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Robust Stability and Performance Analysis of Incremental
Dynamic Inversion-based Flight Control Laws

T.S.C. Pollack∗, and E. van Kampen†

Delft University of Technology, 2629HS Delft, The Netherlands

Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-based control law design
strategy that is based on the principles of feedback linearization. Contrary to its non-incremental
counterpart (NDI), this design method does not rely on the availability of a high-fidelity on-board
model of the airframe dynamics and is robust to aerodynamic variations. Consequently, INDI
brings a natural and robust design approach to desirable flying qualities. However, robustness
to singular perturbations, which may arise due to transportation lags, elastic airframe effects,
or other types of badly modelled or unknown dynamics, is a known challenge for INDI-based
control laws. In this article, the general stability and performance robustness properties of
INDI and its linear form (IDI) are described analytically and analyzed in a flight control law
design study by means of the structured singular value frame framework. In addition, inversion
loop augmentation solutions are investigated using automated synthesis to further improve the
robustness characteristics of basic IDI designs.

I. Introduction

The development of aircraft flight control laws is a comprehensive and multidisciplinary activity, one that is generally
associated with significant effort and costs [1]. A primary reason is that flight control laws are subject to many,

often conflicting design objectives and requirements associated with the intended mission and vehicle safety, which
follow from overall program requirements and standards issued by airworthiness certification authorities [2, 3]. This
relates to several areas, including stability, flying qualities, dynamic structural mode interaction (SMI) [4], and structural
loads, and need to be complied with to various extents throughout the range of possible aircraft flight envelopes and
configurations, including failure conditions [2, 3]. Consequently, the size and complexity of the development task is
strongly dependent on the characteristics of the airframe and its desired capabilities.

In both the civil and military domain, industry has been able to successfully design and certify flight control laws for
a wide range of vehicles and applications. Many of these designs are based on the divide-and-conquer philosophy,
which relies on strictly linear design and analysis techniques applied to a range of linearized models of the airframe
dynamics obtained over a grid of trim conditions throughout the flight envelope. Among these techniques are classical
design methods such as one-loop-at-a-time frequency response shaping, root locus techniques, and gain scheduling, but
also multivariable control law synthesis and analysis techniques that are able to capture the multivariable nature of
the aircraft control problem, such as LQR/LQG and eigenstructure assignment design techniques [5–8]. However, the
combination of more demanding operating capabilities and a general need for shorter and more efficient design cycles
has put this proven design strategy under strain. The need for desirable flying qualities in (very) broad regions of the
flight envelope results in extensive gain scheduling schemes that significantly increase the complexity of the resulting
control law [9, 10]. Moreover, design and tuning of these flight control laws is strongly tied to the dynamics of the bare
airframe, which prohibits re-use over multiple airframes.

Nonlinear Dynamic Inversion (NDI) is a control law design technique that can address these challenges to a
considerable extent. NDI-based control laws incorporate an on-board model (OBM) representation of the airframe
dynamics, which allows the flying qualities design task to be performed in a largely isolated fashion. This natural
advantage has been recognized by industry as well and represents a key feature that makes NDI attractive as a production
control law design technique [10, 11]. However, NDI-based control laws come with several challenges of their own,
with control law complexity and robustness being particular areas of concern. For example, the aerodynamic database
associated with the vehicle dynamics can grow very large in size, in particular when the aircraft features a broad flight
envelope and can attain many different configurations. At the same time, the control law needs to be robust against
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modeling and scheduling errors, which may take serious forms especially in those conditions where the airframe
aerodynamics are nonlinear and known to only a limited extent.

Incremental NDI (INDI) seeks to address these limitations by reducing the need for detailed and accurate on-board
models of the airframe aerodynamics by using direct sensor measurements of the derivatives of the control variables
(CVs) instead. The only model information required by such control laws relates to the control effectiveness information
for control allocation purposes. Since the early work on this simplified form of NDI [12, 13], which only later became
more commonly known as INDI [14], the ease of implementation of this technique and its ability to guarantee flying
quality robustness in face of linear and nonlinear variations and uncertainties in the airframe aerodynamics has been
demonstrated repeatedly both in-simulation and during flight tests [15–19]. In addition, analytical proofs of nominal
and robust stability properties under external disturbances and regular perturbations have been established [20]. These
achievements show that INDI has real benefits for use in future production aircraft.

However, compared to traditional NDI, research has also shown that INDI has a relatively small stability robustness
margin when subjected to singular perturbations, such as transportation lags and other forms of unmodelled dynamics
that affect the sensor feedback paths [16, 21, 22]. In the context of the general flight control law development cycle, this
implies that stability and SMI requirements may be difficult to meet in practice. The contribution of this article is to
illustrate the stability and performance robustness properties of INDI-based flight control laws when subjected to both
regular and singular perturbations and to establish inversion loop design solutions that improve these properties.

The article is structured as follows. Section II describes the basic characteristics of INDI by investigating analytically
its general robustness properties in nonlinear and linear form. This sets the stage for a numerical case study in Section
III, where the robust stability and performance properties of IDI in its basic form are analyzed using the 𝜇-framework in
the context of a pitch rate control law for an open-access General Dynamics F-16 simulation model. This is followed by
a discussion in Section IV focused on augmentation techniques that enhance the robustness of basic IDI in a 𝜇-optimal
sense. The article is concluded in Section V.

II. Basic Properties of Incremental Nonlinear Dynamic Inversion
In this Section, the fundamental robustness characteristics of INDI are investigated and compared to its non-

incremental counterpart based on analytical derivations and insights. First, the derivation of the control law is reviewed
in Subsection II.A. The subject of robustness to parametric and dynamic uncertainties in the general nonlinear case is
treated in Subsection II.B. Subsection II.C limits the discussion to the linear case to arrive at additional insights.

