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Abstract
The best integer equivariant (BIE) estimator for the multivariate t-distribution was introduced in Teunissen (J Geod, 2020.
https://doi.org/10.1007/s00190-020-01407-2), where it was shown that the BIE-weights will be different from that of the
normal distribution. In this contribution, we analyze these BIE estimators while making use of multi global navigation
satellite system (GNSS) data. The BIE-estimators are also compared to their least-squares (LS) and integer least-squares
(ILS) contenders. Monte Carlo simulations are conducted so as to realize controlled performance comparisons of the different
estimators for the purpose of multi-GNSS (GPS, Galileo, BDS and QZSS) single-frequency real-time kinematic positioning.
The analyses are done in a qualitative sense by means of positioning scatter plots, and in a quantitative sense by means of
numerical mean-squared-error (MSE) curves for the different estimators under different model strengths (receiver-satellite
geometries and varying degrees of freedom). Particular attention is given to the difference in impact the multivariate t-
distribution has when either only its cofactor matrix is in common with the normal distribution or its complete variance-
covariance matrix. It will be shown that the BIE-estimators give better MSEs to both the LS- and ILS-estimator when the ILS
success rate is different from zero and one, respectively. We also demonstrate that using the same BIE-estimator on different
data distributions can give users an unrealistic sense of their solution quality, while the usage of two different BIE-estimators
on the same data can have a marginal impact.

Keyword Best integer equivariant (BIE) estimation, Multivariate t-distribution, Multivariate normal distribution, Mean
squared error (MSE), Multi-GNSS, Real-time kinematic (RTK) positioning

1 Introduction

In this contribution, we will study the real-time kinematic
(RTK) positioning performance of the best integer equiv-
ariant (BIE) estimator for the multivariate t-distribution, as
introduced by Teunissen (2020). This estimator is a mem-
ber of the class of integer equivariant estimators, the theory
of which was introduced and developed in Teunissen (2003).
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Our studywill focus in particular on the sensitivity of the BIE
estimator for different aspects of the distributional assump-
tions (Kibria and Joarder 2006) and different strengths of the
underlying multi-GNSS model.

In Teunissen (2003), the BIE estimator was derived for
when the data can be assumed to be normally distributed.
Verhagen and Teunissen (2005) used simulation to study
the distributional properties and performance of the BIE
estimator when compared to the float and ILS fixed coun-
terparts, while (Wen et al 2012) showed how to use this BIE
estimator for global navigation satellite system (GNSS) pre-
cise point positioning (PPP). In Brack (2019), Brack et al
(2014), a sequential approach to BIE estimation was devel-
oped and tested, while (Odolinski and Teunissen 2020b)
analyzed the normal distribution-based BIE estimation for
low-cost single-frequency (SF) multi-GNSS RTK position-
ing. Odolinski and Teunissen (2020a) analyzed subsequently
also the corresponding BIE performance for low-cost dual-
frequency long baseline multi-GNSS RTK positioning, and
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found that the estimated BIE positions follow a ’star-like’
pattern when the ILS SRs are high.

However, several GNSS studies have shown that work-
ing with a distribution with heavier tail probabilities than
that of the normal distribution would be more appropriate.
For instance Heng et al (2011) showed that many GPS satel-
lite clock errors have heavier tails than that of the normal
distribution. In inertial navigation system (INS) and GPS
integration studies, the Student’s t-distribution was proposed
as the more suitable distribution (Zhu et al 2012; Zhong et al
2018; Wang and Zhou 2019). Similar findings were found
for multi-sensor GPS fusion in Dhital et al (2013), Xiao et al
(2016) and Al Hage et al (2019).

It is therefore important to understand the BIE estima-
tor’s behavior under the multivariate t-distribution and when
compared to the usually assumed multivariate normal dis-
tribution. The purpose of our study is thus to analyze the
properties and performance of the BIE-estimator when the
data would be multivariate t-distributed. In this contribu-
tion, we therefore perform sensitivity analyses by means of
Monte Carlo simulations so as to be able to vary the degrees
of freedom for a large range of values for the multivariate
t-distribution, and to have a complete control over the prop-
erties to be studied. This will be done in the context of GPS,
Galileo, BDS andQZSSSF and single-epochRTK for a loca-
tion in Perth, Australia. We highlight that future studies can
assess the BIE estimator for other heavy tailed distributions,
like the contaminated normal distribution (Teunissen 2020).

This contribution is organized as follows. In Sect. 2 we
briefly review best integer equivariant estimation and pro-
vide the explicit expressions of the BIE-estimators for when
the data are multivariate normal and t-distributed. In Sect.
3, we describe the Monte Carlo simulations conducted to
simulate the multi-GNSS data and also detail how to effi-
ciently compute the float LS, the ILS and the approximate
BIE solutions, respectively. In Sect. 4, we provide a qualita-
tive analysis of the SF RTK positioning performance under
the multivariate t-distribution and show by means of scatter
plots how the BIE-estimator compares with its LS and ILS
contenders under different model strengths. The qualitative
analysis is then complemented in Sect. 5 with a quantitative
performance comparison of the different estimators under
different distributional regimes. It is also here that we bring
attention to the importance of discriminating between a mul-
tivariate t-distribution that only has its cofactor matrix in
common with the normal distribution, or one that has an
identical observational variance-covariance (vc) matrix as
the normal distribution. The analyses are conducted for both
regimes and the implications for the different estimators are
described and explained. Finally Sect. 6 contains the sum-
mary and conclusions.

