structure. To illustrate potential applications, several stiffened plates and shell examples are 
presented. All examples demonstrated that the proposed method is able to generate clear topologies for any number of mod-
ules and a distinct layout of the stiffeners on the base shell or plate.

Keywords  Topology optimization · Stiffener layout · Stiffener topology · Modular design · Ground structure

1  Introduction

Stiffened shells are used widely in, for example, maritime, 
aerospace, and civil structures. This is because of their high 
load carrying capacity and light-weight properties. However, 
due to their thin-walled features, these structures are usu-
ally sensitive to loads leading to out-of-plane deflections, 
imperfections, vibrations, and buckling. Such responses are 
influenced by the geometric proportions of the stiffeners 
and base shell, and the layout of the stiffeners on the base 
shell (Bedair 1997). However, changing the geometric fea-
tures, such as the thickness of the base shell, as well as every 
individual stiffener from point to point, is often infeasible 
due to manufacturing difficulties and costs (Chung and Lee 
1997; Lam and Santhikumar 2003). Moreover, every unique 

component has to be produced and qualified apiece. Thus, 
the tendency in industry is towards designing structures with 
fewer component types, since it allows for increased and 
cheaper quality control, more accessible mass production, 
and therewith reduction of costs (Higginson et al. 2020). 
This reuse of components is called modularity, where a 
module is defined as a component with particular geometric 
features that can be repeatedly used in the design domain.

The complexity of the above design problem makes the 
result highly dependent on the experience of the designer. 
Therefore, a model-based structural optimization technique 
known as topology optimization poses a solution. Topol-
ogy optimization has shown the ability to solve complex 
structural design problems and to produce competitive and 
innovative solutions (Koppen 2017).

The topology optimization problem that aims to find 
the optimal layout for stiffeners on a base shell has been 
explored in the literature. Layout is defined as the arrange-
ment of stiffeners on the base shell. The Solid Isotropic 
Method with Penalization (SIMP) method (Bendsøe 1989) 
is applied for optimizing the layout of stiffeners or reinforce-
ments in several topology optimization cases, for example, 
in maximizing the overall stiffness (Afonso et al. 2000) or 
eigenfrequencies (Du and Olhoff 2007). A different approach 
is the thickness optimization of the finite elements of the 
base shell. In this approach, the areas that have a higher 
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value than the set thickness threshold can be considered as 
potential stiffener locations (Lam and Santhikumar 2003; 
Khosravi et al. 2007). Also, the level-set method has been 
used to identify the optimal stiffener regions (Gomes and 
Suleman 2008). It should be noted that all aforementioned 
methods are suitable for identifying regions where stiffeners 
could be placed potentially. However, neither information 
about the sizes nor the topology of the stiffeners is retrieved. 
Usually, after interpretation of the results, a separate sizing 
optimization needs to be performed (Afonso et al. 2000).

For the simultaneous optimization of the stiffener layout 
and their size, three methods have been proposed in the liter-
ature. The first is the group of biologically inspired methods, 
such as the Adaptive Growth Method (Ding and Yamazaki 
2004, 2005; Dong et al. 2019, 2018; Shen et al. 2019). To 
overcome the shortcoming of an empirical approach with 
user-defined parameters, which is unable to handle multi-
objective cases, the Adaptive Growth Method was reformu-
lated in terms of analytical rules that cover the morphogen-
esis of the growth of leaf veins in nature (Li et al. 2013). 
The second method is the method of Moving Morphable 
Components, applied to optimize stiffeners on a plate for 
maximum stiffness, or minimum compliance, subject to a 
volume and buckling constraint (Zhang et al. 2018). The 
last method is the Ground Structure Approach (GSA) (Dorn 
et al. 1964). This method was, for example, applied to the 
optimal panel placement in an airplane wingbox (Sleesong-
som and Bureerat 2013; Yang et al. 2016).

The topology optimization problem for individual stiff-
eners, where the stiffener layout is pre-assumed, has been 
investigated in previous research, in particular, for applica-
tions to an airplane wingbox. Here, a ground structure of 
stiffeners is assumed and the topologies of the stiffeners are 
optimized using the SIMP method. The minimization of the 
compliance with a volume constraint was performed (Krog 
et al. 2004). Also, different constraints such as lift, drag, 
and stress for minimizing the mass were considered (Maute 
and Allen 2004). Optimization for a flutter and compliance 
objective under a weight constraint was performed in Stan-
ford and Dunning (2015). Most recently, for this wingbox 
application, an optimization of the individual stiffener topol-
ogy for minimization of the mass under buckling and stress 
constraints was reported (Stanford 2018). A more general 
application to stiffened panels was considered for a buckling 
objective with a volume constraint (Stanford et al. 2014). 
Recently, a level-set approach was published for stiffened 
plates with a pre-assumed stiffener layout. The topology of 
the individual stiffeners was optimized for a buckling objec-
tive under a mass constraint (Townsend and Kim 2019).

Modular structures presented in the previous research 
mainly focus on topological periodicity. In this setting, 
the design domain is divided into sub-domains which are 
constrained to be topologically identical. As such, a single 

module consisting of a ground structure of trusses is opti-
mized for minimal weight, while subject to a fixed number 
of trusses (Beghini et al. 2014). For two-dimensional (2D) 
continua, a repeated module was incorporated by the use 
of a simple mapping technique, which separates the design 
variables of a module unit and the sub-domains in the global 
density field. The mapping from the design variables in the 
module unit is carried out one-to-one to the correspond-
ing element material density values in the sub-domains 
(Almeida et al. 2010). There has been limited work avail-
able to date. An optimization of a stiffness criteria using the 
bidirectional evolutionary structural optimization (BESO) is 
performed (Huang and Xie 2008). This approach was later 
extended to natural frequencies (Zuo and Xie 2011), con-
ductivity (Chen et al. 2010), and a multi-objective formula-
tion (Thomas et al. 2020). In the latter work, also a SIMP 
approach is utilized and connectivity between modules is 
taken into account. To improve computational efficiency for 
the design of a module, static condensation is utilized in 
combination with a level-set approach for a stiffness objec-
tive (Fu et al. 2019).

