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ABSTRACT
We implement the 3D Marchenko equations to retrieve responses to virtual sources
inside the subsurface. For this, we require reflection data at the surface of the Earth
that contain no free-surface multiples and are densely sampled in space. The required
3D reflection data volume is very large and solving the Marchenko equations requires
a significant amount of computational cost. To limit the cost, we apply floating point
compression to the reflection data to reduce their volume and the loading time from
disk. We apply the Marchenko implementation to numerical reflection data to re-
trieve accurate Green’s functions inside the medium and use these reflection data to
apply imaging. This requires the simulation of many virtual source points, which we
circumvent using virtual plane-wave sources instead of virtual point sources. Through
this method, we retrieve the angle-dependent response of a source from a depth level
rather than of a point. We use these responses to obtain angle-dependent structural
images of the subsurface, free of contamination from wrongly imaged internal multi-
ples. These images have less lateral resolution than those obtained using virtual point
sources, but are more efficiently retrieved.

Key words: Signal processing, Seismics, Numerical study.

INTRODUCTION

The Marchenko method, originally derived for the field of
quantum physics (Marchenko, 1955), was introduced in the
field of geophysics about a decade ago. The method employs
reflection data that are recorded at the surface of the Earth
to create sources and receivers inside the Earth while inter-
nal multiples are handled correctly. Because these sources and
receivers are not physically located inside the subsurface but
instead are created from the reflection data, they are called vir-
tual sources and receivers. The original Marchenko equation
was introduced in the field of quantum physics in the 1950s
by Marchenko (1955). More recently, the method was devel-
oped in the field of geophysics by Broggini and Snieder (2012)
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for 1D media and was further extended for 2D and 3D appli-
cations by Wapenaar et al. (2013), Broggini et al. (2014), Slob
et al. (2014) and Behura et al. (2014). These authors showed
that the reflection data and Green’s function, that is, the im-
pulse response of a medium, can be related via a so-called fo-
cussing function, which is a wavefield that focusses from an
open boundary to a location in the subsurface, often referred
to as the focal location. This relation can be rewritten into a
Marchenko-type equation in 3D and subsequently be solved
using only the reflection data and an estimation of the first
arrival of a wavefield from the focal location. The first arrival
can be easily obtained through the use of a background veloc-
ity model.

The Marchenko method has been used for many applica-
tions since it was introduced in the field of geophysics. It has
been applied to create images of the subsurface that are free
of artefacts related to the internal multiples (Broggini et al.,

35© 2021 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association
of Geoscientists & Engineers
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.



36 J. Brackenhoff et al.

2014; Meles et al., 2015; Ravasi, 2017; Matias et al., 2018).
However, the method has also been used to obtain the homo-
geneous Green’s function in the subsurface (Brackenhoff et al.,
2019a, 2019b), remove internal multiples from reflection data
(Zhang and Staring, 2018) or to retrieve plane-wave responses
in the subsurface (Meles et al., 2018). These applications used
acoustic reflection data that contained no free-surface mul-
tiples. It has been shown that the Marchenko method can
also be applied using elastic reflection data (da Costa Filho
et al., 2014; Wapenaar, 2014; Zhou et al., 2019; Reinicke,
2020) and reflection data that contain free-surface multiples
(Singh et al., 2015; Slob and Wapenaar, 2017). Although the
theory has been fully developed for 3D applications, most
publications are applied to 2D datasets. The method has been
successfully applied in 2D and 3D using both synthetic and
field data (Ravasi et al., 2016; van der Neut and Wapenaar,
2016; Pereira et al., 2019; Staring and Wapenaar, 2019;
Lomas and Curtis, 2020; Staring and Wapenaar, 2020a),
however, the requirements of the reflection data are highly
demanding, as the reflection data need to be well sampled in
both time and space. This type of dense sampling is hard to
obtain in the field for 3D acquisitions and furthermore, the 3D
datasets are considerably larger in storage size than their 2D
counterparts. Lomas and Curtis (2020) made a comparison
between results obtained with a full 3D acquisition and results
obtained with linear seismic acquisition arrays, both recorded
over a 3D medium. The authors showed that while the 2D ap-
proximation can yield good results, if one wants to take into
account the full 3D effects, such as out-of-plane reflections, a
3D version of the Marchenko method is required.

The Marchenko equations can be solved in a variety of
ways, the most common way is to use an iterative scheme
(Broggini et al., 2014). However, the equations can also be
solved using a least-squares inversion (van der Neut et al.,
2015; Ravasi, 2017; Ravasi and Vasconcelos, 2021) or the
iterative scheme can be combined with adaptive subtraction
(da Costa Filho et al., 2018; Staring and Wapenaar, 2020a).
The least-squares inversion is computationally feasible for 2D
reflection data, however, for 3D data this method becomes
computationally expensive. The adaptive subtraction is more
robust to imperfections in the reflection data, however, due
to its adaptive nature, the subtraction can attenuate physical
events that are coinciding with multiples.

Various open-source implementations of the Marchenko
method have been released over the years. The first of these
implementations was written in theMadagascar environment,
employing the 2D iterative scheme (Broggini et al., 2014).
Thorbecke et al. (2017) published a C implementation of the

Marchenko method that employs an iterative scheme for 2D
reflection data that contain no free-surface multiples. More
recently, an implementation in Python using the PyLops pack-
age was published that solves the method using least-squares
inversion in 3D (Ravasi and Vasconcelos, 2021). In this paper,
we extend the 2D iterative implementation of Thorbecke et al.
(2017) to work with 3D reflection data.We discuss the practi-
cal challenges of the 3D extension, as the theoretical extension
is straightforward, and show applications of the code.

