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As a sensor-based control method, incremental nonlinear dynamic inversion (INDI) has been applied to various

aerospace systems and has shown desirable robust performance against aerodynamicmodel uncertainties. However,

its previous derivation based on the time scale separation principle has some limitations. There is also a need for

stability and robustness analysis for INDI. Therefore, this paper reformulates the INDI control lawwithout using the

time scale separation principle and generalizes it for systems with arbitrary relative degree, with consideration of the

internal dynamics. The stability of the closed-loop system in the presence of external disturbances is analyzed using

Lyapunov methods and nonlinear system perturbation theory. Moreover, the robustness of the closed-loop system

against regular and singular perturbations is analyzed. Finally, this reformulated INDI control law is verified by a

Monte Carlo simulation for an aircraft command tracking problem in the presence of external disturbances and

model uncertainties.

I. Introduction

N ONLINEAR dynamic inversion (NDI) is a nonlinear control
approach that cancels the system nonlinearity by means of

feedback, which results in entirely or partly linearized closed-
loop system dynamics, to which conventional linear control
techniques can then be applied [1,2]. This method is essentially
different from the widely used Jacobian linearization around
specific operating points in combination with gain-scheduled
linear controllers, whose stability and performance become
questionable between operational points. To achieve an exact
dynamic cancellation, the NDI control method requires an
accurate knowledge of the nonlinear system dynamics. Such a
requirement is almost impossible to meet in reality due to model
simplifications, computational errors, and external disturbances.
This main drawback of NDI motivated many control technologies
to improve its robustness. One popular approach is combining
NDI with linear robust control techniques such as structural
singular value μ analysis [3,4] and H∞ synthesis. Although these
techniques have brought benefits to regular NDI, not all the
uncertainties are taken into account, or some known nonlinear
time-varying dynamics are treated as uncertainties [5]. Therefore,
the closed-loop systems can be either marginally or overly
conservative in performance and stability robustness [5]. There
also exist many attempts at using indirect adaptive control
methods to improve the robustness of NDI [6]. Indirect adaptive
control methods, in some form or the other, rely on online
identification, which requires online excitations and selection of

thresholds. However, the stability of indirect adaptive NDI is not
guaranteed [6,7].
Incremental nonlinear dynamic inversion (INDI) is a sensor-

based control method, which requires less model information in
both qualitative and quantitative senses, thus improving the system
robustness against model uncertainties. The concept of this method
originates from the late 1990s and was previously referred to as
simplified NDI [8] and modified NDI [9]. INDI control has been
elaborately applied to various aerospace systems [7,10–22].
Regarding its applications on aerospace systems, the INDI
method was normally used for the inner-loop angular rate control
[7,10–12,18–20,23], where the relative degree for each control
channel equals 1. The internal dynamics are then avoided by using a
cascaded control structure, which is a common practice in flight
control system designs [7,11,14,18–20]. However, the stability of
cascaded control structures is not easy to prove because of its
dependency on the time scale separations between different control
loops. Also, this cascaded control structure is unsuitable for some
problems. For example, it is neither physically meaningful nor
practical to separate the higher-order aeroelastic dynamics into
cascaded loops.
The existing derivations of the INDI control law are based on the

so-called time scale separation principle, which is actually different
from the widely used separations based on singular perturbation
theories. In [7,10–20], this separation concept was claimed as the
controls can change significantly faster than the states. The nonlinear
dynamic equations describing the plant dynamics are then simplified
into linear incremental dynamic equations by omitting state-
variation-related terms and higher-order terms in their Taylor series
expansions, based on which the incremental control inputs are
designed. This approach is not mathematically rigorous because the
plant simplification is made before introducing the INDI control
inputs and thus becomes deficient for unstable plants. Moreover,
although the state-variation-related terms and higher-order terms are
not used in the INDI controller design, they should be kept in the
closed-loop dynamic equations and remain influencing the closed-
loop system stability and performance, which is also not the case in
the literature.
Furthermore, despite the numerically verified robustness of INDI

to aerodynamic model uncertainties [10,15,21] and disturbances
[13–15,21], its previous theoretical stability and robustness proofs
have some drawbacks. These previous attempts drew the stability
conclusions based on the linear transfer functions derived from block
diagrams [10,13,14], where inappropriate assumptions are made.
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The influences of disturbances and uncertainties on the internal

dynamics also remain unknown in the literature.
In this paper, the INDI control in the literature is reformulated

for systems with arbitrary relative degree, without using the time

scale separation principle. The stability and robustness of the

reformulated INDI is then analyzed using Lyapunov-based

methods. Finally, this reformulated INDI is compared with NDI

both analytically and numerically, considering model uncertainties

and external disturbances.
This paper is structured as follows. Section II reformulates the

INDI control law for three different problems. The stability and

robustness issues of INDI are discussed in Sec. III. The effectiveness

of the reformulated INDI is numerically verified in Sec. IV. Main

conclusions are presented in Sec. V.

II. Reformulations of Incremental Nonlinear
Dynamic Inversion

In this section, the incremental nonlinear dynamic inversion

(INDI) control method will be reformulated for three problems,

namely the input–output linearization, output tracking, and input-to-

state linearization in the presence of external disturbances.

A. Input–Output Linearization

Consider a multi-input/multi-output nonlinear system described

by

_x � f�x� � G�x�u
y � h�x� (1)

where f : Rn → Rn and h: Rn → Rp are smooth vector fields.G is a

smooth function mapping Rn → Rn×m, whose columns are smooth

vector fields. When p < m, which means that the number of outputs

is smaller than the number of inputs, control of this system via

input–output linearization is an overdetermined problem, where a

control allocation technique is needed. On the other hand, p > m
yields an underdetermined problem. Although a weighted least-

squaresmethod can be used to solve underdetermined problems, the

desired control aims cannot be fully achieved. p � m is assumed in

the following derivations.
Denote the elements of h as hi, i � 1; 2; : : : ; m, and the column

vectors of the matrix G as gj, j � 1; 2; : : : ; m. Then, the Lie

derivatives [2] of the functionhiwith respect to thevector fields f and

gj are defined as

Lfhi �
∂hi
∂x

f ; Lgjhi �
∂hi
∂x

gj;

Lk
fhi �

∂�Lk−1
f hi�
∂x

f ; LgjL
k
fhi �

∂�Lk
fhi�
∂x

gj (2)

The relative degree ρi for each output channel i is defined as

the smallest integer such that, for all x ∈ Rn, at least one j ∈
f1; 2; : : : ; mg satisfies LgjL

ρi−1
f hi ≠ 0.

Define the vector relative degree [24] of the system as

ρ � �ρ1; ρ2; : : : ; ρm�T , which satisfies

ρ � kρk1 �
Xm
i�1

ρi ≤ n (3)

then the output dynamics of the system can be represented as

2
66666664

y�ρ1�1

y�ρ2�2

..

.

y�ρm�m

3
77777775
�

2
66666664

Lρ1
f h1�x�

Lρ2
f h2�x�
..
.

Lρm
f hm�x�

3
77777775

�

2
66666664

Lg1L
ρ1−1
f h1�x� Lg2L

ρ1−1
f h1�x� · · · LgmL

ρ1−1
f h1�x�

Lg1L
ρ2−1
f h2�x� Lg2L

ρ2−1
f h2�x� · · · LgmL

ρ2−1
f h2�x�

..

. ..
. ..

.