Although the aforementioned methods are able to design 
a structure consisting of a simple module repeated several 
times in the global domain, they suffer from a common limi-
tation. Namely, the designs converge towards solutions with 
compromised structural performance (Huang and Xie 2008; 
Zhang and Sun 2006). The cause lies within the topological 
periodicity. The topology of the module is influenced most 
by the region with the highest compliance. The resulting 
module design is used at different locations in the structure, 
therefore not leading to the most optimal solution for these 
regions (Tugilimana et al. 2019).

This shortcoming can be addressed by two approaches: (i) 
by defining additional module properties as design variables 
or (ii) by allowing more modules within the structure. Both 
approaches extend the solution space. The first approach, 
extending the solution space, was considered by allowing 
for rotation of a module. Allowing for rotations resulted in 
improved structural performance because rotation of the 
modules modifies the material distribution in the structure 
locally (Tugilimana et al. 2017). Also, in a 2D continuum 
setting, the one-to-one mapping of a module unit to the 
global domain is extended by allowing the module unit to 
resize (Stromberg et al. 2011).

In the second approach, more than one module is allowed 
within the structure. The optimization problem is therefore 
redefined as the search for several module topologies and 
the distribution of these in the domain. This has been incor-
porated for truss structures based on the ground structure 
approach. Moreover, the modules were also allowed to rotate 
(Tugilimana et al. 2019). For a 2D continuum, the defini-
tion of a mapping between the design variables of a mod-
ule unit and the corresponding sub-domains was extended 
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to enable simultaneous optimization of multiple module 
unit topologies and their layout in the sub-domains (Hig-
ginson et al. 2020). The mapping is based on a weighted 
sum, allowing for the choice of one unique module unit in a 
sub-domain. The resulting topology optimization framework 
for modular structures can be combined with gradient-based 
optimization.

The aforementioned state of the art emphasizes the poten-
tial of structural optimization to enhance the conceptual 
design of structures. However, it is observed that research 
is mainly focusing on optimizing one of the following three 
aspects: (i) the stiffener layout, (ii) the individual stiffener 
topology, or (iii) truss-based or 2D continuum modules. 
Therefore, the goal of this paper is to develop an optimi-
zation method that simultaneously optimizes the modular 
stiffener components including their topology and layout on 
a base shell or plate.

The proposed method relies on the combination and 
extension of two existing methods: a ground structure 
approach which is combined with the topology optimization 
framework for 2D continuum modular structures (Higginson 
et al. 2020). The present work will focus on maximizing 
the overall stiffness of the structure, stated as minimizing 
the compliance, while subject to a prescribed volume. How-
ever, it is emphasized that the proposed method can easily 
be extended to other settings. The presented examples, from 
an engineering point of view, shall also be extended with at 
least vibration and buckling considerations. The main idea 
will be described on the basis of a simple example, consist-
ing of a plate with stiffeners, see Fig. 1a. On the base plate, 
a ground structure of stiffeners is placed. For this example, 
the ground structure is generated by specifying a uniform 
grid on the base plate. In Fig. 1a, a ground structure for 
the stiffeners has been presented consisting of two stiffener 
types. The aim of the proposed method is to specify a fixed, 
but limited number of modules within these stiffener types 
and to find their optimal topology. The topologies of these 
modules can range from empty, called void, to fully pre-
sent. These modules can be repeatedly used in the ground 
structure. The layout of the modules in the ground structure 
is simultaneously optimized with the topology. As such, a 
layout in the ground structure arises which only consists 
of a limited number of modules, as illustrated in Fig. 1b. 
The final topology optimization will be based on a SIMP 
formulation.

This paper is organized as follows: in Section 2, the 
detailed description of the proposed method is provided. 
In Section 3, the method is applied to several practical 
cases. Conclusions and recommendations are provided in 
Section 4.

2 � Combined optimization of the stiffener 
modular layout and topology

2.1 � Modularity in the ground structure

The proposed optimization method is based on a combi-
nation of a ground structure approach with the concept of 
material density topology optimization for modular struc-
tures. The main idea, as introduced in the Introduction, will 
be further specified on the basis of an example, consisting of 
a plate with stiffeners, see Fig. 2a. On a base plate, a ground 

(a) On top of a base plate a ground structure of stiffeners is
generated. This ground structure consist out of two types of
stiffeners which can be distinguished by their type letter.

(b) The proposed method aims to find the optimal topologies
of a fixed and limited number of module stiffeners for every
type of stiffener. In this case, the number of modules for each
stiffener type is limited to 3. These modules can be repeatedly
used in the ground structure. The layout of the modules in
the ground structure is optimized simultaneously with the
topology. As such, a layout in the ground structure arises
which only consists of the specified modules.

Fig. 1   Overview of the proposed method explained in two parts. In 
a an initial ground structure is presented, which is the basis for the 
optimization. A result of the layout of the modules within the ground 
structure and the topologies of the modules is shown in b 



3150	 C. Bakker et al.

1 3

structure of stiffener components with parents and children, 
each occupying a domain �s , is generated. For clarity, in this 
case, the topology of the base plate will not be optimized and 
is therefore assigned as non-design domain �n.

A parent–children scheme is introduced in this section. At 
the generation of the stiffeners in the ground structure, one 
or multiple parent stiffener can be specified. In Fig. 2a, these 
parent stiffeners are the stiffener domains �s=1 and �s=6 . 
The parents can be identified by their type letter, in Fig. 2a, 
Type A and B, respectively. A mesh is generated for each 
parent stiffener, as highlighted in Fig. 2a. Since the topology 
optimization is SIMP based, a material density, � is assigned 
per finite element e, �e . The parents are copied one-to-one 
in the ground structure to form the so-called children for 
each type. In Fig. 2a, for Type A these children are stiffener 
domains �s=25 and for Type B, stiffeners �s=7−10 . The result 
is an initial mesh consisting of a base plate and a ground 
structure of parent stiffeners with their children.