We start by briefly considering the theory of the
Marchenko method which forms the basis of the implementa-
tion. Next, we discuss the changes made to the 2D implemen-
tation to extend the implementation for 3D datasets. We use
a floating point algorithm by Lindstrom (2014), called ZFP,
to compress the reflection data to limit the required storage
space and to reduce the loading time of the data. We also use
a 3D Eikonal solver to obtain the first arrivals in the sub-
surface, to limit the modelling time that would be required
if finite-difference modelling was used. We apply our 3D code
to a subsection of the complex 3D overthrust model by Am-
inzadeh et al. (1997) for two applications. First, we retrieve
Green’s functions related to point sources inside themodel and
compare the results to a directly modelled reference . Next, we
use these retrieved wavefields and focussing functions to apply
structural imaging, based on the double-focussing approach
(Staring et al., 2018) and show how the Marchenko method
attenuates artefacts in the image, which are related to inter-
nal multiples. As this is a computationally expensive process
in 3D, we demonstrate how the retrieval of Green’s functions
can be performed for an entire depth level, through the use of
plane-wave sources, based on the work by Meles et al. (2018).
This allows us to obtain a structural image of the subsurface
much more efficiently, although only certain angles of reflec-
tivity are obtained. We therefore retrieve the reflectivity for
multiple angles in order to obtain a more complete structural
image of the subsurface.

THEORY

Our 3D implementation of the Marchenko method follows
the same approach as the 2D implementation by Thorbecke
et al. (2017). As the specifics of the implementation are de-
scribed in great detail in that paper, we will only consider the
most important equations, which form the basis of the imple-
mentation.

The Marchenko method allows one to retrieve Green’s
functions G−,±(xR, xA, t ) in the subsurface, which are the im-
pulse responses at point xR at the surface of the Earth at time
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t to a virtual point source at xA in the subsurface. Note that
we use a Cartesian coordinate system, where x = (x1, x2, x3)
and x1 and x2 are the horizontal coordinates and x3 is the
depth coordinate. The first superscript in Green’s function in-
dicates whether a wave is propagating downwards or upwards
at xR, using + or -, respectively, and the second superscript
follows a similar notation for the radiation direction of the
virtual source at xA. In order to retrieve Green’s functions, we
require a reflection responseR(xR, xS, t ), which is measured at
location xR at transparent surface S0, usually the surface of the
Earth, as a result of a dipole source xS at the same surface. The
reflection response contains no free-surface multiples because
of the assumption that S0 is transparent. Field datasets do con-
tain this type of multiples, however, several robust techniques
exist to remove these events (Verschuur et al., 1992; Amund-
sen, 2001; van Groenestijn and Verschuur, 2009). Alterna-
tively, the Marchenko method can also be adjusted to directly
work with data containing free-surface multiples (Singh et al.,
2015), however, this approach is not considered in this paper.

Green’s functions and reflection response can be related
to each other via focussing functions f±

1 (xR, xA, t ), which are
propagating downward or upward at xR, depending on the
superscript. These focussing function focus from the surface
to a focal point xA in the subsurface, while correctly account-
ing for internal multiples. The relations between Green’s func-
tions, focussing functions and reflection response are given as
(Wapenaar et al., 2014b, equations (11) and (12))

G−,+(xR, xA, t ) + f−
1 (xR, xA, t )

=
�

S0

� ∞

0
R(xR,xS, t ′) f+

1 (xS, xA, t − t ′)dt ′dxS, (1)

G−,−(xR, xA,−t ) + f+
1 (xR, xA, t )

=
�

S0

� 0

−∞
R(x,xS,−t ′) f−

1 (xS, xA, t − t ′)dt ′dxS. (2)

Note that these relations are based on the decomposed
wavefields. The focussing functions can be combined together
to create a total focussing function:

f2(xA, xR, t ) = f+
1 (xR, xA, t ) − f−

1 (xR, xA,−t ), (3)

where f2(xA,xR, t ) is a focussing function that focusses from
below to a focal point xR at the surface. Similarly, following
Wapenaar (2020), the decomposed Green’s functions can be
used to construct the total Green’s function,G(xR, xA, t ):

G(xR,xA, t ) = G+,+(xR, xA, t ) +G+,−(xR, xA, t )

+G−,+(xR, xA, t ) +G−,−(xR, xA, t ). (4)

Note that if xR is located at S0, the wavefield is purely upgo-
ing because the surface is transparent and the medium above
the surface is homogeneous. In other words,G+,+(xR, xA, t ) =
G+,−(xR, xA, t ) = 0 and total Green’s function consists only of
G−,+(xR, xA, t ) and G−,−(xR, xA, t ), which are Green’s func-
tions in equations (1) and (2).

Green’s functions and focussing functions on the left-
hand side of equations (1) and (2) can be separated from each
other based on causality relations. The direct arrival of Green’s
function, Gd (xR, xA, t ), and the direct arrival of the downgo-
ing focussing function, f+

1,d (xR, xA, t ), are each other’s inverse
and therefore f+

1,d (xR, xA, −t ) andGd (xR, xA, t ) have the same
arrival time td (xR, xA), however, their amplitudes are differ-
ent (van der Neut et al., 2015). Furthermore, aside from the
direct arrival, the entire wavefield of G(xR, xA, t ) arrives af-
ter td (xR, xA) and the entire wavefield of f+

1 (xA, xR, −t ) and
f−
1 (xA, xR, t ) arrives before td (xR, xA), which means that the

wavefields are separated in time, except for their direct arrival.
Using these relations, we introduce an offset-dependent time-
windowing function,

�(xR, xA, t ) = � (t + (td (xR, xA) − �))

− � (t − (td (xR,xA) − �)), (5)

where � (t ) is the Heaviside step function and � indicates a
small constant, which is required to account for the band-
limited nature of the wavefields. For simplicity, we will use
the substitution �(xR, xA, t ) = �. Applying � to the Green’s
function removes all events, however, when the window is ap-
plied to the focussing function only the first arrival is removed,
while the coda will remain. Because the window is symmetric
in time, it does not matter whether the wavefields are time-
reversed when the windowing function is applied. The win-
dow is applied to equations (1) and (2) in order to remove
Green’s functions from the equations

f−
1 (xR, xA, t ) = �

�

S0

� ∞

0
R(xR, xS, t ′) f+

1 (xS, xA, t − t ′)dt ′dxS,

(6)

f+
1 (xR, xA, t ) − f+

1,d (xR, xA, t )

