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Abstract. We study a classical model for the accumulation of errors in
multi-qubit quantum computations. By modeling the error process in a
quantum computation using two coupled Markov chains, we are able to
capture a weak form of time-dependency between errors in the past and
future. By subsequently using techniques from the field of discrete proba-
bility theory, we calculate the probability that error quantities such as the
fidelity and trace distance exceed a threshold analytically. The formulae
cover fairly generic error distributions, cover multi-qubit scenarios, and
are applicable to the randomized benchmarking protocol. To combat the
numerical challenge that may occur when evaluating our expressions,
we additionally provide an analytical bound on the error probabilities
that is of lower numerical complexity. Besides this, we study a model
describing continuous errors accumulating in a single qubit. Finally, tak-
ing inspiration from the field of operations research, we illustrate how
our expressions can be used to decide how many gates one can apply
before too many errors accumulate with high probability, and how one
can lower the rate of error accumulation in existing circuits through sim-
ulated annealing.

Keywords: Markov chains · Error accumulation · Quantum circuits

1 Introduction

The development of a quantum computer is expected to revolutionize computing
by being able to solve hard computational problems faster than any classical
computer [37]. However, present-day state-of-the-art quantum computers are
prone to errors in their calculations due to physical effects such as unwanted
qubit–qubit interactions, qubit crosstalk, and state leakage [38]. Minor errors can
be corrected, but error correction methods will still be overwhelmed once too
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many errors occur [12,20,31]. Quantum circuits with different numbers of qubits
and circuit depths have been designed to implement algorithms more reliably
[16], and the susceptibility of a circuit to the accumulation of errors remains
an important evaluation criterion. We therefore study now Markov chains that
provide a model for the accumulation of errors in quantum circuits. Different
types of errors [21] that can occur and are included in our model are e.g. Pauli
channels [37], Clifford channels [23,34], depolarizing channels [37], and small
rotational errors [7,26]. If the random occurrence of such errors only depends on
the last state of the quantum mechanical system, then the probability that error
quantities such as the fidelity and trace distance accumulate beyond a threshold
can be related to different hitting time distributions of two coupled Markov
chains [8]. These hitting time distributions are then calculated analytically using
techniques from probability theory and operations research.

Error accumulation models that share similarities with the Markov chains
under consideration here can primarily be found in the literature on randomized
benchmarking [46]. From the modeling point of view, the dynamical description
of error accumulation that we adopt is shared in [3,27,33,43]. These articles how-
ever do not explicitly tie the statistics of error accumulation to a hitting time
analysis of a coupled Markov chain. Furthermore, while Markovianity assump-
tions on noise are common [14], the explicit mention of an underlying random
walk is restricted to a few papers only [3,17]. From the analysis point of view,
research on randomized benchmarking has predominantly focused on generaliz-
ing expressions for the expected fidelity over time. For example, the expected
decay rates of the fidelity are analyzed for cases of randomized benchmarking
with restricted gate sets [9], Gaussian noise with time-correlations [15], gate-
dependent noise [43], and leakage errors [45]; and the expected loss rate of a
protocol related to randomized benchmarking is calculated in [10,33,39,43,44].
In this article, we focus instead on the probability distributions of both the error
and maximum error in the Markov chain model – which capture the statistics
in more detail than an expectation – for arbitrary distance measures, and in
random as well as nonrandom quantum circuits. Finally, [3,33,43,45] resort to
perturbation or approximate analyses (via e.g. Taylor expansions, and indepen-
dence or decorrelation assumptions) to characterize the fidelity, whereas here we
provide the exact, closed-form expressions for the distributions using the theory
of Markov chains.

To be precise: this article first studies a model for discrete Markovian error
accumulation in a multi-qubit quantum circuit. We suppose for simplicity that
both the quantum gates and errors belong to a finite unitary group Gn ⊆ U(2n),
where U(2n) is the unitary group for n qubits. The group Gn can e.g. be the
generalized Pauli group (i.e., the discrete Heisenberg–Weyl group), or the Clifford
group. By modeling the quantum computation with and without errors as two
coupled Markov chains living on the state space consisting of pairs of elements
from these groups, we are able to capture a weak form of time-dependency within
the process of error accumulation. To see this, critically note that the assumption
of a Markov property does not imply that the past and the future in the quantum
computation are independent given any information concerning the present [8].
We must also note that while the individual elements of our two-dimensional
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Markov chain belong to a group, the two-dimensional Markov chain itself, here,
is generally not a random walk on a group. Lastly, our Markov chain model works
for an arbitrary number of qubits. These model features are all relevant to the
topic of error modeling in quantum computing, and since the Markov property
is satisfied in randomized benchmarking, the model has immediate application.
The method is generic in the sense that any measure of distance between two
pure quantum states may be used to quantify the error, and that it allows for
a wide range of error distributions. The method can handle nonuniform, gate-,
and time-dependent errors. Concretely, for arbitrary measure of distance and a
wide range of error distributions, we will calculate (i) the expected error at time
t, (ii) the probability that an error is larger than a threshold δ at time t, and
(iii) the probability that the error has ever been larger than a threshold δ before
time t, and we do so both for random and nonrandom circuits.

In addition to studying a model for discrete Markovian error accumulation
in quantum circuits, we also briefly study a random walk model on the three-
dimensional sphere [40]. This model is commonly used to describe the average
dephasing of a single qubit (or spin) [24]. Using this model, we characterize the dis-
tribution and expectation of the trace distance measuring the error that is accumu-
lated over time. These derivations are, essentially, refinements that provide infor-
mation about the higher-order statistics of the error accumulation in a single qubit.