If this mesh is subjected to a standard topology optimiza-
tion, a unique topology is allowed to arise for every stiffener. 
As stated before, it is beneficial to limit the topologies of 
the parents and their according children to a fixed number 
of modules. Therefore, module templates are introduced. 
Module templates are an integer number Ts , of one-to-one 
copies of the parent stiffener. As such, also these module 
templates have identical mesh topologies and inherent mate-
rial densities as the according parents, see Fig. 2b. The mate-
rial densities in the templates are defined using the finite 
element number in the template, d, and the module template 
number, t, denoted by �t,d , see Fig. 2b. These template densi-
ties, �t,d , are considered as the primary design variables and 
form the basis for the topology optimization. More details 
on the topology optimization are provided in Section 2.2.

The material densities of the mesh, �e , will be determined 
by a mapping between the material densities of the templates 
�t,d by the use of their according weight factors. The use of 
weight factors is inspired by the field of Discrete Material 
Optimization (DMO) (Higginson et al. 2020; Stegmann and 
Lund 2005). Here, a multi-material optimization is com-
monly described by an element constitutive matrix defined 
as a weighted sum of predefined potential materials. If a 
weight factor is a value around 1, the corresponding material 
is present in the element, if the value is around 0, the mate-
rial is absent. This idea is used with the module templates 
and the parent–children scheme. A number of weight fac-
tors ws,t are assigned to each stiffener of a certain type. The 
number of weight factors is equal to the number of templates 
introduced for this type Ts . For the example in Fig. 2b, 2 
templates per type have been introduced. The weight fac-
tors, ws,t , denote the presence or absence of template t in 
stiffener domain �s . Details on the mapping are provided 
in Section 2.3. By optimizing the weight factors simultane-
ously with the material densities of the templates, a layout 

(a) On the blue base plate, a ground structure of stiffener
components with parents and children, each occupying a do-
main Ωs, is generated. For each stiffener type, here denoted
by Type A and B, the generation of the stiffeners in the
ground structure is based on a parent stiffener, in this exam-
ple these are domains Ωs=1 and Ωs=6. As magnified, a mesh
is generated for each parent stiffener respectively. Every finite
element, e, is assigned a material density, ρe. The meshed par-
ents are copied one-to-one to form the so-called children. For
Type A these children are stiffener domains Ωs=2−5 and for
Type B, stiffeners Ωs=7−10.

(b) To limit the topologies of the parents and their according
children to a fixed number of modules, templates are intro-
duced. Templates are an integer number of one-to-one copies
of the parent stiffener. As such, also these templates have
identical mesh topologies and material densities as the ac-
cording parents. The material densities of the templates are
defined in terms of the finite element number in the tem-
plate, d, and the template number t, ρt,d. These templates
can be repeatedly used in the ground structure. The mate-
rial densities of the mesh in the ground structure, ρe, will be
determined by a mapping between the material densities of
the templates ρt,d depending on weight factors. The weight
factors, ws,t, denote the presence or absence of template t in
stiffener domain Ωs.

Fig. 2   In a the initialization of a ground structure is presented. In b 
templates are introduced
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in the ground structure arises, which only consists of the 
specified templates.

2.2 � Topology optimization using the Solid Isotropic 
Method with Penalization

The topology optimization in this work is based on the SIMP 
approach (Bendsøe 1989; Zhou and Rozvany 1992). Each 
finite element is assigned a continuous pseudo material den-
sity � , which is used as a variable to interpolate the Young’s 
modulus E. With an initial Young’s modulus E0 for a linear 
isotropic material with Poisson ratio � , the relation is

Hereafter, the pseudo material density will be referred to 
as material density or density. The material density has a 
penalty factor p ≥ 1 . This implies that whenever the pen-
alty factor is greater than 1, densities which are intermedi-
ate values of the range [0, 1] are penalized. The value of 
the penalization factor p is gradually increased from 1 to 5 
during the optimization process. This so-called continuation 
approach drives the design gradually to a more distinct 0-1 
design (Eschenauer and Olhoff 2001). In Section 2.3, the 
conditions for this continuation are discussed in more detail. 
In the numerical examples presented in Section 3, the base 
plates and shells are assigned as non-design domains, �n . 
Excluding these domains from the topology optimization 
can be enforced by setting the material densities for these 
finite elements to 1. It should, however, be emphasized that 
this is a choice, and also these base plates and shells could 
be part of the topology optimization. The volume of the 
resulting design in the total domain � is now represented by

In the current formulation, the results of the SIMP approach 
are not only dependent on the penalty factor p, but also on 
the size and orientation of the mesh (Eschenauer and Olhoff 
2001; Maute and Allen 2004). However, this drawback can 
be removed by the use of filtering. This will be discussed 
in Section 2.6.

2.3 � Mapping of the module templates 
to the ground structure

The modularity concept is introduced by introducing an ele-
ment-based mapping scheme using the module templates. 
The formulation does not only allow for optimization of the 
topologies of the module templates, but also for the optimal 
layout of these within the ground structure (Higginson et al. 
2020).

(1)E(�) = �e(�)
pE0.

(2)V = ∫
�

�e(�)dV .

The material densities of the mesh, �e , will be determined 
by a mapping between the material densities of the templates 
�t,d and by the use of their according weight factors ws,t . The 
material density of an element �e(�) of a certain type can be 
obtained from the material densities of the corresponding 
element in the templates �t,d by Higginson et al. (2020):

where e denotes the finite element number in the global mesh 
and s the according stiffener domain in the global mesh. A 
number of templates, Ts , are introduced for this type, which 
are numbered by t. The finite elements in these templates 
are numbered by d. In this formulation, q > 1 denotes a 
penalty for the weight factors. If the factor is greater than 
one, intermediate values of the weight factor will be penal-
ized. This scheme is similar to the penalty factor as used in 
SIMP, see (1). Therefore, the same continuation scheme is 
applied. In this work, the continuation is performed when 
three conditions are met. Firstly, the condition that the abso-
lute change in the objective in two successive iterations is 
less than 0.1. Secondly, the designs should satisfy all the 
constraints during these two iterations. Finally, the last con-
tinuation should be more than 20 iterations ago.