2 Best integer equivariant estimation

2.1 Multivariate normal distribution

We generally assume our GNSS data to be normally dis-
tributed as,

y
M1∼ Nm

(
Aa + Bb, �yy

)
(1)

where y is the m-vector of double-differenced (DD) obser-
vations, M1 denotes the first model, A is the m × n design
matrix of the DD integer ambiguities in the n vector a, B
corresponds to the design matrix of size m × p of the p vec-
tor of real-valued baseline components in b, and finally �yy

represents the m ×m variance-covariance (vc) matrix of the
observations. The probability density function (PDF) of the
multivariate normal distribution reads,

fy (y) = 1

(2π)
m
2

√|�yy |
exp

{
−1

2
||y − Aa − Bb||2�yy

}

(2)

where || · ||2�yy
= (·)T �−1

yy (·) and | · | denotes the determi-
nant. Note here that E (y) = Aa + Bb and D (y) = �yy ,
with E (·) and D (·) the expectation and dispersion operator,
respectively.

The BIE estimator of the ambiguity vector a, denotedwith
‘overline’, for elliptically contoured distributions reads (Teu-
nissen 2020),

a =
∑

z∈Zn

z
h(z)

∑
u∈Zn h(u) (3)

Two such elliptically contoured distributions are the mul-
tivariate normal and t-distribution. In case of normally
distributed data, h(z) in (3) can be expressed as (Teunissen
2003),

h(z)
M1∝ exp

{
− 1

2 ||â − z||2�ââ

}
(4)

where ∝ means ’proportional to’ and â is the vector of the
float ambiguities. The BIE baseline solution can then be
derived as,

b = b̂ − �b̂â�
−1
ââ

(
â − a

)
(5)

where b̂ is the float baseline vector (15), �b̂â is the float
covariance matrix and�ââ is the vc-matrix of the float ambi-
guities â.

The BIE estimator is unbiased and it minimizes the mean
squared errors (MSEs) in the class of integer equivariant
(IE) estimators (Teunissen 2003). And since it was also
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Fig. 1 The BIE-’weights’ hN (0) (cf. 4) and ht (0) (cf. 9) as function
of â ∈ [−0.5,+0.5] cycles, for varying values of m, ||ê||2�yy

, and σâ ,
with p = 1. Full blue line corresponds to hN (0), whereas full red line,
dashed red line and dashed green line correspond to ht (0) for degrees
of freedom d = 3, d = 10, and d = ∞

shown in (ibid) that the IE-class includes the class of integer-
estimators, as well as the class of linear estimators, the MSE
of the BIE estimator is never larger than that of the inte-
ger least squares (ILS) estimator and float LS estimator. We
therefore have:

D
(
b
) ≤ D

(
b̌
)

D
(
b
) ≤ D

(
b̂
) (6)

where b̌ is the fixed ILS baseline solution (18). The BIE esti-
mator becomes similar to the float solution when the success
rate (SR) is very low, and similar to the ILS solution when
the SR is very high (Teunissen 2003).

2.2 Multivariate t-distribution

Now assume that M1 (1) is not the correct model, but that the
observations have a multivariate t-distribution with d > 2
degrees of freedom instead,

y
M2∼ Tm

(
Aa + Bb, �yy, d

)
(7)

where M2 denotes the second model. The PDF of the multi-
variate t-distribution reads (Teunissen 2020),

fy (y)

= �
(m+d

2

)

(dπ)
m
2 �

( d
2

) |�yy |1/2
[

1 +
||y − Aa − Bb||2�yy

d

]−m+d
2

(8)

in which � (·) denotes the gamma function. Note here that
again E (y) = Aa + Bb, however the vc-matrix of the t-
distributed observations is now given as D (y) = d

d−2�yy .
Hence the smaller the degrees of freedom d, the less precise
the observation vector becomes when compared to the nor-
mal distribution D (y) = �yy . In Teunissen (2020) it was
shown that h(z) in (3) for the BIE estimator, when having a

multivariate t-distribution, can be expressed as

h(z)
M2∝

[
1 + cz

d

]−m+d
2 +p

(9)

in which cz = ||ê||2�yy
+ ||â − z||2�ââ

and ê = y − Aâ − Bb̂
is the LS residual vector. Note that as the t-distribution con-
verges to the normal distribution for d → ∞, it was shown in
Teunissen (2020) that h(z) in (9) then also converges toward
that of (4) for the normal distribution.

To get some insight into the difference between the BIE-
‘weights’ hN (z) (cf. 4) and ht (z) (cf. 9), we have shown
them in Fig. 1, for the case p = 1 and n = 1, as func-
tion of â ∈ [−0.5,+0.5] cycles, for varying values of m,
||ê||2�yy

, and σâ . In the first three subfigures, hN (0) remains
unchanged, but ht (0) varies, from less-peaked curves, when
m = 2 and ||ê||2�yy

= 0, tomore-peaked curves, whenm = 7

and ||ê||2�yy
= 0, to less-peaked curves again, having thick

tails, when m = 7 and ||ê||2�yy
= 25. Finally, all curves

get flattened when σâ increases, since â2

σ 2
â
will then become

smaller for all values of â.

3 On the computation of the single-epoch
float, ILS and BIE solutions

3.1 Multi-GNSSMonte Carlo simulations

In this, section we describe the Monte Carlo simulations that
are used to assess the properties of the BIE estimator. This
simulation is necessary so as to have a complete control over
the properties to be studied, and to be able to systematically
investigate how sensitive the BIE estimates are to the two
underlying assumptions: (1) that the data are multivariate
normal distributed (1), or (2) multivariate t-distributed (7).

