

Delft University of Technology

An FPGA-based systolic array to accelerate the BWA-MEM genomic mapping algorithm

Houtgast, Ernst; Sima, VM; Bertels, K; Al-Ars, Z

DOI
10.1109/SAMOS.2015.7363679
Publication date
2015
Document Version
Accepted author manuscript
Published in
Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, SAMOS XV

Citation (APA)
Houtgast, E., Sima, VM., Bertels, K., & Al-Ars, Z. (2015). An FPGA-based systolic array to accelerate the
BWA-MEM genomic mapping algorithm. In D. Soudris, & L. Carro (Eds.), Proceedings of the International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS XV (pp.
221-227). IEEE. https://doi.org/10.1109/SAMOS.2015.7363679
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679

An FPGA-Based Systolic Array to Accelerate the
BWA-MEM Genomic Mapping Algorithm

Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels and Zaid Al-Ars
Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands

E-mail: {e.j.houtgast, v.m.sima, k.l.m.bertels, z.al-ars}@tudelft.nl

Abstract—We present the first accelerated implementation of
BWA-MEM, a popular genome sequence alignment algorithm
widely used in next generation sequencing genomics pipelines.
The Smith-Waterman-like sequence alignment kernel requires a
significant portion of overall execution time. We propose and
evaluate a number of FPGA-based systolic array architectures,
presenting optimizations generally applicable to variable length
Smith-Waterman execution. Our kernel implementation is up to
3x faster, compared to software-only execution. This translates
into an overall application speedup of up to 45%, which is 96% of
the theoretically maximum achievable speedup when accelerating
only this kernel.

I. INTRODUCTION

As next generation sequencing techniques improve, the
resulting genomic data, which can be in the order of tens
of gigabytes, requires increasingly long time to process. This
is becoming a large bottleneck, for example in cancer diag-
nostics. Hence, acceleration of algorithms used in genomics
pipelines is of prime importance. General purpose processors
are not necessarily the best execution platform for such work-
loads, as many bioinformatics workloads lend themselves well
to parallel execution. Use of dedicated hardware, such as GPUs
or FPGAs, can then greatly accelerate the computationally
intensive kernels to achieve large speedups.

The initial stage for many genomics pipelines is sequence
alignment. DNA sequence reads are aligned against a reference
genome, producing the best found alignment for each read.
Many sequence alignment tools exist, such as Bowtie [5],
BWA [8], MAQ [9], and SOAP2 [10]. BWA-MEM [7] is
widely used in practice as a de facto sequence alignment
algorithm of choice. In this paper, we investigate and propose
the first accelerated version of BWA-MEM, using FPGAs to
improve performance. The use of FPGAs can yield order-
of-magnitude improvements in both processing speed and
power consumption, as they can be programmed to include
a huge number of execution units that are custom-tailored
to the problem at hand, providing much higher throughput
than conventional processors. At the same time, they consume
much less power, since they operate at relatively low clock
frequencies and use less silicon area for the same task.

In this paper, we present the following contributions: we (1)
analyze the BWA-MEM algorithm’s main execution kernels;
(2) propose novel systolic array design approaches optimized
for variable length Smith-Waterman execution; (3) implement
and integrate the design into the BWA-MEM algorithm; and

thus (4) create the first accelerated version of the BWA-MEM
algorithm, using FPGAs to offload execution of one kernel.

The rest of this paper is organized as follows. Section II
provides a brief background on the BWA-MEM algorithm.
Section III describes the details of our acceleration approach.
Section IV discusses design alternatives for the systolic array
implementation. Section V provides the details on the configu-
ration used to obtain results, which are presented in Section VI
and then discussed in Section VII. Section VIII concludes the
paper and indicates directions for future work.

II. BWA-MEM ALGORITHM

The BWA program is “a software package for mapping low-
divergent sequences against a large reference genome, such
as the human genome. It consists of three algorithms: BWA-
backtrack, BWA-SW and BWA-MEM . . . BWA-MEM, which is
the latest, is generally recommended for high-quality queries
as it is faster and more accurate.” [6] A characteristic work-
load of this algorithm is to align millions of DNA reads against
a reference genome. Currently, we align DNA reads of 150
base pairs (bp), a typical output length of next generation
sequencers [1], against the human genome.