An example of the mapping is provided for the problem 
in Fig. 3. The material density of dashed element e = 1 in 
stiffener domain �s=1 is calculated. The stiffener is of Type 
A, so according to the mapping in (3), the material density 
of the element is determined by the dashed template ele-
ments, see Fig. 3:

(3)�e(�)=

Ts
�

t=1

w
q

s,t

∏Ts
j=1

(1 − ws,t≠j)q
∑Ts

t=1
w
q

s,t

∏Ts
j=1

(1 − ws,t≠j)q
�t,d, �∈�s,

Fig. 3   The mapping of the topology optimized module templates 
to the mesh is illustrated through an example as earlier presented in 
Fig. 2. For the dashed element in the mesh, the weight factor w

s=1,t=1 , 
corresponding to template t = 1 of Type A, is around 1. As such, the 
material density of this template is mapped to the mesh, resulting in a 
fully present element
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Some notes on the mapping should be made. First of all, 
it becomes clear from this formulation that in case a weight 
factor in the numerator is valued 0 or 1, the mapping does 
not provide a finite solution. Therefore, the weight factor 
should be limited to the range ws,t∈(0, 1) . Secondly, as also 
noted by (Stegmann and Lund 2005), it could be observed 
that the term (1 − ws,t≠j)q forces the design to a 0-1 solu-
tion for the templates, since an increase of one weight vari-
able, automatically means a decrease in all other weights. 
Therefore, the converged values for the weight factors should 
denote a value around 1 if a template is present at a certain 
stiffener domain and 0 if it is not. Finally, the normalization 
term ensures that the overall mapping sums to unity for each 
stiffener domain.

2.4 � Finite element analysis

The finite element analysis has multiple functions in the 
optimization. Primarily, it is used to model the physics. By 
implementing the boundary conditions, such as loadings and 
supports and successively evaluating the model, a response 
in terms of the global nodal degrees of freedom, denoted 
by � , is retrieved. Using this information, the second func-
tion can be fulfilled: calculation of the objective and volume 
constraint. For this work, the objective is to maximize the 
overall stiffness of the structure. This can be stated as mini-
mizing the compliance c, defined as

where � is the global stiffness matrix, which is a function of 
the element densities introduced by the SIMP approach. The 
well-known finite element equilibrium equation is

where, � denotes the nodal loads. In order to avoid singulari-
ties in the global stiffness matrix, the lower bound of the 
material density is chosen to be a small value �min . In this 
work, this value is 5 ⋅ 10−3.

Lastly, the finite element analysis provides the sensitivi-
ties from the objective and the constraint with respect to 
(w.r.t.) the material density of the element. This will be fur-
ther discussed in Section 2.8.

In this work, a triangular 6 node, 12 degrees of freedom, 
shell element will be used (Van Keulen and Booij 1996). 

(4)

�e1 =
w
q

s1,t1
(1 − ws1,t2)

q

w
q

s1,t1
(1 − ws1,t2)

q + w
q

s1,t2
(1 − ws1,t1)

q
�t1,d1+

w
q

s1,t2
(1 − ws1,t1)

q

w
q

s1,t1
(1 − ws1,t2)

q + w
q

s1,t2
(1 − ws1,t1)

q
�t2,d1.

(5)c(�e(�)) = ���(�e(�))�,

(6)�(�e(�))� = � (�e(�)),

Furthermore, the analysis will be based on a linearized 
model.

2.5 � Problem definition

The search for the optimal structure with minimal compli-
ance, while subject to (s.t.) static equilibrium, a maximum 
volume, a non-design domain �n , and stiffener domains �s 
in the global coordinate system � using the SIMP formula-
tion as in (1) and modular template mapping in (3), is stated 
as

It becomes clear that the standard SIMP topology optimiza-
tion problem, with design variables �e(�) is reformulated 
in terms of weight factors between the stiffener domains 
and templates ws,t and the element material densities of the 
templates �t,d.

2.6 � Density filtering per stiffener domain

Filtering is necessary in the SIMP approach to avoid solu-
tions which are dependent on the mesh or provide checker-
boards. One of these filters is the density filter, where the 
element densities are adjusted based on the values of the 
neighboring elements (Andreassen et al. 2011). An illustra-
tion is given in Fig. 4. A filter radius, dependent on a scalar 
value times the element size, is considered. For this work, 
this scalar value is set to 1. All the material densities of 
the elements, with their center-to-center distance Δi within 
the relative radius rrel. , are weighted depending on this dis-
tance. Due to the triangular shape of the elements used in 
this work, the filter will include sufficient elements to over-
come the checkerboard and mesh dependency issues, while 
allowing for small feature sizes in the topologies.

However, the standard density filter needs to be adjusted 
on three aspects to avoid mixing of the domains. First of all, 
to avoid material density values below 1 in the non-design 
areas �n . Secondly, to prevent material density transfer from 
the non-design areas �n to the stiffener domains �s . Thirdly, 
to avoid transfer of material density through the edges of 
two stiffener domains �s . Especially, if somewhere in the 
structure a full solid template is used, next to a neighboring 
void template, this would result in material density trans-
fer between these and therefore destroy the clear bound-
ary between solid and void. These three adjustments can 

(7)

min
�t,d ,ws,t

c(�e) = ���(�e)�

s.t. �(�e)� = � (�e)

�
�

�edV − Vmax ≤ 0

�e(�, �t,d,ws,t)∈[�min, 1], ws,t∈(0, 1), �∈�s

�e(�) = 1, �∈�n

.
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be imposed by only taking elements in the same stiffener 
domain �s , into account.

The density filter is formulated for every element e in a 
mesh consisting of a total of N elements. The density filter 
takes into account the set of elements i, for which (i) the 
center-to-center distance �i is smaller than the filter radius 
rrel. and (ii) is part of the same stiffener domain �s . In equa-
tion form, this is stated as (Andreassen et al. 2011):

where Hi denotes the filter weight factor. This weight factor 
is defined as the maximum distance between the centers of 
the elements in �s (Andreassen et al. 2011):

In this work, the filter is applied at the design variables 
before entering the finite element analysis. The inverse of 
the filter is applied after the calculation of the sensitivities 
w.r.t. the objective and constraint functions, which will be 
discussed in the next section.

2.7 � Gradient‑based optimization

In this work, the optimization solver will be gradient-
based using the Method of Moving Asymptotes (MMA) 
(Svanberg 1987). MMA is often used within topology 

(8)𝜌̃e(�) =
1

∑

i∈N Hi

�

i∈N

Hi𝜌e(�), �∈𝛺s,

(9)Hi = max(0, rrel. − �i(�)), �∈�s.

optimization problems and has proved to be reliable in 
combination with multiple complex constraints (Koppen 
2017).