= �
�

S0

� 0

−∞
R(xR, xS, −t ′) f−

1 (xS, xA, t − t ′)dt ′dxS. (7)

Equations (6) and (7) are the coupled Marchenko equa-
tions. Note that in equation (7), we subtract the direct arrival
from the downgoing focussing function to account for the re-
moval of this direct arrival by the windowing function. As-
suming that the direct arrival is known, in this system we have
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two unknowns and two equations, allowing us to solve it in an
iterative manner. The reflection response is the known quan-
tity and will not change, while the upgoing and downgoing
focussing function will be updated according to

f−
1,k(xR,xA, t ) = �

�

S0

� ∞

0
R(xR,xS, t ′ ) f+

1,k(xS,xA, t − t ′ )dt ′dxS,

(8)

f+
1,k+1(xR, xA, t )

= �
�

S0

� 0

−∞
R(xR, xS,−t ′) f−

1,k(xS, xA, t − t ′)dt ′dxS

+ f+
1,d (xR, xA, t ), (9)

where k indicates the iteration number. In equation (9), we
added the direct arrival to both sides of the equation, so that
the full downgoing focussing function is retrieved on the left-
hand side. To start the scheme, a first estimation is required.
For the first estimation, we assume that the scattering coda of
the downgoing focussing function is equal to zero, so that

f+
1,0(xR,xA, t ) = f+

1,d (xR, xA, t ). (10)

As it is difficult to estimate f+
1,d (xR, xA, t ), one can in-

stead model Gd (xR,xA, t ), as it can be easily obtained using
a background velocity model. f+

1,d (xR, xA, t ) is often approxi-
mated using the final arrival of the time-reversed Green’s func-
tion,Gd (xA, xR, −t ). As mentioned before, f+

1,d (xR, xA, t ) and
Gd (xA,xR, −t ) have the same arrival time, however, there is
an amplitude difference. Using a time-reversed direct arrival
instead of an inverted direct arrival as a first estimation of the
focussing function will cause errors in the final result that are
proportional to the transmission losses of the medium (Brog-
gini et al., 2014; Brackenhoff, 2016; van der Neut et al., 2018).
When Gd (xR,xA, t ) is modelled in a smooth version of the
medium, instead of the exact medium, errors will be present
in any case, which is why the time reversal is more often used
than the inversion of the direct arrival of Green’s function.
Note that in imaging by deconvolution, discussed in the sec-
tion ‘Marchenko imaging’, these amplitude errors should be
compensated for.

IMPLEMENTATION

Algorithm

The implementation that is used in this paper uses a single
compute kernel. By considering equations (8) and (9), it can
be seen that both these equations use the same operation,

namely a convolution of the reflection response or its time
reversal with either the downgoing or upgoing focussing func-
tion, followed by an application of the time window �. It is
more efficient to perform the convolution in the frequency do-
main, while the time window is applied in the time domain.
We therefore consider these two operations separately in the
kernel. Because the kernel is same for both equations (8) and
(9), the equations can be written as a series expansion, similar
to equations (B-4) and (B-5) of Wapenaar et al. (2014b):

− f−
1,k(xR, xA, −t ) =

k�

i=0

N2i(xA, xR, t ), (11)

f+
1,k+1(xR, xA, t ) =

k�

i=0

N2i+1(xA, xR, t ) + f+
1,d (xR, xA, t )

=
k�

i=−1

N2i+1(xA, xR, t ), (12)

where

Ni(xA, xR, −t ) = −�RNi−1(xA,xR, t ), (13)

RNi−1(xA, xR, �)

=
nS�

j=1

R(xR, xS, j, �)Ni−1(xA,xS, j, �)
�x1�x2�t

nt
, (14)

N−1(xA, xR, t ) = f+
1,d (xR,xA, t ). (15)

Equation (14) is performed in the frequency domain and
therefore the functions depend on the angular frequency � in-
stead of time. The data are transformed to the frequency do-
main using the Fourier transform and as a result, the convolu-
tion between the reflection response and Ni becomes a simple
multiplication. To account for the discrete Fourier transform,
the data need to be divided by the number of time samples nt
and a scaling with the temporal sampling�t is required for the
numerical time convolution. We have also replaced the inte-
gral over the source locations by a numerical approximation,
namely a sum over the source positions, where xS, j indicates
the jth source location of a total of nS source locations. Fur-
thermore, for this approximation the data need to be scaled
by the spatial sampling in the horizontal direction x1 and x2.
�x1 and �x2 indicate the spatial sampling at xS, j in horizontal
direction x1 and x2, respectively, and can be different. For the
2D implementation, �x2 can be dropped and the scaling only
depends on one horizontal direction.
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3D challenges

The basic algorithm that is described by equations (8)–(14) is
the same as was used in the 2D implementation by Thorbecke
et al. (2017) and the implementation is very similar, as the only
addition is the integration along the second horizontal direc-
tion. However, there are additional complications that come
with the 3D extension.

First,R(xR, xS, �) has to be considered. The 3D reflection
data must be pre-processed to comply with the assumptions
made in the derivation of the Marchenko equations (Wape-
naar et al., 2014a). This processing has to at least include
(Brackenhoff et al., 2019b)
• removal of free-surface multiples;
• deconvolution with source wavelet;
• crossline interpolation to avoid aliasing.
The removal of free-surface multiples and the deconvolution
of the wavelet is beyond the scope of this paper, however, the
crossline interpolation is a relevant topic as it relates to one of
the most critical requirements of the reflection data, namely
dense spatial sampling. Our implementation assumes that this
requirement has been fulfilled, however, as a result the size of
the reflection data will become very large. Loading the pre-
processed reflection data from disk to memory is generally
an inexpensive task in 2D, however, loading the full 3D re-
flection data matrix takes much longer and the storage space
that is required for the data is much larger. To mitigate these
problems a ZFP-based compression algorithm is used (Lind-
strom, 2014). The ZFP compression has been successfully ap-
plied for the purpose of reducing the data size of seismic wave-
forms for waveform tomography with minimal errors (Lind-
strom et al., 2016). Before the reflection data are compressed,
they are transformed to the frequency domain, as the reflec-
tion data are only used in the frequency domain to circum-
vent the convolution, and only the data in the frequency band
of interest are compressed and stored to disk. Typically the
lossless ZFP compression reduces the 3D data size by a fac-
tor of 4, which decreases the storage space of the data and
the read-in time to memory. The program TWtransform (ex-
plained in Appendix A.2) transforms uncompressed reflection
time-data to the frequency domain, applies ZFP compression
(based on tolerance) on a selected frequency range and writes
the compressed data to disk. The data on disk contain a spe-
cial compressed header that includes all location information
present in the uncompressed Segy/SU headers that are needed
in the 3D Marchenko program. The 3D Marchenko program
has multiple options to read the reflection data, which can be
done in the time domain, frequency domain or compressed