A. BWA-MEM Algorithm Kernels

The BWA-MEM algorithm alignment procedure consists of
three main kernels, which are executed in succession for each
read in the input data set.

1. SMEM Generation: Find likely mapping locations,
which are called seeds, on the reference genome. To this end,
a BWT-based index of the reference genome, which has been
generated beforehand, is used [8]. Per read, zero or more seeds
are generated of varying length;

2. Seed Extension: Chain and extend seeds together using a
dynamic programming method that is similar, but not identical,
to the Smith-Waterman algorithm [12];

3. Output Generation: Sort and, if necessary, perform
global alignment on the intermediate results and produce
output in the standardized SAM-format.

The BWA-MEM algorithm processes reads in batches.
Figure 1 illustrates the order in which these kernels process a
batch of reads. The first two kernels, SMEM Generation and
Seed Extension, are performed directly after each other for
each read. When this is finished for all reads in a batch, Out-
put Generation is performed. BWA-MEM implements multi-
threaded execution of all three program kernels.

SMEM Generation
& Seed Extension

Output Generation

one batch
one read

n threads

n threads

ex
ec
u
ti
o
n
ti
m
e

Fig. 1. Execution order of the three main BWA-MEM algorithm kernels. Per
batch, execution of SMEM Generation and Seed Extension is intertwined for
each read; afterwards, Output Generation is performed.

B. Profiling Results

A challenging factor in the acceleration of the BWA-MEM
algorithm is the fact that execution time is not isolated in
a single computationally-intensive kernel, but is spread over
three separate kernels. Hence, speedup of a single kernel will
only yield limited overall speedup. To investigate which of
these kernels is most suitable for FPGA-based acceleration,
we have analyzed and profiled the algorithm with gprof
and oprof. Both yielded similar results. Table I shows the
profiling results for a typical workload.1

TABLE I
RESULTS OF BWA-MEM ALGORITHM PROFILING

Program Kernel Time Bottleneck Processing

SMEM Generation 56% Memory Parallel
Seed Extension 32% Computation Parallel
Output Generation 9% Memory Parallel
Other 3% I/O Sequential

For each kernel, the relative execution time, type of process-
ing and whether it is bound by computation, memory or I/O is
specified, based on a combination of profiling and source code
inspection. Besides these computationally-intensive kernels,
the remaining execution time is comprised of other activities,
among them initialization and I/O.

In this paper, we investigate acceleration of the Seed
Extension kernel. This work is part of an on-going effort
to accelerate execution of the BWA-MEM algorithm. Our
rationale to start with the Seed Extension kernel is as follows:
although profiling results indicate that the SMEM Generation
kernel is more time-consuming, the dynamic programming-
type of algorithm used in the Seed Extension kernel is a much
better fit for execution on an FPGA. As shown in Table I,
Seed Extension requires 32% of overall execution time for
this workload. Hence, the maximum speedup we can expect
to gain from accelerating this part is 47%.

1Single-ended GCAT on the Convey HC-2EX (refer to Section V for more
details on the workload and execution platform).

SMEM
Generation

Seed
Extension

Output
Generation

on FPGA

one batch

one chunk

n threads

n threads

ex
ec
u
ti
o
n
ti
m
e

Fig. 2. Our implementation further subdivides batches into chunks. SMEM
Generation and Seed Extension are separated and Seed Extension is mapped
onto the FPGA; its execution is overlapped with SMEM Generation.

III. IMPLEMENTATION

Our efforts to accelerate the Seed Extension kernel can be
divided into two parts: (1) the FPGA-accelerated core that
implements the Seed Extension kernel; and (2), integration of
this kernel into the BWA-MEM algorithm.

