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Stability Analysis of High-Frequency Interactions
Between a Converter and HVDC Grid Resonances
Thomas Roose , Student Member, IEEE, Aleksandra Lekić , Member, IEEE, Mohammad M. Alam ,

and Jef Beerten , Senior Member, IEEE

Abstract—This paper analyzes high-frequency interactions be-
tween a Modular Multilevel Converter (MMC) and High Voltage
Direct Current (HVDC) grid resonances by studying their effect
on the system stability. The recent appearance of converter-
related instabilities due to high-frequency oscillations at the con-
verter’s ac side raises concerns about whether similar interactions
can also take place at its dc side. To determine the risks imposed
by such interactions within an HVDC grid, this paper assesses the
impact of the MMC internal dynamics and dc system resonances
on the stability using an analytical impedance-based method.
The effect of fault current-limiting inductors, grid topology
changes and transmission line length is investigated, indicating
that these parameters considerably influence the electromagnetic
characteristics of the HVDC grid and consequently the system
stability. Furthermore, a sensitivity analysis of the MMC internal
controller dynamics on the converter’s non-passivity, causing the
instability, is performed.

Index Terms—DC resonances, HVDC grid, Impedance-based,
Modular Multilevel Converter (MMC), Stability analysis

I. INTRODUCTION

VOLTAGE Source Converter (VSC) based High Voltage
Direct Current (HVDC) is one of the key enabling

technologies for massive integration of renewable energy
sources in the electricity grid. HVDC systems are capable of
high power transfer over long distances and interconnecting
asynchronous areas [1]. Recently, the Modular Multilevel
Converter (MMC) emerged as the preferred VSC-type due to
its improved harmonic properties and low switching losses [2].

Converter-based systems in general, however, introduce fast
dynamics that may have a negative influence on the system
stability. In the past decades, converter-related instabilities oc-
curred for instance in railway systems and offshore wind farms
[3], [4]. More recently, several unstable ac-side interactions
have been reported in VSC-HVDC systems, involving high-
frequency grid resonances [5]–[8]. The root cause of these
instability phenomena can be traced down to the interaction
between the non-passive or negative resistive behavior of a
converter in the small-signal sense and the electromagnetic
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characteristics of the grid [9]. This type of negative interaction
is nowadays commonly referred to as harmonic instability
[10], [11] or electromagnetic instability [12].

Hitherto, the study of converter-grid interactions has been
predominantly focusing on interactions with the ac grid. A
stability analysis of grid-connected VSCs in a weak ac grid
condition was performed in [13]. This study showed that a
low-frequency unstable oscillation appearing in the system was
related to the dynamics of the outer control. In [14], dynamic
interactions above the fundamental frequency were analyzed
in an ac network with high penetration of MMCs, indicating
the risk of unstable interactions in the high-frequency range. In
[15], the interaction between an MMC-based HVDC link and
an offshore wind farm was studied, showing the importance
of the onshore station and dc cable dynamics for analyzing
the harmonic stability of the offshore ac system.

Due to the emergence of multi-terminal HVDC grids, the
analysis of the dc-side stability in general is rising to promi-
nence. In [16], an eigenvalue and participation factor analysis
was performed to identify unstable modes in the Cigré dc
grid test system, which were related to the outer control.
In [17], an impedance-based modeling approach has been
presented in order to investigate the stability of a VSC-HVDC
link with two-level converters. It was demonstrated that the
non-passivity of the two-level VSC admittance can interact
with the dc network resonances, causing instability. However,
a simplified pi-section model was used for representing the
dc cables. An harmonic stability analysis of a back-to-back
MMC-based HVDC system was recently presented in [18].
The analysis results demonstrate that the DC voltage controller
of the MMC may degrade the system’s damping and stability,
causing unstable oscillation below the fundamental frequency.
Based on an eigenvalue analysis and impedance-based analy-
sis, similar results were obtained in [19] where the DC voltage
controller was shown to adversely impacts the lower frequency
dynamics of a cable-based MMC-based HVDC link. A method
to investigate dc network instabilities in multi-terminal HVDC
systems with two-level VSCs has been presented in [20].
Unstable resonances below twice the fundamental frequency
were identified. In [21], an impedance-based interaction and
stability analysis of cable-based multi-terminal HVDC systems
using the two-level VSC topology was performed, revealing
unstable interactions below the fundamental frequency.

The stability analysis of previous studies, however, mainly
focused on interactions in a relatively low frequency range
where the converter dynamics are primarily dominated by
the slower outer control loops. Consequently, the digital
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implementation of controllers and filters, which affects the
converter’s high-frequency dynamics [12], has typically been
left unaddressed. In addition, the majority of the studies
analyzed HVDC grids consisting of two-level VSCs instead
of MMCs. Due to the specific internal dynamics of the MMC,
e.g. the circulating current control, the results for two-level
topologies cannot be generalized [22]. The extent to which
MMC-based HVDC grids can potentially suffer from high-
frequency interactions between converters and dc-side grid
resonances, similar to reported ac-side problems, has thus so
far not been addressed in literature.