Lg1L
ρm−1
f hm�x� Lg2L

ρm−1
f hm�x� · · · LgmL

ρm−1
f hm�x�

3
77777775
u

(4)

or

y�ρ� � α�x� �B�x�u (5)

If ρ � n, then the system given by Eq. (1) is full-state feedback
linearizable. Otherwise, there are n − ρ internal dynamics
unobservable from the output y. According to the Frobenius
theorem [25], ∀ x� ∈ Rn, there exist smooth functions ϕ�x� �
�ϕ1�x�;ϕ2�x�; : : : ;ϕn−ρ�x��T defined in a neighborhood D0 of x�
such that

∂ϕk

∂x
gj�x� � 0; ∀ k ∈ f1; 2; : : : ; n − ρg; ∀ j ∈ f1; 2; : : : ; mg;

∀ x ∈ D0 (6)

Also, z � T�x� defined by

z� T�x� � �T1�x�;T2�x�� � �η;ξ�; η�ϕ�x�; ξ� �ξ1;ξ2; : : : ;ξm�;
ξi �

h
hi�x�;Lfhi�x�; : : : ;Lρi−1

f hi�x�
i
T
; i� 1;2; : : : ;m (7)

is a diffeomorphism on the domain D0 [2,25]. η and ξ are the state
vectors for the internal and external dynamics, respectively. Using
Eqs. (5–7), the nonlinear system described by Eq. (1) can be
transformed into

_η � f0�η; ξ� �
∂ϕ
∂x

f�x�
����
x�T−1�z�

_ξ � Acξ�Bc�α�x� �B�x�u�
y � Ccξ (8)

where Ac � diagfAi
0g, Bc � diagfBi

0g, Cc � diagfCi
0g, i �

1; 2; : : : ; m, and (Ai
0, B

i
0, C

i
0) is a canonical form representation of

a chain of ρi integrators.
AssumeB�x� is nonsingular; otherwise, p � mwould still lead to

an underdetermined problem. The nonlinear dynamic inversion
(NDI) linearization is designed as u � B−1�x��ν − α�x��, where
ν ∈ Rm is called the pseudocontrol input. In the absence of model
uncertainties and disturbances, this linearization results in the closed-
loop system

_η � f0�η; ξ�
_ξ � Acξ� Bcν

y � Ccξ (9)

which indicates that this closed-loop system has n − ρ internal
dynamics andm decoupled channels. The input–output mapping for
each channel from νi to yi is a chain of ρi integrators.
NDI linearization, however, is based on the exact mathematical

cancellation of the nonlinear terms α�x� and B�x�. This is almost
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impossible in practice due to model simplifications, computational

errors, and external disturbances. One method to reduce the control

law model dependency is incremental nonlinear dynamic inversion

(INDI), which will be reformulated here. Take the first-order Taylor

series expansion of Eq. (5) around the condition at t − Δt (denoted by
the subscript 0) as

y�ρ� � α�x� �B�x�u

� y�ρ�0 � ∂�α�x� �B�x�u�
∂x

����
0

Δx�B�x0�Δu�O�Δx2�

� y�ρ�0 �B�x0�Δu� δ�z;Δt� (10)

where Δx and Δu represent the state and control increments in one

sampling time step Δt. δ�z;Δt� is given by

δ�z;Δt� �
�
∂�α�x� �B�x�u�

∂x

����
0

Δx�O�Δx2�
�����

x�T−1�z�
(11)

Design the incremental control input as

Δu � B−1�x0��ν − y�ρ�0 � (12)

where y�ρ�0 is measured or estimated. The total control command for

the actuator is u � u0 � Δu. Substituting Eq. (12) into Eq. (10)

results in the input–output mapping of y�ρ� � ν� δ�z;Δt�. Using
the same diffeomorphism z � T�x�, the closed-loop system

dynamics under INDI linearization are given by

_η � f0�η; ξ�
_ξ � Acξ� Bc�ν� δ�z;Δt��
y � Ccξ (13)

which is consistent with Eq. (9), except for the perturbation term

δ�z;Δt�. Because x is continuously differentiable, the norm value of

δ�z;Δt� can be reduced by increasing the sampling frequency. The

influence of δ�z;Δt� on system stability and robustness will be

elaborated in Sec. III. Although Eq. (9) under NDI control seems to

be neat, perturbation terms will appear whenmodel uncertainties and

external disturbances are considered, which will also be shown in

Sec. III. As compared to the conventional NDI control law, the INDI

control method is less sensitive to model mismatches because α�x� is
not used in Eq. (12). On the other hand, this INDI control law needs

the measurement or estimation of y�ρ�0 and the actuator position u0;
this is why INDI control is referred to as a sensor-based approach.

B. Output Tracking

INDI control can also be designed for the command tracking

problem. Consider the nonlinear plant [Eq. (1)] with relative degree

ρ � �ρ1; ρ2; : : : ; ρm�T , which can be transformed into the internal and

external dynamics given by Eq. (8). The output tracking problem

requires the output y to asymptotically track a reference signal

r�t� � �r1�t�; r2�t�; : : : ; rm�t��T . Assume that ri�t�, i � 1; 2; : : : ; m
and its derivatives up to r�ρi�i �t� are bounded for all t, and r�ρi�i �t� is
piecewise continuous. Denote the reference and the tracking error

vectors as

R � �R1;R2; : : : ;Rm�; Ri �
h
ri; r

�1�
i ; : : : ; r�ρi−1�i

i
T
;

i � 1; 2; : : : ; m; e � ξ −R (14)

Using the definitions of the Ac and Bc matrices and the

formulation ofR, it can be derived thatAcR − _R � −Bcr
�ρ�, with

r�ρ� � �r�ρ1�1 ; r�ρ2�2 ; : : : ; r�ρm�m �T . Therefore, Eq. (8) can be transformed

into

_η � f0�η; e�R�
_e � Ace�AcR − _R� Bc�α�x� �B�x�u�
� Ace� Bc

h
α�x� �B�x�u − r�ρ�

i
(15)

The NDI control for output tracking is designed as

u � B−1�x�
h
ν − α�x� � r�ρ�

i
(16)

When perfect model cancellation is assumed, this NDI control law

results in the closed-loop system

_η � f0�η; e�R�; _e � Ace� Bcν (17)

On the other hand, by using Eq. (10), the INDI control for output

tracking is designed as

Δu � B−1�x0�
h
ν − y�ρ�0 � r�ρ�

i
(18)

which leads to the closed-loop system as

_η � f0�η; e�R�; _e � Ace� Bc�ν� δ�z;Δt�� (19)

The closed-loop system dynamics given by Eqs. (13) and (19) are

essentially the same. Only the equilibrium point of z � �η; ξ� � 0 is
shifted to z 0 � �η; e� � 0, and so similar stability and robustness

analyses can be made.

C. Input-to-State Linearization Under Disturbance Perturbations

Consider a special case of input–output linearization by taking the

outputs as yi � hi�x� � xi − xi�, i � 1; 2; : : : ; m, or equally

y � H�x − x��, where H is a Boolean selection matrix, and x� is

the equilibrium point. This choice of output results in a so-called

symmetrical system [24], where allm channels have the same relative

degree ρi � 1, and the total relative degree is ρ � m. When m < n,
there are n −m internal dynamics.
Adding the disturbance perturbation d ∈ Rn into the nonlinear

plant [Eq. (1)] as

_x � f�x� � G�x�u� d

y � H�x − x�� (20)

Recall Eq. (7); because ρi � 1, the external states are given by

ξi � hi�x� � xi − xi�, i � 1; 2; : : : ; m, with dynamics

_y � _ξ � �f�ξ� � �G�ξ�u�Hd (21)

where �f : Rm → Rm and �G: Rm → Rm×m can be calculated by

substituting xi � ξi � xi�, i � 1; 2; : : : ; m into Eq. (20). Take the

first-orderTaylor series expansion of the external dynamic equations as

_ξ � �f�ξ� � �G�ξ�u�Hd

� _ξ0 �
∂� �f�ξ� � �G�ξ�u�

∂ξ

����
0

Δξ� �G�ξ0�Δu�HΔd�O�Δξ2�

� _ξ0 � �G�ξ0�Δu�HΔd� δ�ξ;Δt� (22)

In the preceding equation, the remainder termO is only a function of

Δξ2. This is because the higher-order partial derivatives ∂i _ξ∕∂ui and
∂i _ξ∕∂di for i ≥ 2 are all equal to zero. Design the incremental control

law asΔu � �G−1�ξ0��ν − _ξ0�; the closed-loop external dynamics are

formulated by

_ξ � ν�HΔd� δ�ξ;Δt� (23)

Analogously, usingEq. (6), the internal dynamics under disturbance

perturbations are given by
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_η � ∂ϕ
∂x

�f�x� � G�x�u� d� � ∂ϕ
∂x

�f�x� � d� � fd�η; ξ;d�
(24)

where fd�η; ξ;d�: Rn−ρ × Rρ × Rn → Rn−ρ. Choosing ϕ�x�� � 0,
the diffeomorphism z � T�x� � �η; ξ� transforms the equilibrium
x � x� into the origin point z � �η; ξ� � 0.
When d � 0, the input-to-state linearized closed-loop system

dynamics given by Eqs. (23) and (24) are a special case of Eq. (13). It
can also be observed from Eqs. (23) and (24) that the disturbance d
influences the external dynamics only by its incrementsΔd, whereas
it directly influences the internal dynamics. Most external
disturbances in real life are continuous; thus, limΔt→0kdk2 � 0. In
other words, when d ≠ 0, ∃Δt, such that kΔdk2 < kdk2. This is
another feature of INDI control, in which the main part of the
disturbance influences have already been included by previous
measurements and compensated by the controller. This control
method thus presents improved disturbance rejection ability as
verified by simulations [15,21] and flight tests [13,14]. This feature
of INDI will be further analyzed in Sec. III.