The approach taken in this article is a hybrid between classical probabil-
ity theory and quantum information theory. This hybridization allows us to do
quite detailed calculations, but not every quantum channel will satisfy the nec-
essary assumptions such as Markovianity of the error distribution. On the other
hand, in cases where one introduces their own source of randomness (such as in
randomized benchmarking), the assumptions are met naturally. It should fur-
thermore be noted that the numerical complexity of the exact expressions we
provide is high for large quantum circuits. The precise difficulty of evaluating
our expressions depends on the particulars of the quantum circuit one looks at.
For practical purposes, we therefore also provide an explicit bound on the max-
imum error probability that is of lower numerical complexity. Reference [27] is
relevant to mention here, because similar to our observations, these authors also
note the generally high computational complexity of error analysis in quantum
circuits. The issue is approached in [27] differently and in fact combinatorially
by converting circuits into directed graphs, tracing so-called fault-paths through
these graphs, and therewith estimating the success rates of circuits.

Finally, we use the expressions that describe how likely it is that errors accu-
mulate to answer two operational questions that will help advance the domain
of practical quantum computing [29]. First, we calculate and bound analytically
how many quantum gates t�δ,γ one can apply before an error measure of your
choice exceeds a threshold δ with a probability above γ. This information is
useful for deciding how often a quantum computer should perform repairs on
qubits, and is particularly opportune at this moment since quantum gates fail
O(0.1–1%) of the time [29]. Related but different ideas can be found in [21, §2.3],
where the accumulation of bit-flips and rotations on a repetition code is stud-
ied and a time to failure is derived, and in [25, §V], where an upper bound on
the number of necessary measurements for a randomized benchmarking protocol
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is derived. Second, using techniques from optimization, we design a simulated
annealing method that improves existing circuits by swapping out gate pairs to
achieve lower rates of error accumulation. There is related literature where the
aim is to reduce the circuit depth [2,28,35], but an explicit expression for error
accumulation has not yet been leveraged in the same way. Moreover, we also
discuss conditions under which this tailor-made method is guaranteed to find
the best possible circuit. Both of these excursions illustrate how the availability
of an analytical expression for the accumulation of errors allows us to proceed
with second-tier optimization methods to facilitate quantum computers in the
long-term. We further offer an additional proof-of-concept that simulated anneal-
ing algorithms can reduce error accumulation rates in existing quantum circuits
when taking error distributions into account: we illustrate that the misclassifi-
cation probability in a circuit that implements the Deutsch–Jozsa Algorithm for
one classical bit [11,13] can be lowered by over 40%. In this proof of concept we
have chosen an example error distribution that is gate-dependent and moreover
one that is such that not applying a gate gives the lowest error rate in this
model; applying a single-qubit gate results in a medium error rate; and applying
a two-qubit gate gives the largest probability that an error may occur.

This paper is structured as follows. In Sect. 2, we give the model aspects per-
taining to the quantum computation (gates, error dynamics, and error measures)
and we introduce the coupled Markov chain to describe error accumulation. In
Sect. 3, we provide the relation between the probability of error and the hitting
time distributions, and we derive the error distributions as well as its bound.
We also calculate the higher-order statistics of an error accumulation model for
a single qubit that undergoes (continuous) random phase kicks and depolariza-
tion. In Sect. 4, we illustrate our theoretical results by comparing to numerical
results of a quantum simulator we wrote for this article. In Sect. 5, we discuss
the simulated annealing scheme. Finally, we conclude in Sect. 6.

2 Model and Coupled Markov Chain

2.1 Gates and Errors in Quantum Computing

It is generally difficult to describe large quantum systems on a classical com-
puter for the reason that the state space required increases exponentially
in size with the number of qubits [36]. However, the stabilizer formalism is
an efficient tool to analyze such complex systems [18]. Moreover, the sta-
bilizer formalism covers many paradoxes in quantum mechanics [1], includ-
ing the Greenberger–Horne–Zeilinger (GHZ) experiment [22], dense quantum
coding [5], and quantum teleportation [4]. Specifically, the stabilizer circuits
are the smallest class of quantum circuits that consist of the following four
gates: ω = eiπ/4, H = (1/

√
2)

(
(1, 1); (1,−1)

)
, S =

(
(1, 0); (0, i)

)
, and Zc =(

(1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 1, 0); (0, 0, 0,−1)
)
. These four gates are closed under

the operations of tensor product and composition [42]. As a consequence of the
Gottesman–Knill theorem, stabilizer circuits can be efficiently simulated on a
classical computer [19].
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Unitary stabilizer circuits are also known as the Clifford circuits; the Clifford
group Cn can be defined as follows. First: let P � {I,X, Y, Z} denote the Pauli
matrices, so I = ((1, 0); (0, 1)), X = ((0, 1); (1, 0)), Y = ((0,−i); (i, 0)), and
Z = ((1, 0); (0,−1)), and let Pn �

{
σ1 ⊗ · · · ⊗ σn | σi ∈ P

}
denote the Pauli

matrices on n qubits. The Pauli matrices are commonly used to model errors
that can occur due to the interactions of the qubit with its environment [41].
In the case of a single qubit, the matrix I represents that there is no error, the
matrix X that there is a bit-flip error, the matrix Z that there is a phase-flip
error, and the matrix Y that there are both a bit-flip and a phase-flip error. The
multi-qubit case interpretations follow analogously. Second: let P ∗

n = Pn/I⊗n.
We now define the Clifford group on n qubits by Cn �

{
U ∈ U(2n) | σ ∈ ±P ∗

n ⇒
UσU† ∈ ±P ∗

n

}
/U(1).

The fact that Cn is a group can be verified by checking the two necessary
properties (see our extended version [32]). The Clifford group on n qubits is finite
[30], and we will ignore the global phase throughout this paper for convenience;
its size is then |Cn| = 2n2+2n

∏n
i=1

(
4i − 1

)
. Moreover, for a single qubit, a repre-

sentation for the Clifford group C1 = {C1, C2, · · · , C24} can then be enumerated
and its elements are for example shown in [46] and [3].