In order for the optimizer to work properly, a scaling of 
the sensitivities might be required. The objective and con-
straint values should be scaled between 1 and 100 (Svanberg 
1987). In this work, these values and their corresponding 
sensitivities are scaled by a constant to meet this criterion. 
The optimization procedure is terminated when the continu-
ation of the penalty factors has reached 5 and a maximum 
number of iterations is reached or when the relative objec-
tive change is smaller than a prescribed amount. In this 
work, these are set to 400 iterations and 1 ⋅ 10−7.

2.8 � Sensitivity analysis

The sensitivities of the design variables are calculated using 
the chain rule, since the stiffener domains get their designs 
from the according templates. Every material element den-
sity �e is a function of the template material element density 
�t,d and the according weight factor ws,t through the mapping 
as described in (3). Therefore, the sensitivity of the objec-
tive w.r.t. the element material density of a template can be 
written as

where St denotes the subset of elements e, which retrieve 
their material densities from the template. For example, if 
template t = 1 of Type A is used n times in the domain, then 
St contains n values. The sensitivity of the objective w.r.t. 
the element material density �c

��e(�)
 is calculated using the 

adjoint formulation (Bendsøe and Sigmund 2003).
Due to the mapping as described in (3), the sensitivity 

of each element material density w.r.t. the template element 
material density of the same type is

The sensitivity of the objective w.r.t. the weight factor is 
determined by summing each contribution of the corre-
sponding template element material density d:

The sensitivity of each element material density w.r.t. the 
weight factor can also be determined by taking the derivative 
of the mapping as described in (3). This is done in a similar 
fashion as in (11) and is therefore omitted.

(10)
�c

��t,d
=
∑

e∈St

�c

��e(�)

��e(�)

��t,d
,

(11)
��e(�)

��t,d
=

Ts
�

t=1

w
q

s,t

∏Ts
j=1

(1 − ws,t≠j)q
∑Ts

t=1
w
q

s,t

∏Ts
j=1

(1 − ws,t≠j)q
.

(12)
�c

�ws,t

=
∑

d

�c

��e(�)

��e(�)

�ws,t

.

Fig. 4   A detailed view on the filtering at the boundary of three 
domains. Here, stiffener domains �

s=1
 and �

s=6
 and the non-design 

domain �
n
 meet each other. The filter takes into account all the ele-

ments that are, with their center-to-center element distance Δ
i
 , in 

the filter region with relative radius rrel. . The relative filter radius 
is dependent on a scalar times the element size. In order to prevent 
mixing of the material element densities over the boundaries of the 
domains, the filter is restricted to only take into account elements that 
are within the same domain. This is indicated by the green circle seg-
ment of the filter. The red circle segment indicates elements which 
are not part of the same domain
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The sensitivities of the volume constraint w.r.t. the template 
element material densities of the same type and the weight 
factors can be determined similarly:

where the sensitivity of the volume constraint w.r.t. the ele-
ment material density �V

��e(�)
 can be calculated by taking the 

derivative of the formulation described in (2).

2.9 � Initial conditions

The initial conditions for both the weight factors and the tem-
plate material densities are given for the first iteration. As 
stated in Section 2.3, the weight factor should be in the range 
(0, 1) to provide a finite solution. Therefore, the initial values 
for the weight factors are selected as

where Ts is the amount of introduced templates of this type.
In topology optimization, it is quite common to take 1 or 

the volume fraction as initial value for the element density 
variables. In the latter, the volume constraint is directly satis-
fied. However, it should be noted that if all element material 
densities have the same value, the sensitivities w.r.t. the weight 
factors will be equal for all the templates. As an example, con-
sider Fig. 2. The initial value for the weight factors, according 
to (15), is 0.5 for both types. If the initial material density of 
the elements is also 0.5, the sensitivities of the objective and 
constraint w.r.t. the weight factors, respectively (12) and (14), 
would lead to sensitivity values equal to 0. As such, due to the 
gradient-based optimizer, no further changes in the weight var-
iables or template element material densities would be posed. 
The result would be a solution, where every stiffener will have 
an equal contribution of the two templates with 0.5 as element 
material density, which removes the introduced modularity.

To give the sensitivity values a different direction and mag-
nitude, the initial values of the element densities are slightly 
varied. This enables the optimizer to converge to distinct topol-
ogies and layout in the ground structure.

(13)
�V

��t,d
=
∑

e∈St

�V

��e(�)

��e(�)

��t,d
,

(14)
�V

�ws,t

=
∑

d

�V

��e(�)

��e(�)

�ws,t

,

(15)ws,t,0 =
1

Ts
,

here t is the template number and Ts the number of intro-
duced templates of this type.

3 � Numerical examples

This section discusses three numerical examples. The first 
two are examples of stiffened plates. Here, different initial 
ground structures, load cases, and parent–child schemes are 
used. The third example is a stiffened shell representing a 
fuselage of an airplane.

3.1 � Simply stiffened plate

In Fig. 5, a simply stiffened plate is shown. The edges of the 
stiffeners and base plate are fully clamped. At the center of 
the base shell, there is a concentrated force F1 . The values 
for the parameters are shown in Table 1. The parent–child 
scheme and the according stiffener domains are already 
introduced in Section 2.3 and shown in Fig. 2. The optimi-
zation problem formulation in (7) is utilized with an upper 
value of half the initial volume of the stiffeners for the vol-
ume constraint, Vmax = 0.5 ⋅ Vinit.stiff. . The influence of the 
number of templates per type is investigated. The example 
is performed for three cases, where the number of templates 
per stiffener type is varied from 1 to 3. Since the problem 
is symmetric along the x1− and x2-axis, it is hypothesized 
that the resulting stiffener layout and template topologies 
should be symmetric. The presented mesh has 184471 nodal 

(16)𝜌t,d,0 = 0.5 +

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−0.01t, 0 ≤ t <

�

Ts

2

�

0, t =

�

Ts

2

�

, Ts ≥ 2

0.01t,

�

Ts

2

�

< t ≤ Ts

.