This paper aims at filling the gap by (i) presenting an in-
depth assessment of the risk of high-frequency harmonic insta-
bility within MMC-based HVDC grids and by (ii) discussing
the extent to which the problem is similar to or different
from the high-frequency interactions observed at the ac-side
of VSC-HVDC systems. A detailed study is performed to
determine the impact of the MMC internal dynamics and
HVDC grid resonances on the system stability. The dc-side
stability of the MMC-based HVDC grid is analyzed through
an analytical impedance-based method. The impedance-based
representation of the MMC and dc transmission lines are
obtained, allowing to perform the analysis on system-level
by using the nodal admittance matrix. The influence of
fault current-limiting inductors, grid topology changes and
transmission line length on the stability of the MMC-based
HVDC grid is investigated, as these parameters determine the
HVDC grid characteristics. Furthermore, a sensitivity analysis
of the MMC non-passivity as a function of its specific inter-
nal dynamics, i.e. circulating current control, output current
control, aggregated time delays, and the type of outer control
is performed. Finally, the stability analysis in the frequency
domain is compared with time-domain simulations in the
EMT-type software PSCAD to validate the results.

II. MATHEMATICAL MODELING

The high-frequency harmonic stability study of an MMC-
based HVDC grid presented in this paper relies on an an-
alytical impedance-based method [23]. The method studies
converter-grid interactions by analyzing the loop-gain of the
system closed-loop representation as depicted in Fig. 1 for a
generic MMC-based HVDC grid which consists of multiple
converters, dc cables or overhead lines and dc inductors Ldc
installed as part of the HVDC grid protection. The closed-
loop representation enables to determine the system stability
by analyzing the Nyquist stability criterion according to the
Nyquist plot of the loop-gain L(s), which is defined as

L(s) = YMMC(s)Zbus(s). (1)

If the two subsystems YMMC(s) and Zbus(s) are stable,
there are no open-loop poles in the right half plane and the
stability of the closed-loop system is determined based on
the encirclements of the Nyquist curve around the -1 point
[24]. To obtain the loop-gain, the converter and HVDC grid
dynamics need to be represented in terms of a small-signal
MMC dc-side admittance YMMC and small-signal equivalent
network dc-side impedance Zbus, dependent on the dc voltage

YM MC Zbus

idc

vdc

Ldc Ldc Zbus

YM MC

¢idc
¢vdc

Fig. 1. Closed-loop representation of generic MMC-based HVDC grid with
fault current-limiting inductors
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Fig. 2. Modular multilevel converter (MMC) topology

vdc and dc current idc. The expressions for YMMC and Zbus
are derived in the next sections.

A. MMC control structure and dc-side admittance

The dynamic behavior of the MMC is mainly determined by
its topology, depicted in Fig. 2, and converter control structure.
The MMC control structure is a cascaded structure consisting
of a faster inner control, depicted in Fig. 3, and a slower outer
control as shown in Fig. 4.

According to Fig. 2, the MMC has N half-bridge submod-
ules (SM) per arm with each a capacitance value C. The arm
inductance and resistance are given by Lc and Rc respec-
tively, where the transformer is represented by its equivalent
inductance Lf and resistance Rf . The total inductance Lt and
resistance Rt are then defined as

Lt = Lf +
Lc
2

and Rt = Rf +
Rc
2
. (2)

The upper arm voltage and current, vu and iu, and the lower
arm voltage and current, vl and il, of the MMC contain a dc
and fundamental frequency component. These are separated
by defining the following variables,

vs =
vl − vu

2
, is = iu − il and ic =

iu + il
2

(3)

where vs and is are the output voltage and current and ic the
circulating current.

To control is and ic, two inner control loops are imple-
mented, i.e. the output current control (OCC) and circulating
current control (CCC), as shown in Fig. 3. The OCC con-
trols the output current through a proportional-integral (PI)
controller in the dq-frame where the phase-locked loop (PLL)
provides the angle θ for the reference frame. The angle θ is
determined by measuring the voltage at the point of common
coupling (PCC), defined as vg . The fundamental angular
frequency is represented by ω1. The CCC suppresses the
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Fig. 3. MMC inner control loops: (a) Output current control (OCC); (b)
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Fig. 4. MMC outer control loops: (a) DC voltage control (DVC); (b) Active
power control (P); (c) Droop control.

additional 100 Hz-component superposed on the dc value in
the circulating current ic by a tuned proportional-resonant (PR)
controller and tracks the circulating current reference i∗c . If the
circulating current is not controlled, it will negatively affect
the charging and discharging of the submodule capacitors. The
transfer functions F (s), Focc(s) and Fccc(s) represent first-
order measurement filters. The OCC PI-controller and the CCC
resonant part are defined as

Cocc(s) = Kp,occ +
Ki,occ

s
, and Cccc(s) =

Kr,cccs

s2 + (2ω1)2
, (4)

where Kp is the proportional gain, Ki the integral gain and
Kr the resonant gain. The proportional gain of the CCC is
indicated with Ra. The outer control shown in Fig. 4 provides
the reference value of the d-axis output current i∗sd. In general,
three types of outer control loops can be implemented for this,
i.e. dc voltage control (DVC), active power control (P) of PCC
active power Pg or droop control with droop constant gdc.
Given that the focus is on the dc side, no outer reactive power
or ac voltage controller are considered in this paper. Hence,
the reference value of the q-axis output current i∗sq = 0. The
PI-controller of DVC and P are given by

Cdvc(s) = Kp,dvc +
Ki,dvc

s
, and Cp(s) = Kp,p +

Ki,p

s
. (5)

Based on the output voltage reference v∗s and internal voltage
reference v∗c provided by the inner control, the submodule
switching signals are calculated through direct voltage control
which determine the applied upper and lower arm voltage,
vu and vl. Between the calculated voltage references and the
actual converter voltages, there is a time delay D(s)

vs(s) = D(s)v∗s (s) and vc(s) = D(s)v∗c (s), (6)

which is primarily caused by the sampling circuit, analog-
digital converter, calculation process in the digital signal

processor, modulation and submodule balancing of the MMC
[25]. The time delay D(s) is defined as an exponential function
e−sTd with a duration of Td. As the focus in this paper is
put on the dc side, a strong ac grid is assumed providing a
constant PCC voltage vg . Consequently, the impact of the PLL
on the MMC dc-side dynamics can be neglected in the dc-side
stability analysis under this assumption [21].

