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Wind and Airflow Angle Estimation Using an Adaptive Extended
Rauch-Tung-Striebel Smoother

Xiang Fang∗ and Florian Holzapfel†
Technical University of Munich, 85748 Garching, Germany

Coen C. de Visser‡ and Daan M. Pool§
Delft University of Technology, 2629 HS Delft, The Netherlands

This paper proposes a new method that estimates the three-dimensional stochastic wind
velocity for an aircraft equipped with a Pitot-static tube and airflow vanes. Since the performance
of most state estimators, e.g., the extended Rauch-Tung-Striebel smoother, relies on the process
and measurement noise covariance settings, the proposed method employs the expectation-
maximization approach to estimate the noise covariance matrices to improve the estimation
accuracy. Numerical simulations demonstrated that the proposed method can successfully
estimate the noise covariance matrices, especially for the noise covariance of the wind velocity,
using the measurement data and reconstruct the wind velocity offline. Additionally, the
smoothed true airspeed, angle of attack, and angle of sideslip data are more accurate compared
to the direct measurements. This feature is also beneficial for other applications such as the
aerodynamic model identifications of aircraft.

I. Introduction

Wind sensing and estimation from aircraft flight data is an essential topic for aerospace and atmospheric studies,
such as energy harvesting [1] and wind turbulence research [2]. Furthermore, another issue associated with this

topic is the estimation of airspeed and flow angles. When it comes to identifying the aircraft aerodynamic model using
system identification techniques [3, 4], it is also beneficial to obtain an accurate estimation of airspeed and flow angles
since the aerodynamic forces and moments have a strong dependency on these variables.

A large amount of research has been conducted on wind estimation. The main existing methods can be categorized
into two types based on whether they depend on knowledge of the aircraft aerodynamic model or not, i.e., model-aided
methods (e.g., [5, 6]) and model-free ones. For aircraft system identification applications, since the overall goal is to
model the aircraft aerodynamics, it is necessary to consider the aerodynamic model as unknown for the wind estimation
problem. Therefore, we mainly focus on the state-of-the-art for model-free methods in this paper. Langelaan et al. [1]
presented a method to directly calculate the three-dimensional (3D) wind velocity by using data from the aircraft
autopilot. A moving-average filter is applied post-hoc to reduce noise. Besides such direct methods, some researchers
formulate wind estimation as a state estimation problem and solve it using nonlinear Kalman filters. Cho et al. [7]
proposed a wind estimation method based on the Extended Kalman Filter (EKF) using measurements from a Global
Positioning System (GPS) receiver and a Pitot tube. In the method proposed by Cho et al. [7] the wind velocity is
assumed to be close to constant with the vertical component being zero. Also, the algorithm requires a circle flying
pattern to ensure observability. To estimate the 3D wind velocity, Rhudy et al. [8] developed a solution for both the
EKF and an unscented Kalman filter using inertial measurement unit (IMU), GPS, Pitot tube, and airflow vane data.
Flight testing results show that this algorithm can successfully achieve satisfying estimates. In [8], the dynamics of
wind velocity are modeled as a random-walk process with relatively larger process noises, compared to [7], to reflect the
stochastic nature of wind rather than assume the wind velocity to be constant.

It is often more practical to model wind as a stochastic process instead of constant values considering that wind can
be described as a superposition of not only mean (constant) wind, but also discrete gusts and turbulence [9] which are
inherently stochastic. Rhudy et al. [10] showed that the random-walk process model is a good time-domain stochastic
model for the wind and that it is easily embedded in a Kalman filtering framework. For a certain flight, the noise level in
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the random walk is unknown and can vary strongly, which makes the tuning of the noise covariance in the random-walk
model a non-trivial problem. Therefore, the objective of this research is to develop an adaptive smoothing algorithm to
solve this noise covariance tuning problem for an optimal wind estimation.

Several studies have attempted to estimate the noise covariances in a general Kalman filtering (or smoothing)
framework which can be utilized as mathematical tools for solving our problem. The Myers and Tapley (MT)
approach [11] estimates the process (𝑸) and measurement noise (𝑹) covariance matrices with a covariance matching
technique using the innovation in the EKF. Based on the MT approach, de Mendonça et al. [12] proposed an adaptive
filtering algorithm for online aircraft flight path reconstruction. Besides the main filter that deals with the state
estimation, the authors designed two parallel Kalman filters to estimate the process and measurement noise covariances
to improve the main filter’s performance. For an Extended Rauch-Tung-Striebel Smoother (ERTSS)-based state
estimation, Bavdekar et al. [13] proposed an extended expectation-maximization (EM) method, which is based on the
maximum likelihood principle, to identify 𝑸 and 𝑹. Ananthasayanam et al. [14] carried out a comparison study on
different adaptive filter tuning methods for the 𝑸 and 𝑹 estimation in a Kalman filtering or smoothing problem. They
reported that the extended EM method is a better option for estimating 𝑸 and 𝑹 than the MT approach.

Currently, these noise covariances estimation techniques have not been used in wind estimation problems. In the
previous wind estimation works, such as [7, 8], the noise covariance of the random-walk wind model is set to a certain
value which is chosen based on experience. Instead, in this paper, we propose to apply the extended EM method to
adaptively estimate the 𝑸 and 𝑹 in the wind estimation problem, especially to cope with the wind noise covariance
which is different in each flight. In this work, the wind velocity is modeled as a random-walk process with the noise
covariance representing the possible changing rate of the wind velocity. The random-walk model of wind velocity is
integrated into the ERTSS framework as state equations. By applying the extended EM method, the noise covariance
matrices 𝑸 and 𝑹 can be estimated from the flight data. With the adaptively estimated 𝑸 and 𝑹, the ERTSS can
optimally estimate the 3D stochastic wind velocity as well as the air triplets: true airspeed 𝑉TAS, angle of attack 𝛼, and
angle of sideslip 𝛽 in offline analyses.