We simulate SF GPS, BDS, Galileo and QZSS obser-
vations, where BDS refers to the BDS-2 regional system
(Odolinski et al 2013; Yang et al 2014). In the single-baseline
RTK model E(y) = Aa + Bb we assume residual atmo-
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Table 1 Undifferenced and zenith-referenced STDs for code and phase
for a SF GPS + Galileo + QZSS + BDS model, derived by using real
data collected by ublox EVK-M8T receivers and patch antennas

σ̂p1 (cm) σ̂φ1 (mm)

L1 GPS 45 2

E1 Galileo 41 2

B1 BDS 58 2

L1 QZSS 48 2

spheric delays to be absent in b. We also take a common
reference satellite on the overlapping frequencies between
the systems to further strengthen themodel. The inter-system
biases (ISBs) on the overlapping frequencies are neglected
since we assume to have similar receiver types with the same
firmware version (Odijk and Teunissen 2013). The zenith-
referenced and undifferenced standard deviations (STDs)
in Table 1 are used, together with an exponential elevation
weighting function (Euler and Goad 1991), to formulate an
undifferenced observational vc-matrix �UD

yy . In this model,
we assume that cross-correlation between frequencies, satel-
lites, and code p and phase φ observations is absent. Tomake
our simulation as realistic as possible, the code and phase
STDsweemployherewere estimatedwith least-squares vari-
ance component estimation (LS-VCE) and based on the real
data in Odolinski and Teunissen (2020a), for low-cost SF
ubloxEVK-M8T receivers and patch antennas.We transform
this undifferenced vc-matrix�UD

yy into a DD one through the
linear law of error propagation to finally obtain,

�yy = D�UD
yy D

T (10)

with D theDDoperator (Teunissen 1997) for code and phase.
In our case with one frequency, two receivers and q + 1
satellites, we have,

D = I2 ⊗ [−1, 1] ⊗ DT (11)

with I2 the identity matrix of dimension 2 corresponding to
code and phase, [−1, 1] is corresponding to the between-
receiver differencing with respect to pivot receiver 1, DT =[−eq , Iq

]
is for the between-satellite differences assuming

pivot satellite 1, where eq is a vector of ones of size q × 1,
and finally ⊗ is the Kronecker product (Rao 1973).

The Monte Carlo simulations to produce the multivariate
normally distributed data (1) are then conducted as follows
(Teunissen 1998). First we use a random generator with m
independent samples drawn from the univariate standard nor-
mal distribution, say s1, . . . , sm from N (0, 1).We collect this
in a vector s = [s1, . . . , sm]T , wherem equals the number of
DD code and phase observations to be employed in our SF
multi-GNSS single-baseline RTK model. We subsequently

Fig. 2 Skyplot of L1 + E1 + L1 + B1 GPS + Galileo + QZSS + BDS
(19 satellites) with an elevation cut-off angle of 30◦ for the simulated
data from a position in Perth, AU

transform this vector as y0 = Gs, with G the Cholesky fac-
tor of the vc-matrix �yy (10), i.e., �yy = GGT . This makes
y0 to become a sample from Nm(0, �yy). To make our simu-
lation realistic for a ’real-world’ experiment, themulti-GNSS
satellite constellation in Fig. 2 is used as obtained through
the broadcast ephemeris for a position in Perth, AU. The
corresponding satellite coordinates and receiver benchmark
coordinates are assumed to be true coordinates so that we can
compute a (DD) known range vector ρ to replace the above
zero mean vector, i.e., we have

y
M1∼ Nm(ρ,�yy) (12)

The estimated receivers coordinates will thus be unbiased,
and the mean of the float ambiguities will be zero.

When we generate the multivariate t-distributed data (7),
we repeat the above procedure, but now instead of generating
the independent samples in s drawn from N1(0, 1) we use
samples drawn from Student’s t-distribution T1(0, 1, d) for
varying degrees of freedom d. This means that through using
the Cholesky factor G from �yy = GGT , we have D(y) =
d

d−2�yy . Note that matrix �yy is now thus not the vc-matrix
of the t-distributed data. We finally get,

y
M2∼ Tm(ρ,�yy, d) (13)

Since we will also investigate the differences between the
normal and BIE estimator when the variances of the obser-
vations between the two distributions are the same, some
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further simulations need to be conducted. To do this simu-
lation we generate y0 = Gs with G the Cholesky factor of
d−2
d �yy rather than �yy , so that D(y) = �yy , thus achiev-

ing that the t-distributed data will have the same vc-matrix
as that of the normally distributed data. We then finally have,

y
M3∼ Tm

(
ρ, d−2

d · �yy, d
)

(14)

where M3 now refers to the third model, so that we can dis-
tinguish it from that of (13). We repeat the above procedure
N = 200,000 times for (12), (13) and (14), respectively, so
that we have large samples of observations. A sufficiently
large number of samples are needed in order to get good
approximations of the ILS SRs, i.e., probability of correct
integer estimation. Using the Chebyshev inequality, similar
to Eq. (18) in Teunissen (1998), such large number of sam-
ples gives 0.5% as upperbound on the probability that the
relative frequency (to compute the ILS SR) differs more than
10−3 from that of the actual probability, when the ILS SR is
99.9%.

3.2 Integer least squares estimation

3.2.1 The float solution

Making use of the simulated samples of observations being
either multivariate normal distributed (12) or multivariate t-
distributed through (13) and (14), we can now estimate the
ambiguities as real-valued parameters a ∈ R

n and perform
a LS adjustment. By doing so we obtain the so called float
solution of the ambiguities a and baseline components b,
denoted with a ’hat’, as,

â =
(
A
T
�−1

yy A
)−1

A
T
�−1

yy y

b̂ =
(
BT�−1

yy B
)−1

BT�−1
yy

(
y − Aâ

) (15)

with A = P⊥
B A, and the orthogonal projector defined as

P⊥
B = Im−B

(
BT�−1

yy B
)−1

BT�−1
yy . The float vcmatrices,

in case of normally distributed data, of the ambiguities and
baseline components in (15) read,

�ââ =
(
A
T
�−1

yy A
)−1

�b̂b̂ =
(
B
T
�−1

yy B
)−1

(16)

with B = P⊥
A B and P⊥

A = Im − A
(
AT�−1

yy A
)−1

AT�−1
yy .