Fig. 5   Geometry, loading, and boundary conditions for simply stiff-
ened plate. The values of the parameters are given in Table 1
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points and 91800 elements. The meshes used are added as 
Supplementary data.

3.1.1 � Optimization results and discussion

The resulting template topologies of the three cases are 
shown in Fig. 6 and their layouts in the stiffener domains 
are shown in Table 2. The results and convergence data are 
added as Supplementary data. The observation is made, 
that the resulting template topologies and their layout in 
the stiffener domains are always symmetric. The case with 
1 template has the highest compliance value and therefore 
the worst mechanical performance. As already stated in the 
Introduction, due to the topological periodicity, the template 
is influenced the most by the highest loaded region. In this 
case, these regions are the stiffener domains �s=3,8 , which 
carry a majority of the concentrated load. The volume con-
straint does not allow for a complete solid topology of the 
templates and therefore an inferior solution arises.

In the case of 2 and 3 templates per type, one complete 
solid template arises, which carries the major part of the 
concentrated load. The compliance values of these cases are 
therefore very comparable, with a minor improvement of 
the objective function for the 3 templates per type case. The 
compliance value of the latter two cases is around 200% 
lower than for the 1 template per type case. Since the plate 
consists of 5 stiffeners per type, it could be expected that 
up to 5 unique templates could be defined with even lower 
compliance than for the case of 3 templates. However, for 
the cases of 4 and 5 templates, similar topologies and lay-
outs as for the 3 templates case are found due to the sym-
metry. This is characterized in the results by duplicate or 
not used templates, therefore the results of these cases are 
not presented. The results and convergence data are added 
as Supplementary data.

3.2 � Orthogonally stiffened plate

A base plate with an orthogonally ground structure of stiff-
eners is considered. The stiffener domains are all based 
on one parent, as shown in Fig. 7a, and therefore only one 
template type is defined. The geometric features including 
the distributed load, concentrated force, and boundary con-
ditions are shown in Fig. 7b. The entire base plate with all 
the stiffeners is modeled. However, it should be noted that 
the problem is symmetric. Therefore, it is hypothesized 
that the resulting topology should also be symmetric along 
the x1 and x2 planes. The optimization problem formula-
tion as stated in (7) is used. The upper value of the volume 

Table 1   Parameters used in the examples of the simply stiffened plate 
as shown in Fig. 5, and the orthogonally stiffened plate as shown in 
Fig. 7

Parameter Description Value Unit

a Spacing stiffeners 1 m
b Length base shell 6 m
h Height stiffeners 0.5 m
t Thickness 0.01 m
F1 Force 1000 N
F2 Force 100 N
p Pressure 10 Pa
E0 Young’s modulus 300 MPa
� Poisson ratio 0.3 -

(a) Stiffener layout for the case with 3 templates per type.

Templates for Type A Templates for Type B

ρρt=1 ρρt=1

ρρt=2 ρρt=2

ρρt=3 ρρt=3

(b) Filtered topologies for 3 templates per type resulting in
a compliance value of the design of 1.4907× 10−2 J.

ρρt=1 ρρt=1

ρρt=2 ρρt=2

(c) Filtered topologies for 2 templates per type resulting in a
compliance value of the design of 1.4912× 10−2 J.

ρρt=1 ρρt=1

(d) Filtered topologies for 1 template per type resulting in a
compliance value of the design of 2.9552× 10−2 J.

Fig. 6   An overview of the topologies of the templates for the simply 
stiffened plate example. In a the layout of the templates in the stiff-
ener domains is shown for the case of 3 templates per type. The tem-
plate topologies for this case are shown in b. For the case of 2 tem-
plates and 1 template per type, the resulting topologies are shown in c 
and d, respectively. Their layouts in the domains are given by Table 2
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constraint is set to one-third of the initial volume of the 
stiffeners, Vmax = 0.33 ⋅ Vinit.stiff. . The number of templates 
per type is varied, with the hypothesis that an increased 
number of templates results in a lower compliance value, 
since the design space is increased. The presented mesh 
has 237871 nodal point and 118800 elements. The meshes 
are added as Supplementary data.

3.2.1 � Optimization results and discussion

The resulting template topologies for the cases of 1 to 7 
templates per type are shown in Fig. 8. For all cases, the 

resulting layout is symmetric along the x1 - and x2-axis, 
therefore to keep it clear, only the results of one-quarter of 
the plate are shown. In this quarter plate, symmetry is also 
observed. The template layout is given for two opposite stiff-
ener domains in Table 3. The lowest, and very comparable, 
compliance values are retrieved for the case of 5, 6, and 7 
templates per type. For the case of 7 templates per type, 
the resulting layout is shown in Fig. 8a. It is noted that a 
major part of the volume is assigned to the stiffener domains 
�s=7−9 and �s=16−18 . These domains represent the stiffeners 
crossing the center of the base plate and carrying the major 
contribution of the concentrated force F2 . Since in the center 
of the base shell the sum of the deflection due to the concen-
trated load and pressure load is expected to be the largest, 
it is reasonable that most of the volume should be used for 
these stiffener domains. This observation can be extended 
to all other cases, where the templates with the most volume 
are used at these stiffener domains as well.

Increasing the number of templates resulted in a lower 
compliance value, as can be observed in Fig. 8. Since the 
quarter plate consists of 9 unique stiffener domain pairs, it 
could be expected that up to 9 unique templates could be 
defined with even lower compliance than for the case of 
7 templates. However, for the cases of 8 and 9 templates, 
similar topologies and layouts as for the 7 templates case 
are found. This is characterized in the results by duplicate or 
not used templates, therefore, the results of these cases are 
not presented. The results and convergence data are added 
as Supplementary data.