A. Control Law Design
INDI-based control laws follow the general principles of feedback linearization, which enables the construction

of controllers in the sense of both input-output and full state linearization for either regulation or tracking purposes
for arbitrary relative degree [20, 23]. To enunciate the main ideas that makes INDI distinct from its non-incremental
counterpart, only a basic derivation of the control law limited to a class of square, input-affine nonlinear dynamical
systems with a common relative degree equal to one will be illustrated here. Such a system is closely representative of
the equations of motion of the rotational rates of an aircraft, for which INDI has been applied successfully in the past
[16]. Accordingly, consider a multi-input multi-output nonlinear system Σ of the form

Σ :

{
¤𝒙 = 𝒇 (𝒙) + 𝑮 (𝒙)𝒖
𝒚 = 𝒉(𝒙)

(1)

described by the state vector 𝒙 ∈ R𝑛, the input vector 𝒖 ∈ R𝑚, the observation vector 𝒚 ∈ R𝑚, and smooth mappings
𝒇 , 𝑮, and 𝒉. Leveraging the assumption on relative degree stated earlier, the output dynamics can be described as [20]

¤𝒚 =


L 𝑓 ℎ1 (𝒙)

...

L 𝑓 ℎ𝑚 (𝒙)

 +

L𝑔1ℎ1 (𝒙) . . . L𝑔𝑚ℎ1 (𝒙)

...
. . .

...

L𝑔1ℎ𝑚 (𝒙) . . . L𝑔𝑚ℎ𝑚 (𝒙)

 𝒖 = 𝜶(𝒙) + B(𝒙)𝒖 (2)

where L 𝑓 ℎ𝑖 (𝒙) and L𝑔𝑖 ℎ𝑖 (𝒙) represent the Lie derivatives of the function ℎ𝑖 along the vectors fields 𝑓 and 𝑔𝑖 ,
with 𝑔𝑖 being a column vector of the matrix 𝑮 [23]. For traditional feedback linearization, this expression can be used
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directly to construct a control law that linearizes the input-output dynamics to a set of 𝑚 parallel integrators. Assuming
that the control effectiveness matrix B(𝒙) is invertible,

𝒖 = B̂−1 (𝒙) [𝝂 − 𝜶̂(𝒙)] (3)

where 𝜶̂(𝒙) and B̂(𝒙) represent on-board model estimates of 𝜶(𝒙) and B(𝒙), respectively, and 𝝂 ∈ R𝑚 is the
pseudo-control term that corresponds to the output of an auxiliary control law that has been designed to meet the control
objectives. To obtain an analogous control law in incremental form instead, one common approach is to perform a Taylor
expansion of the output dynamics around the system state at time 𝑡 − Δ𝑡 [20, 24], where Δ𝑡 represents the sampling
interval. Denoting this condition by the subscript 0 for ease of notation yields the expression

¤𝒚 = ¤𝒚0 +
𝜕 [𝜶(𝒙) + B(𝒙)𝒖]

𝜕𝒙

����
0
(𝒙 − 𝒙0)︸    ︷︷    ︸

Δ𝒙

+ B(𝒙0) (𝒖 − 𝒖0)︸    ︷︷    ︸
Δ𝒖

+ 𝑹1 (4)

where 𝑹1 represents the expansion remainder. Consequently, the time-scale separation assumption can be leveraged
to design the incremental control input Δ𝒖, which assumes that all state-dependent and residual terms can be neglected
[14, 16, 20, 21]. In practice, this is justified in case high sampling rates and high-bandwidth actuators are available. The
control law is completed by adding the control vector 𝒖0 to the resulting incremental term:

𝒖 = 𝒖0 + B̂−1 (𝒙0)
[
𝝂 − ¤𝒚0

]
(5)

Note that compared to its non-incremental counterpart from Equation 3, the resulting control law does not require
any model information on 𝜶(𝒙) but uses sensor feedback of the previous control vector and the derivative of the control
variable instead. It has been demonstrated by other authors that the incremental form can also be leveraged for the more
general class of nonlinear systems that are not affine in the input [24].

B. Robustness Properties
Let the true output dynamics associated with the system described by Equation 1 be formulated as

¤𝒚 = [𝜶̂(𝒙) + 𝝃 (𝒙)] +
[
B̂(𝒙) + 𝚵(𝒙)

]
𝒖 (6)

where the mappings 𝝃 and 𝚵 represent additive regular perturbation terms which, by definition, do not change the
order 𝑛 of the system [20]. These terms represent known or unknown variations with respect to the model representations
that are embedded in the dynamic inversion control law, and are assumed to be bounded. The system input is modelled
as the control law output perturbed by an arbitrary causal perturbation 𝚫 which smoothly maps bounded input signals
𝒛 ∈ R𝑚 to bounded outputs 𝒘 = 𝚫𝒛 ∈ R𝑚 [23]. This perturbation represents a class of unmodelled or neglected
dynamics that exist in cascade with the system described by Equation 1, and may be associated with actuation devices or
neglected high-order structural modes, for example [7, 9]. In the case of traditional NDI, the input takes the form of

𝒖 = (𝑰 + 𝚫) B̂−1 (𝒙) [𝝂 − 𝜶̂(𝒙)] (7)

Substituting this expression in Equation 6 results in the following description of the closed-loop dynamics [9]:

¤𝒚 = 𝝂 + (𝝃 (𝒙) +D(𝒙,𝚫) [𝝂 − 𝜶̂(𝒙)]) ≜ 𝝂 + 𝝐𝑁𝐷𝐼 (𝒙, 𝝂,𝚫) (8)

where the term D(𝒙,𝚫) is given by

D(𝒙,𝚫) = 𝚵(𝒙)B̂−1 (𝒙) + B̂(𝒙)𝚫B̂−1 (𝒙) + 𝚵(𝒙)𝚫B̂−1 (𝒙) (9)

The residual term 𝝐𝑁𝐷𝐼 is in analogy with the terminology introduced in [20], and represents the closed-loop
residual dynamics that emerge due to non-ideal dynamic inversion in the presence of regular and dynamic perturbations.
In consequence of the assumptions made earlier on the boundedness of the individual terms, 𝝐𝑁𝐷𝐼 has an upper bound
𝜖𝑁𝐷𝐼 under bounded virtual control 𝝂. However, its magnitude can be relatively large, which indicates poor robustness
properties. This is a widespread concern for control laws based on traditional NDI [10, 20, 23].