The small-signal dc-side admittance of the MMC can now
be obtained as in [26]

YMMC(s) =
−∆idc
∆vdc

=
Y1(s)

Y2(s)
, (7)

where

Y1(s) = −

(
1

2
+
D(s)Rcic,0

vdc,0

)(
N

sC

)[
ids,0
vdc,0

Ks11(s)M(s)

+
vds,0
vdc,0

Gcc11(s)M(s) +
iqs,0
vdc,0

Ks21(s)M(s)

+
vqs,0
vdc,0

Gcc21(s)M(s)−
Ps,0
v2dc,0

+
6D(s)Rci

2
c,0

v2dc,0

]

+
6D(s)Rcic,0

vdc,0
+ 3 (8)

and

Y2(s) = 2Lcs+ 2Rc −

(
1

2
+
D(s)Rcic,0

vdc,0

)(
N

sC

)
[

2D(s)ic,0
vdc,0

(
Ra(1− Fccc(s))−Rc(1 + Fccc(s))

)
+

2Raic,0
vdc,0

D(s)Cccc(s)(1− Fccc(s))− 1

]
− 2D(s)Fccc(s)(Ra +Rc) + 2D(s)Ra

+ 2D(s)Cccc(s)Ra(1− Fccc(s)). (9)

A negative sign is added to the dc current as YMMC(s)
is defined as an input admittance. Steady-state values in the
expression of YMMC(s) are indicated with 0 as subscript. The
dc-side power is represented by Ps,0. The matrixGcc gives the
relation between the dq-components of the output current and
output current reference, where matrix Ks gives the relation
between the dq-components of the output voltage and output
current reference. Vectors and matrices are noted in bold italic.

∆is = Gcc∆i
∗
s and ∆vs = Ks∆i

∗
s , (10)

where Gcc and Ks are defined as

Ks =

[
9Lts+Rt ω1Lt
9ω1Lt 9Lts+Rt

]
D(s)Cocc(s)

c

[
a b
9b a

]
︸ ︷︷ ︸

Gcc

(11)

The parameters a, b and c are equal to

a = Lts+Rt +D(s)Cocc(s), b = ω1Lt(1−D(s))

and c = a2 + b2. (12)

The transfer function M(s) in (8) represents the influence of
the outer control on the dc-side dynamics of the MMC. How
M(s) and subsequently YMMC(s) differ for the three types
of outer controls is discussed more elaborately in Section III.
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Fig. 5. General representation of a two-phase transmission line with a detail
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B. DC transmission line modeling

To analyze the high-frequency interactions with resonances
in the HVDC grid, an accurate representation of the dc
transmission lines is required which takes into account the
frequency-dependency of the line parameters. Furthermore, it
is important to include the mutual coupling between the dc
poles in the case of dc overhead lines as it has a signifi-
cant impact on the parameters at the higher frequency range
[27]. Consequently, the frequency-dependent distributed line
model is used. In contrast to a state-space representation,
the impedance-based modeling approach can include non-
rational functions, e.g. exponential functions, which allows to
implement the full detailed analytical transmission line model.

The general representation of a two-phase transmission line
is depicted in Fig. 5. According to the voltage and current
drop across an infinitesimal length dx, the transmission line
equations are written as [28]:

9
dv(x)

dx
= zi(x), 9

di(x)

dx
= yv(x) and γ =

√
zy . (13)

The voltage vector v , current vector i, impedance matrix z
and admittance matrix y are defined as

v =

[
v1
v2

]
, i =

[
i1
i2

]
, z =

[
z11 z12
z21 z22

]
, y =

[
y11 y12
y21 y22

]
(14)

Combining the three equations (13) gives

d2v(x)

dx2
= γ2v(x). (15)

The general solution of the second order differential equation
of (15) is

v = C1e
γx +C2e

9γx and i = 9Yc(C1e
γx −C2e

9γx), (16)

where the characteristic admittance Yc = z91γ .
The column vectors C1 and C2 both have size 2× 1. The

voltages and currents at the sending and receiving ends are

v(0) = vS , i(0) = iS , v(`) = vR and i(`) = iR. (17)

Inserting the boundary conditions of (17) in (16) results in[
vS
vR

]
=

[
I I
eγ` e9γ`

] [
C1

C2

]
and (18)[

iS
iR

]
=

[
Yc 0
0 Yc

] [
9I I
9eγ` e9γ`

] [
C1

C2

]
. (19)

The combination of (18) and (19) gives the relation between
the sending an receiving voltages and currents,[
iS
iR

]
=

[
Yc 0
0 Yc

] [
9I I
9eγ` e9γ`

] [
I I
eγ` e9γ`

]91 [
vS
vR

]
. (20)

Inserting the following equations in (20),

vS1 = 9vS2 =
vdc,S

2
, iS1 = 9iS2 = idc,S ,

vR1 = 9vR2 =
vdc,R

2
, and iR1 = 9iR2 = idc,R, (21)

converts the general two-phase transmission line model to the
symmetrical monopole convention. For symmetric transmis-
sion lines, the resulting system simplifies to a 2 × 2 matrix,
providing the relation between input and output currents and
input and output voltages [29].[

idc,S
idc,R

]
=

[
Y11(ω) Y12(ω)
Y21(ω) Y22(ω)

] [
vdc,S
vdc,R

]
. (22)

The frequency-dependent (ω) elements of the 2 × 2 matrix
are functions of the impedance and admittance matrix, z
and y , and the transmission line length `. These impedance
and admittance matrices are determined based on the dc
transmission line geometry and material parameters [30].