2.2 Dynamics of Error Accumulation

Suppose that we had a faultless, perfect quantum computer. Then a faultless
quantum mechanical state ρt at time t could be calculated under a gate sequence
Uτ = {U1, . . . , Uτ} from the initial state ρ0 � |ψ0〉 〈ψ0|. Here τ < ∞ denotes
the sequence length, and t ∈ {0, 1, · · · , τ} enumerates the intermediate steps.
On the other hand, with an imperfect quantum computer, a possibly faulty
quantum mechanical state σt at time t would be calculated under both Ut and
some (unknown) noise sequence Et = {Λ1, . . . , Λt} starting from an initial state
σ0 � |Ψ0〉 〈Ψ0| possibly different from ρ0. We define the set of all pure states for
n qubits as Sn and consider the situation that |ψ0〉 , |Ψ0〉 ∈ Sn.

To be precise, define for the faultless quantum computation

ρt � |ψt〉 〈ψt| = Ut |ψt−1〉 〈ψt−1|U†
t

for times t = 1, 2, . . . , τ . Let Xt � UtUt−1 · · · U1 be shorthand notation such that
ρt = Xtρ0X

†
t . For the possibly faulty quantum computation, define

σt � |Ψt〉 〈Ψt| = ΛtUt |Ψt−1〉 〈Ψt−1|U†
t Λ†

t

for times t = 1, 2, . . . , τ , respectively. Introduce also the shorthand notation
Yt � ΛtUtΛt−1Ut−1 · · · Λ1U1 such that σt = Ytσ0Y

†
t . The analysis in this paper

can immediately be extended to the case where errors (also) precede the gate.
The error accumulation process is also illustrated in Fig. 1.

2.3 Distance Measures for Quantum Errors

The error can be quantified by any measure of distance between the fault-
less quantum-mechanical state ρt and the possibly faulty quantum-mechanical
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a) Faultless computation:

ρ0 ρ1 . . . ρτ−1 ρτ
U1 U2 Uτ−1 Uτ

b) Potentially faulty computation:

σ0 σ1 . . . στ−1 στ
Λ1U1 Λ2U2 Λτ−1Uτ−1 ΛτUτ

Fig. 1. Schematic depiction of the coupled quantum mechanical states ρt and σt for
times t = 0, 1, · · · , τ . a) Faultless computation. The state ρt is calculated based on a
gate sequence Ut = {U1, . . . , Ut} from the initial state ρ0. b) Potentially faulty compu-
tation. The state σt is calculated using the same gate sequence Ut = {U1, . . . , Ut} and
an additional error sequence Et = {Λ1, . . . , Λt}. The final state στ can depart from the
faultless state ρτ because of errors.

state σt for steps t = 0, 1, . . . , τ . For example, we can use the fidelity Ft �
Tr

√
ρt

1/2σtρt
1/2 [37], or the Schatten d-norm [6] defined by

Dt � ‖σt − ρt‖d = 1
2Tr

[
{
(σt − ρt)†(σt − ρt)

} d
2

] 1
d

for any d ∈ [1,∞). The Schatten d–norm reduces to the trace distance for d = 1,
the Frobenius norm for d = 2, and the spectral norm for d = ∞. In the case
of one qubit, the trace distance between quantum-mechanical states ρt and σt

equals half of the Euclidean distance between ρt and σt when representing them
on the Bloch sphere [37]. It is well known that the trace distance is invariant
under unitary transformations [37]; a fact that we leverage in Sect. 3.

In this paper, we are going to analyze the statistical properties of some arbi-
trary distance measure (one may choose) between the quantum mechanical states
ρt and σt for times t = 0, 1, . . . , τ . For illustration, we will state the results in
terms of the Schatten d–norm, and so are after its expectation E[Dt], as well
as the probabilities P[Dt ≤ δ], P[max0≤s≤t Ds ≤ δ]. Throughout this paper, the
operator P and thus also E are with respect to a sufficiently rich probability
space (Ω,P,F) that each time can describe the Markov chain being considered.

3 Error Accumulation

3.1 Discrete, Random Error Accumulation (Multi-Qubit Case)

Following the model described in Sect. 2 and illustrated in Fig. 1 and Fig. 2a,
we define the gate pairs Zt � (Xt, Yt) for t = 0, 1, 2, . . . , τ , and suppose that
Z0 = z0 with probability one where z0 = (x0, y0) is deterministic and given a
priori. Note in particular that if the initial state is prepared without error, then
ρ0 = σ0 and consequently z0 = (I⊗n, I⊗n). If on the other hand the initial state
is prepared incorrectly as y0 |ψ0〉 instead of |ψ0〉, then z0 = (I⊗n, y0).
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The Case of Random Circuits. We consider first the scenario that each next
gate is selected randomly and independently from everything but the last system
state. This assumption is satisfied in the randomized benchmarking protocol [3,9,
14,15,17,27,33,43–46]. The probabilities Pz0 [Dt > δ] and Pz0 [max0≤s≤t Ds ≤ δ]
can then be calculated once the initial states |ψ0〉, |Ψ0〉 and the transition matrix
are known. Here, the subscript z0 reminds us of the initial state the Markov chain
is started from.

Let the transition matrix of the Markov chain {Zt}t≥0 be denoted element-
wise by Pz,w � P[Zt+1 = w|Zt = z] for z = (x, y), w = (u, v) ∈ G2

n. The
transition matrix satisfies P ∈ [0, 1]|Gn|2×|Gn|2 and the elements of each of its
rows sum to one. Let P

(t)
z0,w � P[Zt = w|Z0 = z0] = (P t)z0,w stand in for the

probability that the process is at state w at time t starting from Z0 = z0. Note
that the second equality follows from the Markov property [8].