Considering the incremental form, a more general situation is considered to be able to analyze the effect of multiple
dynamic perturbations in different locations of the feedback system. In line with the early work by Smith [12], writing
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𝒖0 = (𝑰 + 𝚫1) 𝒖 and ¤𝒚0 = (𝑰 + 𝚫2) ¤𝒚, with 𝚫𝑖 representing smooth, causal mappings as before, and assuming that 𝒙0 = 𝒙,
the system input associated with the INDI-based control law given by Equation 5 can be expressed as

𝒖 = (𝑰 + 𝚫1) 𝒖 + B̂−1 (𝒙) [𝝂 − (𝑰 + 𝚫2) ¤𝒚] (10)

This form can be used to analyze a broad class of perturbation configurations: in particular, it enables direct analysis
of the synchronization effect, which is notorious for incremental control laws and has been reported repeatedly in the
literature [15, 16, 21]. By substituting the relationship between 𝒖 and ¤𝒚, which is directly obtained from Equation 6, an
explicit description of the closed-loop output dynamics can be found:

¤𝒚 = 𝝂 + (𝑰 −D1 (𝒙,𝚫1) + 𝚫2)−1 [D1 (𝒙,𝚫1) (𝝂 − [𝜶̂(𝒙) + 𝝃 (𝒙)]) − 𝚫2𝝂]
≜ 𝝂 + S(𝒙,𝚫1,𝚫2)−1 [D1 (𝒙,𝚫1) (𝝂 − [𝜶̂(𝒙) + 𝝃 (𝒙)]) − 𝚫2𝝂]
≜ 𝝂 + 𝝐 𝐼𝑁𝐷𝐼 (𝒙, 𝝂,𝚫1,𝚫2)

(11)

where D1 (𝒙,𝚫1) is given by

D1 (𝒙,𝚫1) = B̂(𝒙)𝚫1

(
B̂(𝒙) + 𝚵(𝒙)

)−1
(12)

This result sheds light on several robustness properties. In particular, if 𝒖 and ¤𝒚 can be accurately measured, the
closed-loop system will be highly robust against regular perturbations in the output dynamics. The assumption that the
control effectiveness matrix and its on-board model estimate are invertible should be emphasized here. If the L2-gain of
the perturbations 𝚫𝑖 is expressed as 𝛾𝑖 and it holds that

𝛾1


B̂(𝒙)



 


[B̂(𝒙) + 𝚵(𝒙)
]−1




 + 𝛾2 < 1 (13)

then, the upper bound on the L2 norm of the residual term 𝝐 𝐼𝑁𝐷𝐼 can be shown to be

∥𝝐 𝐼𝑁𝐷𝐼 ∥ ≤

(
𝛾1



B̂(𝒙)


 


[B̂(𝒙) + 𝚵(𝒙)

]−1



 + 𝛾2

)
∥𝜈∥ + 𝛾1



B̂(𝒙)


 


[B̂(𝒙) + 𝚵(𝒙)

]−1



 ∥𝜶̂(𝒙) + 𝝃 (𝒙)∥

1 − 𝛾1


B̂(𝒙)



 


[B̂(𝒙) + 𝚵(𝒙)
]−1




 − 𝛾2

(14)

Consequently, it holds that the upper bound on ∥𝝐 𝐼𝑁𝐷𝐼 ∥ goes towards zero as 𝛾𝑖 → 0, independently of 𝝃 (𝒙) and
𝚵(𝒙). This illustrates the relative benefit of INDI over its non-incremental counterpart. However, the condition given
by Equation 13 is overly conservative and cannot be met in practice due to the presence of actuator dynamics and
finite sampling times, for example. Therefore, the relative time-scale properties of Σ and the perturbations should be
considered in general. Along this line, it has been shown by Wang et al. [25] that 𝝐 𝐼𝑁𝐷𝐼 remains bounded independently
of 𝝃 (𝒙) if



𝚵(𝒙)B̂(𝒙)−1


 < 1 in case the digital nature of the control system is considered.

Equation 11 also shows that the mapping S needs to be non-singular for 𝝐 𝐼𝑁𝐷𝐼 to remain bounded, which limits the
permissible perturbation dynamics. This is a direct manifestation of the synchronization effect and requires careful
consideration by the designer. Considering the extreme case where 𝚫1 is zero, for example, 𝝐 𝐼𝑁𝐷𝐼 remains bounded if
and only if 𝚫2 ≠ −𝑰. This is in contrast with traditional NDI, for which an upper bound on the inversion residual can
always be found under the assumptions stated earlier. To ensure boundededness and therefore stability of an INDI-based
control system, a possible design solution is to ensure that D1 (𝒙,𝚫1) = 𝚫2, in which case it holds that 𝑺 = 𝑰 and

𝝐 𝐼𝑁𝐷𝐼 (𝒙,𝚫2) = −𝚫2 [𝜶̂(𝒙) + 𝝃 (𝒙)] (15)

This idea will be referred to as the matching strategy and is in line with the main design philosophy that has been
adopted in the past [15, 16, 21]. With this procedure, the inversion residual will be nonzero for nonzero 𝚫2. Nevertheless,
the norm of 𝝐 𝐼𝑁𝐷𝐼 will be small if 𝚫2 is small in magnitude in the operating time-scale of Σ, which is in line with the
time-scale separation assumption that underlies the derivation of the control law.