This paper is organized as follows. The mathematical formulation of the wind estimation problem for this paper is
introduced in Section II . To solve this problem, the proposed adaptive ERTSS method for wind estimation problem is
discussed in Section III . Results based on numerical simulations are presented in Section IV to validate the proposed
method. Finally, the concluding remarks are made in Section V .

II. Problem Formulation
The wind estimation problem involves solving the equations of the wind triangle. As illustrated in Fig. 1, three

different velocity vectors define a vector triangle. The wind velocity vector 𝑽W is defined as the moving velocity of the
air relative to the ground, the aerodynamic velocity vector 𝑽A is defined as the velocity of the aircraft relative to the
surrounding air, and the kinematic velocity vector 𝑽K is defined as the aircraft velocity relative to the ground.

AircraftGround

Air

𝑽A

𝑽K

𝑽W

Fig. 1 The wind triangle.

Therefore, by the definition above, the wind triangle can be written as

𝑽A = 𝑽K − 𝑽W .
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This vector equation can be written in a matrix form in the aircraft body-fixed frame [1] as
𝑢A

𝑣A

𝑤A

 =

𝑢K

𝑣K

𝑤K

 − 𝑴BE


𝑊x

𝑊y

𝑊z

 , (1)

where (𝑢A, 𝑣A, 𝑤A) are the aerodynamic velocity components in the body-fixed reference frame, (𝑢K, 𝑣K, 𝑤K) are the
kinematic velocity components in the body-fixed frame, and (𝑊x, 𝑊y, 𝑊z) are the north, east, and down components of
the wind velocity vector in the earth-fixed local frame. The transformation matrix from the earth-fixed frame to the
body-fixed frame 𝑴BE can be expressed using attitude Euler angles as

𝑴BE =


cos𝜓 cos 𝜃 sin𝜓 cos 𝜃 − sin 𝜃

cos𝜓 sin 𝜃 sin 𝜙 − sin𝜓 cos 𝜙 sin𝜓 sin 𝜃 sin 𝜙 + cos𝜓 cos 𝜙 cos 𝜃 sin 𝜙

cos𝜓 sin 𝜃 cos 𝜙 + sin𝜓 sin 𝜙 sin𝜓 sin 𝜃 cos 𝜙 − cos𝜓 sin 𝜙 cos 𝜃 cos 𝜙

 ,

where 𝜙 is the bank angle, 𝜃 is the pitch angle, and 𝜓 is the azimuth angle.
The mapping relationship from the aerodynamic velocity to the air triplets (𝑉TAS, 𝛼, 𝛽) is described by the following

equations:

𝑉TAS =

√︃
𝑢2

A + 𝑣2
A + 𝑤2

A , (2)

𝛼 = arctan
(
𝑤A
𝑢A

)
, (3)

𝛽 = arctan
(

𝑣A√︃
𝑢2

A + 𝑤2
A

)
. (4)

The airflow angles, i.e., the angle of attack 𝛼 and the sideslip angle 𝛽, are commonly measured by mechanical vanes,
while the true airspeed 𝑉TAS can be measured by a Pitot-static probe. It is also possible to measure the air triplets by a
multi-hole Pitot probe [15].

According to Eqs. (1) to (4), we can formulate a wind estimator as shown in Fig. 2. For the data source of the wind
estimator, the kinematic velocity (𝑢K, 𝑣K, 𝑤K) and attitude Euler angles (𝜙, 𝜃, 𝜓) can be obtained from the navigation
system which typically applies the GPS-aided inertial navigation technique with EKF. For offline applications, the
ERTSS-based flight path reconstruction [16, 17] can provide these data with lower error covariances utilizing IMU and
GPS measurements. The air triplets measurements can be provided by the air data system which consists of Pitot-static
probes, vanes, and an air data computer.

Wind Estimator

Navigation System

Air Data System

Kinematic velocity
(𝑢K, 𝑣K, 𝑤K)

Attitude Euler angles
(𝜙, 𝜃, 𝜓)

Air triplets measurements
(𝑉TAS, 𝛼, 𝛽)

Estimated wind velocity
(�̂�x, �̂�y, �̂�z)

Estimated air triplets
(�̂�TAS, �̂�, 𝛽)

Fig. 2 The wind estimation problem.
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III. Adaptive Extended Rauch-Tung-Striebel Smoother

A. Stochastic Modeling of the Wind Velocity
The dynamics of wind velocity is modeled as a random-walk process [8, 9]:

¤𝑊x = 𝑤𝑊x ,

¤𝑊y = 𝑤𝑊y ,

¤𝑊z = 𝑤𝑊z .

(5)

By modeling the wind velocity as a random-walk process, the change rate of the wind velocities with respect to time is
stochastically limited by the covariance of noise 𝒘W. In another word, the wind velocity may change more rapidly if the
covariance of the noise 𝒘𝑊 is larger. Otherwise, if the covariance is small, the wind velocity will change slower and
will be closer to a constant value.

B. State Estimation
The system model is formulated in a state-space form with the state vector 𝒙, the input vector 𝒖, the output vector 𝒚,

and a process noise vector 𝒘 as follows:

𝒙 =

[
𝑊x 𝑊y 𝑊z

]⊤
, (6)

𝒖 =

[
𝑢K 𝑣K 𝑤K 𝜙 𝜃 𝜓

]⊤
, (7)

𝒚 =

[
𝑉TAS 𝛼 𝛽

]⊤
, (8)

𝒘 =

[
𝑤𝑊x 𝑤𝑊y 𝑤𝑊z

]⊤
. (9)

The model of this system can be written in the form of continuous-discrete stochastic equations as

¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝒖(𝑡)) + 𝒘(𝑡) , 𝒙(0) = 𝒙0 , (10)
𝒚(𝑡) = 𝒈(𝒙(𝑡), 𝒖(𝑡)) , (11)
𝒛𝑘 = 𝒚𝑘 + 𝒗𝑘 , (12)

where 𝒛𝑘 is the discrete measurement vector. The continuous process noise process {𝒘(𝑡)} is assumed to be zero-mean,
uncorrelated, white Gaussian with covariance E[𝒘(𝑡)𝒘⊤ (𝜏)] = 𝑸𝛿(𝑡 − 𝜏), where 𝛿(𝑡) is the Dirac impulse function.
The discrete measurement noise process {𝒗𝑘} is also assumed to be zero-mean, uncorrelated, white Gaussian with
covariance E[𝒗 𝑗𝒗𝑘] = 𝑹𝛿 𝑗𝑘 , where 𝛿 𝑗𝑘 is the Kronecker delta. For the wind estimation problem formulated in this
paper, the system dynamic equations Eq. (10) are the wind random-walk model Eq. (5) with 𝒇 (𝒙(𝑡), 𝒖(𝑡)) = 0 . The
output equations Eq. (11) stands for the wind triangle equations Eq. (1) together with Eqs. (2) to (4) .

The EKF is initialized at the initial time point 𝑡0 with

�̂�0 |0 = �̄�0 , (13)
𝑷0 |0 = �̄�0 , (14)

where �̄�0 the a priori estimate of the initial state 𝒙0 and �̄�0 B E [(𝒙0 − �̄�0) (𝒙0 − �̄�0)⊤] is the estimation error covariance
matrix of �̄�0.

The following continuous-discrete EKF equations are sequentially calculated for each discrete time points 𝑡𝑘 with
𝑘 = 1, · · · , 𝑁 to obtain filtered state estimates:

�̂�𝑘 |𝑘−1 = �̂�𝑘−1 |𝑘−1 +
∫ 𝑡𝑘

𝑡𝑘−1

𝒇 (�̂�𝑘−1 |𝑘−1, 𝒖𝑘−1)d𝑡 , (15)

𝑷𝑘 |𝑘−1 = 𝚽𝑘−1𝑷𝑘−1 |𝑘−1𝚽
⊤
𝑘−1 + 𝑸Δ𝑡𝑘−1 , (16)

𝑲𝑘 = 𝑷𝑘 |𝑘−1𝑪
⊤
𝑘 [𝑪𝑘𝑷𝑘 |𝑘−1𝑪

⊤
𝑘 + 𝑹]−1 , (17)

�̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 + 𝑲𝑘 [𝒛𝑘 − 𝒈(�̂�𝑘 |𝑘−1, 𝒖𝑘)] , (18)
𝑷𝑘 |𝑘 = [𝑰𝑛𝑥

− 𝑲𝑘𝑪𝑘]𝑷𝑘 |𝑘−1 , (19)
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where �̂�𝑘 |𝑘−1 B E(𝒙𝑘 |𝒛1, . . . , 𝒛𝑘−1) is the predicted state estimate, 𝑷𝑘 |𝑘−1 B E
[
(𝒙𝑘 − �̂�𝑘 |𝑘−1) (𝒙𝑘 − �̂�𝑘 |𝑘−1)⊤

]
is the predicted state error covariance matrix, �̂�𝑘 |𝑘 B E(𝒙𝑘 |𝒛1, . . . , 𝒛𝑘) is the updated state estimate, 𝑷𝑘 |𝑘 B
E
[
(𝒙𝑘 − �̂�𝑘 |𝑘) (𝒙𝑘 − �̂�𝑘 |𝑘)⊤

]
is the updated state error covariance matrix, 𝑲𝑘 is the Kalman gain, Δ𝑡 B 𝑡𝑘 − 𝑡𝑘−1 is

the sampling period, and 𝐼𝑛𝑥
is an 𝑛𝑥-by-𝑛𝑥 identity matrix with 𝑛𝑥 being the total number of state components. The

integral in Eq. (15) can be solved by the numerical integration schemes, e.g., the classic fourth-order Runge–Kutta
method in this paper. The state transition matrix 𝚽𝑘−1 can be calculated using the linearization matrix 𝑨𝑘−1 as

𝚽𝑘−1 = exp(𝑨𝑘−1Δ𝑡𝑘−1) with 𝑨𝑘−1 =
𝜕 𝒇 (�̂�𝑘−1 |𝑘−1, 𝒖𝑘−1)

𝜕𝒙
,

and the linearization matrix 𝑪𝑘 is calculated by

𝑪𝑘 =
𝜕𝒈(�̂�𝑘 |𝑘−1, 𝒖𝑘)

𝜕𝒙
.

The Rauch-Tung-Striebel smoother [18] is initialized at the final time point 𝑡𝑁 using the EKF state estimates and its
error covariance for 𝑡𝑁 with

�̂�s
𝑁 = �̂�𝑁 |𝑁 , (20)

𝑷s
𝑁 = 𝑷𝑁 |𝑁 . (21)

The smoother sequentially runs backward in time for the discrete time points 𝑡𝑘 with 𝑘 = (𝑁 − 1), · · · , 0 to obtain
smoothed state estimates as

𝑲s
𝑘 = 𝑷𝑘 |𝑘𝚽

⊤
𝑘 (𝑷𝑘+1 |𝑘)−1 , (22)

�̂�s
𝑘 = �̂�𝑘 |𝑘 + 𝑲s

𝑘 [�̂�
s
𝑘+1 − �̂�𝑘+1 |𝑘] , (23)

𝑷s
𝑘 = 𝑷𝑘 |𝑘 + 𝑲s

𝑘 [𝑷
s
𝑘+1 − 𝑷𝑘+1 |𝑘] (𝑲s

𝑘)
⊤ , (24)

where �̂�s
𝑘
B E(𝒙𝑘 |𝒛1, . . . , 𝒛𝑁 ) is the smoothed state estimate and 𝑷s

𝑘
B E

[
(𝒙𝑘 − �̂�s

𝑘
) (𝒙𝑘 − �̂�s

𝑘
)⊤
]

is the smoothed
state error covariance matrix, and 𝑲s

𝑘
is the smoother gain.