III. Stability and Robustness Analysis

The stability and robustness of the reformulated INDI control will
be analyzed in this section. In the first subsection, the influences of
the state-variation-related terms on closed-loop system stability will
be discussed. The second subsection discusses the system robustness
to regular and singular perturbations.

A. Stability Analysis

In this subsection, the stability of the origin z � 0 of closed-loop
system given by Eq. (13) under INDI control will be analyzed.
Similar conclusions can be drawn for systems modeled by Eq. (19)
and Eqs. (23) and (24) without disturbances. The closed-loop system
under the perturbations of external disturbances and model
uncertainties will be analyzed in Sec. III.B. The proofs in this section
also assume ideal actuators and perfect sensing. The actuator
dynamics, nonlinear limits of actuators, and the sensing issues will
also be discussed in Sec. III.B.
Design the pseudocontrol ν � −Kξ, such that Ac −BcK is

Hurwitz; Eq. (13) results in

_η � f0�η; ξ�
_ξ � �Ac−BcK�ξ� Bcδ�z;Δt� (25)

where the output equation is dropped because it plays no role in the
stabilization problem.
Remark: The term δ�z;Δt� in Eq. (10) or the term δ�ξ;Δt� in

Eq. (22) is directly omitted in the literature [7,10–20] by claiming that
the Δz (or Δξ) related term is smaller than the Δu related term when
the sampling frequency is high, which is referred to as the time scale
separation principle (different from the widely used separation
principle based on singular perturbation theory). This statement is not
mathematically rigorous and is especially deficient for unstable
nonlinear plants because the plant simplifications are made before
designing the INDI control inputs. Consequently, the simplified
(by omitting terms) incremental dynamic equations fail to adequately
model the plant dynamics. Moreover, although these terms are
dropped out for the convenience of controller design, they should be
kept in the closed-loop system equations and remain influencing
the stability and performance, which has been overlooked in the
literature.
Consider the following system as the nominal system:

_η � f0�η; ξ�
_ξ � �Ac−BcK�ξ (26)

whose stability has been extensively proved in the literature and is
listed here for completeness.

Lemma 1: The origin of Eq. (26) is asymptotically stable if the

origin of _η � f0�η; 0� is asymptotically stable.
_η � f0�η; 0� is referred to as the zero dynamics, and the nonlinear

system is said to be minimum phase if its zero dynamics has an

asymptotically stable equilibrium point.
Lemma2:The origin of Eq. (26) is globally asymptotically stable if

the system _η � f0�η; ξ� is input-to-state stable.
The proofs for Lemma 1 and Lemma 2 can be found in [2]. After

presenting stability of the nominal system, the stability of the

perturbed system given by Eq. (25) will be considered. Recall

Eq. (11); the norm value of the perturbation term is

kδ�x;Δt�k2 � kδ�z;Δt�jz�T�x�k2
�

����∂�α�x� �B�x�u�
∂x

����
0

Δx�O�Δx2�
����
2

(27)

Assume the partial derivatives of α�x� and B�x� with respect to x
up to any order are bounded. Because of the continuity of x,

limΔt→0kΔxk2 � 0

Therefore, the perturbation term satisfies

lim
Δt→0

kδ�z;Δt�k2 � 0; ∀ z ∈ Rn (28)

which means that the norm value of this perturbation term becomes

negligible for sufficiently high sampling frequency. Equation (28)

also indicates that ∀ �δε > 0, ∃Δt > 0, such that for all 0 < Δt ≤ Δt,
∀ z ∈ Rn,∀ t ≥ t0, kδ�z;Δt�k2 ≤ �δε. In other words, there exists aΔt
that guarantees the boundedness of δ�z;Δt�. Also, this bound can be
further diminished by increasing the sampling frequency.
Theorem 1: If kδ�z;Δt�k2 ≤ �δε is satisfied for all z ∈ Rn, and

_η � f0�η; ξ� is input-to-state stable, then the state z of Eq. (25) is

globally ultimately bounded by a class K function of �δε.
Proof: Choose the candidate Lyapunov function as V�ξ� � ξTPξ,

where P � PT > 0 is the solution of the Lyapunov equation

P�Ac − BcK� � �Ac −BcK�TP � −I; then, V�ξ� is positive-

definite and satisfies

α1�kξk2� ≤ V�ξ� ≤ α2�kξk2�
α1�kξk2� ≜ λmin�P�kξk22; α2�kξk2� ≜ λmax�P�kξk22 (29)

λmin�P�, λmax�P� are the minimum and maximum eigenvalues of

the P matrix. α1, α2 belong to the class K∞ functions. The time

derivative of the candidate Lyapunov function is calculated as

_V � ξT �P�Ac −BcK� � �Ac −BcK�TP�ξ� 2ξTPBcδ�z;Δt�
≤ −kξk22 � 2kξk2kPBck2 �δε

≤ −θ1kξk22; ∀ kξk2 ≥
2kPBck2 �δε
1 − θ1

≜ μ1 �δε (30)

with constant θ1 ∈ �0; 1�. Consequently, for ∀ ξ�t0� ∈ Rρ, there

exists a classKL function β and finite T1 ≥ 0 independent of t0 such
that kξ�t�k2 satisfies [2]

kξ�t�k2 ≤ β�kξ�t0�k2; t − t0�; t0 ≤ ∀ t ≤ t0 � T1

kξ�t�k2 ≤ α−11 �α2�μ1 �δε��; ∀ t ≥ t0 � T1 ≜ t 00 (31)

The preceding equations indicate that the external state ξ is

bounded for all t ≥ t0 and is ultimately bounded by Γ�δε ≜
α−11 �α2�μ1 �δε�� �

����������������������������������
λmax�P�∕λmin�P�

p
μ1 �δε.

Moreover, by the definition of input-to-state stability, there exists

a class KL function β0 and a class K function γ0 such that, for

∀ η�t 00� ∈ Rn−ρ and bounded input ξ, the internal state η satisfies
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kη�t�k2 ≤ β0
�
kη�t 00�k2; t − t 00

�
� γ0

	
sup
t 0
0
≤τ≤t

kξ�τ�k2



� β0
�
kη�t 00�k2; t − t 00

�
� γ0�Γ�δε� (32)

In addition, because β0 belongs to class KL functions,

β0�kη�t 00�k2; t − t 00� ≤ θ2 �δε, for some finite T2 > 0 and θ2 > 0.
Hence, the state z satisfies

kz�t�k2 ≤ kξ�t�k2 � kη�t�k2 � �Γ� θ2��δε � γ0�Γ�δε�;
∀ t ≥ t0 � T1 � T2 (33)

which proves that z�t� is globally ultimately bounded by a class K
function of �δε. This completes the proof. □

Theorem 1 has no restriction on the values of the initial state and

the perturbation bound �δε. However, when the internal dynamics
_η � f0�η; ξ� is not input-to-state stable, but only the origin of the zero
dynamics _η � f0�η; 0� is exponentially stable, then there will be

restrictions on both the initial state and the perturbations. These

phenomena are presented in Theorem 2.
Theorem 2: If kδ�z;Δt�k2 ≤ �δε is satisfied for all z ∈ Rn, and the

origin of _η � f0�η; 0� is exponentially stable, then there is a

neighborhood Dz of z � 0 and ε� > 0, such that, for every z�0� ∈
Dz and �δε < ε�, the state z of Eq. (25) is ultimately bounded by a class