frequency domain. In the Appendix section ‘marchenko3D’,
the most important options and parameter settings of the 3D
Marchenko program, marchenko3D, are explained in more de-
tail.

Aside from the reflection data, the first estimation of the
focussing function is also required, as dictated by equation
(15). To model this first arrival, a background velocity model
is required. Using this model, the first arrival can be calcu-
lated using, for example a finite-difference modelling code.
In this paper, we use a 3D finite-difference modelling code
fdelmodc3D that can be found in the OpenSource library by
Thorbecke and Brackenhoff (2019). While the calculation of
a single first arrival is feasible using a finite-difference code,
it is very computationally expensive to calculate it for a large
amount of focal points in this way. Furthermore, storing all
these wavefields separately would require a large amount of
storage space. As an alternative to the finite-difference mod-
elling, an Eikonal, or ray-based solver can be employed. Using
this solver, the first arrival of multiple focal locations can be ef-
ficiently computed and stored on disk.We employ the Eikonal
solver raytime3D from the OpenSource library to calculate
these first arrivals. This code is based on the theory by Vidale
(1990) and aside from the calculation of the arrival time, it
also estimates a geometric spreading factor of the wavefield,
based on the concepts by Spetzler and Angelov (2005). This
amplitude estimation is important, as a uniform amplitude for
all arrival times would cause significant artefacts in the result
of the Marchenko method. This amplitude estimation is not
exact and effects, such as transmission losses, are not taken
into account, therefore there will be errors introduced in the
amplitude of the estimated Green’s function. The first arrival
times that are estimated, either through the finite-difference
modelling code or the Eikonal solver, are also used to con-
struct the time window �.

When the reflection data, time window and the first ar-
rival are available, they can be used to compute the focussing
functions through the use of equations (8)–(14).When the iter-
ative scheme has converged to a solution, the final estimations
of the upgoing and downgoing focussing functions can be used
in equations (1) and (2) to compute the decomposed Green’s
functions. The marchenko3D program has the same function-
ality as its 2D counterpart marchenko to run multiple focal
locations simultaneously, which means that the 3D reflection
data only have to be read from the disk once. This is especially
useful in 3D as loading the 3D reflection data from disk takes
up a significant portion of time compared to the computing
time of the Marchenko method.
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Figure 1 (a) Subsection of the overthrust model used for both velocity and density contrasts. (b) A common-source record, with source position
xS = (0, 0, 0) and receivers at xR, containing a wavelet with a flat spectrum between 5 and 25 Hz.

NUMERICAL EXAMPLES

We demonstrate the application of the 3DMarchenko scheme
for two different applications, namely Green’s function re-
trieval and imaging. We perform these applications for two
types of virtual sources, namely point sources and plane-
wave sources.

To take into account complex scattering in three di-
mensions, we demonstrate the method on numerical data
that were modelled in a subsection of the SEG/EAGE over-
thrust model from Aminzadeh et al. (1997), which is publicly
available from the SEG Wiki (https://wiki.seg.org/wiki/SEG/
EAGE_Salt_and_Overthrust_Models). We select a subsection
of the model, as a recording set-up over the full extent of
the model is too large to fit in the memory of our comput-
ing nodes. Furthermore, this reduces the modelling time for
the reflection response. We insert a layer with constant veloc-
ity and density above the model as a water layer, to simulate
a marine setting. The velocity and density of the subsection
are shown in Figure 1(a). The values of the density model are
chosen to be the same as those of the velocity model to en-
sure strong reflections. We use the fdelmodc3D code to model
the reflection response. An example of a shot record from a
source at the surface in the centre of the model is shown in
Figure 1(b). For the full reflection response, we use a fixed
spread acquisition, where the source is modelled at every re-
ceiver position. In the inline x1-direction the sources and re-
ceivers are distributed from −2250 to 2250 m with a spac-

ing of 25 m and in the crossline x2-direction the acquisition
ranges from −1250 to 1250 m with a spacing of 50 m. Note
that the sampling distances in the inline and crossline direc-
tions are not equal, as is often the case for acquisition set-ups
in the field. For the modelling of the reflection data, we apply
a wavelet with a flat frequency spectrum that introduces ring-
ing in the time domain. This approximates the prerequisite of
deconvolving for the source wavelet (Thorbecke et al., 2017).
The frequency spectrum of this wavelet is flat between 5 and
25 Hz, and tapered to zero with a cosine window from 5 to 0
Hz and from 25 to 30 Hz. The limited range of the frequency
spectrum is chosen for modelling runtime purposes. The re-
flection data are modelled for 4.0 s with a temporal sampling
of 4 ms. This temporal sampling complies with the industry
standard, but note that a sampling of 16 ms would suffice. Be-
fore the reflection data are compressed, the size of the dataset
is 387 GB. After the frequency range is selected and the ZFP
compression is applied, the size of the dataset is reduced to
46 GB.