We are now after the probability that the distance Dt is larger than a thresh-
old δ. We define thereto the set of δ-bad gate pairs by

B|Ψ0〉
|ψ0〉,δ �

{
(x, y) ∈ G2

n

∣
∣‖xρ0x

† − yσ0y
†‖d > δ

}
(1)

for |ψ0〉 , |Ψ0〉 ∈ Sn, δ ≥ 0, as well as the hitting time of any set A ⊆ G2
n by

TA � inf{t ≥ 0|Zt ∈ A} (2)

with the convention that inf φ = ∞. Note that TA ∈ N0 ∪ {∞} and that it is
random. With Definitions (1), (2), we have the convenient representation

Pz0 [ max
0≤s≤t

Ds ≤ δ] = 1 − Pz0 [ max
0≤s≤t

Ds > δ] = 1 − Pz0 [TB|Ψ0〉
|ψ0〉,δ

≤ t] (3)

for this homogeneous Markov chain. As a consequence of (3), the analysis comes
down to an analysis of the hitting time distribution for this coupled Markov
chain (Fig. 2b).

Results. Define the matrix B
|Ψ0〉
|ψ0〉,δ ∈ [0, 1]|Gn|2×|Gn|2 element-wise by

(
B

|Ψ0〉
|ψ0〉,δ

)
z,w

�
{

Pz,w if w �∈ B|Ψ0〉
|ψ0〉,δ,

0 otherwise.

Let the initial state vector be denoted by ez0 , a |Gn|2 ×1 vector with just the z0-
th element 1 and the others 0. Also let 1A denote the |Gn|2 × 1 vector with ones
in every coordinate corresponding to an element in the set A. Let the transpose
of an arbitrary matrix A be denoted by AT and defined element-wise (AT)i,j =
Aj,i. Finally, we define a |Gn|2 × 1 vector d

|Ψ0〉
|ψ0〉 =

(‖xρ0x
† − yσ0y

†‖d

)
(x,y)∈G2

n

enumerating all possible Schatten d-norm distances. We now state our first result,
and defer to [32] for its proof:
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0

ba

Fig. 2. a) Coupled chain describing the quantum circuit with errors. In this depiction,
we start from the same initial state for simplicity. Here an error Λ3 �= I⊗n occurs as
the third gate is applied. Note that the coupled chain ρt, σt separates. b) Schematic
diagram of the hitting time TB|Ψ0〉

|ψ0〉,δ

.

Proposition 1 (Error accumulation in random circuits). For any z0 ∈
G2

n, δ ≥ 0, t = 0, 1, . . . , τ < ∞: the expected error is given by Ez0 [Dt] =
eTz0

P td
|Ψ0〉
|ψ0〉. Similarly, the probability of error is given by

Pz0 [Dt > δ] = eTz0
P t1B|Ψ0〉

|ψ0〉,δ

, (4)

and is nonincreasing in δ. Furthermore; if z0 �∈ B|Ψ0〉
|ψ0〉,δ, the probability of maxi-

mum error is given by

Pz0 [ max
0≤s≤t

Ds > δ] =
t∑

s=1

eTz0

(
B

|Ψ0〉
|ψ0〉,δ

)s−1(
P − B

|Ψ0〉
|ψ0〉,δ

)
1B|Ψ0〉

|ψ0〉,δ

, (5)

and otherwise it equals one. Lastly, (5) is nonincreasing in δ, and nondecreasing
in t.

The probability in (5) is a more stringent error measure than (4) is. The event
{max0≤s≤t Ds < δ} implies after all that the error Dt has always been below
the threshold δ up to and including at time t. The expected error Ez0 [Dt] and
probability Pz0 [Dt > δ] only concern the error at time t. Additionally, (5) allows
us to calculate the maximum number of gates that can be performed. That is,
Pz0 [max0≤s≤t Ds > δ] ≤ γ as long as t ≤ t�δ,γ � max

{
t ∈ N0

∣
∣Pz0 [max0≤s≤t Ds >

δ] ≤ γ
}
. In words: at most t�δ,γ gates can be applied before an accumulated error

of size at least δ occurred with probability at least γ.
For general B|Ψ0〉

|ψ0〉,δ, the explicit calculation of (5) can be numerically inten-
sive. It is however possible to provide a lower bound of lower numerical com-
plexity via the expected hitting time of the set B|Ψ0〉

|ψ0〉,δ.

Lemma 1 (Lower bound for random circuits). For any set A ⊆ G2
n, the

expected hitting times of a homogeneous Markov chain are the solutions to the
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linear system of equations Ez[TA] = 0 for z ∈ A, Ez[TA] = 1+
∑

w �∈A Pz,wEw[TA]
for z �∈ A. Furthermore; for any z0 ∈ G2

n, δ ≥ 0, t = 0, 1, . . . , τ < ∞:

Pz0 [ max
0≤s≤t

Ds > δ] ≥ 0 ∨
(
1 −

Ez0 [TB|Ψ0〉
|ψ0〉,δ

]

t + 1

)
. (6)

Here a ∨ b � max{a, b}.
A proof of (6) can be found in our extended version [32]. As a consequence

of Lemma 1, Pz0 [max0≤s≤t Ds > δ] ≥ γ when t ≥ Ez0 [TB|Ψ0〉
|ψ0〉,δ

]/(1 − γ) − 1, and

in particular Pz0 [max0≤s≤t Ds > 0] > 0 when t ≥ Ez0 [TB|Ψ0〉
|ψ0〉,0

]. The values in

the right-hand sides are thus upper bounds to the number of gates t�δ,γ one can
apply before δ error has occurred with probability γ:

t�δ,γ ≤ Ez0 [TB|Ψ0〉
|ψ0〉,0

] ∧
(Ez0 [TB|Ψ0〉

|ψ0〉,δ

]

1 − γ
− 1

)

for δ ≥ 0, γ ∈ [0, 1]. Here, a ∧ b � min{a, b}.