K function of �δε.
Proof: According to the converse Lyapunov theorem [2], because

the origin of _η � f0�η; 0� is exponentially stable, there exists a

Lyapunov function V2�η� defined inDη � fη ∈ Rn−ρjkηk < rηg that
satisfies the inequalities

c1kηk22 ≤ V2�η� ≤ c2kηk22;
∂V2

∂η
f0�η; 0� ≤ −c3kηk22;���� ∂V2

∂η

����
2

≤ c4kηk2 (34)

for some positive constants c1, c2, c3, c4. Denote

α 0
1�kηk2� ≜ c1kηk22; α 0

2�kηk2� ≜ c2kηk22 (35)

then α 0
1, α

0
2 belong to classK∞ functions. Furthermore, because f0 is

continuous and differentiable, there exists a Lipschitz constant L of

f0 with respect to ξ such that

kf0�η; ξ� − f0�η; 0�k2 ≤ Lkξk2; ∀ kηk < rη (36)

Choose V2�η� as the candidate Lyapunov function for
_η � f0�η; ξ�, with derivative

_V2�η� �
∂V2

∂η
f0�η; 0� �

∂V2

∂η
�f0�η; ξ� − f0�η; 0��

≤ −c3kηk22 � c4Lkηk2kξk2
≤ −c3�1 − θ3�kηk22;

c4Lkξk2
c3θ3

≤ ∀ kηk2 ≤ rη (37)

with constant θ3 ∈ �0; 1�. Denote

μ ≜
c4L

c3θ3

	
sup
t 0
0
≤τ≤t

kξ�τ�k2


≜ θ5

	
sup
t 0
0
≤τ≤t

kξ�τ�k2



(38)

then

_V2�η� ≤ −c3�1 − θ3�kηk22; μ ≤ ∀ kηk2 ≤ rη; ∀ t ≥ t 00 (39)

Because the conditions for the external states ξ are the same as

compared to Theorem 1, Eqs. (29), (30), and (31) also hold true in this

theorem. From Eq. (31), the supremum of the external state is

given by

sup
t 0
0
≤τ≤t

kξ�τ�k2 � α−11

�
α2�μ1 �δε�

�
(40)

Take 0 < r < rη such thatDr ⊂ Dη; according to the boundedness

theories [2], if

μ < α 0−1
2 �α 0

1�r��; kη�t 00�k2 ≤ α 0−1
2 �α 0

1�r�� (41)

then there exists a class KL function β 0
0 such that

kη�t�k2 ≤ β 0
0

�
kη�t 00�k2; t − t 00

�
� α 0−1

1 �α 0
2�μ��; ∀ t ≥ t 00 (42)

Equation (41) proposes requirements on both the initial condition

and the perturbation bound. Using Eqs. (38), (40), and (41), the

maximum perturbation that the system can sustain is given by

�δε < ε� ≜ �1∕μ1�α−12
�
α1
�
�1∕θ5�α 0−1

2 �α 0
1�r��

��
(43)

From Eqs. (38), (40), and (42), the normal value of the internal

state yields

kη�t�k2 ≤ β 0
0

�
kη�t 00�k2; t− t 00

�
� α 0−1

1

�
α 0
2

�
θ5α

−1
1 �α2�μ1 �δε��

��
≤ θ6 �δε � θ5α

0−1
1

�
α 0
2

�
α−11 �α2�μ1 �δε��

��
; ∀t ≥ t0 � T1 � T3

(44)

for some finite T3 > 0 and θ6 > 0. Hence, state z satisfies

kz�t�k2 ≤ kξ�t�k2 �kη�t�k2
� �Γ� θ6��δε � θ5α

0−1
1

�
α 0
2

�
α−11 �α2�μ1 �δε��

��
; ∀t ≥ t0 �T1 �T3

(45)

which proves that z�t� is ultimately bounded by a classK function of
�δε. This completes the proof. □

B. Robustness Analysis

1. Disturbance Rejection

The INDI control method has promising disturbance rejection

ability, as has beenverified by both simulations [15,21] and quadrotor

flight tests [13,14]. However, there is a lack of theoretical proof for

the stability of the closed-loop system using INDI control under the

perturbation of external disturbances. These issues will be discussed

in this subsection.
Normally, the external disturbances are bounded in real life.

Denote

�d ≜ supfkd�t�k2;d ∈ Rng; ∀ t ≥ t0 (46)

which is independent of the sampling interval Δt. Most external

disturbances in real life are continuous; thus, limΔt→0kdk2 � 0.
Therefore, for a given sampling rate, the supremum of kΔdk2 exists.
Denote

�dε�Δt� ≜ supfkΔd�t�k2;Δd ∈ Rng; ∀ t ≥ t0 (47)

As a function of Δt, �dε�Δt� can be reduced by increasing the

sampling frequency. Recall the system modeled by Eqs. (23) and

(24), and design the pseudocontrol as ν � −Kξ to stabilize the origin
z � �η; ξ� � 0. The closed-loop system is then given by
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_η � fd�η; ξ;d�
_ξ � −Kξ�HΔd� δ�ξ;Δt� (48)

Proposition 1: If kδ�ξ;Δt�k2 ≤ �δε is satisfied for all ξ ∈ Rρ,
_η � fd�η; ξ;d� is continuously differentiable and globally Lipschitz
in (η, ξ, d), and the origin of _η � fd�η; 0; 0� is globally exponentially
stable, then the external state ξ is globally ultimately bounded by a

class K function of �δε, �dε, whereas the internal state η of Eq. (48) is
globally ultimately bounded by a class K function of �d, �δε, �dε.
Proof:The norm value of the perturbation term in Eq. (48) satisfies

kHΔd� δ�ξ;Δt�k2 ≤ kHk2kΔdk2 � kδ�ξ;Δt�k2 � �dε � �δε
(49)

where kHk2 � 1 becauseH is a Boolean selectionmatrix. Similar to
the proof of Theorem 1, choose the candidate Lyapunov function as
V�ξ� � ξTPξ, where P � PT > 0 is the solution of the Lyapunov
equation PK� KTP � I; then, the time derivative of V�ξ� satisfies

_V ≤ −θ1kξk22; ∀ kξk2 ≥
2kPk2��δε � �dε�

1 − θ1
≜ μ2��δε � �dε� (50)

Therefore, ∀ ξ�t0� ∈ Rρ, there exists a class KL function β and
T4 ≥ 0 independent of t0 such that kξ�t�k2 satisfies

kξ�t�k2 ≤ β
�
kξ�t0�k2; t − t0

�
; t0 ≤ ∀ t ≤ t0 � T4

kξ�t�k2 ≤ α−11

�
α2
�
μ2��δε � �dε�

��
; ∀ t ≥ t0 � T4 (51)

In other words, the external state ξ is bounded for all t ≥ t0 and

ultimately bounded byΓξ ≜ α−11 �α2�μ2��δε � �dε���, which is a classK
function of �δε and �dε.
On the other hand, perturbations directly act on the internal

dynamics. Because the origin of _η � fd�η; 0; 0� is globally
exponentially stable, Eq. (34) is satisfied globally.Moreover, because
_η � fd�η; ξ;d� is continuously differentiable and globally Lipschitz
in (η, ξ, d), there exists a global Lipschitz constant L, such that

kfd�η; ξ;d� − fd�η; 0; 0�k2 ≤ L�kξk2 � kdk2�; ∀ η ∈ Rn−ρ

(52)

Analogous to the proofs of Theorem 2, Eq. (39) is satisfied for
∀ kηk2 ≥ μ 0 with μ 0 ≜ θ5�supt0�T4≤τ≤t�kξ�τ�k2 � kd�τ�k2��, and the
internal state η satisfies

kη�t�k2 ≤ β 0
0

�
kη�t0 � T4�k2; t − t0 − T4

�
� θ5α

0−1
1

�
α 0
2�Γξ � �d�

�
;

∀ t ≥ t0 � T4 (53)

without restrictions on the initial values and the bound of
disturbances. Because of the attenuation property of β 0