C. Equivalent network dc-side impedance

Rearranging (22) gives the typical two-port representation
with ABCD-parameters of a symmetrical monopole transmis-
sion line, [

vdc,S
idc,S

]
=

[
A(ω) B(ω)
C(ω) D(ω)

] [
vdc,R
idc,R

]
. (23)

Based on the ABDC-parameters of the different dc transmis-
sion lines and the dc inductors installed to limit the rate of rise
of dc fault currents to be interrupted by adjacent dc breakers,
the nodal admittance matrix Ybus is obtained. The nodal
admittance matrix provides the relation between the currents
and voltages at each bus, idc = Ybusvdc. The extended two-
port representation for one branch between node i and node
j with a dc transmission line and dc inductors with value Ldc
in each pole is[
vdc,i
idc,ij

]
=

[
1 2jωLdc

0 1

] [
Aij Bij
Cij Dij

] [
1 2jωLdc

0 1

] [
vdc,j
idc,ji

]
(24)

The multiplication of the matrices gives[
vdc,i
idc,ij

]
=

 Aij+Cij2jωLdc Bij+Aij4jωLdc

−Cij4ω
2Ldc

2

Cij Aij+Cij2jωLdc

[vdc,j
idc,ji

]
. (25)

The elements of the nodal admittance matrix Ybus for the
HVDC grid, defined as Ybus,ij , are now given by

Ybus,ij =


∑
k

Aik+Cik2jωLdc

Bik+Aik4jωLdc−Cik4ω2Ldc
2 , if i = j,

9 1
Bij+Aij4jωLdc−Cij4ω2Ldc

2 , if i 6= j,
(26)

where k represents the adjacent nodes of node i.
Subsequently, the equivalent network dc-side impedance

at a particular bus Zbus,i can be calculated by combining
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the equations of the nodal admittance matrix and the small-
signal dc-side admittances of the MMCs which define the
relation between dc voltages and currents at the remaining
buses, ∆idc = 9YMMC∆vdc. Doing so, the dynamics of
MMCs elsewhere in the HVDC grid can be included in the
equivalent network impedance. Based on the expressions of
YMMC and Zbus, the loop-gain of the MMC-based HVDC
grid is obtained for analyzing the high-frequency interactions
and system stability.

III. MMC DC-SIDE ADMITTANCE ANALYSIS

As the dc-side dynamics are largely determined by the
control structure of the MMC, this section analyzes in detail
the effect of different types of the outer control on the MMC
dc-side admittance YMMC(s). Furthermore, the accuracy of
the MMC dc-side admittance model is validated to assess
its applicability for the stability analysis of dc-side high-
frequency interactions in MMC-based HVDC grids.

A. Impact of outer control on dc-side admittance

The dependency of the MMC dc-side admittance on the
outer control is represented by the transfer function M(s)
in (8) which gives the relation between the linearized d-axis
output current reference and dc voltage,

∆i∗sd(s) = M(s)∆vdc (27)

To understand its impact on YMMC(s), M(s) is studied for
the three types of outer controls depicted in Fig. 4. For a dc
voltage and active power controlling MMC, M(s) is shown to
be

Mdvc(s) =
−2vdc,0Cdvc(s)F(s)2

vdg
and Mp(s) = 0, (28)

according to [26] and [31] respectively. The expression of
M(s) for a droop-controlled MMC can be derived based on the
droop control depicted in Fig. 4. The d-axis current reference
for a droop-controlled MMC is determined by

i∗sd(s) =
Cp(s)

vdg

(
P ∗
g + gdc(v

∗
dc − F(s)vdc)− F(s)Pg

)
. (29)

The active power at the PCC for a power-invariant dq-frame
with d-axis perfectly aligned to vg is

Pg = vgdisd + vgqisq = vgdisd. (30)

Combining (29) and (30) and linearizing, yields

∆id∗sd(s) =
Cp(s)

vgd

(
9gdcF(s)∆vdc − F(s)vgd∆isd

)
. (31)

By making use of the relation between the ac currents and
ac current references in (10), ∆isd(s) = Gcc11(s)∆i∗sd(s) for
∆i∗sq(s) = 0. The transfer function Mdrp(s) is then equal to

Mdrp(s) =
∆i∗sd
∆vdc

=
9Cp(s)gdcF(s)

vgd (1 + Cp(s)F(s)Gcc11(s))
. (32)

The transfer function Gcc11(s) represents the closed-loop
system of the d-axis output current control loop as shown
in (10). In this paper, the output current control is tuned to
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Fig. 6. Comparison of MMC analytical dc-side admittance YMMC with Pg

= 1000 MW for different outer control loops: DVC (solid black line), droop
(dashed blue line) and P (dotted green line).