Green’s function retrieval

First, we consider the most basic application of the
Marchenko method, namely, Green’s function retrieval for a
point source. To generate the necessary first arrival, we model
a point source at xA = (0,0, 1025)m using an 11 Hz Ricker
wavelet and record the response at the surface of the medium.
We separate the first arrival from the coda of the wavefield to
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Figure 2 (a) First arrival f+
1,d (xR, xA, t ),modelled in the exact medium, (b) Focussing function f2(xA, xR, t ) and (c) Green’s functionG(xR,xA, t ),

both obtained through use of the Marchenko method and (d) Reference Green’s function Gref (xR, xA, t ), modelled directly in the exact medium.
All wavefields contain an 11 Hz Ricker wavelet, are clipped at the same value and xA = (0, 0, 1025)m.

obtainGd (xR, xA, t ). Instead of simply time-reversing this first
arrival, we instead invert it to obtain the true f+

1,d (xR, xA, t ),
which is shown in Figure 2(a). In the field, it is unlikely that
we would be able to achieve this, as one would need to have
the exact model available, however, here we wish to demon-
strate that the method can theoretically retrieve accurate am-
plitudes. We use the marchenko3D code to retrieve the decom-
posed focussing functions and Green’s functions. We obtain
the total focussing function f2(xA,xR, t ) and the total Green’s
functionG(xR, xA, t ) using equations (3) and (4), respectively,
and show these functions in Figure 2(b,c).

The convergence rate of the Marchenko method for a
point source at xA = (0,0, 1025)m is shown in Figure 3 as the

solid red curve. This convergence rate is defined as the rate of
the L1 norm of the total energy in the updateNi from equation
(13) to that of the L1 norm of the total energy in the original
update N0. Note that a significant amount of iterations is re-
quired for convergence and that the convergence curve seems
to flatten out instead of converging to zero. The low conver-
gence rate has to do with the complexity of the model. Because
the model contains a large amount of reflectors and has a great
variety of structures, the amount of iterations that are required
is high. The maximum convergence is related to the aper-
ture of the reflection response. The convergence to a relatively
high energy level indicates that many limited-aperture arte-
facts are present in the update fieldsNi. These limited-aperture
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Figure 3 Logarithmic convergence rate
|Ni|L1
|N0|L1

of Green’s function re-

trieval in the overthrust model for a virtual point source at xA =
(0, 0, 1025)m in solid red and a virtual plane-wave source for pA =
(80µs m−1, 40µs m−1, 1025m) in dashed blue. The y-axis is clipped
at 10−8 as we do not expect anything below this energy level to sig-
nificantly contribute to the final result.

effects are caused by the acquisition footprint, especially in the
crossline direction. The complexity of the model causes scat-
tering at large angles, which means that a larger aperture is
required to properly capture all the scattered events. This is
caused by the assumption of the Marchenko method that S0

extends infinitely in the horizontal directions, whereas in the
field, it will always be limited.

To determine whether the retrieved Green’s function
is accurate, we compare it to a reference Green’s function
Gref (xR, xA, t ). This Green’s function was obtained by mod-
elling the source directly at xA = (0,0, 1025)m and record-
ing the response at the surface of the medium. It is shown in
Figure 2(d). A visual inspection between the retrieved Green’s
function and the reference Green’s function shows that the two
wavefields appear to be similar, with a strong correlation be-
tween the arrival times and amplitudes of the events. The con-
vergence to the correct solution is further supported by the
decrease in energy per update, which can be interpreted from
the solid red curve in Figure 3.

To make a more accurate comparison, we show a direct
comparison between some of the traces of the two functions
in Figure 4. The traces of the retrieved Green’s function are
shown in black, while the traces of the reference Green’s func-
tion are shown in dashed red. Note that in this display, we
apply a time gain of t1.6 to boost the amplitude of the events
at later times. When the traces are compared, it can be seen
that the match is excellent. The traces in Figure 4(a), which
have a fixed offset in the crossline x2 direction of 500 m, are
nearly identical for the two functions. There is a very slight
error before the first event, which is caused by the window,

and at high offsets from the source position the quality of the
retrieved Green’s function decreases slightly. This is because
the events that have to be retrieved at this offset are not all
captured by the recording aperture. This effect can be seen
in Figure 4(b), where the inline x1 offset is fixed at 1500 m.
The errors are slightly larger here because the entire panel is
closer to the edge of the aperture. However, overall the match
is still very strong and this demonstrates the capability of the
Marchenkomethod to properly retrieve Green’s function from
surface reflection data.

Marchenko imaging

Green’s functions and focussing functions that are retrieved
using the Marchenko method can be employed for a vari-
ety of schemes. One of the most commonly used applica-
tions is imaging, where one aims to obtain the reflectivity of
the subsurface in a region of interest. The reflectivity of the
medium R̄tar(xB, xA, t ) at a target depth is related to the de-
composed Green’s functions as (Amundsen, 2001; Wapenaar
et al., 2014b)

G−,+(xB, xR, t )

=
�

SA

� ∞

0
R̄tar(xB, xA, t − t ′)G+,+(xA, xR, t ′)dt ′dxB, (16)

where SA is a surface inside the medium at the top of the
target zone and the reciprocity relations G−,+(xB, xR, t ) =
G−,+(xR, xB, t ) and G+,+(xA, xR, t ) = G−,−(xR, xA, t ) have
been employed (Wapenaar, 2020). Through the use of a multi-
dimensional deconvolution (MDD) process, the reflectivity
can be obtained from the decomposed Green’s functions that
are obtained using the Marchenko method. By employing this
process, the overburden above the target depth is removed
and only interactions from the target zone below SA are pre-
served. Furthermore, if there are any errors present in the am-
plitude of f+

1,d, the same errors will be present in both G−,+

and G−,−, so these errors will be removed for the larger part
by the MDD process. However, properly applying the MDD,
especially for 3D recording set-ups, is very difficult and prone
to errors (Staring et al., 2018). A more stable way of obtain-
ing the reflectivity is through the use of the double-focussing
method (van der Neut et al., 2018). Here, no MDD is applied,
and the decomposed focussing function is used. The double-
focussing method can be expressed as

Rtar(xB, xA, t )