A. Top-Level Accelerated Structure

As shown in Section II-B, the BWA-MEM algorithm con-
sists of three distinct kernels. As illustrated in Figure 1,
execution of the SMEM Generation kernel and Seed Exten-
sion is intertwined. Directly using this structure to offload
execution of the Seed Extension kernel onto an FPGA would
require a large number of small data transfers, two per read.
The resulting overhead makes such a structure undesirable.2

Hence, in order to facilitate offloading this kernel onto the
FPGA, SMEM Generation and Seed Extension are completely
separated from each other, which allows for fewer, but larger
transfers of data to and from the FPGA. The modified structure
of operation is shown in Figure 2. This approach does require
that some temporary data structures are kept in memory longer.
In practice, this is not an issue as the data is in the order of
tens of megabytes.

The accelerated approach is based on two principles: (1)
offloading the Seed Extension kernel onto the FPGA; and (2)
overlapping execution of SMEM Generation on the host CPU
and Seed Extension on the FPGA, thereby effectively hiding
the time required to process this stage. In order to overlap
these kernels, the reads in a batch are further subdivided into
chunks. After a chunk is processed by the SMEM Generation
kernel, it is dispatched to the FPGA. Output Generation is
performed only after both the kernels finish, as the CPU cores
are fully utilized while performing SMEM Generation. Hence,
there would be no benefit in overlapping execution of this
kernel with the other two.

Reads vary in the amount of temporary data required to pro-
cess them: some reads generate more SMEMs (i.e., potential

2For example, testing reveals that copying 1 Mbyte at once is almost 30x
faster than performing a thousand 1 kbyte transfers.

PE0 PE1 PE2 PE3 output

G C A A

0 0 0 0 0

A 0 0 0 2 2

G 0 2 1 1 1

C 0 1 4 3 2

A 0 0 3 6

max

5

similarity matrix

initial values

re
fe
re
n
ce

sy
m
b
o
ls

read symbols

Fig. 3. Smith-Waterman similarity matrix showing the local sequence align-
ment with maximum score. Each read symbol is mapped onto a Processing
Element of the systolic array.

alignment locations) than others, and all alignments need to be
kept in memory to be able to select the best overall alignment.
Hence, in order to limit the hardware resources required for
some extreme cases, not all reads are handled on the FPGA. In
practice, we process more than 99% of all alignments on the
FPGA. The remaining reads are instead executed on the host,
which does not suffer from fixed memory size limitations.

B. Seed Extension Kernel

This section provides more details on the particular function
of the Seed Extension kernel. Seeds, as generated by the
SMEM Generation kernel, are an exact match of symbols from
the read onto the reference (or a subsequence of either). The
purpose of Seed Extension is to extend the length of such an
exact match while allowing for small differences: mismatches
between the read and reference, or skipping symbols on either
the read or reference. A typical example of an alignment is
given below:

Seed Extension
Reference GCGC AAGCTA GCTGAGGCTAA
Read ---- AAGCTA AC-GAGG----

The Smith-Waterman algorithm [12] is a well-known dy-
namic programming algorithm that is guaranteed to find the
optimum alignment between two sequences for a given scoring
system. A similarity matrix is filled that computes the best
score out of all combinations of matches, mismatches and
gaps. This is illustrated by Figure 3. The process by which the
similarity matrix is filled contains much inherent parallelism,
as each cell only depends on its top, top-left and left neighbor.
This implies that all cells on the same anti-diagonal can be
computed in parallel.

Init PE0 PE1 PE2 PE3 EOQ output

G C A A

50 49 48 47 46

A 49 49 48 50 49

G 48 51 50 49 48

C 47 50 53 52 51

A 46 49 52 55

max

54

global

similarity matrix

initial values

re
fe
re
n
ce

sy
m
b
o
ls

read symbols

Fig. 4. Seed Extension similarity matrix showing an extension with an initial
score of 50. The implications to the systolic array design are highlighted:
additional Initialization and End-of-Query blocks; non-zero initial values; and
calculation of the global maximum alignment score.