obtain a bandwidth αocc of 500 Hz. Consequently, Gcc11(s)
can assumed to be equal to 1 below 100 Hz. The transfer
functions Mdvc(s) and Mdrp(s) are then rewritten as

Mdvc(s) =

(
92vdc,0Ki,dvc

vgd

) (Kp,dvc

Ki,dvc
s+ 1

)
s
(
s
αf

+ 1
)2 and (33)

Mdrp(s) =

(
9αfKi,p

vgd

)
gdc

(
Kp,p

Ki,p
s+ 1

)
s2 + αf (1 +Kp,p)s+Ki,pαf

, (34)

where αf is the bandwidth of the first-order filter F(s).
As an example, the Bode plot of the dc-side admittance

YMMC(s) is shown in Fig. 6 for the three outer control loops
where the circuit and control parameters of the MMC are
according to Table III in the Appendix. The circuit parameters
are based on a 401-level MMC [32] and the control parameters
are calculated according to [26], [33]. The duration of the
time delay Td is 150µs [34]. Inserting these parameters in
(33) and (34) results in a transfer function Mdvc(s) with a
zero at 10 rad/s and a pole at the origin. In addition, a double
pole is located at 314 rad/s, resulting in an amplitude decay
of -40 dB/dec above this frequency. For the droop-controlled
MMC, Mdrp(s) has a zero at 78.6 rad/s and poles at 3.79 and
326 rad/s, causing a decay of -20 dB/dec from 326 rad/s on-
wards. Consequently, the amplitude of both transfer functions
approaches zero in the higher frequency range, coinciding with
Mp(s). This is confirmed by Fig. 6 which indicates that the
three Bode plots practically coincide for the frequency range
above 50 Hz. At 100 Hz, the resonant effect of the circulating
current control PR-controller from (4) is visible.

Important to notice in Fig. 6 is the area of non-passivity
of the MMC dc-side admittance in the range between 1 and
5 kHz. A transfer function is considered to be non-passive
if its phase angle exceeds the area between 990° and 90°,
indicated by the red lines. The non-passivity of the MMC can
be detrimental for the system stability as this causes a positive
feed-back behavior in the closed-loop system representation.

B. Validation of dc-side admittance model

The non-passivity of the MMC dc-side admittance is more
clearly observed in Fig. 7, which depicts a zoom-in of the
Bode plot of YMMC from 1 to 5 kHz. The accuracy of the
MMC analytical dc-side admittance model in this frequency
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Fig. 7. Bode plot of MMC dc-side admittance YMMC with active power
control and Pg = 1000 MW: Analytical model (solid black line) and frequency
sweep (black crosses).

range is validated by performing a frequency sweep on the
nonlinear MMC model implemented in the EMT-software
PSCAD. This frequency sweep involves the superposition of a
voltage perturbation with varying frequency on the dc voltage
at the terminals of the MMC. By performing a Fast Fourier
Transform on the time-domain data of the resulting vdc and
idc, the MMC dc-side admittance is obtained as indicated by
the black crosses in Fig. 7. According to Fig. 7, there is a
deviation of the frequency sweep compared to the analytical
model in the lower frequency range, mainly around 50 Hz.
This deviation is caused by the multi-harmonic response of the
MMC, which is taken into account in the frequency sweep,
while this is not the case for YMMC [26]. However, it is
clear from Fig. Fig. 7 that the multi-harmonic response of the
MMC has limited to no effect on the MMC high-frequency
dynamics as the analytical model and frequency sweep closely
coincide. Hence, it can be concluded that the analytically
derived YMMC is capable of representing the MMC dynamics
with high accuracy in the area of non-passivity. The impact of
this non-passivity on the harmonic stability of the MMC-based
HVDC grid is further analyzed in Section IV.

IV. RESULTS AND DISCUSSION

In this section, the high-frequency interactions between an
individual MMC and HVDC grid resonances are analyzed by
studying their combined effect on the system stability. The
impact of the MMC dynamics and dc system resonances on
the stability is assessed using the analytical impedance-based
method discussed in Section II. The focus of the analysis is on
interactions in the frequency range of the MMC non-passivity,
that is, from 1 to 5 kHz.

A. Four-terminal test system

The impedance-based stability analysis is applied to the
four-terminal HVDC system depicted in Fig. 8. This HVDC
grid configuration is based on the four-terminal Zhangbei
HVDC system [35], although a symmetrical monopolar topol-
ogy has been assumed instead of a bipolar one. The four half-
bridge MMCs, with parameters according to Table III in the
Appendix, are interconnected via dc overhead lines and dc
inductors are installed at every pole to limit the rate of rise
of fault current in adjacent dc breakers. The length of the
overhead lines ` and dc inductance value Ldc are summarized

YM MC ,1 Zbus,1

idc,1

vdc,1

1

idc,4

vdc,4

idc,2

vdc,2

idc,3

vdc,3

Ldc

4 Ldc

Ldc

Ldc

2

3

Zbus,1

YM MC ,1

¢idc,1
¢vdc,1

Fig. 8. Closed-loop representation of four-terminal MMC-based HVDC grid
test system with overhead lines and fault-current limiting inductors

TABLE I
HVDC GRID TEST SYSTEM OHL LENGTHS AND DC INDUCTANCE VALUE

Line 12 Line 23 Line 34 Line 41
` 227 km 126 km 219 km 66 km
Ldc 200 mH 200 mH 200 mH 200 mH

in Table I [35]. The overhead line geometry is based on the
HVDC tower structure described in [36].