In addition, the lag-one covariance smoother 𝑷s
𝑘,𝑘−1 B E

[
(𝒙𝑘 − �̂�s

𝑘
) (𝒙𝑘−1 − �̂�s

𝑘−1)
⊤] [19] can be calculated by

𝑷s
𝑁,𝑁−1 = [𝑰𝑛𝑥

− 𝑲𝑁𝑪𝑁 ]𝚽𝑁−1𝑷𝑁−1 |𝑁−1 , (25)
𝑷s
𝑘+1,𝑘 = 𝑷𝑘+1 |𝑘+1 (𝑲s

𝑘)
⊤ + 𝑲s

𝑘+1 [𝑷
s
𝑘+2,𝑘+1 −𝚽𝑘+1𝑷𝑘+1 |𝑘+1] (𝑲s

𝑘)
⊤ , 𝑘 = 𝑁 − 2, · · · , 0 . (26)

C. Adaptive Noise Covariance Matrices Estimation by the Expectation-Maximization Method
For the ERTSS framework outlined in Section III.B, the tuning parameters that influence the smoothing performance

are (�̄�0, �̄�0, 𝑸, 𝑹). In practice, this is a difficult filter tuning problem, as the process noise covariances of the wind are
variant for different flights. Therefore, it would be ideal if these key tuning parameters can be estimated adaptively to
improve the overall performance.

An effective proposed solution to the aforementioned problem is the EM method [13, 19]. It is an iterative
parameter estimation method based on the maximum likelihood estimation theory that estimates the tuning parameters
by using the smoothed residuals from the ERTSS. Hereafter, for simplicity of the notation, we use 𝚯 to indicate the
parameters to be estimated (�̄�0, �̄�0, 𝑸, 𝑹) in this section. Since the independent multivariate Gaussian distribution
assumption made in Section III.B, i.e., the initial states estimate fulfills �̂�0 ∼ N(𝒙0, 𝑷0), the continuous process noises
fulfill 𝒘(𝑡) ∼ N (0, 𝑸), and the measurement noises fulfill 𝒗𝑘 ∼ N(0, 𝑹), the likelihood function L for this estimation
problem can be written as

L(𝚯 | 𝒙0:𝑁 , 𝒛1:𝑁 ) =
1√︁

(2𝜋)𝑛𝑥 |𝑷0 |
exp

[
−
(�̂�0 − 𝒙0)⊤𝑷−1

0 (�̂�0 − 𝒙0)
2

]
×

𝑁−1∏
𝑘=1

1√︁
(2𝜋)𝑛𝑤 |𝑸Δ𝑡𝑘 |

exp

[
−
𝒘⊤

𝑘
(𝑸Δ𝑡𝑘)−1𝒘𝑘

2

]
×

𝑁∏
𝑘=1

1√︁
(2𝜋)𝑛𝑣 |𝑹 |

exp

[
−
𝒗⊤
𝑘
𝑹−1𝒗𝑘

2

]
,
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where 𝒘𝑘 B
∫ 𝑡𝑘+1
𝑡𝑘

𝒘(𝑡)d𝑡 is the discretized process noise corresponding to 𝒘(𝑡) which fulfills the following Gaussian
distribution 𝒘𝑘 ∼ N(0, 𝑸Δ𝑡𝑘), and 𝑛𝑤 and 𝑛𝑣 are the number of process and measurement noise components,
respectively. The maximum likelihood estimate of the parameters is therefore �̂� = arg max

𝚯
L(𝚯 | 𝒙0:𝑁 , 𝒛1:𝑁 ) . The

difficulty in solving this equation lies in the fact that the states 𝒙0:𝑁 that need to be estimated depend on the parameters 𝚯.
To overcome this difficulty, the EM method iteratively updates the parameter values so that the likelihood function
value will keep increasing with each iteration. For each iteration, the EM method contains two steps: an expectation
step (E-step) and a maximization step (M-step). The E-step runs the ERTSS Eqs. (13) to (26) to find the expectation
value of the log-likelihood function Q(𝚯, �̂�

( 𝑗−1) ) B E[logL(𝚯 | �̂�0:𝑁 (�̂�( 𝑗−1) ), 𝒛1:𝑁 )] .The M-step maximizes the
log-likelihood function with respect to the parameters �̂�( 𝑗 )

= arg max
𝚯
E[logL(𝚯 | �̂�0:𝑁 (�̂�( 𝑗−1) ), 𝒛1:𝑁 )] . Because of

the Jensen’s inequality and the concavity of the logarithmic function, it can be proven that the EM method guarantees
the increase of the likelihood function L along with successive iterations [13].

The result of the M-step gives the following adaptive estimation equations for the noise covariance 𝑸 and 𝑹 [13]:

�̂� ( 𝑗 ) =
1
𝑁

𝑁∑︁
𝑘=1

[
𝒓𝑘 𝒓

⊤
𝑘 + 𝑪𝑘𝑷

s
𝑘𝑪

⊤
𝑘

]
, (27)

�̂� ( 𝑗 ) =
1
𝑁

𝑁∑︁
𝑘=1

1
Δ𝑡𝑘−1

[
𝒒𝑘𝒒

⊤
𝑘 + 𝑷s

𝑘 +𝚽𝑘−1𝑷
s
𝑘−1𝚽

⊤
𝑘−1 − 𝑷s

𝑘,𝑘−1𝚽
⊤
𝑘−1 −𝚽𝑘−1 (𝑷s

𝑘,𝑘−1)
⊤
]
, (28)

where 𝒓𝑘 B 𝒛𝑘 − 𝒉(�̂�s
𝑘
, 𝒖𝑘) is the smoothed residual and 𝒒𝑘 B �̂�s

𝑘
−
[
�̂�s
𝑘−1 +

∫ 𝑡𝑘

𝑡𝑘−1
𝒇 (�̂�s

𝑘−1, 𝒖𝑘−1)d𝑡
]
. The variables

on the right-hand side of Eqs. (27) and (28) are calculated in the E-step by the ERTSS Eqs. (13) to (26) with �̂�
( 𝑗−1) .