Limitations of the Method: Types of Quantum Noise Channels. The approach
taken in this article is a hybrid between classical probability theory and quantum
information theory. The results of this article are therefore not applicable to all
quantum channels, and it is important that we signal you the limitations.

As an illustrative example, consider the elementary circuit of depth τ = 1
with n = 1 qubit, in which the one gate is restricted to the Clifford group
{C1, . . . , C24}, say. For such an elementary circuit, this article describes a clas-
sical stochastic process that chooses one of twenty-four quantum noise channel
F (1), . . . F (24) say according to some arbitrary classical probability distribution
{pi(ρ)}, i.e.,

ρ0 → ρ1 = F(ρ0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (1)(ρ0) = C1ρ0C
†
1 w.p. p1(ρ0),

F (2)(ρ0) = C2ρ0C
†
2 w.p. p2(ρ0),

. . .

F (24)(ρ0) = C24ρ0C
†
24 w.p. p24(ρ0).

(7)

Here, the classical probability distribution {pi(ρ)} may be chosen arbitrarily,
and depend on the initial quantum state ρ0 as indicated. For this elementary
quantum circuit of depth τ = 1 with n = 1 qubit, (7) characterizes the set of
stochastic processes covered by our results in its entirety.

For example, Proposition 1 cannot be applied to the deterministic process

ρ0 → ρ1 =
{

E(1)(ρ0) = (1 − p)ρ0 + pY ρ0Y
† w.p. 1,

nor to the deterministic process

ρ0 → ρ1 =
{

E(2)(ρ0) = (1 − p)ρ0 + p
2Uρ0U

† + p
2U†ρ0U w.p. 1.



Markov Chains and Hitting Times for Error Accumulation 45

Here, p ∈ (0, 1) can be chosen arbitrarily and U = e−iπY/4 is a Clifford gate.
The reason is that

(F (1) �= F (2) �= · · · �= F (24)
) �= (E(1) = E(2)

)
by the unitary

freedom in the operator-sum representation [37, Thm. 8.2]. A meticulous reader
will now note that the example quantum channels E(1), E(2) are however averages
of two particular stochastic processes F . That is: if pI = 1 − p, pY = p, then
E(1)(ρ) = E[F(ρ)]; or if pI = 1 − p, pU = pU† = p

2 , then E(2)(ρ) = E[F(ρ)].

The Case of Nonrandom Circuits. Suppose that the gate sequence Uτ =
{U1, ..., Uτ} is fixed a priori and that it is not generated randomly. Because the
gate sequence is nonrandom, we have now that the faultless state ρt = Xtρ0X

†
t

is deterministic for times t = 0, 1, . . . , τ . On the other hand the potentially faulty
state σt = Ytρ0Y

†
t is still (possibly) random.

We can now use a lower dimensional Markov chain to represent the system. To
be precise: we will now describe the process {Yt}t≥0 (and consequently {σt}t≥0)
as an inhomogeneous Markov chain. Its transition matrices will now be time-
dependent and given element-wise by Qy,v(t) = P[Yt+1 = v|Yt = y] for y, v ∈
Gn, t ∈ {0, 1, . . . , τ − 1}. Letting Q

(t)
y,v � P[Yt = v|Y0 = y] stand in for the

probability that the process {Yt}t≥0 is at state v at time t starting from y, we
have by the Markov property [8] that Q

(t)
y,v =

(∏t
s=1 Q(s)

)
y,v

for y, v ∈ Gn.

Note that the Markov chain modeled here is inhomogeneous, which is different
from Sect. 3.1. In particular, the time-dependent transition matrix Q(t) here
cannot be expressed in terms of a power P t of a transition matrix P on the
same state space as in Sect. 3.1.

Results. Now define the sets of (δ, t)-bad gate pairs by B|Ψ0〉,t
|ψ0〉,δ �

{
x ∈ Un

∣
∣‖ρt −

xσ0x
†‖d > δ

}
for |ψ0〉 , |Ψ0〉 ∈ Sn, t ∈ {0, 1, . . . , τ}, δ ≥ 0. Also define the

matrices B
|Ψ0〉,t
|ψ0〉,δ ∈ [0, 1]|Gn|×|Gn| element-wise by

(
B

|Ψ0〉,t
|ψ0〉,δ

)
y,v

�
{

Qy,v(t) if v �∈ B|Ψ0〉,t
|ψ0〉,δ,

0 otherwise,

for t = 0, 1, . . . , τ . Recall the notation introduced above Proposition 1. Similarly
enumerate in the vector dρt

the Schatten d-norms between any of the possibles
states of σt and the faultless state ρt. We state our second result; see [32] for a
proof:

Proposition 2 (Error accumulation in nonrandom circuits). For any
y0 ∈ Gn, δ ≥ 0, t = 0, 1, . . . , τ < ∞: the expected error is given by Ey0 [Dt] =
eTy0

(∏t
k=1 Q(k)

)
dρt

. Similarly, the probability of error is given by

Py0 [Dt > δ] = eTy0

( t∏

k=1

Q(k)
)
1B|Ψ0〉,t

|ψ0〉,δ

. (8)
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Furthermore; if y0 �∈ B|Ψ0〉,0
|ψ0〉,δ, the probability of maximum error is given by

Py0 [ max
0≤s≤t

Ds > δ] =
t−1∑

s=0

(
eTy0

( s∏

r=0

B
|Ψ0〉,r
|ψ0〉,δ

)×(
Q(s+1)−B

|Ψ0〉,s+1
|ψ0〉,δ

)
1B|Ψ0〉,s+1

|ψ0〉,δ

)
, (9)

and otherwise it equals one.