=
�

S0

� ∞

0
F+(xR, xB, t ′)G−,+(xR, xA, t − t ′)dt ′dxR, (17)
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Figure 4 Comparison between the reference Green’s function Gref (xR,xA, t ) in dashed red and Green’s function G(xR, xA, t ) obtained through
the use of the Marchenko method in solid black for (a) x2 =500 m and (b) x1 =1500 m and xA = (0, 0, 1025)m. All wavefields contain an 11
Hz Ricker wavelet and have a gain applied of t1.6 for display purposes. The black arrows on top indicate where the panels in (a) and (b) intersect.

with

�tF+(xR, xB, t ) = −2
�

�3 f+
1 (xR, xB, t ). (18)

In (17),Rtar(xB, xA, t ) = G−,+(xB, xA, t ). Unlike the MDD ap-
proach, the double-focussing approach does not remove the
overburden, but only redatums the sources and receivers from
the surface of the medium to the target depth.Additionally, be-
cause there is no longer a deconvolution employed, the ampli-
tude errors associated with f+

1,d are not removed. This means
that we will not obtain the true amplitudes of the subsurface
reflectors, however, we obtain the location of the reflectors,
which means that we can retrieve an accurate structural im-
age of the subsurface. The entire process is stable however,
because no deconvolution is employed. To obtain an image in
a location inside the medium, without any influence of inter-
nal multiples, one can select the zero time, zero offset of the
reflectivity in that location. This is defined as

rim(xB) = Rtar(xB,xB, t = 0). (19)

In this equation, the location of the virtual source and the vir-
tual receiver coincides. For the imaging, only the first-time
sample is of interest. Hence, equation (17) can be adjusted
because the coda of the focussing function is meant to elimi-
nate artefacts in the coda of the redatumed reflection response.
Therefore, equation (17) can be applied without the coda of

the focussing function,

rim(xB) = Rtar(xB, xB, t = 0)

=
�

S0

� ∞

0
F+
d (xR, xB, t ′)G−,+(xR, xB, −t ′)dt ′dxR, (20)

with

�tF+
d (xR, xB, t ) = −2

�
�3 f+

1,d (xR,xB, t ). (21)

In equation (20), only the zero-time sample is retrieved, how-
ever, as stated before, the errors will be present in the coda of
the redatumed reflection response and the zero-time sample
will be unaffected. The result can therefore also be used for
the purpose of imaging without artefacts caused by internal
multiples. Note that, similar to equation (17), any errors in
f+
1,d are not accounted for. The double-focussing method has

been successfully employed for the purpose of imaging using
3D acquisitions in the field, for an example, see Staring and
Wapenaar (2020a).

To test the imaging potential of our marchenko3D pro-
gram, we employ the double-focussing method. The required
Green’s functions and focussing functions are obtained by the
Marchenkomethod, however,wemake three alterations to the
approach that was used for Green’s function retrieval. Firstly,
instead of using the exact medium for estimating our first ar-
rival, we apply a smoothing algorithm to create a background
velocity model. Secondly, the first arrival is now modelled
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Figure 5 Image of the overthrust model along a fixed x2 value of 0 m using (a) conventional imaging and (b) Marchenko imaging after
30 iterations, and image of the overthrust model along a fixed x1 value of 0 m using (c) conventional imaging and (d) Marchenko imaging
after 30 iterations. The locations of artefacts that are attenuated by the Marchenko imaging are indicated by the red arrows.

using a 3D Eikonal solver instead of using a finite-difference
method. Finally, we no longer invert the first arrival, but sim-
ply take the time reversal, as the changes to the modelling
process of the first arrival will produce amplitude errors re-
gardless. The changes in our approach are made to simulate
field conditions and to keep the modelling time feasible. The
Marchenko method needs to be performed for every location
in the subsurface where an image is desired and therefore, the
computational costs for producing an image are high.

Note that while the use of an Eikonal solver decreases
the modelling time of the first arrival significantly, the use of
finite-difference modelling would be a more accurate process,
as an Eikonal solver does not represent the full physics of the
wave equation. In media with strong velocity variations, the
first arriving event may not be a purely propagating wavefield
and may contain a refracted wave. The image obtained using
an Eikonal solver will therefore be an approximation, how-
ever, it is computationally more feasible to apply the method
like this in practice for a large amount of focal locations.

We obtain the image of two cross sections of the over-
thrust model, one inline cross section for a fixed x2-offset of
0 m and one crossline cross section for a fixed x1-offset of
0 m. The two cross sections intersect each other in their re-
spective centres. The focal locations are placed along a depth
range of 400–4400 m with a sampling of 25 m. The range of
the focal points in the inline direction is from −2250 to 2250
m, with a sampling of 25 m and in the crossline direction the
range is set from−1250 to 1250mwith a sampling distance of
50 m. Similar to Green’s function retrieval, we perform 40 it-
erations for each focal point. After the focussing function and

Green’s function for each focal location are obtained using the
Marchenko method and equations (1) and (2), they are used
in equation (17) to obtain the local reflectivity. The zero-time
sample is then extracted to obtain the reflectivity at that ex-
act location, following equation (19). For comparison,we also
performed this approach using equation (20) instead of (17),
however, for the imaging result, there were no differences, as
is expected from the theory. Figure 5(b) shows the reflectivity
for each focal location for the inline direction and 5(d) shows
the same for the crossline direction. Conventional images for
the inline and crossline directions are shown in Figure 5(a,c),
respectively. As can be seen from the figure, the subsurface is
complex and hard to resolve.Due to the small frequency band-
width, the resolution of the images is limited, however, there
are still artefacts present caused by the internal multiples, as
indicated by the red arrows. The Marchenko imaging atten-
uates these artefacts, which shows that even on complex 3D
models, our marchenko3D code can produce good results. The
downside is that the computational costs remain high, even
if compressed reflection data are used. Imaging all the points
in the inline direction for a single depth level takes around
19,800 seconds or five and a half hours, running in parallel
on 40 Intel E5-2560 cores with a clock speed of 2.3 GHz on
a node using 256 GB of 2133 MHz RAM. Imaging the entire
3D medium using this approach may therefore prove too de-
manding unless a very powerful computing machine is avail-
able. A potential solution could be the use of graphics process-
ing units (GPUs) for the implementation of the Marchenko
method, which has shown promise for 2D Marchenko appli-
cations, for example in Koehne et al. (2021).
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Plane-wave Green’s function retrieval