The superscripts ( 𝑗 − 1) on these variables are omitted for the simplicity of the notations. The initial states and the
corresponding estimation error covariance are updated as follows:

�̂� ( 𝑗 )
0 |0 = (�̂�s

0)
( 𝑗−1) , (29)

𝑷 ( 𝑗 )
0 |0 = (𝑷s

0)
( 𝑗−1) . (30)

The negative log-likelihood function is

𝐽
( 𝑗 )
𝐿

=
1
𝑁

𝑁∑︁
𝑘=1

(
𝒛𝑘 − 𝒉(�̂�𝑘 |𝑘−1)

)⊤
𝑺−1
𝑘

(
𝒛𝑘 − 𝒉(�̂�𝑘 |𝑘−1)

)
+ log(det(𝑺𝑘)) , (31)

where 𝑺𝑘 = 𝑪𝑘𝑷𝑘 |𝑘−1𝑪
⊤
𝑘
+ �̂� ( 𝑗−1) . The iterations are terminated if the following stopping criterion is reached:

𝜓 ( 𝑗 ) =

���𝐽 ( 𝑗 )𝐿
− 𝐽

( 𝑗−1)
𝐿

������𝐽 ( 𝑗 )𝐿

��� < 𝜖 , (32)

where 𝜖 is a small positive value which is set to be 1 × 10−6 in this paper.
Finally, the adaptive ERTSS algorithm is summarized in a flowchart which is shown in Fig. 3 .
To sum it up, to better solve the wind estimation problem, the adaptive ERTSS algorithm is proposed in this section.

The proposed algorithm can adaptively estimate the noise covariance of the wind random-walk, which can be different
for each flight, other than chosen based on experience. First, to deal with the stochastic characteristic of wind, the wind
velocity is modeled as a random-walk process as in Section III.A. Then, in Section III.B, the random-walk process
is embedded into the system model in a state-space form to formulate a state smoothing problem which is solved by
the ERTSS Finally, for tuning the noise covariances in the ERTSS to gain better estimation results, the extended EM
method is introduced in Section III.C to estimated 𝑸 (noise covariance for the wind random-walk) and 𝑹 (measurement
noise covariance for the air triplets).
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Start

Initial estimates: (�̄� (0)
0 , �̄� (0)

0 , �̂� (0) , �̂� (0) ) .

�̂�0 |0 = �̄� ( 𝑗−1)
0 and �̂�0 |0 = �̄� ( 𝑗−1)

0 .
Initialize EKF

�̂�𝑘 |𝑘−1 = �̂�𝑘−1 |𝑘−1 +
∫ 𝑡𝑘

𝑡𝑘−1

𝒇 (�̂�𝑘−1 |𝑘−1, 𝒖𝑘−1)d𝑡 ,

𝑷𝑘 |𝑘−1 = 𝚽𝑘−1𝑷𝑘−1 |𝑘−1𝚽
⊤
𝑘−1 + 𝑸Δ𝑡𝑘−1 ,

𝑲𝑘 = 𝑷𝑘 |𝑘−1𝑪
⊤
𝑘 [𝑪𝑘𝑷𝑘 |𝑘−1𝑪

⊤
𝑘 + 𝑹]−1 ,

�̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 + 𝑲𝑘 [𝒛𝑘 − 𝒈(�̂�𝑘 |𝑘−1, 𝒖𝑘)] ,
𝑷𝑘 |𝑘 = [𝑰𝑛𝑥

− 𝑲𝑘𝑪𝑘]𝑷𝑘 |𝑘−1 .

EKF step

𝑘 = 𝑁 ?

�̂�s
𝑁

= �̂�𝑁 |𝑁 and �̂�s
𝑁

= �̂�𝑁 |𝑁 .
Initialize RTS smoother

1) RTS smoother:
𝑲s
𝑘 = 𝑷𝑘 |𝑘𝚽

⊤
𝑘 (𝑷𝑘+1 |𝑘)−1 ,

�̂�s
𝑘 = �̂�𝑘 |𝑘 + 𝑲s

𝑘 [�̂�
s
𝑘+1 − �̂�𝑘+1 |𝑘] ,

𝑷s
𝑘 = 𝑷𝑘 |𝑘 + 𝑲s

𝑘 [𝑷
s
𝑘+1 − 𝑷𝑘+1 |𝑘] (𝑲s

𝑘)
⊤ ,

2) Lag-one covariance smoother:

𝑷s
𝑁,𝑁−1 = [𝑰𝑛𝑥

− 𝑲𝑁𝑪𝑁 ]𝚽𝑁−1𝑷𝑁−1 |𝑁−1 , (initialize)
𝑷s
𝑘+1,𝑘 = 𝑷𝑘+1 |𝑘+1 (𝑲s

𝑘)
⊤ + 𝑲s

𝑘+1 [𝑷
s
𝑘+2,𝑘+1 −𝚽𝑘+1𝑷𝑘+1 |𝑘+1] (𝑲s

𝑘)
⊤ .

Smoother step

𝑘 = 0 ?

�̂� ( 𝑗 ) =
1
𝑁

𝑁∑︁
𝑘=1

[
𝒓𝑘 𝒓

⊤
𝑘 + 𝑪𝑘𝑷

s
𝑘𝑪

⊤
𝑘

]
,

�̂� ( 𝑗 ) =
1
𝑁

𝑁∑︁
𝑘=1

1
Δ𝑡𝑘−1

[
𝒒𝑘𝒒

⊤
𝑘 + 𝑷s

𝑘 +𝚽𝑘−1𝑷
s
𝑘−1𝚽

⊤
𝑘−1 − 𝑷s

𝑘,𝑘−1𝚽
⊤
𝑘−1 −𝚽𝑘−1 (𝑷s

𝑘,𝑘−1)
⊤
]
,

�̂� ( 𝑗 )
0 |0 = (�̂�s

0)
( 𝑗−1) , and 𝑷 ( 𝑗 )

0 |0 = (𝑷s
0)

( 𝑗−1) .