Note that when the data are t-distributed the above matri-
ces become cofactor matrices, and to then obtain the float vc
matrices we need to scale them with the appropriate function

of the degrees of freedom. Next step is to solve the ILS prob-
lem by making use of the float ambiguities â ∈ R

n in (15)
and search for its corresponding integer solution ǎ ∈ Z

n .

3.2.2 Integer ambiguity estimation

There are several different integer estimators that can be
used. We choose ILS as it is optimal in the sense of having
the largest possible SRs of all integer estimators, both under
the normal distribution and under the t-distribution (Teunis-
sen 1999a). The ILS ambiguity estimator is denoted with a
’check’ and defined as,

ǎ = arg min
z∈Zn

||â − z||2�ââ (17)

This ILS problem is then efficiently solved by means of the
LAMBDA method (Teunissen 1995; De Jonge and Tiberius
1996).

3.2.3 Fixed solution

In the final step we compute the fixed baseline solution
as,

b̌ = b̂ − �b̂â�
−1
ââ

(
â − ǎ

)
(18)

Provided the uncertainty in ǎ can be neglected we have,

�b̌b̌ = �b̂b̂ − �b̂â�
−1
ââ �âb̂ < �b̂b̂ (19)

where�T
b̂â

= �âb̂ are the float covariance matrices under the
assumption of normally distributed data. Again we note that
the matrix �b̌b̌ in (19) is a vc-matrix under the assumption
of normally distributed data and a cofactor matrix in case the
data is t-distributed, and to then obtain its vc-matrix we need
to scale it with the appropriate function of the degrees of free-
dom.We note in (19) that the precision of the fixed baseline is
driven by the very-precise carrier-phase data while that of b̂
in the single-epoch case is merely driven by the pseudorange
data (c.f. Table 1). This means that the standard deviations of
b̌ will then be a two-order of magnitude smaller than those
of b̂. However, for this to hold true, the uncertainty in the
resolved integer ambiguities must be negligible, implying
that their SR should be sufficiently close to one.

3.2.4 Integer least squares success rate

To determine the ILS SR one can count howmany times, say
Nz , out of the N samples of observations that the estimated
integer ambiguities become the null vector. This gives us the
ILS SR as,
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Table 2 Elevation cut-off angle,
frequency, and GNSS
constellation combination (c.f.
skyplot in Fig. 2)

Elevation cut-off (◦) Frequency GNSS ILS SR (%)

30 L1 GPS 9.1

30 L1+E1 GPS+Galileo 40.6

30 L1+E1+L1 GPS+Galileo+QZSS 84.6

(G20 and G26 removed)

30 L1+E1+L1 GPS+Galileo+QZSS 95.1

(G10 and G16 removed)

30 L1+E1+L1 GPS+Galileo+QZSS 98.5

(G18 removed)

35 L1+E1+L1+B1 GPS+Galileo+QZSS+BDS 99.9

(C04 and E30 removed)

The single-epoch ILS SRs (20) when the data are assumed normally distributed (1) are also depicted, based
on N = 200,000 samples of observations

Ps = Nz

N
· 100 [%] (20)

We assess in the following results the ILS SRs for both the
simulatedmultivariate normal distributed (12) andmultivari-
ate t-distributed data (13) and (14).

Table 2 depicts in the first three columns the elevation cut-
off angle, frequency and GNSS constellation combinations
used for our simulations, respectively. The ILS SRs when
the data are assumed normally distributed (12) are depicted
in the last column, based on the stochastic model settings
in Table 1 and the GNSS constellation in Fig. 2. We set
the elevation cut-off angle to high values of 30◦ and 35◦
degrees at the bottom row, respectively, so as to simulate the
scenario of constrained environments, for example in urban
canyons or when low-elevation multipath is present. We also
remove arbitrary satellites, so that all four GNSSs can ulti-
mately be included (bottom row)without achieving the 100%
single-epoch ILS SR (where the BIE positioning precision
will become equal to that of the ILS solution).

3.3 Best integer equivariant approximation

The BIE solution in (3) involves an infinite weighted sum
over the whole space of integers, which is not possible to
compute in practice. Teunissen (2005) has shown that one
canmake use of a finite integer set�λ

â while still maintaining
the property of integer-equivariance,

�λ
â =

{
z ∈ Z

n| ‖â − z‖2�ââ
< λ2

}
(21)

The integers that reside in the set �λ
â depends then on the

ellipsoidal region around the float solution â with its radius
defined in the metric of �ââ . When making use of this finite

integer set, the BIE estimator in (3) reads,

aλ =
∑

z∈�λ
â

z
h(z)

∑
u∈�λ

â
h(u) (22)

where z ∈ Z
n in (3) has been replaced by z ∈ �λ

â in (22).
When the data are normally distributed, the threshold λ2 (21)
can be determined from (Teunissen 2005),

P
[
χ2(n) ≤ λ2

]
= 1 − α (23)

i.e., froma central Chi-squared distributionχ2 with n degrees
of freedom and a small significance level α.

The threshold λ2 (21) for a multivariate t-distribution can
be defined as (Teunissen 2020),

P
[
F(n, d) ≤ λ2

]
= 1 − α (24)

where F is a central F-distribution with n and d degrees of
freedom, respectively.

Throughout the following results, we choose α = 10−9

so as to avoid any computational burden. The LAMBDA
method is again used to efficiently find the integer vectors
residing in the ellipsoidal region (21).