C. Linear State Space Formulation
The basic robust stability and performance properties of INDI can be further understood by analyzing the state space

representation of the closed-loop dynamics in case the plant Σ, the perturbations 𝚫𝑖 , and the control law are considered
to be linear. Accordingly, the linear open-loop system will be considered in normal form [26]:
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Σ :


¤𝝃 = 𝑹𝝃 + 𝑻𝜼 + 𝑩𝒖

¤𝜼 = 𝑷𝝃 + 𝑸𝜼

𝒚 = 𝝃

(16)

Writing the perturbation interconnections explicitly and considering the incremental dynamic inversion (IDI) control
law in linear form, it follows that Equation 11 is equivalently described by



¤𝝃
¤𝜼

𝝐 𝐼𝐷𝐼

𝒛1

𝒛2


=



0 0 𝑰 𝑩̂ −𝑰
𝑷 𝑸 0 0 0
0 0 0 𝑩̂ −𝑰

−𝑩−1𝑹 −𝑩−1𝑻 𝑩−1 𝑩−1 𝑩̂ −𝑩−1

0 0 𝑰 𝑩̂ −𝑰





𝝃

𝜼

𝝂

𝒘1

𝒘2


,

[
𝒘1

𝒘2

]
=

[
𝚫1 0
0 𝚫2

] [
𝒛1

𝒛2

]
(17)

The resulting formulation enables direct verification of the stability of the closed-loop system and the performance
properties of the mapping from 𝝂 to 𝝐 𝐼𝐷𝐼 for all perturbations in the uncertainty set. Likewise, if 𝚫𝑖 represents a series
interconnection of two dynamical systems 𝚪𝑖 and 𝚫̄𝑖 , where it is known that



𝚫̄𝑖



 ≤ 1 and

Γ𝑖 :

{
¤𝒒𝑖 = 𝑨𝒊𝒒𝑖 + 𝑩𝒊 𝒛𝑖

𝒛̄𝑖 = 𝑪𝒊𝒒𝑖 + 𝑫𝒊 𝒛𝑖
(18)

then, Equation 17 extends to



¤𝝃
¤𝜼
¤𝒒1
¤𝒒2

𝝐 𝐼𝐷𝐼

𝒛̄1

𝒛̄2


=



0 0 0 0 𝑰 𝑩̂ −𝑰
𝑷 𝑸 0 0 0 0 0

−𝑩1𝑩
−1𝑹 −𝑩1𝑩

−1𝑻 𝑨1 0 𝑩1𝑩
−1 𝑩1𝑩

−1 𝑩̂ −𝑩1𝑩
−1

0 0 0 𝑨2 𝑩2 𝑩2 𝑩̂ −𝑩2

0 0 0 0 0 𝑩̂ −𝑰
−𝑫1𝑩

−1𝑹 −𝑫1𝑩
−1𝑻 𝑪1 0 𝑫1𝑩

−1 𝑫1𝑩
−1 𝑩̂ −𝑫1𝑩

−1

0 0 0 𝑪2 𝑫2 𝑫2 𝑩̂ −𝑫2





𝝃

𝜼

𝒒1

𝒒2

𝝂

𝒘1

𝒘2


,

[
𝒘1

𝒘2

]
=

[
𝚫̄1 0
0 𝚫̄2

] [
𝒛̄1

𝒛̄2

]
(19)

In this context, Γ𝑖 represents an uncertainty weight that places an upper bound on the L2-gain of 𝚫. This expression
is an example of the basic framework that enables evaluation of the linear robustness properties of IDI-based control
systems and is fundamental to the analyses presented in Sections III and IV. As a special case, consider the situation
where 𝚫̄𝑖 is described by a deterministic (unity) input-output mapping. This implies that the perturbation dynamics can
be described by a known form. Then, the closed-loop dynamics can be expressed as



¤𝝃
¤𝜼
¤𝒒1
¤𝒒2

𝝐 𝐼𝐷𝐼


=



−𝑺−1𝑫̃1𝑹 −𝑺−1𝑫̃1𝑻 𝑺−1 𝑩̂𝑪1 −𝑺−1𝑪2 𝑺−1

𝑷 𝑸 0 0 0
−𝑩1 (𝑺𝑩)−1 𝑬1𝑹 −𝑩1 (𝑺𝑩)−1 𝑬1𝑻 𝑨1 + 𝑩1 𝑺̃

−1
𝑪1 −𝑩1 (𝑺𝑩)−1 𝑪2 𝑩1 (𝑺𝑩)−1

−𝑩2𝑺
−1𝑫̃1𝑹 −𝑩2𝑺

−1𝑫̃1𝑻 𝑩2𝑺
−1 𝑩̂𝑪1 𝑨2 − 𝑩2𝑺

−1𝑪2 𝑩2𝑺
−1

−𝑺−1𝑫̃1𝑹 −𝑺−1𝑫̃1𝑻 𝑺−1 𝑩̂𝑪1 −𝑺−1𝑪2 𝑺−1 − 𝑰





𝝃

𝜼

𝒒1
𝒒2

𝝂


(20)

where

𝑺 ≜ 𝑰 − 𝑫̃1 + 𝑫2, 𝑺̃ ≜ 𝑩̂
−1
𝑺𝑩, 𝑫̃1 ≜ 𝑩̂𝑫1𝑩

−1, 𝑬1 ≜ 𝑫̃1 + 𝑺 (21)
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Regarding the synchronization effect, several conclusions can be drawn from this result. Consider the situation
where 𝚪2 arise because of proper dynamics 𝑲2 in the feedback path, which is often the case in practice. Then, it holds
that 𝚪2 = 𝑲2 − 𝑰, which implies 𝑫2 = −𝑰. Consequently, it follows that 𝑺 is singular if 𝑫1 is zero, which leads to the
conclusion that 𝝐 𝐼𝐷𝐼 will be undetermined (infinitely large in the limit) in the absence of any compensating perturbation
dynamics 𝚪1. As a second observation, consider the case where it holds that 𝚪1 = 𝑲1 − 𝑰 in addition, with 𝑲1 again
proper, such that 𝑫1 = −𝑰. Then, Equation 20 reduces to



¤𝝃
¤𝜼
¤𝒒1
¤𝒒2

𝝐 𝐼𝐷𝐼


=



𝑹 𝑻 𝑩𝑪1 −𝑲𝑩𝑪2 𝑲𝑩

𝑷 𝑸 0 0 0
0 0 𝑨1 + 𝑩1𝑪1 −𝑩1𝑩

−1𝑲𝑩𝑪2 𝑩1𝑩
−1𝑲𝑩

𝑩2𝑹 𝑩2𝑻 𝑩2𝑩𝑪1 𝑨2 − 𝑩2𝑲𝑩𝑪2 −𝑩2𝑲𝑩

𝑹 𝑻 𝑩𝑪1 𝑲𝑩𝑪2 𝑲𝑩 − 𝑰





𝝃

𝜼

𝒒1
𝒒2

𝝂


(22)

where 𝑲𝑩 ≜ 𝑩𝑩̂
−1. This result enables direct verification of the robust stability and performance properties of 𝝐 𝐼𝐷𝐼

when subjected to parametric uncertainties in 𝑲1, 𝑲2, and the system control effectiveness matrix 𝑩. Of special interest
is the lower-right part of the state transition matrix, which provides direct insight into the properties of the eigenmodes
associated with synchronization:

𝚿 ≜

[
𝑨1 + 𝑩1𝑪1 −𝑩1𝑩

−1𝑲𝑩𝑪2

𝑩2𝑩𝑪1 𝑨2 − 𝑩2𝑲𝑩𝑪2

]
(23)

If the characteristic roots of 𝚿 are sufficiently distant from the eigenmodes of Σ, which can be argued to hold if
the time-scale separation assumption holds, the synchronization dynamics of the closed-loop system can be assessed
independently. Furthermore, if Σ and the control law do not feature any coupling between input-output channels,
which holds for diagonal control systems, using an appropriate change of variables enables direct assessment of the
synchronization dynamics without any information of Σ. In this case, isolating individual channels, 𝚿 reduces to

𝚿̄𝑆𝐼𝑆𝑂 ≜

[
𝑨1 + 𝑩1𝑪1 −𝑘𝐵𝑩1𝑪2

𝑩2𝑪1 𝑨2 − 𝑘𝐵𝑩2𝑪2

]
(24)

where the scalar nature of each channel is reflected by the scalar scaling factor 𝑘𝐵. This simple result can be used to
immediately verify the impact of proper high-order dynamics on 𝝐 𝐼𝐷𝐼 . Since the scaling factor cannot be factored out
from the expression, the synchronization dynamics will be affected if the control effectiveness undergoes unmodeled
variations. This is independent from how 𝑲1 and 𝑲2 are selected.

III. Basic Incremental Dynamic Inversion Robustness Assessment
The discussion from the previous Section is continued by a numerical robustness assessment and comparison of

linear INDI (IDI)-based flight control laws. The scope is limited to a single flight condition that is well within the
interior of the service flight envelope. The case study is described in Subsection III.A, which gives an overview of the
control system elements and the design requirements. Both Dynamic Inversion (DI) and IDI designs are discussed, for
which the results are described in Subsections III.B and III.C, respectively.

A. Problem formulation
The numerical evaluation is based on a linear dynamic inversion (DI) based pitch rate control law design for an

open-access simulation model of the General Dynamics F-16 [27, 28] and is closely in line with the analysis presented
in [7]. The non-linear aircraft model has been trimmed and linearized around a flight condition of Mach 0.5 at 10,000
feet altitude, with the center of gravity located at 38% relative to the mean aerodynamic chord (MAC), resulting in a
trim angle-of-attack of 2.6 degrees. To simplify the analysis, the linear model has been reduced to the short-period mode
only. It is assumed that the horizontal tailplane is moved symmetrically by an actuation system that can be represented
by a first-order lag with a time constant of 1/60 seconds. In addition, it is assumed that measurements of pitch rate,
pitch acceleration, angle-of-attack, and horizontal tail position are all available to the control law.
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Fig. 1 Control system interconnection structure

The bare airframe and flight control system hardware are subject to both regular and dynamic uncertainties. The
pitch rate equations of motion are affected by variations in the angle of attack stability derivative 𝑀𝛼 and control
effectiveness 𝑀𝛿ℎ , which may deviate up to ±75% and ±25% from their nominal values, respectively. These parametric
variations are denoted by 𝛿. Multiplicative dynamic uncertainties are present at the actuator (act) and bare airframe (ba)
input channels and serve as lumped representations of any high-order, additional dynamics that may be present in the
control system. These may be caused by processing delays, elastic deformation of the actuation mechanism or airframe,
or sensor uncertainties, for example. In line with [7], the following uncertainty weights are selected:

𝑊𝑎𝑐𝑡 (𝑠) = 𝑊𝑏𝑎 (𝑠) = 𝐾0
𝜏𝑙𝑎𝑔

𝜏𝑙𝑒𝑎𝑑

𝑠 + 𝜏𝑙𝑒𝑎𝑑
𝑠 + 𝜏𝑙𝑎𝑔

(25)

with 𝐾0 = 0.1, 𝜏𝑙𝑎𝑔 = 5, and 𝜏𝑙𝑒𝑎𝑑 = 100 seconds, respectively. With these weights, each uncertainty imposes an
upper bound of 10% model error in steady state conditions and grows beyond 100% error at frequencies above 50 rad/s.

The control system is subject to a range of performance requirements in terms of tracking error and disturbance
rejection, which shall be robustly met given the uncertainties present in the system. A primary design goal is to ensure
that the closed-loop short-period response follows the desired dynamics, which is based on existing flying quality
requirements that can be found in airworthiness standards and guidelines such as MIL-STD-1797 [2]. Here, the desired
dynamics are limited to the small-amplitude pitch rate response to stick input only:

𝑊𝑟𝑒 𝑓 (𝑠) =
𝑞𝑟𝑒 𝑓 (𝑠)
𝛿𝑙𝑜𝑛 (𝑠)

=
𝐾𝑞 (𝑇𝜃2 𝑠 + 1)

𝑠2 + 2𝜁𝑠𝑝𝜔𝑠𝑝𝑠 + 𝜔2
𝑠𝑝

(26)

The desired values are set to 𝑇𝜃2 = 1.0 seconds, 𝜔𝑠𝑝 = 4.0 rad/s, and 𝜁𝑠𝑝 = 1.0, which is in line with Level-1 flying
quality specifications for category A flight phases for this class of aircraft [2]. The tracking error between the desired
and actual pitch rate response is penalized by a weighting filter𝑊𝑇𝐸 , which takes the form of

𝑊𝑡𝑒 (𝑠) =
𝜔𝑥

𝑠 + 𝐾0𝜔𝑥

+ 𝐾−1
∞ (27)

where 𝜔𝑥 = 1 rad/s represents the gain crossover frequency, and 𝐾0 = 0.2 and 𝐾∞ = 30 determine the steady-state
and high-frequency tracking error bounds, respectively. Exogenous atmospheric disturbances are appropriately shaped
using the following weighting filter, which represents a first-order approximation of the Dryden gust model [7]:

𝑊𝑑𝑖𝑠𝑡 (𝑠) =
(

180
𝜋

1
𝑉𝑡0

)
4

𝑠 + 0.2
(28)

In addition to the dynamic inversion loop, the control law consists of a two degree-of-freedom (DOF) linear control
structure to achieve accurate tracking of pilot stick commands. It includes a proportional-integral (PI) feedback regulator
for stabilization and disturbance rejection, a command reference model that describes the desired dynamics, and a
feedforward path that enables more accurate tracking of the reference signal. The regulator gains assume constant
values of 𝐾𝑃 = 7.0 and 𝐾𝐼 = 2.0 and have been designed manually, with the all-loops-broken crossover frequency and
the phase lag induced by the integrator as main design goals. Figure 1 shows the block diagram representation of the
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control system interconnection structure∗. Note that control allocation is furnished simply by inversion of the nominal
control effectiveness term 𝑀𝛿ℎ .

B. Dynamic Inversion
The dynamic inversion variant of the control law makes use of a model-based estimate of the angular acceleration,

¤̂𝑞 = 𝑚̂𝛼𝛼 + 𝑚̂𝑞𝑞 + 𝑚̂ 𝛿ℎ𝛿ℎ (29)

where the on-board representations of the short-period stability and control derivatives correspond to the unperturbed
airframe dynamics. With this setup, the synchronization compensation loop will cancel out the contribution of the
horizontal tail position in the control law. It is assumed that the angle-of-attack measurement does not contain any
additional uncertainty associated with imperfect air data measurements. Figures 2a and 2b visualize the nominal step
response and all-loops broken (path A) frequency response of the resulting control architecture.

In order to quantify robust stability and performance levels, the interconnection machinery described in Subsection
II.C is applied to describe the generalized DI-based control system. Given the structured and mixed nature of the
uncertainty formulation, the structured singular value (𝜇) is used as the main analysis instrument [29]. The Matlab®
Robust Control Toolbox™ (version 6.9) serves as the primary software tool [30]. The upper and lower bounds of 𝜇 as
returned by the 𝐷𝐺-scaling procedure are shown in Figures 2c and 2d. The results show that whereas robust stability is
met for the entire uncertainty set, the performance requirements are not. In the low-to-medium frequency region, the

∗It should be noted that the dynamic perturbations are located in the forward path here, as opposed to Subsections II.B and II.C.

(a) Step response (b) Broken-loop frequency response

(c) Stability and performance margins (d) Robust performance breakdown

Fig. 2 Overview of basic Dynamic Inversion-based (DI) control system properties

8

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
4,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

13
95

 



robust performance deficit is dominated by parametric uncertainty in the stability and control derivatives; by contrast,
robust stability and performance levels at medium-to-high frequencies are constrained by the dynamic actuator and
airframe uncertainties Δ. Note that increasing the outer loop gain improves robustness to aerodynamic uncertainty at
the cost of robust stability at high frequencies.

C. Incremental Dynamic Inversion
The above analysis is repeated to examine the robustness properties of a basic variant of the incremental dynamic

inversion architecture. This implementation does not include any additional processing of the horizontal tail position and
angular acceleration measurements, which implies that the synchronization compensation and acceleration estimation
blocks in Figure 1 are unity in this case. Figures 3a and 3b show the step response and broken-loop frequency responses
of the basic IDI-based control law. These are equivalent to the model-based DI control system, except for the broken-loop
response after closing the actuator feedback loop(s). The latter reveals that applying IDI effectively results in a high-gain
control system at the level of the bare airframe, which explains its robustness to aerodynamic uncertainties. This
observation is confirmed by the 𝜇-analysis, as shown in Figures 3c and 3d. Attainable robust performance levels are
significantly improved in the low-to-medium frequency range compared to DI, which can be directly attributed to the
increased robustness to aerodynamic variations. However, this comes at the cost of robust stability, which cannot be met
as a result of the dynamic actuator and airframe uncertainties and represents a direct manifestation of the synchronization
effect described in Sections II.B and II.C. This result also confirms that outer loop regulator gains could be reduced
when INDI is adopted, which has been reported earlier in the literature [16].

(a) Step response (b) Broken-loop frequency response

(c) Stability and performance margins (d) Robust performance breakdown

Fig. 3 Overview of basic Incremental Dynamic Inversion-based (IDI) control system properties
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IV. 𝜇-optimal Robust Incremental Dynamic Inversion Augmentation Techniques
In this Section, mixed 𝜇-synthesis of the incremental inversion loop is used in the F-16 short-period design problem

to identify and assess design strategies that augment the basic incremental dynamic inversion loop such that 𝜇-optimal
robust performance levels are achieved. Three principal design degrees-of-freedom form the basis of the discussion.
Synchronization of filter design elements is considered first in Subsection IV.A, where full-order synthesis is used to
leverage full design flexibility. This is followed by an investigation of filter structure in Subsection IV.B, where the
scope is limited to synchronous designs. In addition, Subsection IV.C concentrates on alternative architectures that use
supplemental model information to further augment the basic incremental inversion loop. Subsection IV.D concludes
the discussion.