𝜓 ( 𝑗 ) < 𝜖 ?

Output smoothed data: {�̂�s
𝑘
} and { �̂�s

𝑘
} .

Stop

𝑗 = 1

𝑘 = 1

yes

no
𝑘 = 𝑘 + 1

𝑘 = 𝑁 − 1

yes

no
𝑘 = 𝑘 − 1

yes

no
𝑗 = 𝑗 + 1

E-step: (ERTSS)

M-step:

Fig. 3 The flowchart of the adaptive ERTSS algorithm.
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IV. Numerical Experiment Results
In this section, the proposed wind estimation algorithm is demonstrated and validated using simulated data. For the

test datasets, a kinematic model for rigid-body aircraft is used to generate benchmark flight data. The wind velocity
datasets are numerically generated as random-walk processes with different noise levels. After generating the true
reference data, zero-mean, uncorrelated, white Gaussian noises are added to the output vector 𝒚 to formulate the
measurement data 𝒛 for the ERTSS. The measurement noise levels were set to realistic values as shown in Table 1 .

Table 1 The measurement noise standard deviation used in simulated data.

Variables Sampling Rate [Hz] Noise Standard Deviation 𝜎 Source

𝑉TAS 100 0.1 m/s Pitot Tube
𝛼 100 0.2◦ Alpha Vane
𝛽 100 0.2◦ Beta Vane

The initial state vector is set as �̄� (0)
0 =

[
�̂�𝑥 (0) �̂�𝑦 (0) �̂�𝑧 (0)

]⊤
= 0 m/s , and the initial covariance matrix

is set as �̄� (0)
0 = 4𝑰3 (m/s)2. The initial estimates for the noise covariance matrices are set to be �̂� (0) = 1000𝑸true

and �̂� (0) = 1000𝑹true. For the implementation of the proposed adaptive ERTSS algorithm, MATLAB® is used with its
toolbox MATLAB Coder™ to accelerate the computation by generating MEX functions from the MATLAB code.

The following two scenarios are examined: 1) fully accurate inputs 𝒖 and 2) inputs 𝒖 with estimation errors. For the
first scenario, we assume that inputs 𝒖 to be sufficiently accurate to validate the proposed algorithm. This assumption is
also made by [7]. Next, in practice, there will still be errors for the kinematic velocity and attitude from the navigation
system. Therefore, the second scenario is used to quantify the influence of such estimation errors on wind estimation
performance by comparing them with the first scenario. For each of the test scenarios, two different wind-noise levels
are examined: a) relatively larger process noises with standard deviation 𝜎(𝑤𝑊 ) = 0.1 (m/s)/

√
s and b) relatively

smaller wind noise with standard deviation 𝜎(𝑤𝑊 ) = 0.01 (m/s)/
√

s. As explained in section III.A, larger wind noise
indicates that the wind velocity can change faster in a short period, whereas smaller wind noise means that the wind
velocity probably changes slower and is more close to a constant.

A. Test Scenario 1: Accurate Inputs
For the first test scenario, we assume data for the adaptive ERTSS inputs 𝒖, namely the kinematic velocity of the

aircraft (𝑢K, 𝑣K, 𝑤K) and the Euler angles (𝜙, 𝜃, 𝜓), are fully accurate. In this scenario, two cases with different
process noise levels for the wind velocity are presented: a) larger wind noises 𝜎(𝑤𝑊 ) = 0.1 (m/s)/

√
s and b) smaller

wind noise 𝜎(𝑤𝑊 ) = 0.01 (m/s)/
√

s, which are marked as Case 1a and Case 1b, respectively. The estimation results of
these two cases are presented in Figs. 4 to 7 . The noise covariance parameter estimation results for Cases 1a and 1b are
presented in Figs. 4 and 5 , and the state estimation results for smoothed wind velocity and its estimation errors with
respect to time 𝑡 for both cases are presented Figs. 6 and 7 .

As shown in Figs. 4 and 5 , for both cases, the estimated noise covariance matrices 𝑸 and 𝑹 iteratively converge
towards their true values with the negative log-likelihood function 𝐽𝐿 decreasing. After a certain number of iterations,
the stopping criterion terminates the loop when the change of 𝐽𝐿 becomes small enough as shown in Figs. 4c and 5c .
Comparing Fig. 4 with Fig. 5 , we can observe that Case 1b takes more iterations for the 𝑸 values to converge to the
close neighborhood of their true values. Our interpretation of this behavior is as follows. Since Case 1b has a lower
process noise level compared to Case 1a, the influence of process noises for the smoothed estimates is less significant
considering the measurement noise covariance 𝑹 is the same for both cases. The noise covariance parameter estimation
results for both cases are summarized in Table 2 . In this table, the estimated standard deviation (Std) �̂� for the process
and measurement noises are listed together with their true values 𝜎true between brackets.
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(a) Diagonal elements of �̂�. (b) Diagonal elements of �̂�. (c) Negative log-likelihood function 𝐽𝐿 .

Fig. 4 Case 1a: relatively larger process noise with accurate inputs.

(a) Diagonal elements of �̂�. (b) Diagonal elements of �̂�. (c) Negative log-likelihood function 𝐽𝐿 .

Fig. 5 Case 1b: relatively smaller process noise with accurate inputs.

(a) Wind velocity estimation result. (b) Wind velocity estimation error.

Fig. 6 Case 1a: relatively larger process noise with accurate inputs.