4 SF RTK positioning under the t-distribution

In this section a qualitative comparison is made between
the BIE, ILS and LS positioning estimators when the data are
multivariate t-distributed. This comparison is done under the
M3-data regime, for different degrees of freedom. Figure 3
depicts horizontal scatter plots in local North and East errors
for the case of having a M1 98.5% ILS-SR when using the
simulated data in Table 2. The instantaneousBIE, ILS andLS
SF positioning errors are shown as green, magenta and black
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Fig. 3 Simulated (200,000 samples, see Table 1, Fig. 2) horizontal
(North/East) scatter of the instantaneousBIE (greendots), ILS (magenta
dots), and ambiguity-float (black dots) SF (cut-off 30◦) RTK position-
ing errors (c.f. Table 2). The data are t-distributed according to (14), i.e.,
we have M3, where left column corresponds to the M1|M3 BIE results
assuming normal h(z) (4), whereas right column shows M3|M3 BIE
results using the correct h(z) (9). From top to bottom rows we depict

the results for d = 3, d = 10 and d = ∞, respectively. The largest
magenta dots are for ILSpositioning solutions that have the same integer
ambiguity vector and exceeds a cluster of≥ 5000 positioning solutions,
where the corresponding number for the second largest magenta dots,
etc. are 500 to< 5000, 50 to< 500, 5 to< 50 and a single ILS solution.
This multi-modal distribution of the ILS solutions is also depicted by
the ILS histogram in Fig. 4
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Fig. 4 Example histograms (bin size of 5 mm) of simulated North
positioning errors in Fig. 3 for 95.0% M3 ILS SR and d = 3 degrees
of freedom (200,000 samples, see Table 1, Fig. 2). The BIE solutions
M3|M3 using the correct h(z) (9) are shown as green bars, BIE M1|M3
using the normal h(z) (4) are plotted underneath the green bars as red
bars in the right column, ILS as magenta bars in the middle column,
and ambiguity-float as black bars in the left column. The theoretical

t-distribution is plotted for the float solutions and kernel smoothing
(Wand and Jones 1995) is used to fit a distribution to the BIE solutions
and ILS solutions depicted in the zoom-in windows, respectively, which
are all given as gray lines. The zoom-in windows depict the spread of
the sample solutions of North errors between −0.05 m and 0.05 m and
1.0 m to 5.0 m, respectively

dots, respectively. The comparison is made for two different
BIE-estimators: theM1-BIE estimator in figure’s left column
(M1|M3) and the M3-BIE estimator in figure’s right column
(M3|M3). As the data are M3-based, the M1-BIE estimator
has its weights incorrectly based on the the normal-weights
(4), while the M3-BIE estimator is using the correct weights
(9).

The three rows of Fig. 3 are based on M3-data with dif-
ferent degrees of freedom. The first row is based on M3-data
with d = 3 degrees of freedom, having an 95.0% ILS-SR,
the second row is based on M3-data with d = 10 degrees of
freedom, having an 96.3% ILS-SR, while the last row corre-
sponds with d = ∞, and thus with the case that M3 = M1,
i.e., the normally distributed case, having an 98.5% ILS-SR.

The ILS positioning results in Fig. 3 follow amulti-modal
distribution (Teunissen 1999b). To depict this clearly, all the
ILS solutions that have the same integer ambiguity vector are
grouped into different clusters if they exceed a certain num-
ber of positioning solutions. A cluster of ≥ 5000 positioning
solutions is denoted as the largestmagenta dot, where the cor-
responding number for the second largest magenta dots, etc.
are 500 to < 5000, 50 to < 500, 5 to < 50, and finally a sin-
gle ILS solution, respectively. The zoom-in window in Fig.
3 is depicted to show the two-order of magnitude improve-
ment when going from the ambiguity-float LS-solutions to
the successfully ambiguity fixed ILS-solutions. In this zoom-
in window all ILS solutions are shown as their single-epoch
ILS solutions (small magenta dots).

Figure 3 clearly shows the impact of the degrees of free-
dom. Its top row shows many occurrences of BIE (green
dots), LS (black dots) and ILS solutions (magenta dots) with
errors well above 2 m in both Northing and Easting when
the degrees of freedom is low (d = 3). The occurrence of

such positioning solutions decreases significantly when the
degrees of freedom increases (d = 10) at the middle and
particularly bottom row (d = ∞), when the data converge
to following a normal distribution. This is due to the heavier
tails of the t-distribution for lower degrees of freedom.

The impact of the degrees of freedom is also visible when
comparing the performance of the M1-BIE estimator (left
column) with the M3-BIE estimator (right column). The
impact of using incorrect weights for the BIE-estimator is
felt more when the tail probabilities are heavier and thus at
the lower end of the degrees-of-freedom spectrum. This is
clearly seen when comparing the respective zoom-in win-
dows.

We also note, when the degrees of freedom increase and
the tail probabilities become less heavy, that we obtain fewer
number of incorrectly fixed solutions. This gives rise to a
’star-like’ scattering of the BIE solutions as explained in
Odolinski andTeunissen (2020a).As theBIE-weight is larger
the closer the integer vector is to the LS float solution in the
metric of the ambiguity variance matrix, the more the ’star’
symmetry will point in the directions of integer vectors that
have a larger probability of being an ILS solution.

Complementary toFig. 3,we show inFig. 4 the histograms
of the North positioning errors that correspond with the scat-
ter plots for d = 3, where, from left to right, the LS, ILS, and
BIE results are depicted. The East and Up positioning errors
behave in a similar manner and are thus not shown. The M1-
BIE results are shown as red bars (M1|M3) and the M3-BIE
results as green bars on top of the red bars (M3|M3). On top
of the LS float solutions (black bars), we also plot the corre-
sponding theoretical t-distribution as gray lines, and we used
kernel smoothing (Wand and Jones 1995) to fit the BIE and
the ILS distribution in the zoom-in windows. The zoom-in
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windows clearly show the multi-modality of the ILS distri-
bution. Figure 4 also shows that the BIE solutions are much
more peaked than that of the LS float solution, and at the
same time that ILS has more instances than both BIE esti-
mators with large North positioning errors of say above 1 m.
For example the highest PDF peak for ILS is close to 0.1%
with errors above 1 m, whereas BIE has a much smaller PDF
value for the similar magnitude of positioning error (espe-
cially when M3|M3).