The MMC dc-side admittance and the equivalent network
dc-side impedance at bus 1 are obtained as described in Sec-
tion II. While performing the analysis, the MMC at bus 1 is set
to dc voltage control whereas the other MMCs are controlling
their active power to a constant value. Subsequently, the stabil-
ity of the resulting four-terminal system is assessed based on
the Nyquist plot of the loop-gain YMMC,1Zbus,1, in which the
equivalent bus impedance Zbus,1 accounts for the presence of
the three power-controlling MMCs. The subsystems YMMC,1

and Zbus,1 are checked to be stable upfront by connecting them
to an ideal load and source respectively. This assures that there
are no open-loop poles in the right half plane and instability
only occurs when the two subsystems are interconnected
[24]. Hence, the system stability can be determined by the
encirclements of the Nyquist plot’s encirclements of the (-1,0)
point in the complex plane. The analytical transfer functions
are implemented in MATLAB to obtain the Nyquist curves.
As a benchmark, the four-terminal MMC-based HVDC grid
is in addition modeled in the EMT-software PSCAD. The
frequency-dependent phase model and averaged model are
used to represent the overhead lines and MMCs respectively.

B. Impact of dc resonances on system stability

To illustrate the impact of dc resonances present in the
equivalent network impedance Zbus on the system stability,
the impedance-based analysis of the four-terminal system
is performed for variations in 1) the fault current-limiting
inductors, 2) the grid topology and 3) the transmission line
length.

1) DC inductor variations: The Nyquist plot of
YMMC,1Zbus,1 is shown in Fig. 9a for the ring topology of
the HVDC grid with dc inductors of 200 mH. For all Nyquist
plots in this paper, the point (-1,0) is indicated with a red
cross and the unity circle with a dashed red line. According
to the plot, the -1 point on the real axis is not encircled which
means that the system is stable for this configuration. This
demonstrates that although the MMC behaves non-passive,
this does not necessarily lead to instability of the system.
However, the dc inductance value is dependent on the
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Fig. 9. Nyquist plot of YMMC,1Zbus,1 for ring topology (a) with Ldc =
200 mH; (b) with Ldc = 15 mH.

4 5 6 7 8 9 10

Time [s]

620

630

640

650

660

v
d
c
,1
 [

k
V

]

fosc = 2842 Hz

Fig. 10. Time-domain verification – DC voltage vdc,1 for ring topology with
Ldc = 15 mH.

accepted converter operational requirements and protection
strategy, and can vary over a wide range from approximately
10 mH to 300 mH [37], [38]. If the fault current-limiting
inductors are reduced to a value of 15 mH, a clockwise
encirclement around -1 appears at Fig. 9b. The HVDC grid
is unstable in this condition as confirmed by the time-domain
simulation in PSCAD depicted in Fig. 10. The figure shows
how the voltage at bus 1 increases in an unstable way with
an oscillation frequency fosc of 2842 Hz, eventually reaching
an unacceptable voltage level. This demonstrates the risk of
harmonic instability due to interaction between the MMC
non-passivity and high-frequency dc resonances.

Fig. 11 shows the Bode plot of Zbus,1 in the frequency
range of the MMC non-passivity for values of Ldc varying
from 200 mH to 15 mH in steps of 25 mH. As it is clear from
the Bode plot, the increase in dc inductance value lowers the
resonance frequencies and generally causes a more inductive
behaviour of Zbus as the phase angle remains closer to 90°. It
should be noted that Zbus is passive for all dc inductance
values, which is a sufficient condition for stability of the
subsystem [39]. However, from the Bode plot of Zbus,1 alone
it is not possible to clearly determine how the dc inductance
value affects the stability of the entire system.

To do so, the phase margin (PM ) and corresponding gain
cross-over frequency fGC of the loop-gain YMMC,1Zbus,1 are
calculated based on the Nyquist plot for different values of
Ldc in Table II. For some values of Ldc there are multiple
0 dB-crossings as a consequence of the dc resonances. Hence,
only the minimum phase margin is given as this indicates the
stability limit. It should be noted that the system becomes
unstable if the phase margin is negative. Confirmed by the
time-domain verification in Fig. 10, the frequency of the
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Fig. 11. Bode plot of Zbus,1 for ring topology with Ldc varying from 200 mH
to 15 mH in steps of 25 mH

TABLE II
PM AND fGC FOR VARYING VALUES OF Ldc

Ldc [mH] PM [°] fGC [Hz] Ldc [mH] PM [°] fGC [Hz]
15 9 0.14 2842 125 53.47 2456
25 2.22 2779 150 88.48 2431
50 5.63 2649 175 ∞ /
75 18.09 2553 200 ∞ /

100 33.36 2494

unstable oscillation depicted is equal to the corresponding
gain cross-over frequency of the negative phase margin. As
the phase margins increases when Ldc increases, it can indeed
be concluded that a larger dc inductor, which have in the past
been identified as potential sources of problems in a lower
frequency range [40], [41], on the contrary has a stabilizing
effect on oscillations in the higher frequency range.