(a) Wind velocity estimation result. (b) Wind velocity estimation error.

Fig. 7 Case 1b: relatively smaller process noise with accurate inputs.
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Table 2 Estimation results of noise standard deviations for Cases 1a and 1b.

Noise Std Unit
Case 1a: Larger 𝑸 Case 1b: Smaller 𝑸

�̂� (𝜎true) Ratio �̂�/𝜎true �̂� (𝜎true) Ratio �̂�/𝜎true

𝜎(𝑤𝑊𝑥
) (m/s)/

√
s 1.1286 × 10−1 (0.1) 1.1286 1.7793 × 10−2 (0.01) 1.7793

𝜎(𝑤𝑊𝑦
) (m/s)/

√
s 1.0995 × 10−1 (0.1) 1.0995 1.8110 × 10−2 (0.01) 1.8110

𝜎(𝑤𝑊𝑧
) (m/s)/

√
s 1.0089 × 10−1 (0.1) 1.0089 1.6419 × 10−2 (0.01) 1.6419

𝜎(𝑣𝑉TAS ) m/s 0.1001 (0.1) 1.0010 0.1003 (0.1) 1.0028
𝜎(𝑣𝛼) ◦ 0.2013 (0.2) 1.0065 0.2004 (0.2) 1.0021
𝜎(𝑣𝛽) ◦ 0.2007 (0.2) 1.0035 0.2004 (0.2) 1.0017

After the iterative loop reached the stopping criterion, the ERTSS can use the final estimated noise parameter to
estimate the states and outputs optimally. The state estimation results for both Case 1a and Case 1b are shown in Figs. 6
and 7, respectively. For the multiple lines in the same color within the same plot, the solid line in the middle is the
adaptive ERTSS estimated (mean) value and the upper and lower thin lines are the estimated 3𝜎 bounds. The wind
velocity estimation error is defined as Δ𝑾 ≔ �̂� −𝑾true =

[
Δ𝑊x Δ𝑊y Δ𝑊z

]⊤
. From these two figures, we can

observe that the ERTSS estimates are close to their true values, as expected. Additionally, for most of the cases, the true
values are within the estimated 3𝜎 error bounds.

B. Test Scenario 2: Estimated Inputs
In practice, the kinematic velocity and attitude Euler angles which are estimated by the aircraft’s navigation system,

as part of the data source of the wind estimator shown in Fig. 2, contain errors that will influence the estimation results.
To quantify the influence of such errors, in test scenario 2 the kinematic velocity and attitude Euler angles in the datasets
are generated using the estimated values from typical ERTSS-based flight path reconstruction results which contains
errors as shown in Fig. 8 . For comparison, the rest of the variables in these test datasets are identical to Cases 1a and 1b.
The two corresponding cases in this scenario are referred to as Case 2a and 2b for different wind process noise standard
deviations: 𝜎(𝑤𝑊 ) = 0.1 (m/s)/

√
s (Case 2a) and 𝜎(𝑤𝑊 ) = 0.01 (m/s)/

√
s (Case 2b).

(a) Error of the kinematic velocities. (b) Error of the Euler angles.

Fig. 8 Error of the estimated input 𝒖 for Cases 2a and 2b.
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(a) Diagonal elements of �̂�. (b) Diagonal elements of �̂�. (c) Negative log-likelihood function 𝐽𝐿 .

Fig. 9 Case 2a: relatively larger process noise with estimated inputs.

(a) Diagonal elements of �̂� (b) Diagonal elements of �̂� (c) Negative log-likelihood function 𝐽𝐿 .

Fig. 10 Case 2b: relatively smaller process noise with estimated inputs.

(a) Wind velocity estimation result. (b) Wind velocity estimation error.

Fig. 11 Case 2a: relatively larger process noise with estimated inputs.

(a) Wind velocity estimation result. (b) Wind velocity estimation error.

Fig. 12 Case 2b: relatively smaller process noise with estimated inputs.

11

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

13
99

 



The estimation results of these two cases are presented in Figs. 9 to 12 . The noise covariance parameter estimation
results for Cases 2a and 2b are presented in Figs. 9 and 10 , and the state estimation results for smoothed wind velocity
and its estimation errors for both cases are presented Figs. 11 and 12 . As shown in Figs. 9 and 10 , for both Cases 2a
and 2b, with the proposed algorithm the noise covariance matrices converge towards the true value despite the errors
in the input data 𝒖. The estimated values for the noise covariance matrices for Cases 2a and 2b are listed in Table 3 .
Comparing results in Tables 2 and 3 , it is clear that the input errors do not have a noticeable influence on the parameter
estimation for the two cases with relatively larger process noise covariance 𝑸 (comparing Cases 2a with Case 1a).
However, for the two cases with relatively smaller process noise covariance 𝑸 (comparing Cases 2b with Case 1b), the
input errors slightly deteriorate (less than 5%) the estimation of the process noise covariance 𝑸.

Table 3 Estimation results of noise standard deviations for Cases 2a and 2b.

Noise Std Unit
Case 2a: Larger 𝑸 Case 2b: Smaller 𝑸

�̂� (𝜎true) Ratio �̂�/𝜎true �̂� (𝜎true) Ratio �̂�/𝜎true

𝜎(𝑤𝑊𝑥
) (m/s)/

√
s 1.1262 × 10−1 (0.1) 1.1262 1.9012 × 10−2 (0.01) 1.9012

𝜎(𝑤𝑊𝑦
) (m/s)/

√
s 1.1122 × 10−1 (0.1) 1.1122 2.3690 × 10−2 (0.01) 2.3690

𝜎(𝑤𝑊𝑧
) (m/s)/

√
s 1.0085 × 10−1 (0.1) 1.0085 1.8730 × 10−2 (0.01) 1.8730

𝜎(𝑣𝑉TAS ) m/s 1.0011 (0.1) 1.0011 0.1003 (0.1) 1.0026
𝜎(𝑣𝛼) ◦ 0.2013 (0.2) 1.0066 0.2004 (0.2) 1.0022
𝜎(𝑣𝛽) ◦ 0.2007 (0.2) 1.0037 0.2006 (0.2) 1.0029