5 BIE positioning performance comparison
for t- and normal distribution

In this section, we provide a quantitative performance com-
parison of the BIE estimator with its LS and ILS contenders.
We first compare between the M1 and M2 models (cf. 12
and 13), followed by a comparison between the M1 and M3
models (cf. 12 and 14). In all our results note that the MSEs
refer to the MSEs of the 3D position vectors.

5.1 BIE MSE comparison forM1 andM2models

Figure 5 depicts theMSE performance of the BIE and ILS
estimators for the twodifferent data setsM1 andM2 (200,000
samples, see Table 1, Fig. 2). Their MSEs, as function of the
degrees of freedom, are shown as ratios with respect to the
MSEs of their own float solution. From top to bottom and left
to right, the panels of Fig. 5 depict results when the satellite-
geometry model-strength increases (from weak to strong),
as measured by the M1 ILS SR being 9.1%, 40.6%, 84.6%,
95.1%, 98.5% and 99.9%, respectively (c.f. Table 2).

In the figure we also show a reference line as a black
horizontal line at the reference-value 1. Since BIE is MSE-
superior over the LS float-solutions, all MSE-ratio curves
lie below this reference line. As the tail probabilities of the
M2 data get smaller with increasing degrees of freedom, the
strength of the model also increases. Note, since the MSE
ratios are shown with respect to their own float solution, that
both the numerator and denominator of the ratio will change
when the strength of the underlying model changes. Hence,
if the ratio gets smaller, the implication is that the numerator
benefits more from the stronger model than the denominator.
First we discuss the M1-data results and then the M2-data
results.
M1-data These results concern the ratios

M1-BIE|M1( ) : (M1 BIE−MSE)M1
(Float−MSE)M1

ILS|M1( ) : (ILS−MSE)M1
(Float−MSE)M1

(25)

Both their curves are horizontal as the M1 data are inde-
pendent of the degrees of freedom. The M1-BIE ratio gets

smaller when the model gets stronger. For an M1 ILS SR of
9.1% (top row, left column) it is close to one (i.e., BIE is
close to LS), and at 99.9% ILS SR (bottom row, right col-
umn) it is close to zero (BIE as good as correctly fixed ILS).
As the ratio gets smaller with increasing model strength, the
BIE benefits more from the stronger model than its own float
MSE.

For ILS such property only holds if the model is suf-
ficiently strong. When the model is weak, an increase in
strength may improve the float MSE more than that of ILS,
which thus results in an increase in ratio. This is seen when
going from an ILS SR of 9.1% (top row, left column) to
40.6% (top row, right column). In these cases the ILS MSE
is also poorer than that of its float. The ILSMSE is only better
than its float solution when the model is sufficiently strong,
as can be seen when the ILS SR reaches 84.6% (middle row,
left column). In all cases however, the ILS MSE is poorer
than that of the M1-BIE.
M2-data These results concern the ratios

M2-BIE|M2( ) : (M2 BIE−MSE)M2
(Float−MSE)M2

M1-BIE|M2( ) : (M1 BIE−MSE)M2
(Float−MSE)M2

ILS|M2( ) : (ILS−MSE)M2
(Float−MSE)M2

(26)

All three type of curves show their dependence on the degrees
of freedom and converge to the M1-data results when the
degrees of freedom are at infinity (d → ∞). As was the case
with the M1-data, the BIE benefits more from an increase
in model strength than its own float LS solution. The ILS-
curve shows that the MSE of ILS only outperforms that of its
float solution when the model is sufficiently strong (in Fig.
5 when the M1 ILS SR is larger than 95%). In all cases it is
outperformed by the BIE, with particularly large differences
for the weaker models.

The two BIE-ratio curves of Fig. 5 show a similar behav-
ior, with, of course, the M2-BIE outperforming the M1-BIE,
as the latter has no minimum MSE (MMSE) property under
the M2-data. Their difference is however small, which is a
consolation, as it implies that in this case one cannot be too
wrong when using the wrong BIE estimator, i.e., when using
M1-BIE instead of M2-BIE.

We also note however, particularly for the lower end
of the degree-of-freedom spectrum, that the values of the
two curves are significantly higher than under the M1-data
regime. Hence, with M2-data, the larger tail probabilities of
the t-distribution, make the BIE-estimator, relative to its own
float solution, less beneficial than it is with M1-data. Thus
the M1-BIE estimator has a significantly better performance
with M1-data than with M2-data. This difference gets less
the stronger the model becomes.
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Fig. 5 SF RTK positioning MSE-ratio curves with equal cofactor matrix for normal (M1) and t (M2) distribution: (M1 BIE−MSE)M1
(Float−MSE)M1

(full green),
(M2 BIE−MSE)M2
(Float−MSE)M2

(dashed green), (ILS−MSE)M1
(Float−MSE)M1

(full magenta), (ILS−MSE)M2
(Float−MSE)M2

(dashed magenta), (M1 BIE−MSE)M2
(Float−MSE)M2

(dashed red)
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Fig. 6 PDF of the standard normal (blue line) and Student’s t-
distribution, with d = 3 (red line), d = 10 (dotted red line) and
d = ∞ (dashed green line), respectively, with a zoom-in given for
the tail probabilities of errors ranging from 2.5 to 5. a shows the PDFs
when D(y) = d/(d − 2) for the Student’s t-distribution, whereas b

shows the corresponding results when D(y) = 1. Finally the dashed
gray lines indicate the instances when the PDF becomes higher or lower
for the normal distribution when compared to that of the t-distribution
with d = 3