1) Linear Systolic Arrays: A natural way to map dynamic
programming algorithms onto reconfigurable hardware is as
a linear systolic array. Many implementations that map the
Smith-Waterman algorithm onto a systolic array have been
proposed, amongst others [11], [13] and [14]. A systolic array
consists of Processing Elements, or PEs for short, that operate
in parallel. In the case at hand, we use such an array to
take advantage of the available parallelism that exists while
filling the similarity matrix, by processing the cells on the
anti-diagonal in parallel. As illustrated in Figure 3, we map
one read symbol to one PE, which corresponds to one column
of the matrix. Each cycle, a PE processes one cell of the matrix
and passes the resulting values to the next element. The values
typically passed along to calculate the similarity matrix are the
current cell’s score, the row maximum, the current reference
symbol, and the current gap score.

Although systolic array implementations excel in extracting
parallelism, they do possess a number of drawbacks. First, the
length of the PE-array determines the maximum length of a
read that can be processed: one PE is required per read symbol.
In this work we consider reads of up to 150 base pairs in
length. Hence, we can guarantee that all reads will fit onto an
array of a corresponding size.3 Second, reads shorter than the
PE-array still need to travel through it, incurring unnecessary
latency and wasting resources by underutilizing the array.
Finally, the maximum degree of parallelism is only achieved
when all PEs are kept busy, which by virtue of its pipelined
organization cannot always be ensured. In Section IV, we show
how to deal with these issues.

3In practice, as we only consider data with a read length of 150 and the
minimum seed length is 19 symbols, an extension can span at most 131
characters. Thus, an array of length 131 suffices.

2) Differences with ”Standard” Smith-Waterman: The Seed
Extension kernel used in BWA-MEM is similar to the Smith-
Waterman algorithm, but the fact that the purpose is not to
find the optimal match between two sequences, but instead
to extend a seed found beforehand gives rise to three key
differences. These differences and the impact they have on
the design of the systolic array implementation are discussed
below and illustrated in Figure 4.

1. Non-Zero Initial Values: Since the purpose of the Seed
Extension kernel is to extend a seed, the match between
sequences will always start from the ”origin” of the similarity
matrix (i.e., the top-left corner). The initial values provided to
the first column and row of the dynamic programming matrix
are not zero, but depend on the alignment score of the seed
found by the SMEM Generation kernel.

Implication: An initial value block is placed in front of the
array and initial values are computed and passed from one PE
to the next.

2. Additional Output Generation: The Seed Extension
kernel not only generates local and global alignment scores,
which are the highest score in the matrix and the highest score
that spans the entire read respectively, but also returns the exact
location inside the similarity matrix where these scores have
been found. Furthermore, a maximum offset is calculated that
indicates the distance from the diagonal at which a maximum
score has been found.

Implication: The index of the PE where the maximum is
obtained is passed from one PE to the next. An End-of-Query
block, which generates the output values by post-processing
the results, is inserted at the end of the array.

3. Partial Similarity Matrix Calculation: To optimize for
execution speed, BWA-MEM uses a heuristic that attempts to
only calculate those cells that are expected to contribute to the
final score. Profiling reveals that, in practice, only about 42%
of all cells are calculated.

Implication: Our implementation does not use this heuris-
tic, as the systolic array is able to perform all calculations on
the anti-diagonal in parallel, which potentially leads to higher
quality alignments.

IV. DESIGN SPACE EXPLORATION

Before deciding upon the final design of the Seed Extension
kernel, a number of ideas and design alternatives, or PE-
module configurations, were considered, varying in speedup,
FPGA-resource consumption, suitability for certain data sets,
and complexity. These are depicted in Figure 5 and will
be discussed below. For analysis purposes, a data set with
uniformly distributed extension lengths was used. Inspection
of a histogram with GCAT seed extension lengths shows that
this assumption is reasonable. We also consider that we have
the entire data set available at the start for optimal scheduling.