0,

kη�t�k2 ≤
h
θ7 �d� θ5α

0−1
1 �α 0

2� �d��
i

� θ5α
0−1
1

�
α 0
2

�
α−11

�
α2
�
μ2��δε � �dε�

����
≜ Γη; ∀ t≥ t0�T4 �T5

(54)

for some θ7 > 0 and finite T5 > 0. The preceding equation indicates
that η is globally ultimately bounded by a classK function of �d, �δε, �dε.
This completes the proof. □

Remark: These estimations of the ultimate bounds could be
conservative for a given perturbation termHΔd� δ�ξ;Δt� because
the term 2ξTPBcδ�z;Δt� in Eq. (30) can be either positive or
negative. Worst-case analyses are done in Eqs. (30) and (49) by
taking the inequality constraints, which may lead to conservative
estimations of the ultimate bounds.More accurate ultimate bounds of

a perturbed nonlinear system can be obtained via numerical

simulations.
The disturbance rejection capability of a control method can be

evaluated by the values of the ultimate bounds under prescribed

disturbance perturbations. In view of Eqs. (51) and 54), the ultimate

bounds Γξ and Γη are correlated to the following:
1) System dynamics:Γξ andΓη are functions of �δε. Recall Eq. (27);

�δε can be viewed as a gauge for system dynamics. When system
dynamics are fast, which indicates that

����∂�α�x� �B�x�u�
∂x

����
0

����
2

is large, the sampling frequency should be higher to ensure desired
ultimate bounds. This has been verified by many application cases;
for rigid airplane control, normally fs � 100 Hz is enough
[7,10,12,15,18–20], whereas fs � 1000 Hz is needed for flexible
aircraft control [21]. fs � 512 Hz is used inRef. [13,14] for quadrotor
flight control. For the applications on hydraulic systems, fs �
5000 Hz is desirable for controlling the hydraulic forces [16,17].
2) Disturbance intensity: this can be seen from the expressions for

Γξ, Γη and definitions of �d, �dε, in which stronger disturbances lead to
larger ultimate bounds.
3) K gains: as shown in Eqs. (51) and (54), both Γξ and Γη are

monotonically increasing functions of μ2. From Eq. (50) and the
Lyapunov equation, it can be seen that largerK gains lead to smaller
μ2, further resulting in smaller ultimate bounds. Therefore, increasing
K gains is beneficial for releasing the requirement on sampling
frequency. However, K gains are constrained by actuation system
limits; high-gain control would also amplify measurement noise.
4) Sampling frequency: recall Eqs. (28) and (47); both �dε and �δε

can be reduced by increasing the sampling frequency.As discussed in
Sec. II, if d ≠ 0, kΔdk2 < kdk2 when the sampling interval Δt is
sufficiently small. The main part of the disturbances d0 can be
included by the measurement of _ξ0; thus, only the remaining
increment Δd is perturbing ξ. This is one feature that distinguishes
INDI from linear-quadratic regulator, proportional–integral, andNDI
control methods, where normally the disturbances can only be
reflected in the measurement of state ξ, which is an integration of _ξ0.
Consequently, these control methods show inferior disturbance
rejection ability as compared to the INDI method. In practice, the
choice of sampling frequency is constrained by the hardware.
5) Internal dynamics: it can be seen that the first term of Eq. (54)

cannot be reduced by increasing the sampling frequency and is a
function of �d. This is because the internal dynamics are uncontrolled
by the INDI method. Moreover, being inspired by Theorem 2, when
only the origin of _η � fd�η; 0; 0� is ensured to be exponentially
stable or fd is not globally Lipschitz, constraints on both initial
condition and the disturbance intensity need to be imposed. This is
presented as Corollary 1. Therefore, the properties of internal
dynamics are important for the stability and robustness of the system.
Corollary 1: If kδ�ξ;Δt�k2 ≤ �δε is satisfied for all ξ ∈ Rρ, and the

origin of _η � f0�η; 0; 0� is exponentially stable, then there is a

neighborhood Dz of z � 0 and ε� > 0, such that, for every z�0� ∈
Dz and ��δε � �dε� < ε�, the external state ξ in Eq. (48) is ultimately

bounded by a classK function of �δε, �dε, whereas the internal state η in
Eq. (48) is ultimately bounded by a class K function of �d, �δε, �dε.
The proof of Corollary 1 is similar to the proofs of Proposition 1

and Theorem 2.

2. Robustness to Model Uncertainties

The model uncertainties considered in this section are classified

into the regular perturbations, which are defined in the nonlinear

system perturbation theory as the perturbations that do not change the

order of the nominal system, such as negligible nonlinearities,

parametric dispersions, and variations [5,26].
There were few attempts at proving the robustness of the INDI

control method to aerodynamics model uncertainties. In Ref. [10], it

was shown by using linear transfer functions derived from block

diagrams that the model mismatches of the control effectiveness
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matrix G�x� or the generalized B�x� has no influence on the closed-
loop system. However, the assumption of _x � _x0 is made in the block

diagram derivations, which is incorrect because otherwise there will

be no Δu term. Moreover, the δ�z;Δt� term did not show up at all in

previous proofs [10,11,13]. In view of these reasons, the robustness

of INDI to model uncertainties will be rediscussed here.
Considering the nonlinear system with relative degree ρ ≤ n

transformed into internal and external dynamics givenbyEqs. (7) and

(8), the nominal NDI control to stabilize the system origin is given by

�undi � B−1�x��ν − α�x�� � B−1�x��−KT2�x� − α�x�� (55)

which requires the model knowledge of α,B, T2 [defined in Eq. (7)].

When the control law is applied using the approximated model as α̂,
B̂, T̂2, the control input is given as

undi � B̂−1�x�
�
−KT̂2�x� − α̂�x�

�
(56)

which results in a closed-loop system as

_η � f0�η; ξ�
_ξ � Acξ� Bc

h
α�x� �B�x�B̂−1�x�

�
−KT̂2�x� − α̂�x�

�i
�

h
Acξ −BcKT̂2�x�

i
� Bc

�
α�x� − α̂�x�

�
� Bc

�
B�x�B̂−1�x� − I

��
−KT̂2�x� − α̂�x�

�
� �Ac −BcK�ξ� BcK

�
T2 − T̂2

�
� Bc�α − α̂�

� Bc

�
BB̂−1 − I

��
−KT̂2 − α̂

�
≜ �Ac −BcK�ξ� Bcεndi�z� (57)

where I ∈ Rm×m is an identity matrix. Using Eq. (12), the nominal

INDI control for stabilization is given by

Δ �uindi � B−1�x0�
�
−KT2�x� − y�ρ�0

�
(58)

When applied using estimated models, Eq. (58) becomes

Δuindi � B̂−1�x0�
�
−KT̂2�x� − y�ρ�0

�
(59)

and the closed-loop system dynamics are given by

_η � f0�η; ξ�
_ξ � �Ac −BcK�ξ� BcK

�
T2 − T̂2

�
� Bcδ�z;Δt�

�Bc

�
BB̂−1 − I

��
−KT̂2 − y�ρ�0

�
≜ �Ac −BcK�ξ� Bcεindi�z;Δt� (60)

The regularly perturbed closed-loop dynamics given by Eqs. (57)

and (60) are both in the form of Eq. (25). The only difference is the

value of the perturbation terms. Therefore, it is straightforward to

derive the corollaries of Theorem 1 and Theorem 2 as follows.
Corollary 2: If kεndi∕indik2 ≤ �εndi∕indi is satisfied for allz ∈ Rn, and

_η � f0�η; ξ� is input-to-state stable, then the states z of Eqs. (57)

and (60) are globally ultimately bounded by a classK function of �εndi
and �εindi, respectively.
Corollary 3: If kεndi∕indik2 ≤ �εndi∕indi is satisfied for allz ∈ Rn, and

the origin of _η � f0�η; 0� is exponentially stable, then there is a

neighborhoodDz of z � 0 and ε� > 0, such that for every z�0� ∈ Dz

and �εndi∕indi < ε�, the states z of Eqs. (57) and (60) are ultimately

bounded by a class K function of �εndi and �εindi, respectively.
Although the closed-loop dynamics given by Eqs. (57) and (60)

have the same form, the perturbation terms εndi�z� and εindi�z;Δt�

have different properties, which consequently influence the ultimate
bounds of the state z. This will be shown as follows.