2) HVDC grid topological changes: The four-terminal
HVDC grid is potentially operated as a radial topology due to
e.g. an overhead line outage. The change from a ring to a radial
topology impacts the electromagnetic characteristics of the
grid. The dc resonances are shifted, which can lead to negative
interactions with the converter’s non-passivity region. The case
in which the overhead line between bus 3 and 4 is disconnected
is analyzed in Fig. 12. Fig. 12a shows that the four-terminal
system with Ldc equal to 200 mH is again stable. In contrast to
the ring topology, the HVDC grid now becomes unstable with
fault current-limiting inductors of 21 mH or lower as depicted
in Fig. 12b. The dc voltage at bus 1 starts to oscillate with a
frequency of 2700 Hz as depicted by the PSCAD time-domain
simulation in Fig. 13, increasing the voltage to 740 kV after
approximately 3.5 s. As a change in operating mode of the
HVDC grid shifts the dc resonances, it is vital to analyze the
stability for every possible operating topology of the grid.

3) Overhead line length variations: To assess the influ-
ence of the overhead line length on the system stability,
a four-terminal MMC-based HVDC system without fault
current-limiting inductors is analyzed. The Nyquist plot of
YMMC,1Zbus,1 for the ring topology of the HVDC grid with
Ldc equal to zero and with the length of the overhead lines
according to Table I is shown in Fig. 14a. One clockwise
encirclement around the -1 point is observed, indicating that
the closed-loop system is unstable. To determine the impact
of the overhead line length on the system stability, the length
of the four overhead lines are gradually increased until the
HVDC grid is found to be stable according to the Nyquist
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Fig. 12. Nyquist plot of YMMC,1Zbus,1 for a radial topology (line 34
disconnected) with (a) Ldc = 200 mH; (b) Ldc = 21 mH.
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Fig. 13. Time-domain verification – DC voltage vdc,1 for a radial topology
(line 34 disconnected) and Ldc = 21 mH.

stability criterion. If the lengths of the four overhead lines are
increased to 2.2 times their original length, the -1 encirclement
disappears as shown in Fig. 14b. As the overhead line reso-
nances shift to the lower frequency range when the length is
increased, longer OHLs seem to be beneficial to avoid negative
interactions with the MMC’s range of non-passivity.

C. Impact of MMC dynamics on system stability

The previous section discussed how passive grid compo-
nents, e.g. dc inductors and transmission lines, impact the dc
resonances appearing in Zbus and consequently the harmonic
stability. The root cause of the instability is however the
non-passive behavior of the MMC as this leads a positive
feedback effect with amplification of the resonances present in
the HVDC grid. The MMC dc-side admittance YMMC can be
reshaped by adapting the control parameters. In Section III, it
was demonstrated that the outer control has no effect on the
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Fig. 14. Nyquist plot of YMMC,1Zbus,1 for ring topology without dc
inductors and (a) the original overhead line lengths; (b) 2.2 times the overhead
line lengths.

Fig. 15. Bode plot of MMC dc-side admittance YMMC with dc voltage
control and Pg = 1000 MW for varying values of the circulating current
control bandwidth αccc.
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Fig. 16. Time-domain verification – DC voltage vdc,1 for a ring topology
with Ldc = 15 mH. At t = 10 s, αccc is reduced to half of its original value.

non-passivity in the kHz-range but it does influence the system
interactions in the lower frequency [16], [18], [19]. However,
the non-passivity in the kHz-range can still be affected by the
inner control loops and time delay.

1) Circulating current controller variations: In Fig. 15, the
Bode plot of the dc-side admittance for a dc voltage controlling
MMC with varying values of the circulating current control
bandwidth, αccc, is given. The bandwidth is increased from
150 Hz to 600 Hz. Fig. 15 shows that the non-passivity in the
range of 1 to 5 kHz decreases when αccc has a lower value.
This is confirmed by Fig. 16, which gives the time-domain
signal of vdc,1 from PSCAD for the unstable case of a ring
topology with Ldc equal to 15 mH. At time equals 10 s, αccc
is reduced to half of its original value which stabilizes the sys-
tem. It is important to notice that, although lowering αccc has
a positive effect on the system stability by reducing the non-
passivity, the phase angle of αccc is changed in other frequency
regions which results in a decreased dynamic performance of
the MMC. This substantial impact of the circulating current
controller differs significantly from observations at the ac side,
where this control loop has been shown to have little effect
on high-frequency interactions with grid resonances [12].

2) Output current controller variations: The Bode plot
of Fig. 17 shows that varying the bandwidth of the output
current controller bandwidth αccc has limited effect on the
non-passivity of the dc-side impedance, for a variation from
250 Hz until 1000 Hz. This can be explained by the analytical
expression of the dc-side MMC admittance where the dynam-
ics of the output current controller Cocc(s) are included in the
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Fig. 17. Bode plot of MMC dc-side admittance YMMC with dc voltage
control and Pg = 1000 MW for varying values of the output current control
bandwidth αocc.

matrices Ks and Gcc of (11). According to (8) and (9), the
elements of Ks and Gcc only appear in combination with the
transfer function M(s) which represents the influence of the
outer control. As discussed in Section III, M(s) is dominated
by its slower poles, causing the transfer function to approach
zero in the higher frequency range. This cuts off the dynamics
of the output current controller, making the effect on the MMC
dc-side impedance negligible. It is important to point out that
this observation differs when compared to the MMC ac-side
admittance, which is largely depending on the output current
control in the higher frequency range [42].