5.2 Only same cofactor matrix or same vc-matrix?

Up till now we have been comparing the performance of
the estimators under the M1 and M2 data-regimes. These
comparisons however, although based on different distribu-
tions, are still based on using the same cofactor matrix �yy

for both distributions. This is indeed the usual way in which
the two distributions, Nm(Ax, �yy) and Tm(Ax, �yy, d), are
compared. The consequence of such comparison is however
that one thereby implicitly assumes the data to have differ-
ent vc-matrices. We believe that such assumption does not
do justice to the way vc-matrices, and thereby the observa-
tional precisions, are generally determined in practice. Many
variance-component estimation methods, such as the LS-
VCE method, estimate the observational precisions without
the a-priori need to specify the distribution (Teunissen and
Amiri-Simkooei 2008). This implies that it is more natural
to make a comparison on the basis of the two distributions
having the same vc-matrix, and thus comparing the estima-
tor performances for Nm(Ax, �yy) and Tm(Ax, d−2

d �yy, d),
respectively.

To get an easy insight in the consequences of comparing
when only the cofactor matrices are the same or when the
vc-matrices are the same, we first compare the corresponding
univariate distributions. For that purpose, Fig. 6 depicts the
continuous PDF of the standard normal distribution N1 (0, 1)
as a blue line and the Student’s t-distribution T1 (0, 1, d)with
d = 3, d = 10 and d = ∞ degrees of freedom as red,
dotted red and dashed green lines, respectively. A zoom-in
window is further shown so as to compare the tail probabil-
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Fig. 7 ILS SRs for M2 (cf. 13) (dashed blue lines) and M3 (cf. 14)
(full blue lines) as a function of the degrees of freedom for SF RTK
positioning (200,000 samples, see Table 1, Fig. 2). The cases, from top
to bottom, show the results for different model strengths havingM1 ILS
SRs of 99.9%, 95.1%, 40.6% and 9.1%

ities between the two distributions. In the right column of
Fig. 6 we show the corresponding PDFs when the variances
of the Student’s t-distributions have been scaled with d−2

d ,
i.e., T1 (0, (d − 2)/d, d). The dashed gray lines indicate the
instances (PDF intersections) when the PDF-values become
larger or smaller for the normal distribution when compared
to that of the t-distribution with d = 3.

Figure 6 and the left column shows the much heavier tails
for the PDF of the t-distribution when compared to the nor-
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Fig. 8 SF RTK positioning MSE-ratio curves with equal observation precision for normal (M1) and t (M3) distribution: (M1 BIE−MSE)M1
(Float−MSE)M1

(full

green), (M3 BIE−MSE)M3
(Float−MSE)M3

(dashed green), (ILS−MSE)M1
(Float−MSE)M1

(full magenta), (ILS−MSE)M3
(Float−MSE)M3

(dashed magenta), (M1 BIE−MSE)M3
(Float−MSE)M3

(dashed red)

mal distribution as the degrees of freedom d remains low
at d = 3 and d = 10, depicted as full and dotted red lines,
respectively.Whereaswhen the degrees of freedom increases
d → ∞ (dashed green line), the PDF of the t-distribution
will then converge to the normal distribution (blue line). The
right column of Fig. 6 reveals that when D(y) = 1 for the t-
distribution, it becomes more peaked (when d = 3) than the
PDF of the normal distribution for errors ranging between
about −0.63 and 0.63. Whereas in the left column the cor-
responding normal distribution PDF is more peaked than the
t-distribution for errors ranging between about −1.67 and
1.67. The right column also reveals that the t-distributionwill
then still have heavier tails than that of normal distribution
(although less prominently so).

The two relevant conclusions that can be drawn from the
above univariate description are:

1. Although the t-distribution is in both instances heavier
tailed than the normal distribution, this is less pronounced
in case the two distributions have the same observational
precision.

2. In case of equal observational precision, the t-distribution
is more peaked than both the standard t-distribution and
the normal distribution

When translated to the multivariate case, the implication
of the increase in peakedness, in particular for the lower end
of the degrees-of-freedom spectrum, is that the M3 ILS-SR
will be larger than the M2 ILS-SR. This is shown in Fig. 7
as function of the degrees of freedom, for different satellite-
geometry model-strengths. With this important difference in
mind between theM2 andM3 data sets, we now compare the
estimator performances using the M3-regime.

5.3 BIE MSE comparison forM1 andM3models

In analogy with Fig. 5 and Fig. 8 shows theMSE-ratio curves
of (25) and the M3-based MSE-ratio curves that concern,

M3-BIE|M3( ) : (M3 BIE−MSE)M3
(Float−MSE)M3

M1-BIE|M3( ) : (M1 BIE−MSE)M3
(Float−MSE)M3

ILS|M3( ) : (ILS−MSE)M3
(Float−MSE)M3

(27)

As the general trend is similar to that of Fig. 5, we only
show in Fig. 8 the model-strength cases of 40.6%, 84.6%
and 99.9% M1 ILS SRs. Although the general trend is sim-
ilar, there are a number of important differences that need
highlighting.

First note that the MSE-ratios of (27) are smaller than
their counterparts of (26). The MSEs of the BIE and ILS
benefit more than their float solutions do from the improved
observational precision of theM3-data over theM2-data. We
also noted that due to the heavier tails of the t-distribution,
the BIE MSE-ratio of (25), as shown in Fig. 5, is in all cases
smaller than the BIEMSE-ratios of (26). However, this is not
the case anymore in case of the M3-data for weaker models.
As Fig. 8 shows for the weaker model strength of 40.6%M1
ILS SR, now the BIE MSE-ratio of (25) is larger than those
of (27).