For illustration, we have written a script that will generate a valid P and Q
matrices after a user inputs a vector describing (gate-dependent) error proba-
bilities. The code is available on TU/e’s GitLab server at https://gitlab.tue.nl/
20061069/markov-chains-for-error-accumulation-in-quantum-circuits.

3.2 Continuous, Random Error Accumulation (One-Qubit Case)

In this section, we analyze the case where a single qubit:

1. receives a random perturbation on the Bloch sphere after each s-th unitary
gate according to a continuous distribution ps(α), and

2. depolarizes to the completely depolarized state I/2 with probability q ∈ [0, 1]
after each unitary gate,

by considering it an absorbing random walk on the Bloch sphere. The key point
leveraged here is that the trace distance is invariant under rotations. Hence a
rotationally symmetric perturbation distribution will still allow us to calculate
the error probabilities.

Model. Let R0 be an initial point on the Bloch sphere. Every time a unitary
quantum gate is applied, the qubit is rotated and receives a small perturbation.
This results in a random walk {Rt}t≥0 on the Bloch sphere for as long as the
qubit has not depolarized. Because the trace distance is invariant under rotations
and since the rotations are applied both to ρt and σt, we can ignore the rotations.
We let ν denote the random time at which the qubit depolarizes. With the usual
independence assumptions, ν ∼ Geometric(q).

Define μt(r) for t < ν as the probability that the random walk is in a solid
angle Ω about r (in spherical coordinates) conditional on the qubit not having
depolarized yet. That is,

P[Rt ∈ S|ν > t] �
∫

S
μt(r)dΩ(r).

We assume without loss of generality that R0 = ẑ. From [40], the initial distri-
bution is then given by

μ0 =
∞∑

n=0

2n + 1
4π

Pn(cos θ).

https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
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Here, the Pn(·) denote the Legendre polynomials. Also introduce the shorthand
notation

Λn,t �
t∏

s=1

∫ π

0

Pn(cosα)dps(α)

for convenience. As we will see in Proposition 3 in a moment, these constants will
turn out to be the coefficients of an expansion for the expected trace distance
(see (10)). Recall that here, ps(α) denotes the probability measure of the angular
distance for the random walk on the Bloch sphere at time t (see (i) above). In
particular: if pt(α) = δ(α) for all t ≥ 0 meaning that each step is taken into a
random direction but exactly of angular length α, then Λn,t = (Pn(cos α))t. From
[40], it follows that after t unitary quantum gates have been applied without
depolarization having occurred,

μt =
∞∑

n=0

2n + 1
4π

Λn,tPn(cos θ).

Results. In this section we specify Dt as the trace distance. We are now in
position to state our findings; proofs can be found in [32]:

Proposition 3 (Single qubit). For 0 ≤ δ ≤ 1, t ∈ N+: the expected trace
distance satisfies

E[Dt] = 1
2 − (1 − q)t

(
1
2 + 2

∞∑

n=0

Λn,t

(2n − 1)(2n + 3)

)
. (10)

The probability of the trace distance deviating is given by

P[Dt ≤ δ] = 1[12 ∈ [0, δ]]
(
1 − (1 − q)t

)

+ (1 − q)t
∞∑

n=0

(2n + 1)Λn,t

n+1∑

r=1

(−1)r+1δ2rCr−1

(
n + r − 1
2(r − 1)

)
.

Here, the Cr denote the Catalan numbers. Finally; the probability of the maxi-
mum trace distance deviating is lower bounded by

P[ max
0≤s≤t

Ds ≤ δ|ν > t] ≥ 0∨
(
1− t+δ2

t∑

s=1

∞∑

n=0

(2n+1)Λn,s
n!

(2)n
P (1,−1)

n (1−2δ2)
)
.

4 Simulations

We will now briefly illustrate and validate our results numerically. For a more
indepth numerical investigation, see [32].

Consider two nonrandom circuits: the first is a periodical single-qubit circuit
that repeats a Hadamard, Pauli-X, Pauli-Y and Pauli-Z gate k = 25 times, and
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the second a two-qubit circuit that is repeated k = 5 times; see also Fig. 3. Here
the controlled-NOT gate CNOT =

(
(1, 0, 0, 0); (0, 1, 0, 0); (0, 0, 0, 1); (0, 0, 1, 0)

)
.

Consider also the following two error models in which the errors depend on the
gates:
(i) For the single-qubit circuit, presume P[Λ = I] = 0.990,P[Λ = Z] = 0.010.
(ii) For the two-qubit circuit, when labeling the qubits by A and B, suppose

P[ΛA = I] = 0.990, P[ΛA = X] = 0.006,P[ΛA = Y ] = 0.003, P[ΛA = Z] = 0.001;

P[ΛB = I] = 0.980, P[ΛB = X] = 0.002,P[ΛB = Y ] = 0.014, P[ΛB = Z] = 0.004.

In order to evaluate Proposition 2, we set the error threshold δ = 1/10.
The theoretical and simulation results on the two circuits are shown in Fig. 3.

Note that the simulation curves almost coincide with the theoretical curves; the
deviation is only due to numerical limits. Furthermore, because different gates
influence error accumulation to different degrees, the periodical ladder shape
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Fig. 3. Theoretical and simulation results for error accumulation on a single-qubit
circuit (figures a, c, and e) and a two-qubit circuit (figures b and d). The numerical
results are calculated from 2000 independent runs, and almost indistinguishable from
the formulae. The dashed, black curve in figure e is a fit of Dt ≈ 1

2
(1 − (1 − μ)t) to

the data—this formula describes the so-called depolarization channel, a basic model of
depolarization of one qubit. The fit parameter is μfit ≈ 0.011.
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occurs in Fig. 3. Observe furthermore that this periodical ladder shape is not
captured by a fit method that only takes into account the decay of t applications
of a single depolarizing channel.