A. Synchronization Compensation
The preceding Sections have made evident that adequate compensation of the synchronization effect forms a

key factor in the design of incremental control laws. Subsection II.B explained the relevance of the mapping S and
introduced the matching procedure as a simple, but effective method to ensure stability. In case of uncertainty, accurately
matching perturbing dynamics is improbable. Therefore, it is of interest to assess how the synchronization effect shall
be accounted for in a 𝜇-optimal fashion in light of the regular and dynamic uncertainties and performance requirements
that define the control system design problem. In this view, the following two design architectures are considered:

𝑢̃
(𝑎𝑠𝑦𝑛𝑐)
𝑓

= 𝐾 ( ¤𝑞0, 𝛿ℎ0 ), 𝑢̃
(𝑠𝑦𝑛𝑐)
𝑓

= 𝐾 (𝑢̃0) (30)

where 𝐾 represents the feedback filter augmentation system and 𝑢̃0 forms the basic combined IDI feedback signal,

(a) Broken-loop frequency response (asynchronous) (b) Broken-loop frequency response (synchronous)

(c) Stability and performance margins (asynchronous) (d) Stability and performance margins (synchronous)

Fig. 4 Full-order 𝜇-optimal augmented IDI-based control system properties
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as expressed by

𝑢̃0 =
1
𝑚̂ 𝛿ℎ

¤𝑞0 − 𝛿ℎ0 (31)

In the asynchronous variant, the control law has been configured such that the angular acceleration and horizontal tail
position feedback filter design elements can be designed independently. By contrast, the synchronous variant represents
a more constrained architecture in the sense that matching of the filter dynamics is enforced. By doing this comparison,
an insight into the relative limitations of the synchronous implementation, which has seen successful applications in the
past, can be obtained.

Mixed 𝜇-synthesis with 𝐷𝐺𝐾-iteration [29] from the Matlab® Robust Control Toolbox™ [30] is used to obtain the
results presented in Figure 4. A brief summary of the most relevant information can also be found in Table 1. The
asynchronous and synchronous high-order control systems returned by the optimizer are obtained after 10 and 8 iterations,
respectively. Figures 4c and 4d show that both design variants yield solutions that satisfy the performance requirements
in a robust sense, with peak 𝜇̄ not exceeding the unity threshold value. Examining the diagrams more closely reveals
that the optimized robust performance levels obtained for either implementation are in fact very close, which implies
that the optimizer did not manage to extract more performance from the additional design degree-of-freedom in the
asynchronous case. Consequently, imposing synchronous filter dynamics appears not to impose severe limitations on
the robust performance potential of the IDI-based control law, which confirms that the application of the matching
strategy to filter design forms a reasonable design philosophy for managing the synchronization effect.

It is of additional interest to examine the SISO broken-loop response of the synchronous variant in Figure 4b.
Compared to the basic design as shown in Figure 3b, it is evident that the all-loops broken responses are equivalent and
that the loop shape after closing the actuator loop reflects the principal trade-offs associated with the design problem. In
particular, the gain crossover frequency 𝜔𝑐 has moved to a lower region, while the low-to-medium frequency high gain
characteristics that govern the robustness of the IDI control law against real perturbations have been largely maintained.
Adequate phase margin in the crossover region has also been preserved.

B. Low-order Synchronous Designs
The control laws returned by the automated synthesis procedure presented in the previous Subsection are of very

high order, which is a known characteristic of the 𝐷𝐺𝐾-iteration procedure. In this light, low-order, fixed structure filter
designs that can be implemented in practice need to be considered instead. The Matlab ® Robust Control Toolbox™
offers the possibility to optimize fixed-order controller structures through the use of tunable control design blocks [30],
which is the procedure followed here. In view of the preceding discussion, the synchronous architecture will be adopted.
The following fixed structures are selected, which correspond to second-order lag-lead and low-pass filters:

𝐾 (𝑠) =
𝑢̃ 𝑓 (𝑠)
𝑢̃0 (𝑠)

= 𝐾1 (𝑠) =
𝑢 𝑓 (𝑠)
𝑢0 (𝑠)

= 𝐾2 (𝑠) =
¤𝑞 𝑓 (𝑠)
¤𝑞0 (𝑠)

=
𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0

𝑠2 + 𝑏1𝑠 + 𝑏0
(32)

𝐾 (𝑠) =
𝑢̃ 𝑓 (𝑠)
𝑢̃0 (𝑠)

= 𝐾1 (𝑠) =
𝑢 𝑓 (𝑠)
𝑢0 (𝑠)

= 𝐾2 (𝑠) =
¤𝑞 𝑓 (𝑠)
¤𝑞0 (𝑠)

=
𝜔2
𝑛

𝑠2 +
√

2𝜔𝑛𝑠 + 𝜔2
𝑛

(33)

The reason for selecting these forms is that they are closely in line with previous successful designs [15, 16, 21].
The lag-lead architecture offers considerably more flexibility compared to the low-pass design, for which only break
frequency 𝜔𝑛 forms the available tuning parameter. The mixed 𝜇-synthesis results are presented in Figure 5.

With both designs, the performance requirements are met for the entire uncertainty set. However, the peak 𝜇̄ of
the low-pass architecture is higher compared to the lag-lead form, which shows very similar performance levels when
compared to the full-order designs presented earlier. This forms a direct consequence of the additional design flexibility
and is also reflected by the broken-loop response diagrams in Figures 5c and 5d, which show that both the gain crossover
frequency and phase margins are lower for the low-pass filter design option. Comparing both optimized filter designs in
Figure 5b leads to the conclusion that the smaller phase "reach back" associated with the lag-lead variant represents a key
attribute. This demonstrates that mitigating phase distortions in the rigid-body frequency range should be considered as
a design guideline, which is in line with the time-scale separation assumption that underlies the derivation of the control
law. Still, these results also confirm that using synchronous low-pass filters should be viewed as a reasonable strategy
when designing incremental dynamic inversion-based control laws.
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(a) Step responses (b) Optimized filter designs

(c) Broken-loop frequency response (lag-lead) (d) Broken-loop frequency response (low-pass)

(e) Stability and performance margins (lag-lead) (f) Stability and performance margins (low-pass)

Fig. 5 Overview of low-order 𝜇-optimal augmented IDI-based control system properties

C. Reinstating Model Information
Although the matching strategy to filter design is shown to be successful in improving the overall robustness

properties of IDI-based control laws, this comes at the cost of an enlarged inversion residual even in the nominal
situation. This raises the question if and to what extent this disadvantage can be mitigated. Equation 15 suggests that the
inversion residual can be further decreased by reintroducing model information of the bare airframe dynamics in the
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(a) Internal model feedback (AM)
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u
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(b) Control command feedback (CC)

Fig. 6 Alternative synchronization compensation strategies

form of a complementary augmentation element. This approach is formulated in [31] as hybrid INDI. It is of interest to
investigate how this design method can improve upon the preceding sensor-based inversion strategies. Additionally,
there may be circumstances where direct actuator measurements may not be available, which implies that the control
system architecture from Figure 1 does not apply. In this case, another form of input signal feedback needs to be found.
An internal model representation of the nominal actuator dynamics 𝐻𝑎 (𝑠) would provide a solution here, which has
been introduced in the past [15]. This strategy is illustrated in Figure 6, together with a closely related design option
that adopts direct control command feedback instead. Both variants will be compared in performance to the designs
presented earlier.