We also note, both in Figs. 5 and 8, that the difference
between the BIEMSE-ratio curves (dashed green and dashed
red) get smaller the stronger themodel becomes. This implies
that the differences in their benefits with respect to their float
solution get smaller. However, one should not automatically
conclude from this that the MSE-differences between the
BIE-solutions themselves get small as well. To make this
point clear, we consider the following two important BIE-
MSE ratios,
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Fig. 9 BIE MSE-ratios (M1 BIE−MSE)M3
(M1 BIE−MSE)M1

(dashed-blue) and
(M1 BIE−MSE)M3
(M3 BIE−MSE)M3

(dashed-green) as function of the degrees of freedom
for the case 98.5% M1 ILS-SR

(M1 BIE−MSE)M3
(M1 BIE−MSE)M1

and (M1 BIE−MSE)M3
(M3 BIE−MSE)M3

(28)

The first ratio measures the deterioration in the BIE-MSE
when one works with the M1-BIE thinking that one has nor-
mally distributedM1-data,while in actual fact one isworking
with t-distributed M3-data. The second ratio measures the
deterioration in the BIE-MSE when one should work with
the optimal BIE under M3, but in actual fact one is working
with the suboptimal M1-BIE. Both ratios are shown as func-
tion of the degrees of freedom in Fig. 9 for a strong model.
The two curves show amarked difference for a large range of
degrees of freedom. As (M1 BIE − MSE)M3 is much larger
than (M1 BIE − MSE)M1 for the lower degrees of freedom,
the implication is that users computing the BIE under an
assumed normal distribution M1, while the data are actually
t-distributed M3, will believe to have a much smaller MSE
than their solution actually has. The second ratio-curve how-
ever, is much flatter and shows that the difference between
(M1 BIE − MSE)M3 and (M3 BIE − MSE)M3 is marginal.
Hence, these results show that using the same estimator on
different data can have a big impact on the quality, while the
impact of using two different estimators on the same data
can be marginal. This last property is an important practical
consolation as it implies that one cannot be too wrong when
using a suboptimal BIE.

6 Summary and conclusions

The best integer equivariant (BIE) estimator for the multi-
variate t-distribution was introduced by Teunissen (2020),
where it was shown that the BIE-weights for such data
will be different from that of BIE assuming normally dis-

tributed data. This contribution analyzed the performance
of the BIE estimator and compared it with its LS and ILS
contenders, for both multivariate t-distributed and normally
distributed global navigation satellite system (GNSS) data.
We provided the analytical expressions for the two types of
BIE-estimators and discussed how they can be computed
while maintaining their property of integer equivariance.
Sensitivity analyses based on Monte Carlo simulations were
then conducted to assess the performances of the various
estimators for single-frequency multi-GNSS (GPS, Galileo,
BDS and QZSS) instantaneous real-time kinematic (RTK)
positioning. This was done in a qualitative sense by means
of positioning scatter plots and in a quantitative sense by
means of numerical mean-squared-error (MSE) curves for
the different estimators under different model strengths.

The results confirm that the BIE-estimator is MSE-
superior to both the LS- and ILS-estimator. The BIE-
estimator automatically, and in a smooth way, adapts to the
strength of the underlying model. The BIE-solution is close
to the float LS-solutionwhen themodel is weak and it is close
the ILS-solution when the model is strong.

Although it is well known that the t-distribution is heav-
ier tailed than the normal distribution, we pointed out and
demonstrated that the heaviness of the tail probabilities,
and therefore the impact it has on the BIE, ILS, and LS-
performances, depends on whether the comparison between
the normal distribution and the t-distribution is conducted
on the basis of the standard formulations, Nm(Ax, �yy)

and Tm(Ax, �yy, d), or on the basis of the two distribu-
tions having the sameobservational vc-matrix, Nm(Ax, �yy)

and Tm(Ax, d−2
d �yy, d). It is therefore crucial in the per-

formance comparison of the normal distribution and the
t-distribution to be very clear on this difference, not only for
the BIE-evaluation, but also for the ILS-evaluation (see Fig.
7).Wemotivated whywe believe that the second comparison
does more justice to daily practice.

It was shown that the BIE-solutions benefit more from
model strengthening (i.e., better receiver-satellite geometry
and/or larger degrees of freedom) than the corresponding
LS float solutions. It was also shown that the MSE-gain the
BIE has over its LS float solution is higher for the normal
distribution than for the t-distribution, in particular at the
lower end of the degree-of-freedom spectrum when the tails
are heavier. This difference in gain becomes less pronounced
however when the t-distribution is taken to have the same
observational precision as the normal distribution.

It was also shown for the models considered that the ILS
success-rate under the t-distribution Tm(Ax, d−2

d �yy, d) is
larger than under the normal distribution Nm(Ax, �yy). This
was explained by the fact that, although the t-distribution is
still heavier tailed than the normal distribution in case of
equal observational precision, the distribution is now also
more peaked than the normal distribution, thus providing for
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more probability mass over the origin-centred pull-in region.
For the same reason the BIE-estimators of the t- and nor-
mal distribution having the same vc-matrix outperform the
BIE-estimator under the distribution Tm(Ax, �yy, d). This
underlines the care one has to take in considering the type of
t-distributionwhen comparing the performances of the differ-
ent estimators. Finally, we demonstrated that using the same
BIE-estimator on different data can have a big impact and
thus give users an unrealistic sense of their solution quality,
while on the other hand, the usage of two different BIE-
estimators on the same data can have a marginal impact.
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