Due to the high computational costs of creating 3D images in
the subsurface, it is hard to efficiently apply imaging in prac-
tice using virtual point sources. As an alternative to the stan-
dard Marchenko imaging, one can image an entire depth level
at once instead of just a single point. This can be achieved
through the use of virtual plane-wave sources instead of vir-
tual point sources.The idea of combining planewaves with the
Marchenko method was first proposed by Meles et al. (2018),
who applied the method with success in 2D settings. Here,
we wish to implement the approach for 3D settings. The con-
cept of the plane-wave method is that the focussing function
no longer focusses to a single focal location in the subsurface,
but rather to a focal depth. This gives a limited amount of
information because only certain angles of the wavefield are
considered. The plane-wave focussing functions f̃±

1 (x,pA, t )
are related to the focussing functions as

f̃±
1 (x, pA, t ) =

�

SA
f±
1 (x, xA, t − p · xH,A)dxA, (22)

where xH,A = (x1,A − x1,c, x2,A − x2,c), p = (p1, p2) and pA =
(p, x3,A). Here, p1 = sin	cos
/c and p2 = sin	sin
/c are the
horizontal ray parameters, where 	 is the dip angle, 
 is the
azimuth angle and c = c(x) is the propagation velocity of the
medium. x1,c and x2,c are the horizontal coordinates of the
central location of the plane-wave source. By including these
coordinates in the definition of xH,A, we ensure that the cen-
tre of the plane-wave source always has an emission time of
t = 0. Equation (22) states that the plane-wave focussing func-
tion f̃±

1 is the integral of the focussing functions f±
1 over all

possible focal points xA at SA for a certain dip and azimuth
given by the ray parameters. As such, f̃±

1 (x, pA, t ) does not
focus to a single location, but instead focusses as a dipping
wave, dictated by p, to a single depth level x3,A. In case the ray
parameters are zero, this wave is horizontal instead of dipping.

We also define the plane-wave Green’s functions
G̃−,±(xR, pA, t ) which are related to Green’s functions

G̃−,±(xR, pA, t ) =
�

SA
G−,±(xR, xA, t − p · xH,A)dxA. (23)

The plane-wave Green’s functions behave similar to the reg-
ular Green’s functions, however, instead of being the impulse
response of a point source, the plane-wave Green’s functions
are the response of a medium to a plane-wave source at x3,A,
which generates a dipping wave as dictated by the ray param-
eters.

The plane-wave versions of the focussing functions and
Green’s functions can be combined with the equations (1) and

(2) simply by applying the integration over all possible focal
points for a set of ray parameters

G̃−,+(xR, p′
A, t ) + f̃−

1 (xR, p′
A, t )

=
�

S0

� ∞

0
R(xR, xS, t ′) f̃+

1 (xS, p
′
A, t − t ′)dt ′dxS, (24)

G̃−,−(xR, pA, −t ) + f̃+
1 (xR,p′

A, t )

=
�

S0

� 0

−∞
R(x, xS, −t ′) f̃−

1 (xS, p
′
A, t − t ′)dt ′dxS. (25)

In these equations, we define p′
A = (−p, x3,A), which

all plane-wave wavefields contain with the exception of
G̃−,−(xR, pA, −t ). This is because this particular wavefield is
time-reversed in equation (2). The change to plane waves has
not affected the reflection response, only the focussing func-
tions and Green’s functions, which means that no changes to
the reflection response have to be made. Similar to the origi-
nal equations, the Green’s functions in the system of equations
(24) and (25) can be suppressed through the use of a win-
dowing function. The change to plane waves does affect the
causality relations however, especially because G̃−,−(xR, pA, t )
and G̃−,+(xR, p′

A, t ) are dipping at different angles. Hence, the
time window needs to be adjusted so the dipping plane waves
are properly handled (Meles et al., 2020). These windows are
defined as

�̃ = �̃(xR,pA, t ) = � (t − ta) − � (t − tb),

ta = −t̃d (xR, pA) + �,

tb = t̃d (xR, p′
A) − �,

(26)

where t̃d (xR, p′
A) is the first possible arriving event of

G̃−,+(xR, p′
A, t ) and −t̃d (xR, pA) is the last arriving event of

G̃−,−(xR, pA, −t ). As a result, the windowing function is no
longer symmetrical in time, instead, the window has parallel
planes. For a further derivation of this window, see Wapenaar
et al. (2021). Applying this window to equations (24) and (25)
results in the plane wave coupled Marchenko equations

f̃−
1 (xR, p′

A, t ) = �̃
�

S0

� ∞

0
R(xR, xS, t ′) f̃+

1 (xS, p
′
A, t − t ′)dt ′dxS,

(27)

f̃+
1 (xR, p′

A, t ) − f̃+
1,d (xR, p′

A, t )

= �̃
�

S0

� 0

−∞
R(xR, xS, −t ′) f̃−

1 (xS, p
′
A, t − t ′)dt ′dxS. (28)

Note that (27) and (28) have a very similar structure to
equations (6) and (7). They can therefore be solved with the
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same Marchenko method as was used for the point-source fo-
cussing functions. The only things that have to be adjusted are
the input and the windowing function. The first estimation of
the focussing function can once again be estimated using the
direct arrival

f̃+
1,0(xR,p′

A, t ) = f̃+
1,d (xR, p′

A, t ). (29)

However, because we cannot compute this first arrival di-
rectly, we have to model the direct arrival of Green’s function
and time-reverse it. The plane wave is modelled by placing
point sources along a horizontal plane in the medium of in-
terest and emitting with a time delay, so that the emission
time of a location along the horizontal plane is �(t − p · xH,A).
By taking the direct arrival of Green’s function, we obtain
G̃+

d (xR, pA, t ), which we can then relate to the direct arrival
of the focussing function as

f̃+
1,d (xR, p′

A, t ) = G̃d (xR, pA, −t ). (30)

Note that according to equation (30), the original ray
parameters that were used to model the plane-wave source
and obtain G̃d (xR, pA, t ) are the opposite of the ray parame-
ters that are included in the first estimation of the focussing
function f̃+

1,d (xR, p′
A, t ). Hence, when we use equation (25) to

obtain G̃−,−(xR,pA, t ), it is dipping according to the origi-
nal ray parameters and when we use equation (24) to obtain
G̃−,+(xR, p′

A, t ) it is dipping according to the opposite of the
original ray parameters.