A. Variable Logical Length Systolic Array

The length over which Seed Extension is to be performed
is not the entire read length, but shorter, ranging from a
single symbol up to the entire read length minus minimum

(a)

(b)

(c)

(d)

PE0 PE1 PE2 PE3 EOQ output

PE0 PE1 PE2 PE3 M
U
X

EOQ output

PE0 PE1 PE2 PE3 EOQ output

PE0 PE1 EOQ output

PE0 EOQ output PE0 EOQ output

Fig. 5. PE-Module configurations: (a) standard systolic array configuration;
(b) Variable Logical Length configuration that can bypass part of the array;
(c) Variable Physical Length configuration that matches systolic array length
to read length; (d) GPU-like single-PE modules.

seed length. Hence, the alignment that the kernel has to
perform varies in its length. As mentioned in Section III-B1,
a characteristic of systolic arrays is that processing time is
independent of read length, as a read has to travel through
the entire PE-array irrespective of its length: i.e., processing
time is O(|PEarray|+ |Reference|), instead of O(|Read|+
|Reference|). Hence, shorter reads incur unnecessary latency
and cause the systolic array to be underutilized.

To minimize latency, ideally a read would be processed by
a PE-array matching its exact length. However, in practice,
this is not achievable, since it would require having a PE-
array for each possible read length, which is impractical given
the available resources on the FPGA. Therefore, we propose
to insert multiple exit points into the PE-array, as shown in
Figure 5(b). We call this Variable Logical Length (VLL).
This ensures that shorter reads do not have to travel through
the entire array. Only a multiplexer and some control logic
to select the correct exit point is needed, so this technique
introduces minimal area overhead.

Definition 1 The Exit Point Optimality measures how well an
exit point configuration approximates the ideal situation of
having a PE-array matching each read length.

Of course, the Exit Point Optimality is data set dependent:
for a set of reads that are all of the same length, a single
module length suffices and the VLL technique can provide no
benefit. In the case of a data set with uniformly distributed
read lengths, it can be shown that minimal latency is achieved
with evenly distributed exit points.

This idea can be further extended by subdividing the systolic
array into two or more smaller logical systolic arrays that
can operate in parallel. For example, a 150-PE array could
present itself as two separate 75-PE arrays. This is similar to
the approach suggested in [11]. However, that technique needs
substantial additional hardware resources.

S
iz
e
of

T
h
ir
d
P
E
-M

o
d
u
le

(#
of

P
E
s)

Size of Second PE-Module (# of PEs)

20

40

60

80

100

120

20 40 60 80 100 120

Optimality = 1.00
at (131,104,67)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.20

0.60

1.00

Optimality
Score

Fig. 6. Configuration Optimality for all three VPL PE-module combinations
given a data set with uniformly distributed extension lengths. The indicated
point shows the best configuration for the data set, which by definition has a
value of 1. Data were obtained through exhaustive search of the design space.

B. Variable Physical Length Systolic Array

Another method to improve performance is using multiple
systolic arrays together with Variable Physical Length (VPL),
as shown in Figure 5(c). Longer reads are processed by the
larger PE-arrays, while shorter reads are processed by the
smaller arrays. Besides the above-mentioned improvement to
execution speed, this has an additional benefit: the additional
PE-arrays are physically smaller, which in turn allows for
even more modules to be placed on the FPGA, improving
speed even more. Combining this idea with the VLL-technique
results in a Variable Logical and Physical Length (VLPL)
array.

Definition 2 The Configuration Optimality shows how closely
a VPL-configuration achieves optimal load-balancing for a
given data set, optimum CO being defined as 1.

Figure 6 shows the Configuration Optimality for all combi-
nations of three PE-modules, given a data set with uniformly
distributed extension lengths. The graph shows the relative
efficiency of all the configurations in the design space. To
derive the relative efficiency, we have modeled the required
time to process an entire data set, assuming optimal scheduling
of reads onto modules. This is relatively easy given the fact
that the processing time for each read is only dependent on the
systolic array length of the modules and the length of the read
to be processed. The optimal configuration is that configuration
with the smallest module sizes (to minimize latency) for which
all modules can be kept busy until the end.