The first perturbation term K�T2 − T̂2� is identical in εndi
[Eq. (57)] and εindi [Eq. (60)]. For the second perturbation term,
because INDI control Δuindi is based on the measurements or

estimations of y�ρ�0 instead of the dynamic model α�x�, the model

uncertainty term α�x� − α̂�x� in Eq. (57) is replaced by δ�z;Δt�
[Eq. (60)] under INDI control. The influences of kδ�z;Δt�k2 become
negligible when the sampling frequency is high, as indicated by
Eq. (28), whereas kα�x� − α̂�x�k2 is normally large for aerospace
systems, mainly because of the difficulties of modeling the
aerodynamics. The last terms of εndi∕indi are mainly caused by the

multiplicative uncertainties of the B�x� matrix, which were
incorrectly omitted in the previous literature [10,11,13,14]. Recall
Eq. (59); the last term of εindi can be written as�

BB̂−1 − I
��

−KT̂2 − y�ρ�0

�
�

�
BB̂−1 − I

�
B̂Δuindi

�
�
B − B̂

�
Δuindi (61)

Because Δuindi is a control increment, kB − B̂−1k2kΔuindik2 can
be reduced by increasing the sampling rate. On the contrary, recall
Eq. (56); the last term of εndi equals�

BB̂−1 − I
��

−KT̂2 − α̂
�
�

�
BB̂−1 − I

�
B̂undi �

�
B − B̂

�
undi

(62)

which depends on the entire control term undi and is independent of
Δt. When undi ≠ 0, there exists a Δt such that kΔuindik2 < kundik2.
In summary, in the presence ofmodel uncertainties, the normof the

closed-loop perturbation terms is smaller under INDI control and can
be further diminished by increasing the sampling frequency. As a
result, according to Corollary 2, when the internal dynamics _η �
f0�η; ξ� are input-to-state stable, INDI control will result in smaller
ultimate bounds for z. Moreover, when only the origin of _η �
f0�η; 0� is exponentially stable, it is easier for systems under
INDI control to fulfill the boundedness condition �εndi∕indi < ε� in
Corollary 3.

3. Sensing and Singular Perturbations

Based on preceding analyses, INDI control has shown promising
inherent robustness to disturbances and regular perturbations without
using any additional robust or adaptive control technique. There are
also other sources of perturbations, which increase the order of the
system, such as actuator dynamics and higher-order elastic dynamics.
These perturbations are classified into singular perturbations [5,26].
Consider the singularly perturbed system model as [2]

_x � f�t; x; zp; ϵ�; ϵ _zp � gz�t; x; zp; ϵ� (63)

where the perturbed dynamics are decomposed into reduced (slow)
and boundary-layer (fast) dynamics. According to Tikhonov’s
theorem [2], when the null (quasi) equilibrium states of both the fast
and slow dynamics are exponentially stable, there exists a constant
ϵmax > 0 such that the null equilibrium of the singularly perturbed
system is exponentially stable for all ϵ < ϵmax. Thisparameter ϵmax > 0
is referred to as the singular perturbation margin in [26] and is
equivalent to the phase margin of linear time-invariant systems in the
sense of the bijective function [26].
Regarding the aerospace applications of INDI on angular rate

control problems, the sensing or estimation of angular accelerations
is needed [7,10–14,18–20]. Angular accelerometers are already
available on themarket [23], and a commonly used alternativeway to
estimate the angular accelerations is to differentiate the filtered
angular rate signals [7,11–14,18–20]. Consequently, the estimations
are lagged, owing to the filtering process. Smeur et al. [13,14], Huang
et al. [17], and Grondman et al. [18] propose to synchronize the input
signal with the lagged estimations by imposing the same filter on the
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input. However, synchronization errors still exist in practice. Based
on the preceding discussions, the system is able to sustain sufficiently
small lags caused by filtering and actuator dynamics. This proposes
an interesting research question of enlarging the singular perturbation
margin of the closed-loop system. Possible solutions could be using
predictive filters [10] or actuator compensators [27].

IV. Numerical Validation

Because there have been extensive applications of INDI on aircraft
[10,15,18–20], helicopter [11], micro air vehicle [13], and spacecraft
[12] angular velocity control, this problem will not be repeated here.
The numerical example in this section considers a rigid aircraft gust
load alleviation (GLA) problem, where the vertical velocity is
included in the inner-loop INDI controller. This idea originates from
[15], but the old INDI derivation in [15] also has the blemishes
mentioned before. Therefore, thisGLAproblemwill be resolved here
using the reformulated INDI control. Section IV.A presents the
aircraft and turbulence models. The INDI flight control is designed
in Sec. IV.B. A command tracking problem in a turbulence field
is considered in Sec. IV.C. The robustness of INDI to model
uncertainties and external disturbances will be compared with NDI
control in Sec. IV.D.

A. Aircraft and Turbulence Models

The six-degree-of-freedom rigid aircraft dynamic equations
defined in the body frame are given by

_Vf � −ω × Vf �
F

m
; _ω � −J−1ω × Jω� J−1M (64)

where Vf � �Vx; Vy; Vz�T indicates the velocity of the aircraft c.m.
relative to the inertial axis expressed in the body axis, and ω �
�p; q; r�T represents the angular velocity.m is the total mass, and J is
the inertia matrix. F andM are the total forces and moments, which
can be expanded as

F � Fa�Vf;ω;Vw� � FT�Vf; δp� � Fau�Vf;ω�u� FG

M � Ma�Vf;ω;Vw� �Mau�Vf;ω�u (65)

In the preceding equation, u � �δe; δr; δar; δal�T denotes the
elevator, rudder, and right and left aileron deflection angles. Fa and
Ma denote the aerodynamic forces and moments when u � 0. Vw is
the wind velocity. Fauu and Mauu represent the control forces and

moments generated by the aerodynamic control surfaces. FT is the
thrust, as a function of throttle δp. FG is the gravitational force.

The aircraft model for simulations is set up using the aerodynamic,
inertia, and geometric data in [28]. The aerodynamic model is based
on the quasi-steady strip theory [28,29]. This aircraft is abstracted to
multiple two-dimensional aerodynamic surfaces. There are four
aerodynamic control surfaces; each of them contains np strips. There
are also six aerodynamic surfaces, namely the wing, horizontal and
vertical tails, horizontal and vertical lifting surfaces of the fore
fuselage, and the engine pylon. Each of these aerodynamic surfaces
contains nk strips. ri denotes the distance vector from the c.m. to the
aerodynamic center of the ith strip. The local airspeed of the ith strip

expressed in the body frame is Va;i � Vf � ω × ri − Vw;i, where

Vw;i is the local wind velocity [30,31]. In this paper,Vw;i is calculated

in real time by interpolating the spatial turbulence field at the

aerodynamic center of the ith strip and then transformed to the body

frame. The gust penetration effect [15,30,31] is considered because

Vw;i depends on the spatial location of the ith strip. A two-

dimensional vertical von Kármán turbulence field is presented in

Fig. 1, in which XE and YE represent the positions in the inertial

frame. The turbulence velocity is in unit meters per second. The

turbulence length scale equals Lg � 762 m, and the variance equals

σ � 3 m∕s. Figure 1 also shows a sketch map of the aircraft exposed

to the turbulence field; the strips on the wing and the horizontal tail

are illustrated.
For the four control surfaces, the distributed force fu;i on the ith

strip is a function of Va;i, u and the local derivatives of lift with

respect to u, which is denoted as CLu;i
. The resultant forces and

moments are

Fauu �
X
i

fu;i; Mauu �
X
i

ri × fu;i

For the strips on the kth aerodynamic surface, the distributed force

fa;i depends on the local airspeed Va;i and the local aerodynamic

coefficients. The resultant forces and moments are

Fa �
X
i

fa;i; Ma �
X
i

ri × fa;i

B. Flight Control Design

Using Eq. (65), Eq. (64) can be rewritten in the form of _x �
f�x� � G�x�u� d as

"
_Vf

_ω

#
�

"
−ω × Vf � 1

m �Fa�Vf;ω; 0� � FT � FG�
−J−1ω × Jω� J−1Ma�Vf;ω; 0�

#

�
"