5 Minimizing Errors in Quantum Circuit Through
Optimization

The rate at which errors accumulate may be different for different quantum
circuits that can implement the same algorithm. Using techniques from opti-
mization and (9), we can therefore search for the quantum circuit that has the
lowest error rate accumulation while maintaining the same final state. To see
this, suppose we are given a circuit Uτ = {U1, U2, . . . , Uτ}. For given ρ0 this
brings the quantum state to some quantum state ρτ . Other circuits may go to
the same final state and have a lower probability of error at time τ . We will
therefore aim to

minimize
G1,...,Gτ ∈Gn

u({G1, . . . , Gτ})

subject to Gτ · · · G1 = Uτ · · · U1.
(11)

Here, one can for example choose for the objective function u(·) the probability
of error (8), or probability of maximum error (9). To solve (11), we design a
simulated annealing algorithm in Sect. 5.1 to improve the quantum circuit.

The minimization problem in (11) is well-defined and has a few attractive
features. For starters, the minimization problem automatically detects shorter
circuits if the probability of error when applying the identity operator I⊗n is
relatively small. The optimum may then for example occur at a circuit of the
form

GτGτ−1Gτ−2 · · · G2G1 = I⊗nGτ−1I
⊗n · · · I⊗nG1,

which effectively means that only the two gates Gτ−1G1 are applied consecu-
tively. The identity operators in this solution essentially describe the passing
of time. Now, critically, note that while the minimization problem does con-
sider all shorter circuits of depth at most τ , this does not necessarily mean
that the physical application of one specific group element G ∈ Gn is always
the best. Concretely, in spite of the fact that any quantum circuit of the form
Gτ · · · G1 = G ∈ Gn performs the single group element G ∈ Gn, it is not neces-
sarily true that

u({G, I⊗n, . . . , I⊗n}) < u({G1, . . . , Gτ}).

The reason for this is that the error distribution on the direct group element
G may be worse than using a circuit utilizing multiple other group elements.
In other words, the optimal circuit need not always be the ‘direct’ circuit, but
of course it can be. (In Sect. 5.2 we also consider the situation in which an
experimentalist can only apply a subset A ⊆ Gn that need not necessarily be
a group, and in such a case the direct group element G may not even be a
viable solution to the experimentalist if G �∈ A.) Typically, the minimization
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problem will prefer shorter circuits if the probability of error when applying the
identity operator I⊗n is relatively small and the error distributions of all gate
distributions are relatively homogeneous.

5.1 Simulated Annealing

We will generate candidate circuits as follows. Let {G
[η]
1 , . . . , G

[η]
τ } denote the

circuit at iteration η. Choose an index I ∈ [τ − 1] uniformly at random, choose
G ∈ G uniformly at random. Then set

G
[η+1]
i =

⎧
⎪⎨

⎪⎩

G if i = I,

G
[η]
I+1G

[η]
I G← if i = I + 1,

G
[η]
i otherwise.

Here, G← denotes the (left) inverse group element, i.e., G←G = I⊗n. The con-
struction thus ensures that

G
[η+1]
I+1 G

[η+1]
I =

(
G

[η]
I+1G

[η]
I G←)

G = G
[η]
I+1G

[η]
I

so that the circuit’s intent does not change: G
[η+1]
τ · · · G[η+1]

1 = G
[η]
τ · · · G[η].

We will use the Metropolis algorithm. Let

E =
{{G1, . . . , Gτ}|Gτ · · · G1 = Uτ · · · U1

}

denote the set of all viable circuits. For two arbitrary circuits i, j ∈ E, let

Δ(i, j) �
τ−1∑

s=1

1[is �= js, is+1 �= js+1]

denote the number of consecutive gates that differ between both circuits. Under
this construction, the candidate-generator matrix of the Metropolis algorithm is
given by

qij =

{
1

(τ−1)|G| if Δ(i, j) ≤ 1

0 otherwise.

Since the candidate-generator matrix is symmetric, this algorithm means that
we set αi,j(T ) = exp

(− 1
T max {0, u(j) − u(i)})

as the acceptance probability of
circuit j over i. Here T ∈ (0,∞) is a positive constant. Finally, we need a cooling
schedule. Let M � sup{i,j∈E|Δ(i,j)≤1}{u(j) − u(i)}. Based on [8], if we choose a
cooling schedule {Tη}η≥0 that satisfies Tη ≥ τM

ln η , then the Metropolis algorithm
will converge to the set of global minima of the minimization problem in (11).

Lemma 2. Algorithm 1 converges to the global minimizer of (11) whenever
Tη ≥ τM/ln η for η = 1, 2, · · · .
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Input: A group G, a circuit {U1, . . . , Uτ}, and number of iterations w

Output: A revised circuit {G
[w]
1 , . . . , G

[w]
τ }

begin

Initialize {G
[0]
1 , . . . , G

[0]
τ } = {U1, . . . , Uτ};

for η ← 1 to w do
Choose I ∈ [τ − 1] uniformly at random;
Choose G ∈ G uniformly at random;

Set JI = G, JI+1 = G
[η]
I+1G

[η]
I G←, Ji = G

[η]
i ∀i�=I,I+1;

Choose X ∈ [0, 1] uniformly at random;
if X ≤ αG[η],J(Tη) then

Set G[η+1] = J ;
else

Set G[η+1] = G[η];
end

end

end

Algorithm 1: Pseudo-code for the simulated annealing algorithm
described in Section 5.1.