Note that the optimal configuration of VLL- and VPL-
arrays depends on the specific distribution of extension lengths
of the data set at hand. In order to efficiently cope with
various input data sets, multiple FPGA bitstreams can be
compiled beforehand, each optimally configured for a different
distribution. Then, an initial sampling of the input data can be
used to select the best matching bitstream.

TABLE II
ESTIMATED RELATIVE PERFORMANCE OF SIMILAR AREA PE-MODULE
CONFIGURATIONS GIVEN A DATA SET WITH UNIFORMLY DISTRIBUTED

EXTENSION LENGTHS.

PE-Module Relative Relative
Design Configuration Speed Area

Standard 2x (131) 100% 100%
VLL 2x (131/87/43)4 125% 100%
VPL 1x (131), 1x (104), 1x (67) 181% 114%
VLPL 1x (131/122/113), 203% 114%

1x (104/92/79),
1x (67/45/22)

C. Single-PE Modules

The last alternative (see Figure 5(d)) is technically not a
systolic array. One PE processes a similarity matrix entirely
by itself. Parallelism is achieved not through intra-read paralle-
lism, but instead by utilizing inter-read parallelism: processing
multiple reads in parallel on a ”sea-of-cores”, similar to GPU-
accelerated Smith-Waterman approaches such as the method
discussed in [3]. Latency is traded for overall throughput.

An advantage of this approach is that it allows the use of
the heuristic mentioned in Section III-B2-3, to only calculate
relevant parts of the similarity matrix. Hence, as only about
42% of cells are processed, in theory a hundred single-PE
modules should be 2.5 times faster than a one-hundred-PE
module, not even considering the fact that the latter will
often be underutilized. Drawbacks of this method are the
considerable overhead this configuration suffers from: in PE-
terms, control and other overhead are about equivalent to two
PEs in logic cost. Moreover, whereas the systolic array designs
implicitly store temporary data inside the array, the single-PE
method requires explicit storage of temporary values. Finally,
our current top level design can only fit up to six modules (of
any kind), due to the resources required per core for input and
output data structures.

D. Evaluation of PE-Module Configurations

Table II shows the relative performance of the various
systolic array configurations. As we did not implement all
the different configurations, we derived these estimations with
the same approach as was used in Section IV-B to compute
the Configuration Optimality. The configurations all have area
requirements similar to a two 131-PE configuration. This will
be the area on the FPGA we expect to be able to dedicate
to seed extension logic in future implementations that also
accelerate other parts of the algorithm on the FPGA. Given
the extra resources the single PE configuration requires, we
excluded this approach from the comparison.

The results show that the fastest approach is the VLPL
configuration, being more than twice as fast as a standard
systolic array implementation. The VLL and VPL configu-
rations use different values for their exit points and module

4The Exit Point Optimality of this configuration is 0.87.

Fig. 7. Floorplan of the implemented FPGA design showing the four identical
VLL-based modules and the memory controllers. The remainder of space is
taken up by the Convey-to-host interface.

sizes, respectively, as their optimization goal is different:
VLL optimizes for average latency, whereas VPL tries to
balance execution time between modules. More exit points, or
more modules would result in a higher speedup. The single-
PE module configuration (not shown in the table) would be
more than three times faster than a standard systolic array
implementation, as (1) it does not suffer from underutilization
of the array, and (2) it can take advantage of the similarity
matrix heuristic (refer to Section III-B2-3).

V. METHODS

All tests were run on the Convey HC-2EX platform [2],
configured with two Intel Xeon E5-2643 processors (four cores
each, HyperThreading disabled) running at 3.3 GHz with 64
GB of DDR3 memory, paired with four Xilinx Virtex-6 LX760
FPGA co-processors (speed grade 1) connected to 64GB of
SG-DIMM memory. Each FPGA is programmed with four
Seed Extension modules, for a total of sixteen modules across
all FPGAs. Modules are VLL-based and contain 131 PEs each.