1
mFau

J−1Mau

#
u�

"
1
m �Fa�Vf;ω;Vw� − Fa�Vf;ω; 0��

J−1�Ma�Vf;ω;Vw� −Ma�Vf;ω; 0��

#

(66)

where the aerodynamic influences of turbulence are lumped in the

disturbance vector d. Consider an output tracking problem, and

choose y � Hx � �Vz; p; q; r�T , where H is a Boolean selection

matrix. Based on Eq. (5), the vector relative degree of this system

equals ρ� �1; 1; 1; 1�T , α�x� � Hf�x�, B�x� � HG�x�. According
to Eq. (21), the external states vector ξ � y. There are also two-

dimensional internal dynamics in this application case. Although the

input-to-state stability of the internal dynamics is not easy to prove,

the analysis of the origin stability of fd�η; 0; 0� is practical. The two-
dimensional submanifold for the zero dynamics is given by

Z� �
n
x ∈ R6; Vz − V�

z � p � q � r � 0
o

(67)

where V�
z is the vertical velocity in trim condition. Define

Fig. 1 Two-dimensional von Kármán vertical turbulence field with Lg � 762 m, σ � 3 m∕s.
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A�t� � ∂fd

∂η

����
η�0

then η � 0 is an exponentially stable equilibrium point of fd if and

only if it is an exponentially stable equilibrium point of the linear

system _η � A�t�η [2]. This allows the origin stability of the zero

dynamics to be easily tested via linearization. The origin of _η �
fd�η; 0; 0� has been tested to be exponentially stable for this model.
Actuator dynamics and limits are considered in this validation.

Actuators for aerodynamic control surfaces aremodeled as first-order

systems with transfer function A�s� � 20∕�s� 20�. The deflection
limits of ailerons, elevator, and rudder are 	35, 	25, 	25 deg,
respectively. The rate limit for ailerons is 100 deg∕s, and it is

60 deg∕s for elevator and rudder. Constant throttle δ�p is used in the

simulations. An additional velocity controller using throttle can be

designed if desired. The simulation frequency (difference from the

sampling frequency) is 2000 Hz, which is chosen to be sufficiently

high to simulate the property of the continuous dynamics in real life.

Figure 2 illustrates a block diagram of INDI applied considering

actuator dynamics.

C. Command Tracking in a Turbulence Field

This subsection considers a command tracking problem in the

presence of external disturbances. During simulations, the aircraft is

flying through the von Kármán turbulence field shown in Fig. 1.

Symmetrical excitations are assumed in this subsection; namely, the

local gust velocities Vw;i are interpolated using the spatial locations

of the right-hand side strips of the aircraft. Vw;i of the left-hand side

strips are assumed to be symmetrical to the right. Asymmetrical

excitationswill be considered in Sec. IV.D.Using the flight controller

designed in Sec. IV.B, and referring to Corollary 1, η and the

reference tracking error e can then be concluded to be ultimately

bounded under small perturbations. Moreover, the ultimate bounds

have been proven to be monotonically decreasing functions of K
gains and the sampling frequency in Sec. III.B.1. The simulations in

this subsection will test the fidelity of these conclusions when

actuator dynamics and limits are considered.
Set the references for �Vz; p; r�T to be their trim values �V�

z ; 0; 0�T ,
and the reference signal for q is designed as a sinusoid signal with

amplitude of 1.5 deg∕s and frequency of 1.5 rad∕s. The initial errors
are e�t � 0� � �0.5 m∕s, 0 deg∕s, 2 deg∕s, and 0 deg∕s�. Design
the gain matrix as K � a ⋅ I4×4, a > 0. In view of Fig. 2, there are

three sampling processes in this control law, namely themeasurement

of y�ρ�0 , ξ and the actuator position u0. The sampling interval Δt will
be varied in the subsequent analyses for testing its influences on the

ultimate bounds.
In view of Figs. 3 and 4, the aircraft is able to track the pitch

rate command using all sets of controller parameters. When a � 3,
the ultimate bounds for Δt � 0.01 s are jeVz

j � 0.23 m∕s,
jeqj � 0.30 deg∕s, which degrade into larger ultimate bounds of

jeVz
j � 0.68 m∕s, jeqj � 0.85 deg∕s when the sampling interval

increased into Δt � 0.2 s. Using the same sampling interval

Δt � 0.01 s, when the outer loop gains increased fromK � 3 ⋅ I4×4
toK � 8 ⋅ I4×4, the closed-loop system responds faster to the errors,

which results in smaller ultimate bounds. The control surface

deflections are illustrated by Fig. 5.

Figure 6 shows the ultimate bounds of eVz
and eq using various

controller parameters. The tested sampling interval varies fromΔt �
0.001 s to Δt � 0.2 s. As can be seen from Fig. 6, in general, for a
given gain matrix K � a ⋅ I4×4, the ultimate bounds decrease as the
sampling interval decreases. This trend of decrease becomes slower
around Δt � 0.12 s as the contour lines become sparser. Further
decreasing the sampling interval does improve the performance but
would impose higher requirements on the hardware.
On the other hand, for a given Δt, as a increases from a � 1 to

a � 13, the ultimate bounds decrease first, reaching a minimum
arounda ≈ 8, and then show a trend of increase asa further increases.
As analyzed before, the ultimate bounds will be smaller for larger K
gains when ideal actuators are applied. However, because actuators
have bandwidth, rate, and position limits, high-gain control can
impose unachievable commands on actuators, which consequently
degrades the performance for a > 8 and potentially leads to
divergence. High-gain control also amplifies the measurement noise
in practice.
In summary, simulation results in this subsection verified the

ultimate boundedness of the states under INDI control, especially
when actuator dynamics and limits are considered. The influences of
K gains and Δt on the ultimate bounds are also verified.

D. Robustness Comparisons with Nonlinear Dynamic Inversion

In this subsection, the robustness of the reformulated INDI control
will be compared with nonlinear dynamic inversion (NDI) control, in
the presence of asymmetrical turbulence excitations and model
uncertainties. Equations (56) and (58) formulate the NDI and INDI
control laws when the estimated models are used. Because
ξ � y � Hx, T2�x� � T̂2�x� � Hx in Eqs. (56) and (58). During
simulations, the aircraft is gradually flying through the two-
dimensional (2-D) von Kármán turbulence field shown in Fig. 1, and
the turbulence velocity on each aerodynamic strip is independently
interpolated as Vw;i. The references for ξ � �Vz; p; q; r�T are
illustrated in Fig. 7. The reference for Vz equals its trim value V�

z .

Fig. 2 Block diagram for a reference tracking problem applied considering actuator dynamics.
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Fig. 3 Pitch rate tracking responses.
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Fig. 4 Tracking error responses for pitch rate and vertical velocity.
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Fig. 6 Influences of sampling interval and outer-loop gains on the ultimate bounds.
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Fig. 7 Command tracking in a 2-D turbulence field.
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The reference for p is a 3211 signal with magnitude of 5 deg∕s
realized by smoothly combined sigmoid functions. The sigmoid
function f�t� � 1∕�1� e−t� is chosen because of its differentiable

property up to any order. The reference for q is a smooth realization

of a doublet signal withmagnitude of 1.5 deg∕s. The reference for r
is a sinusoid signal with magnitude of 3 deg∕s and frequency of
1 rad∕s. Typical testing signals are chosen as references for

comparing the effectiveness of NDI and INDI. In practice, these

reference signals are provided by outer-loop controllers for various
flight control tasks. For example, the reference for Vz can be

designed for load alleviation purposes [15], the reference for r can
be designed for minimizing the side-slip angle [10], the references
for p and q can be designed for the attitude tracking of ϕ and θ [7],
etc. The sampling frequency used in this subsection is 100 Hz. For

fair comparisons, the control gain matrices for both NDI and INDI
are identical to K � 8 ⋅ I4×4.
The tracking performance ofNDI and INDI in the 2-DvonKármán

turbulence field (Fig. 1) is compared in Figs. 7–9. Model

uncertainties are not introduced in this simulation yet (i.e., α̂ � α,
B̂ � B). However, the disturbance d as a function ofVw [Eq. (66)] is

nonzero. Because the turbulence excitations are asymmetric, lateral

states includingp and r are also disturbed by d. In view of Figs. 7 and
8, aircraft using INDI control can better track the references in the

turbulence field. The rms values of the tracking errors for this

simulation case are summarized in the first two rows of Table 1, in

which INDI shows smaller rms value of errors in all the four
controlled channels. These results verify the analyses in Sec. III.B.1,

in that the ultimate bounds for ξ are only influenced by the

disturbance increments Δd, and the main influences of d0 have been

included in the measurements/estimations of _ξ0. Figure 9 shows the

control inputs, where INDI responses more actively for alleviating
the turbulence influences. Moreover, the control surface deflection

angles are within the limits under both NDI and INDI control.
Referring to Sec. III.B.2, when implementing the control methods,