3.3 � Orthogonally stiffened shell: airplane fuselage

A practical example inspired on the top middle part of the 
fuselage of an airplane is considered, especially, the critical 
loadings during a 2.5G pull-up maneuver with a pressurized 
cabin at cruise height (Şen 2010). The geometry, boundary 
conditions, and loadings are shown in Fig. 9. The param-
eters used are denoted in Table 4. It should be noted that 
for correct boundary conditions, the slider at the lower side 
of the base shell along the x1-axis should be in radial direc-
tion as is the case for the upper side. In this case this is not 

Table 2   For the stiffener 
domains �

s
 , as shown in Fig. 2 

and 6a, the layouts of the 
templates �� are presented. The 
corresponding topologies of the 
templates are shown in Fig. 6

Type A Type B

Number of templates Number of templates

�
s

1 2 3 �
s

1 2 3

1 �
t=1

�
t=1

�
t=1

6 �
t=1

�
t=1

�
t=1

2 �
t=1

�
t=1

�
t=2

7 �
t=1

�
t=1

�
t=2

3 �
t=1

�
t=2

�
t=3

8 �
t=1

�
t=2

�
t=3

4 �
t=1

�
t=1

�
t=2

9 �
t=1

�
t=1

�
t=2

5 �
t=1

�
t=1

�
t=1

10 �
t=1

�
t=1

�
t=1

(a) A quarter of the orthogonally stiffened plate is shown,
since the result is symmetric along the x1 and x2 axis. The
parent is the stiffener domain Ωs=1, shortly denoted as Ω1.
All the other stiffener domains are children from this parent.
The base plate is assigned as non-design domain Ωn.

(b) A orthogonally stiffened plate, subjected to a distributed
load p, concentrated load F2 and fully clamped on the edges
of the base shell and stiffeners domains. The values of the
parameters are given in Table 1.

Fig. 7   In a the stiffener domains, non-design domain, and parent–
child scheme are presented for the orthogonally stiffened plate. The 
geometry, loadings, and boundary conditions are shown in b 
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implemented, since the goal of this example is to show the 
application of the developed method to shell structures. The 
optimization problem formulation as stated in (7) is used, 
with an upper value of the volume constraint set to two-third 
of the initial volume of the stiffeners, Vmax = 0.667 ⋅ Vinit.stiff. . 
The only domains that are subject to the optimization are 
the webs of the stiffeners. The top of a stiffener and the base 
shell are assigned as non-design domain. The example is 
performed for three cases, where the number of templates 
per stiffener type is varied from 1 to 3. The presented mesh 
has 212193 nodes and 105910 elements. The meshes are 
added as Supplementary data.

3.3.1 � Optimization results and discussion

The results of three cases are shown, where 1 up to 3 tem-
plates per type are used. For all cases, results and conver-
gence data are added as Supplementary data. For the case 
of 1 template per type, the topologies are shown in Fig. 10d 
and the layout in the stiffener domains is given in Table 5. 
For the stiffeners of Type A, the first observation can be done 
that a fully present stiffener is arising. This is probably due 
to the fact that the p2.5G load is applied at the side of the 
structure on the stiffeners of Type A at domains �s=16→20 . 
Removing these stiffeners will result in a structure, which is 
not able to transfer the load and is therefore avoided by the 
optimizer. A second observation can be performed from the 
stiffeners of Type B. Due to the volume constraint, material 
must be removed. A major part of this material is removed 
just below the stiffener top. This makes sense, since carry-
ing the ppress. by the structure can be done most effectively 
by placing material as far from the origin, and therefore as 
close to the base shell as possible.

In the case of 2 templates per type, the template topolo-
gies are shown in Fig. 10c and the layout in the stiffener 
domains is given in Table  5. The observations of the 

previous case can be extended. A void template �
t=1

 for 
Type A arises, which is used mainly at domains �s=6→9 and 
�s=11→14 . Since the axial load p2.5G is dominant in mag-
nitude, these tangential stiffeners are removed. A similar 
observation can be done for the almost void stiffener tem-
plate �

t=1
 of Type B that arises. This stiffener template is 

used at the boundaries of the structure, where the boundary 
conditions provide stiffness. Moreover, as observed previ-
ously, more material is placed as close to the base shell as 
possible in stiffener template �

t=1
 of Type B.

For the third case of 3 templates per type, the template 
topologies are shown in Fig. 10b and the layout in the stiff-
ener domains is given in Table 5 and shown in Fig. 10a. It 
can be observed for both stiffener types that an additional 
template arises, which places material as close to the base 
shell as possible. For the stiffener template �

t=2
 of Type 

B it is observed that it is used at the stiffener domains 
�s=2→7,3→8,4→9 . Here, the boundary condition is applied at 
the base shell at domains �s=1→5 . The majority of the p2.5G 
load is carried by the base shell, and therefore, some more 
material is removed below the stiffener top as compared to 
template �

t=3
 . Overall, it can be observed that the compli-

ance decreases with the introduction of more templates.

4 � Conclusions and recommendations

Stiffened shells are widely used in engineering structures, 
but their performance is highly influenced by the topology 
of the stiffeners and their layout on the base shell. Moreover, 
it is beneficial to design structures with modules, since it 
allows for increased and cheaper quality control, more acces-
sible mass production, and therewith reduction of costs. The 
method proposed in this work allows for the simultaneous 
optimization of the topology of the modular stiffeners and 
their layout on a base shell or plate.

It can be briefly concluded that the proposed method

Table 3   For the stiffener 
domains �

s
 , as shown in 

Figs. 7a and 8a, the layouts of 
the templates �� are presented. 
The corresponding topologies 
of the templates are shown in 
Fig. 8

Type A

Number of templates

�
s

1 2 3 4 5 6 7

1, 10 �
t=1

�
t=1

�
t=1

�
t=1

�
t=2

�
t=1

�
t=4

2, 11 �
t=1

�
t=1

�
t=1

�
t=1

�
t=2

�
t=2

�
t=3

3, 12 �
t=1

�
t=1

�
t=1

�
t=1

�
t=2

�
t=1

�
t=3

4, 13 �
t=3

�
t=1

�
t=2

�
t=3

�
t=5

�
t=4

�
t=7

5, 14 �
t=1

�
t=1

�
t=1

�
t=1

�
t=2

�
t=1

�
t=1

6, 15 �
t=1

�
t=1

�
t=1

�
t=1

�
t=1

�
t=3

�
t=2

7, 16 �
t=1

�
t=2

�
t=3

�
t=3

�
t=4

�
t=6

�
t=6

8, 17 �
t=1

�
t=1

�
t=3

�
t=2

�
t=3

�
t=6

�
t=1

9, 18 �
t=1

�
t=2

�
t=3

�
t=4

�
t=4

�
t=5

�
t=5
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–	 enables simultaneous optimization of the stiffener topol-
ogy and layout of stiffeners on shells and plates;

–	 incorporates a fixed, but limited number of integer mod-
ules in a three-dimensional structure;

–	 reduces the number of design variables;
–	 prevents mixing of the boundaries of the domains 

through the adjusted density filter;

(a) Stiffener layout for the case with 7 templates per type.