5.2 Examples

Gate-Dependent Error Model. We are going to improve the one-qubit cir-
cuit in Fig. 3 using Algorithm 1. The gates are limited to the Clifford group C1

and the errors will be limited to the Pauli channel. The error probabilities con-
sidered here are gate-dependent and written out explicitly in [32, Appendix H].
The cooling schedule used here will be set as Tη = C/ ln (η + 1), and the algo-
rithm’s result when using C = 0.004 is shown in Fig. 4a. Figure 4a illustrates
that the improved circuit can indeed lower the error accumulation rate. The
circuit with the lowest error accumulation rate that was found is shown in [32,
Appendix H].

Gates in a Subset of One Group. The gates that are available in practice
may be restricted to some subset A ⊆ G not necessarily a group. Under such
constraint, we could generate candidate circuits as follows: Let {G

[η]
1 , . . . , G

[η]
τ }

denote the circuit at iteration η. In each iteration, two neighboring gates will be
considered to be replaced by two other neighboring gates. There are m ≤ (τ −1)
neighboring gate pairs (G[η]

1 , G
[η]
2 ), . . . , (G[η]

m−1, G
[η]
m ) that can be replaced by two

different neighboring gates. Choose an index I ∈ [m − 1] uniformly at random,
and replace (G[η]

I , G
[η]
I+1) by any gate pair from {(G̃1, G̃2) ∈ A2 | G

[η]
I G

[η]
I+1 =

G̃1G̃2} uniformly at random. Pseudo-code for this modified algorithm can be
found in [32, Algorithm 2]. It must be noted that this algorithm is not guaranteed
to converge to the global minimizer of (11) (due to limiting the gates available);
however, it may still find use in practical scenarios where one only has access to
a restricted set of gates.
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We now aim to decrease the probability of maximum error (9) by changing
the two-qubit circuit shown in Fig. 3. The error model is the same as that in
Sect. 4–B. The set of gates available for improving the circuit is here limited to
{I,X, Y, Z,H,CNOT}. The result here for the two-qubit circuit is obtained by
again using the cooling schedule Tη = C/ ln (η + 1) but now letting the parame-
ter C = 0.002. Figure 4b shows that a more error-tolerant circuit can indeed be
found using this simulated annealing algorithm. The improved circuit is shown
in [32, Appendix H].
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Fig. 4. a) Circuit optimization when using Algorithm 1. The error probabilities are
gate-dependent. Note that the probability of maximum error (9) decreases as the num-
ber of iterations η increases when using Algorithm 1 (C = 0.004). b) Circuit optimiza-
tion when the available gates are limited. The set of gates available is chosen limited
to {I, X, Y, Z, H, CNOT}. Here we started from the two-qubit circuit shown in Fig. 3.

Deutsch–Jozsa Algorithm. Let us give further proof of concept through the
Deutsch–Jozsa Algorithm for one classical bit [11,13]. This quantum algorithm
determines if a function f : {0, 1} → {0, 1} is constant or balanced, i.e., if
f(0) = f(1) or f(0) �= f(1). It is typically implemented using the quantum circuit
in Fig. 5. If no errors occur in this quantum circuit, then the first qubit would
measure |0〉 or |1〉 w.p. one if f constant or balanced, respectively. If errors occur
in this quantum circuit, then there is a strictly positive probability that the first
qubit measures |1〉 or |0〉 in spite of f being constant or balanced, respectively,
and thus for the algorithm to incorrectly output that f is constant or balanced.
This misclassification probability ν of the algorithm depends on the underlying
error distributions, and can be calculated by adapting (8)’s derivation.

We suppose now that errors occur according to a distribution in which two-
qubit Clifford gates are more error prone than single-qubit gates. We can then
revise the quantum circuit in Fig. 5 using a simulated annealing algorithm that
aims at minimizing (11) by randomly swapping out poor gate pairs for better
gate pairs. This simulated annealing algorithm, like any other, is sensitive to
the choice of cooling schedule [8], here set as Tη = C

(
γ/η + (1 − γ)/ ln (η + 1)

)
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with C > 0, γ ∈ [0, 1]; the integer η indexes the iterations. Figure 5 shows the
ratio Θ � νoriginal circuit/νrevised circuit as a function of C, γ for fa(x) = x, fb(x) =
1 − x, fc(x) = 0, fd(x) = 1 where x ∈ {0, 1}. Note that Θ ≥ 1 always, ≥ 1.60
commonly, and sometimes even ≥ 2.20.
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Fig. 5. (left) The Deutsch–Jozsa Algorithm for one classical bit in quantum circuit
form. (right) Relative improvement when using Algorithm 1. For every pair (C, γ) here,
Θ was calculated using a Monte Carlo simulation with 105 independent repetitions for
the best circuit found throughout w = 103 iterations of the annealing algorithm. u(·)
was set to the misclassification probability for a, c; and to (9) for b, d.

6 Conclusion

In conclusion; we have proposed and studied a model for discrete Markovian
error accumulation in a multi-qubit quantum computation, as well as a model
describing continuous errors accumulating in a single qubit. By modeling the
quantum computation with and without errors as two coupled Markov chains,
we were able to capture a weak form of time-dependency, allow for fairly generic
error distributions, and describe multi-qubit systems. Furthermore, by using
techniques from discrete probability theory, we could calculate the probability
that error measures such as the fidelity and trace distance exceed a threshold
analytically. To combat the numerical challenge that may occur when evaluat-
ing our expressions, we additionally provided an analytical bound on the error
probabilities that is of lower numerical complexity. Finally, we showed how our
expressions can be used to decide how many gates one can apply before too
many errors accumulate with high probability, and how one can lower the rate
of error accumulation in existing circuits by using techniques from optimization.
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