First, the hybrid inversion strategy is investigated. Any information that is distorted or lost as a result of the filter
feedback augmentation system 𝐾 is compensated for by adding complementary model information of the plant dynamics.
Using this design method, it can be shown that, in the nominal case where the control effectiveness is known and the
synchronous perturbation mapping 𝚫2 is fully compensated, the inversion residual expressed by Equation 15 reduces to

𝝐 𝐼𝑁𝐷𝐼 (𝒙,𝚫2) = −𝚫2𝝃 (𝒙) (34)

The sensitivity of this outcome in the presence of uncertainty is again considered by analyzing 𝜇. Based on the
insights from [31], the following design is used for the F-16 design problem considered here:

¤𝑞 𝑓 𝑏 (𝑠) = 𝐾 (𝑠) ¤𝑞(𝑠) + (1 − 𝐾 (𝑠)) ¤̂𝑞(𝑠) ≜ 𝐾 (𝑠) ¤𝑞(𝑠) + 𝐾 ′(𝑠) ¤̂𝑞(𝑠) (35)

where 𝐾 (𝑠) is selected as the low-pass filter design from Equation 33 and ¤̂𝑞(𝑠) follows from Equation 29. The same
form is applied to the horizontal tail position feedback signal, which leads to a unity synchronization filter. Figure 7
shows the results from a batch 𝜇-analysis where the break frequency 𝜔𝑛 has been selected as the running variable. This
diagram confirms that as the break frequency reduces, which corresponds to closer operating time-scales between the

Fig. 7 Peak 𝜇̄ trends as function of low-pass break
frequency for sensor-based (𝑆𝐵) and hybrid (𝐻𝐵) IDI
designs

Fig. 8 Optimal 𝜇̄ levels for basic and low-order
synthesized IDI using actuator sensor (𝐴𝑆), actuator
model (𝐴𝑀), or control command (𝐶𝐶) feedback
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Table 1 Summary of control system peak robust performance levels and nominal broken-loop response
characteristics [actuator feedback closed (B); 𝝎𝒄 - gain crossover frequency; 𝑷𝑴 - phase margin]

Inversion design method Sync. compensation 𝝁̄∗
𝑹𝑷 [-] 𝝎𝒄 [rad/s] 𝑷𝑴 [deg]

Dynamic Inversion (DI) n/a 2.10 5.98 83.5
Incremental Dynamic Inversion (IDI) Actuator sensor 1.59 60.3 84.0

Actuator model 1.71 60.3 84.0
IDI augmentation - full-order synthesized designs
Asynchronous Actuator sensor 0.858 12.5 53.6
Synchronous Actuator sensor 0.869 15.3 48.7
IDI augmentation - low-order synthesized designs
Lag-lead, synchronous Actuator sensor 0.879 17.4 59.6

Actuator model 0.793 14.7 79.2
Control command 0.789 14.6 81.2

Low-pass, synchronous Actuator sensor 0.958 13.0 49.3
Actuator model 0.977 10.9 50.9
Control command 0.981 10.2 49.5

plant and filter feedback augmentation system, the presented hybrid approach results in enhanced levels of nominal and
robust performance for similar stability margins. However, the general conclusion remains that for maximum robust
performance, filters shall be tuned sufficiently fast to meet the time-scale separation assumption. Therefore, in this
case, adding complementary model information does not yield significant optimal performance benefits other than an
improved nominal response. Also, some performance degradation can be expected for the hybrid approach in case of
imperfect air data measurements, which is likely in practice [9].

Secondly, the alternative synchronization strategies from Figure 6 are analyzed. Figure 8 illustrates the relative
peak performance levels, where both basic (no filter augmentation) and optimized low-order designs are considered.
Comparing these to the results presented earlier, it can be seen that both strategies deliver satisfactory robust performance
levels if adequate filtering is in place. Therefore, viable designs may be found even in case no actuator sensor
instrumentation is available. In case of sufficient bandwidth separation between the nominal actuator dynamics and
augmentation filters, even the use of an internal model may not be required.

D. Overview
An overview of the numerical results presented in the preceding Sections is shown in Table 1. The matching strategy

has been found to be an adequate strategy for handling the synchronization effect in the presence of dynamic uncertainty.
Robustness against aerodynamic variations is largely maintained and is not heavily affected by adopting low-order
designs. This also holds in case internal actuator models are used, if adequate feedback filters are in place.

V. Conclusion
The stability and performance robustness properties of incremental nonlinear dynamic inversion (INDI) when

subjected to both regular and singular perturbations have been investigated in this article. For traditional Nonlinear
Dynamic Inversion (NDI), the inversion residual that arises under these perturbations may grow large in magnitude,
but can always be described by an upper bound under modest assumptions. By contrast, INDI shows improved
robustness to regular perturbations, but its inversion residual may grow unbounded for particular combinations of
singular perturbations. This corresponds to a loss of robust stability as a result of the synchronization effect. By
introducing additional augmentation to sensor feedback signals, the overall robustness properties of INDI can be further
improved.

A linear control law design study based on the structured singular value (𝜇) framework confirms that IDI features
increased levels of robustness to aerodynamic uncertainties, at the expense of robust stability due to singular perturbations.
The matching strategy, which has been applied successfully in the past, is shown to be a reasonable design method to
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compensate for the synchronization effect and compares closely in terms of optimized robustness levels to less-constrained
asynchronous design options. The use of additional model information as a form of complementary augmentation can
further improve the design in case the time-scale separation assumption is violated due to low-bandwidth feedback
filter designs. In case actuator sensor measurements are not available, alternative synchronization strategies can lead to
adequately performing designs.
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