We retrieve Green’s function in the subsurface at a depth
level of x3 = 1025 m. We use a plane wave that is dipping in
both the inline and the crossline direction as determined by ray
parameters p = (80,40)µs m−1. Because the velocity of the
medium varies at this depth, we cannot convert this to a sin-
gle angle, however, the majority of this depth level corresponds
to a velocity of 4500 m s−1. Using this velocity we calcu-
late a representative dip and azimuth angle, namely 	 = 23.6◦

and 
 = 26.6◦. In order to obtain the full Green’s function,
we run the Marchenko method twice, once using p to obtain
G̃−,−(xR, pA, t ) and once using −p to obtain G̃−,+(xR,pA, t ),
and use these results in equation (4). The initial estimation of
the focussing function f̃+

1,d (xR, p′
A, t ),whichwe obtained in the

exact model for accurate amplitudes, is shown in Figure 6(a),
while the full focussing function f̃2(p′

A, xR, t ) is shown in (b).
To construct this focussing function, we apply the plane-wave
definition to equation (3):

f̃2(p′
A, xR, t ) = f̃+

1 (xR, p′
A, t ) − f̃−

1 (xR, pA,−t ). (31)

The convergence of the Marchenko method using p is shown
as the dashed blue curve in Figure 3. If −p is used, the graph is

visually identical.Note that the method converges much faster
if a plane-wave source is used instead of a point source, this is
caused by the fact that only certain angles are covered by the
dipping plane wave, hence the amount of propagation direc-
tions that needs to be resolved is much lower. The full Green’s
function G̃(xR,pA, t ), which is obtained through the use of the
two runs of the Marchenko method is shown in Figure 6(c).

We compare the retrieved Green’s function to a reference
Green’s function G̃ref (xR, pA, t ), that was directly modelled in
the medium and is shown in Figure 6(d). Visually, the two
Green’s functions appear to be very similar. There are some
slight differences caused by curving events originating from
the edges of the aperture. These are caused by the modelling
of the plane-wave source as opposed to a point source. The
amplitude along the wavefront is nearly constant for a plane-
wave source, while for a point source it decreases near the
edges. Therefore, the edge effects are more pronounced for
the plane-wave sources.When the first arrival is isolated from
the coda, these effects are largely removed because they are
present in the coda, hence the difference in the results.

To further investigate the accuracy of the retrieved
Green’s function, we construct a similar figure as Figure 4,
where we display traces of the two Green’s function next to
each other. The result is shown in Figure 7. The accuracy
has decreased in comparison with the standard point-source
Green’s function retrieval, which is also a result from the
plane-wave set-up. The errors caused by placing the source
near the edges contribute more to the final result than when
point sources are used, hence the decrease in quality. Overall,
the match is still very strong, for both the amplitude and the
phase of the events.

Plane-wave imaging

We perform plane-wave imaging through the double-
focussing method, similar to equation (17). We apply the in-
tegral over all possible focal points, following (22) and (23),

R̃tar(xB, pA, t )

=
�

S0

� ∞

0
F+(xR, xB, t ′)G̃−,+(xR, pA, t − t ′)dt ′dxR. (32)

In equation (32), G̃−,+ and R̃tar are both plane-wave responses,
while F+ still is the focussing function related to a focal point
instead of a focal depth. We can use the redatumed receiver
response to formulate an image condition for each location in
the surface

r̃im(xB, pA) = R̃tar(xB, pA, t = p · xH,B). (33)
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Figure 6 (a) First arrival f̃+
1,d (xR, p′

A, t ), modelled in the exact medium, (b) focussing function f̃2(p′
A, xR, t ) and (c) Green’s function G̃(xR,pA, t ),

both obtained through use of the Marchenko method and (d) reference Green’s function G̃ref (xR, pA, t ), modelled directly in the exact medium.
All wavefields contain an 11 Hz Ricker wavelet, are clipped at the same value and pA = (80µs m−1, 40µs m−1, 1025m).

Here, r̃im(xB,pA) is the reflectivity in the subsurface at location
xB given a certain angle dictated by pA. The time sample that is
selected from the redatumed receiver response is changed, de-
pending on the angle of the incoming wave, which is required
due to the time-delay associated with the angle of the wave-
front. By choosing different values for pA, a reflection image
can be obtained for various angles.

Note that in order to obtain the correct angle-dependent
reflectivity, both F+(xR, xB, t ) and G̃−,+(xR, pA, t ) need to
have accurate amplitudes. As we mentioned, this is hard to
achieve using the Marchenko method in practice. As a result,
we will not retrieve the true angle-dependent reflectivity of
the subsurface, however, we can obtain a structural image of

the subsurface related to specific ray parameters. In order to
obtain the true angle-dependent reflectivity, equation (32) can
be rewritten as a deconvolutional process, similar to equation
(16), but this is beyond the scope of this paper, as we are in-
terested in efficiently obtaining a structural image of the sub-
surface.

The procedure using equation (32) has a notable disad-
vantage in that not only the plane-wave response needs to be
obtained, but also the focussing function for each focal point
in the subsurface, which means that the computational effort
compared to using equation (17) in fact increases. However,
if we instead use an approach similar to equation (20), we
can avoid the computation of the full focussing function. We
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