To accelerate the Seed Extension kernel, we implemented
a VLL-based design with four identical modules per FPGA,
along with other components, such as memory controllers
and the Convey-to-host interface blocks. Figure 7 shows the
floorplan of the implemented design. A single module uses
about 16% of FPGA resources, while in total approximately
71% of all resources was used. Although with more effort we
would be able to place six modules per FPGA, a design with
four modules provided sufficient performance to completely
hide execution of the Seed Extension kernel. Hence, to re-
duce planning and routing complexity, we did not attempt to
completely fill up the entire FPGA.

Data sets from the Genome Comparison & Analytic Test-
ing (GCAT) framework [4] were used to obtain results for
single-ended alignment (150bp-se-small-indel) and pair-ended
alignment (150bp-pe-small-indel) of about eight million reads
against the reference human genome (UCSC HG19). We used
their online sequence alignment quality comparison service
to verify that results of our FPGA-accelerated version are
indistinguishable from those obtained with the BWA-MEM
algorithm. We used BWA-MEM version 0.7.7 [6].

VI. RESULTS

The results are summarized in Table III. Number of chunks
indicates how many chunks are sent to the FPGA per batch.
A value of one results in serial behavior, as then SMEM
Generation and Seed Extension do not overlap. The last
column shows the number of base pairs aligned per second.

A. Seed Extension Kernel

The table shows that the FPGA implementation of the Seed
Extension kernel is up to three times faster than execution on
the CPU, or 1.5 times faster when comparing a single module
against one Xeon core. This implementation is fast enough to
completely hide the execution of the Seed Extension kernel
through overlapping its execution with SMEM Generation.
Using a more advanced technique, such as VLPL, would
allow us to achieve an even larger performance gain in
Seed Extension, up to five-fold as compared to software-only
execution (refer to Section IV-D). However, this would only
benefit overall performance negligibly.

Note that the executions with only one chunk show slightly
higher Seed Extension performance, due to less overhead from
the chunking process. However, overall program execution
time is lower, as no overlap between the two kernels is realized
(refer to Figure 2 for more details).

B. Overall Program Execution

Offloading the Seed Extension kernel onto the FPGA results
in an overall improvement to BWA-MEM execution time of
up to 45%. Given the fact that BWA-MEM execution time is
spread over three kernels (see Section II-B), we manage to
attain 96% of the theoretically possible speedup of 47% from
accelerating just this one kernel. Different numbers of chunks
do not measurably impact performance, as long as overlap is
possible between Seed Extension and SMEM Generation. A
chunk size of one shows the isolated performance gain from
Seed Extension acceleration without overlap. Note that BWA-
MEM itself already offers multi-threaded execution.

VII. DISCUSSION

By optimizing one of the three main BWA-MEM kernels,
we realized an increase in application performance by up
to 45%. Focusing on only one kernel leaves us exposed to
the limitations clearly set out by Amdahl’s law, limiting the
potential gains in performance. Our next efforts are hence
focused on accelerating the other kernels.

The Seed Extension kernel proved to be a good fit to port
to the FPGA, although it is obvious that even just porting one

TABLE III
EXECUTION TIME AND SPEEDUP FOR THE GCAT ALIGNMENT QUALITY BENCHMARK

Seed Extension Kernel Overall Program

Test Platform # of Chunks Execution Time Speedup Execution Time Speedup Throughput

Single-Ended CPU only - 167 s - 530 s - 2.3 Mbp/s
Data CPU+FPGA 11 62 s 2.69x 366 s 1.45x 3.3 Mbp/s

CPU+FPGA 6 62 s 2.70x 365 s 1.45x 3.3 Mbp/s
CPU+FPGA 1 61 s 2.73x 412 s 1.29x 2.9 Mbp/s

Pair-Ended CPU only - 172 s - 545 s - 2.2 Mbp/s
Data CPU+FPGA 11 63 s 2.75x 402 s 1.35x 3.0 Mbp/s