INDI control only needs the estimated control effectivenessmatrix B̂,

whereas NDI requires both α̂ and B̂. Recall Eq. (66); α̂ and B̂ contain

the inertia and aerodynamic parameters, whose accurate estimations

are very difficult to obtain in practice. Herein, the robustness of NDI

and INDI to model uncertainties will be compared. Figures 10–12
present the reference tracking responses of the aircraft in the

turbulence field (Fig. 1). The estimated model B̂ � 1.3B is used by
both NDI and INDI. In other words, both controllers overestimate the
control effectiveness matrix by 30%. On the other hand, the perfect
model α̂ � α is used by NDI; even so, the tracking performance of
NDI is still inferior to INDI, as presented in Figs. 10 and 11.
The rms values of the tracking errors in the presence of external

disturbances and model uncertainties are presented in the last two
rows of Table 1. It can be seen from Figs. 10 and 11 and Table 1 that
INDI has better robustness than NDI. When using NDI control, the
rms values of the errors in Fig. 11 are respectively increased by 71.8,
158, 21.3, and 146% as compared to errors in Fig. 8. By contrast,

INDI is less influenced by the mismatches between B̂ andB because
the rms values of the errors in Fig. 11 are increased by 42.4, 39.9,
19.2, and 14.8% as compared to errors in Fig. 8. Furthermore, Table 1

shows that, when mismatched B̂ is used, the rms values of the
tracking errors under INDI control are at least three times smaller than
the values under NDI control. These results verify the analyses in
Sec. III.B.2. In addition, the control surface deflections are illustrated
in Fig. 12, where both INDI and NDI satisfy the actuator constrains.
The results of a Monte Carlo simulation containing 1000 samples

of uncertain models are presented in Fig. 13. Both aerodynamic and
inertia uncertainties are added to the estimated models α̂ and B̂. As
presented in Sec. IV.A, the aerodynamic model of the present aircraft
is based on strip theory. Each of the six aircraft components or the
four aerodynamic control surfaces contains nk∕np strips with local
aerodynamic coefficients. Herein, the slope of lift curve uncertainties

Table 1 RMS values of the tracking errors under NDI and INDI
control

Controller
rms�eVz

�,
m∕s

rms�ep�,
deg ∕s

rms�eq�,
deg ∕s

rms�er�,
deg ∕s

NDI 0.188 0.387 0.465 0.230
INDI 0.033 0.223 0.130 0.122
NDI uncertain 0.323 0.999 0.564 0.565
INDI uncertain 0.047 0.312 0.155 0.140
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Fig. 8 Tracking errors in a 2-D turbulence field.
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Fig. 9 Control inputs in the presence of external disturbances.
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for the kth aircraft component are modeled as normally distributed

real numbers as

Δk ∼N �0; σ2k�; σk �
0.3

nk

Xi�nk

i�1

CLα;i
(68)

which means that, for each aircraft component k, the mean value of

the slope of lift curve uncertainties equals zero, and the standard

deviation σk is chosen as 30% of the average CLα
value of this

component. Analogously, for the pth aerodynamic control surface,

Δp ∼N �0; σ2p�; σp � 0.3

np

Xi�np

i�1

CLu;i
(69)

Δp in the preceding equation represent the uncertainties for the
derivatives of lift with respect to u. Themeanvalue ofΔp equals zero,
and the standard deviation σp is chosen as 30% of the average CLu

value of the pth control surface. It is worth noting that this step up is
more elaborate than introducing uncertainties to the conventional
stability and control derivatives (e.g.,Cmα

,Cmq
,Cnβ ,Cnr ,Cmδe

,Cnδr
,

etc.), by virtue of the usage of the strip theory [29]. The uncertainties
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Fig. 10 Command tracking in a 2-D turbulence field with mismatched B̂.
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Fig. 11 Tracking errors in a 2-D turbulence field with mismatched B̂.
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Fig. 13 Box plots of a Monte Carlo simulation for robustness comparisons between NDI and INDI.
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for mass are assumed to have normal distribution, with μm � 0, and
σm equals 10% of the nominal mass. Normally disturbed

uncertainties are also introduced to the inertia parameters Jxx, Jyy,
Jzz, Jxz. For each of the four parameters, the mean value of

uncertainty equals zero, and the standard derivation is taken as 25%

of the nominal inertia value.
ThisMonte Carlo simulation considers the command tracking task

in the presence of external disturbance (Fig. 1) and model

uncertainties. The references for ξ are the same as presented in Figs. 7

and 10. Simulation results with rms feVz
g > 50 m∕s or max

frmsfepg; rmsfeqg; rmsfergg > 50 deg∕s are considered as the

controller fails to track the commands. Among all the 1000 samples,

31 cases fail underNDI control, whereas there is no failure case under

INDI control. The reason for the failure cases under NDI control can

be revealed by Corollary 2 and Corollary 3 in that the ultimate

boundedness of the states can only be guaranteed if εndi is bounded.
Also, when only the origin of _η � f0�η; 0; 0� is guaranteed to be

exponentially stable, the uncertainties that NDI can sustain are

limited, i.e., �εndi < ε� (Corollary 3). However, because εndi contains
both α − α̂ and �B − B̂−1�undi [Eqs. (57) and 62], it can become

unbounded in severe perturbation circumstances, especiallywhen the

actuators have nonlinear constrains.
According to the analyses in Sec. III.B.2, even for the cases that

εndi is bounded, the norm value of εndi is still larger than that of εindi.
As a consequence, the states under NDI control also have larger

ultimate bounds in the presence of perturbations. This is verified by

the box plots in Fig. 13, in which the 31 failure cases under NDI

control have been discarded. The interquartile range (IQR) values

and the medians of rms�ei�, i � Vz, p, q, r are summarized in

Table 2. It can be seen from Fig. 13 and Table 2 that the robust

performance of NDI is significantly degraded by εndi [Eq. (57)]. By
contrast, INDI ismore robust tomodel uncertainties and disturbances

because IQR frms�ei�g using INDI control are at least one order of

magnitude smaller than that under NDI control for all i � Vz,p, q, r.
Furthermore, the median values of rms�ei� under INDI control are at
least three times smaller than that using NDI control, for all i � Vz,

p, q, r.

V. Conclusions

This paper reformulates the incremental nonlinear dynamic

inversion (INDI) control without using the time scale separation

principle and generalizes it for systems with arbitrary relative

degree. Using Lyapunov methods and nonlinear system

perturbation theory, the state of the closed-loop system is proved

to be ultimately bounded by a class K function of the perturbation

bounds. There is no restriction on the perturbation value and the

initial condition if the internal dynamics are input-to-state stable.

Otherwise, corresponding restrictions are needed. Disturbances are

shown to directly perturb the internal dynamics while perturbing the

external dynamics only by their increments, which contributes to

the better disturbance rejection capability of the INDI method.

Moreover, INDI is shown to be more robust to regular perturbations

than nonlinear dynamic inversion (NDI), without using any

additional robust or adaptive techniques. It can also resist certain

regions of singular perturbations. Finally, numerical comparisons

with NDI and a Monte Carlo simulation demonstrate the effective-

ness of the reformulated INDI control, even in the presence ofmodel

uncertainties and external disturbances.
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