ρρt=1 ρρt=2 ρρt=3 ρρt=4

ρρt=5 ρρt=6 ρρt=7

(b) Filtered topologies for 7 templates per type resulting in
a compliance value of the design of 3.5350× 10−4 J.

ρρt=1 ρρt=2 ρρt=3 ρρt=4

ρρt=5 ρρt=6

(c) Filtered topologies for 6 templates per type resulting in a
compliance value of the design of 3.4767× 10−4 J.

ρρt=1 ρρt=2 ρρt=3 ρρt=4

ρρt=5

(d) Filtered topologies for 5 templates per type resulting in
a compliance value of the design of 3.5354× 10−4 J.

ρρt=1 ρρt=2 ρρt=3 ρρt=4

(e) Filtered topologies for 4 templates per type resulting in a
compliance value of the design of 4.1608× 10−4 J.

ρρt=1 ρρt=2 ρρt=3

(f) Filtered topologies for 3 templates per type resulting in a
compliance value of the design of 3.7912× 10−4 J.

ρρt=1 ρρt=2

(g) Filtered topologies for 2 templates per type resulting in a
compliance value of the design of 6.6536× 10−4 J.

ρρt=1

(h) Filtered topology for 1 templates per type resulting in a
compliance value of the design of 8.3492× 10−4 J.

Fig. 8   An overview of the topologies of the templates is shown for 
the orthogonally stiffened plate. In a the layout of the templates in the 
stiffener domains is shown for the case of 7 templates per type. The 
template topologies for this case are shown in b. For the case reach-
ing from 1 to 6 templates per type, the resulting topologies are shown 
in c–h. Their layout in the domains is given in Table 3

Fig. 9   Geometry, loading, and boundary conditions for the orthogo-
nally stiffened shell inspired on an airplane fuselage. The values of 
the parameters are given in Table 4. The stiffeners are located at the 
inner side of the base shell segment, at the dashed lines. The parent 
for Type A is the stiffener domain in tangential direction between 
Nodes 1 and 2, denoted by �

s=1→2
 . For Type B, the parent is the 

domain in axial direction between Nodes 1 and 6, denoted by �
s=1→6

Table 4   Parameters used in the example of the airplane fuselage as 
shown in Fig. 9

Parameter Description Value Unit

R Radius base shell 2 m
� Base shell segment 2�

32
rad

t Thickness base shell 1.5 mm
w Spacing stiffeners 0.5 m
�s Radial spacing stiffeners 1

4
� rad

hs Height stiffeners 40 mm
ws Width stiffener top 40 mm
ts Thickness stiffener top 8 mm
tw Thickness stiffener web 3 mm
ppress. Cabin-outside pressure 55 kPa
p2.5G Load 2.5G maneuver 130 MPa
E0 Young’s modulus 70 GPa
� Poisson ratio 0.3 -
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–	 gradually drives the module templates to topologies with 
distinct solid/void boundaries and a clear layout in the 
ground structure because of the continuation scheme; and

–	 allows conceptual designs for stiffened plates and shells 
with different number and formats of the module tem-
plates.

The proposed method is applied to several stiffened plate 
examples and a practical stiffened shell problem. For all 
examples, the method has shown to converge to designs with 
distinct solid/void boundaries in the module topologies and 
a clear layout in the ground structure. These designs can 

be reasoned logically given the boundary conditions and 
loads. For example, the symmetric stiffened plate examples 
resulted in symmetric designs. Moreover, it was shown that 
allowing for more templates increased the design space and 
therefore resulted in lower values for the compliance. Even 
for a limited number of templates and therefore a reduced 
number of design variables, the method is also able to gener-
ate innovative designs. Therefore, the proposed method is 
a design tool that can be utilized in the conceptual design 
phase of structures with stiffeners.

The recommendations are separated into two parts: the 
current implementation and future applications or exten-
sions of the method. For the first part, it is recommended 
to develop a more thorough understanding of the influence 
of the continuation scheme on the final results. The condi-
tions for increasing the penalty factors and their influence 
on the final design should be more thoroughly investigated. 
The same holds for the filtering. In this work, an adjusted 
density filter with a constant relative filter radius is adopted. 
The filter radius implicitly describes the minimal feature size 
that can arise in the topology. Therefore, the influence of the 
filter radius has to be taken into account in more detail. How-
ever, the density filtering also opens up new possibilities. 
For example, the filter radius could be adjusted per module 
template to provide a minimal feature size per module.

For the second part, future applications and extensions of 
the method, the importance of different objective functions 
is recognized. As already stated in the Introduction, thin-
walled structures are sensitive to vibrations. Therefore, it is 
recommended to include the dynamics in the objective func-
tions. As also stated in the Introduction, the structural per-
formance of modular structures can be enhanced by allow-
ing additional module properties as design variables or by 
introducing more modules to the structure. This work only 
focuses on the latter and therefore the inclusion of additional 
module properties such as the rotation can be incorporated 
in future work. In this work, the method is mainly applied 
to stiffener domains. It should be noted that the method is 
defined very generally. This opens up possibilities to apply 
the method to domains of different shapes to further extend 
the range of applications. Moreover, the generality of this 
method allows for different topology description methods. 
In this work, the material density-based topology optimiza-
tion using SIMP was used, although the method can also be 
combined with other topology description methods, such 
as level-set.

(b)

(a)

(c)

(d)

Fig. 10   An overview of the topologies of the templates for the 
orthogonally stiffened shell. In a the layout of the templates in the 
stiffener domains is shown for the case of 3 templates per type. The 
template topologies for this case are shown in b. For the case reach-
ing from 2 and 1 templates per type, the resulting topologies are 
shown in c, d, respectively. Their layout in the domains is given in 
Table 5
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