CPU+FPGA 6 62 s 2.78x 400 s 1.36x 3.0 Mbp/s
CPU+FPGA 1 61 s 2.82x 447 s 1.22x 2.7 Mbp/s

kernel has wider implications to the program structure than
just replacing a single function call: limitations in memory
transfer efficiency forced us to reorder the program execution
into batches to allow for larger, more efficient data transfers.
Moreover, the acceleration potential of using FPGAs is largely
dependent on data size. The huge parallelism an FPGA can
offer, granting O(n) scaling as compared to O(n2) on the
host CPU, will become much more apparent at longer read
sizes: a read length of 1,000 symbols would result in a ten-
fold speedup, compared to the 1.5x speedup we managed to
attain. Hence, it is important to have a deep understanding of
the data set at hand before applying a general solution. Finally,
knowledge of the extension length distribution is required to
implement a PE-module design with optimal efficiency.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the initial results of our
efforts to accelerate BWA-MEM. We propose the first accel-
erated version of BWA-MEM, offloading one of the three main
program kernels onto an FPGA and overlapping its execution.
We implemented the Seed Extension kernel as a systolic array
and achieved performance for this kernel up to three times
faster than software-only execution. This translates into an
overall improvement to execution time up to 45%, close to the
theoretical maximum of 47%, as the kernel’s execution time
is almost completely hidden. Moreover, we have presented
generally applicable techniques to improve the performance
of variable length Smith-Waterman systolic arrays by up to
three times, with very little area overhead.

Our next efforts will focus on offloading the other kernels of
the BWA-MEM algorithm onto the FPGA, for which SMEM
Generation is a natural candidate. We will also investigate the
implementation of a VLPL-module, mostly as area savings
measure, as the gains in speed can be used to reduce the allo-
cated space of the kernel on the FPGA. Successful acceleration
of BWA-MEM will bring us one step closer to overcoming
the computational bottlenecks inherent in the Next Generation
Sequencing genomics pipeline.

IX. ACKNOWLEDGMENTS

The authors would like to thank Bluebee and Convey
Computer for kindly making available the resources for testing
and implementation work, and in particular thank Giacomo
Marchiori from Bluebee for all his efforts.

REFERENCES

[1] H. Cao, Y. Wang, W. Zhang, X. Chai, X. Zhang, S. Chen, F. Yang,
C. Zhang, Y. Guo, Y. Liu, et al. A short-read multiplex sequencing
method for reliable, cost-effective and high-throughput genotyping in
large-scale studies. Human mutation, 34(12):1715–1720, 2013.

[2] Convey Computer. The Convey HC-2 architectural overview. http://
www.conveycomputer.com. Accessed: 2014-11-04.

[3] L. Hasan, M. Kentie, and Z. Al-Ars. DOPA: GPU-based protein
alignment using database and memory access optimizations. BMC
research notes, 4(1):261, 2011.

[4] G. Highnam, J. J. Wang, D. Kusler, J. Zook, V. Vijayan, N. Leibovich,
and D. Mittelman. An analytical framework for optimizing variant
discovery from personal genomes. Nature communications, 6, 2015.

[5] B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et al. Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol, 10(3):R25, 2009.

[6] H. Li. Burrows-Wheeler Aligner. http://bio-bwa.sourceforge.net/.
Accessed: 2014-11-04.

[7] H. Li. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.

[8] H. Li and R. Durbin. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[9] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome research,
18(11):1851–1858, 2008.

[10] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang. SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics, 25(15):1966–1967, 2009.

[11] T. Oliver, B. Schmidt, and D. Maskell. Hyper custo- mized proces-
sors for bio-sequence database scanning on FPGAs. In Proceedings
of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 229–237. ACM, 2005.

[12] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[13] C. W. Yu, K. Kwong, K.-H. Lee, and P. H. W. Leong. A Smith-
Waterman systolic cell. In New Algorithms, Architectures and Appli-
cations for Reconfigurable Computing, pages 291–300. Springer, 2005.

[14] P. Zhang, G. Tan, and G. R. Gao. Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing platform. In
Proceedings of the 1st international workshop on High-performance
reconfi- gurable computing technology and applications: held in con-
junction with SC07, pages 39–48. ACM, 2007.