3) Time delay duration variations: In Fig. 18, the Bode
plot of the dc-side admittance for a dc voltage controlling
MMC with varying values of the converter time delay duration,
Td, is given. The time delay duration is increased from 75 µs
until 300 µs. Larger values for the time delay duration enlarge
the area of non-passivity and shift it to lower frequencies,
indicating that the MMC could even start to negatively interact
with lower frequency dc resonances in this case. When the
overall time delay is lowered, for example by reducing the
required time for the calculation of voltage references, mod-
ulation and submodule balancing, the region of non-passivity
becomes smaller, which improves the system stability. More-
over, changing the value of the time delay duration mainly has
an effect on the higher frequency dynamics in contrast to the
variation of αccc, which was noticeable over a much broader
frequency range. The observations are in line with those made
for ac-side harmonic stability of VSC-HVDC systems, namely
that the converter ac-side admittance can exhibit non-passivity
due to the equivalent time delay, which is detrimental for the
system stability [12].

The effect of the time delay on the stability is further
verified by the analysis of two cases. In the first case, the
time delay of YMMC is increased from 150 to 300 µs and the
stability is assessed for an HVDC grid with ring topology
and dc inductors of 15 mH. The time-domain simulation
of Fig. 19a shows that there is an unstable oscillation of
1349 Hz in the system. This frequency is almost half of the
oscillation frequency when the time delay is 150 µs. The lower
oscillation frequency can be explained by the shift of the area
of non-passivity to the lower frequencies when the time delay
increases as indicated in Fig. 18. In the second case, the time
delay is reduced to 75 µs. According to Fig. 19b, the system is
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Fig. 18. Bode plot of MMC dc-side admittance YMMC with dc voltage
control and Pg = 1000 MW for varying values of the time delay duration Td.
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Fig. 19. Time-domain verification – DC voltage vdc,1 for a ring topology
with Ldc = 15 mH and for YMMC,1 with (a) a time delay of 300 µs; (b) a
time delay of 75 µs.

now stable as the dc voltage now remains at its reference. This
is again in line with the results from Fig. 18, since lowering the
overall time delay reduces the region of non-passivity, which
in turn tends to improve the system stability.

V. CONCLUSION

The analysis of the dc-side harmonic stability of an MMC-
based HVDC grid by an impedance-based approach in this
paper demonstrates that unstable high-frequency dc-side inter-
actions can take place in an MMC-based HVDC grid with
overhead lines. The interactions bear some similarities to
recently reported high-frequency ac-side interactions of real-
life VSC-HVDC systems. The paper shows that the MMC
dc-side admittance has an area of non-passivity in the high-
frequency range which can negatively interact with dc system
resonances, potentially giving rise to instability of the entire
HVDC grid.

A detailed assessment of the impact of the HVDC grid
resonances leads to the conclusion that dc systems with
longer overhead lines tend to be less prone to high-frequency
stability problems due to lower system resonance frequencies.
Similarly, larger fault current-limiting inductors have a stabi-
lizing effect in the area of the MMC non-passivity as they
shift the frequency range of the dc resonances and increase
the stability margin. Moreover, a stability analysis for every
possible operational topology of the HVDC grid is vital as
also topological changes affect the dc resonances.

Concerning the MMC internal dynamics, measures taken
to lower the converter equivalent time delay reduce the non-
passivity of the MMC dc-side admittance and the risk towards
high-frequency interactions, which is in line with earlier
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observations regarding the MMC ac-side admittance. Outer
control loops, i.e dc voltage control, active power control and
droop control, prevailing the converter’s dc-side response at
lower frequencies and thus reported as having a significant
influence on low-frequency system interactions, are shown to
have a negligible effect on the MMC’s area of non-passivity
and thus on the high-frequency system interactions. Different
compared to the MMC’s ac-side, the MMC dc-side admittance
is largely independent on the output current control dynamics
in the higher frequency range. Equally different from the
MMC’s ac-side, the circulating current control is shown to
have a significant impact. Lowering its bandwidth reduces the
converter’s non-passivity and thus potentially mitigating the
problem, at the cost of decreasing its dynamic performance.

APPENDIX

TABLE III
CIRCUIT AND CONTROL PARAMETERS OF MMC

Par. Description Value
Sn Nominal power 1000 MVA
vg Rated line-to-line PCC voltage 320 kV
vdc Rated pole-to-pole dc voltage 640 kV
ω1 Fundamental angular frequency 100π rad/s
N Number of submodules per arm 400
C Capacitance per submodule 10 mF
Lc Arm inductance 50 mH
Lf Equivalent transformer inductance 60 mH
Lt Total equivalent inductance 85 mH
Rc Arm resistance 1.07 Ω

Rf Equivalent transformer resistance 0.535 Ω

Rt Total equivalent resistance 1.07 Ω

αocc Bandwidth of OCC 1000π rad/s
Kp,occ Proportional gain of OCC 267
Ki,occ Integral gain of OCC 3362
αccc Bandwidth of CCC 600π rad/s
Ra Proportional gain of CCC 94.25
Kr,ccc Resonant gain of CCC 42.8
αdvc Bandwidth of DVC 25π rad/s
Kp,dvc Proportional gain of DVC 0.005
Ki,dvc Integral gain of DVC 0.05
αp Bandwidth of P 25π rad/s
Kp,p Proportional gain of P 0.05
Ki,p Integral gain of P 3.93
gdc Droop constant 10 pu
Td Time delay 150µs
αf Bandwidth of outer control filter 100π rad/s
αfocc Bandwidth of OCC filter 100π rad/s
αfccc Bandwidth of CCC filter 60π rad/s
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