As for the state estimation results, comparing Figs. 6 and 11 for Cases 1a and 2a, we also cannot observe a noticeable
change due to the errors in inputs 𝒖. Nevertheless, from Fig. 12 , it can be seen that there are some biases within the
estimated wind velocities for Case 2b, and these errors do not exist for Case 1b as shown Fig. 7 . In addition, if we
observe Figs. 8 and 12 together, we can see that the biases in Fig. 12 have the same level of magnitude as the kinematic
velocity error shown in Fig. 8a . Therefore, for the cases with smaller wind process noise 𝑸, the errors in the input 𝒖,
especially the errors in the estimated kinematic velocity, will to some extent deteriorate the wind estimation accuracy.

𝑊x [m/s] 𝑊y [m/s] 𝑊z [m/s] 𝑉TAS [m/s] 𝛼 [◦] 𝛽 [◦]

1

2

3

4

·10−2

2.24 2.27 2.19 2.23

4.21 4.35

2.83

3.52

2.47
2.22

4.22 4.36

0.76 0.83 0.76 0.75

1.41 1.54
1.88

2.74

1.35

0.77

1.58
1.87

Variable [Unit]

R
M

S
Er

ro
r

Case 1a Case 2a Case 1b Case 2b

Fig. 13 The RMS error for the smoothed states and outputs.

Finally, to evaluate the estimation accuracy of the proposed method, the root-mean-square (RMS) errors for the
smoothed wind velocities and air triplets in each of the four simulations are calculated and summarized in Fig. 13 . First,
it can be seen that the estimation errors are influenced by the actual wind noise level. Next, comparing the pair of cases
for the same wind noise level (Cases 1a with 2a and Cases 1b with 2b) in Fig. 13 , we can see that the RMS errors
for wind velocity estimation are influenced by the errors in the inputs 𝒖. Whereas, the errors of the estimated 𝒖 do
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not distinctly influence the RMS error for the triplets. The magnitude of the influence is similar to the magnitude of
the kinematic velocity errors. Last but not least, for 𝑉TAS, 𝛼 and 𝛽 estimates, the RMS errors for the smoothed values
in Fig. 13 are significantly smaller (approximately one order of magnitudes lower) comparing to the measurement noise
standard deviation 𝜎(𝑉TAS) = 0.1 m/s, 𝜎(𝛼) = 0.2◦, and 𝜎(𝛽) = 0.2◦ from Table 1 . Therefore, the accuracy of the air
triplets is also improved by applying the proposed adaptive ERTSS algorithm.

V. Conclusion
In this paper, a novel adaptive Extended Rauch-Tung-Striebel Smoother (ERTSS) algorithm for the wind estimation

problem using aircraft flight data is proposed. Considering the stochastic nature of the wind, the wind velocity is
modeled as a random-walk process with its noise covariance representing the possible changing rate of the wind velocity
and embedded into the smoothing framework as state equations. To deal with the fact that the actual noise covariance
of the wind random-walk can different in each flight, the extended expectation-maximization method is employed
in the wind estimation problem to adaptively estimate the noise covariance matrices 𝑸 and 𝑹 instead of choosing
them by experience as previous work. After iteratively estimating the 𝑸 and 𝑹, the adaptive ERTSS can optimally
estimate the 3D stochastic wind velocity. Numerical simulation results show the validity of the proposed algorithm. It
is demonstrated in the examined cases that the estimated 𝑸 and 𝑹 can converge close to the true value. Besides, the
accuracy of the smoothed air triplets: true airspeed, angle of attack, and angle of sideslip data is improved that their
RMS errors are approximately one order of magnitudes lower compared to their measurements noise covariances.
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pp. 1473–1490. doi: 10.1007/s12046-016-0562-z.

[15] Sankaralingam, L., and Ramprasadh, C., “A Comprehensive Survey on the Methods of Angle of Attack Measurement and
Estimation in UAVs,” Chinese Journal of Aeronautics, Vol. 33, No. 3, 2020, pp. 749–770. doi: 10.1016/j.cja.2019.11.003.

[16] Mulder, J. A., Chu, Q. P., Sridhar, J. K., Breeman, J. H., and Laban, M., “Non-linear Aircraft Flight Path Reconstruction Review
and New Advances,” Progress in Aerospace Sciences, Vol. 35, No. 7, 1999, pp. 673–726. doi: 10.1016/S0376-0421(99)00005-6.

[17] Jategaonkar, R. V., Flight Vehicle System Identification: A Time-Domain Methodology, Second Edition, American Institute of
Aeronautics and Astronautics, Reston, VA, 2015. doi: 10.2514/4.102790.

[18] Rauch, H. E., Tung, F., and Striebel, C. T., “Maximum Likelihood Estimates of Linear Dynamic Systems,” AIAA Journal,
Vol. 3, No. 8, 1965, pp. 1445–1450. doi: 10.2514/3.3166.

[19] Shumway, R. H., and Stoffer, D. S., Time Series Analysis and Its Applications: With R Examples, 4th ed., Springer International
Publishing, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-52452-8.

14

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

13
99

 

https://doi.org/10.1016/j.jprocont.2011.01.001
https://doi.org/10.1007/s12046-016-0562-z
https://doi.org/10.1016/j.cja.2019.11.003
https://doi.org/10.1016/S0376-0421(99)00005-6
https://doi.org/10.2514/4.102790
https://doi.org/10.2514/3.3166
https://doi.org/10.1007/978-3-319-52452-8
https://arc.aiaa.org/action/showLinks?system=10.2514%2F3.3166&citationId=p_18
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.jprocont.2011.01.001&citationId=p_13
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2Fj.cja.2019.11.003&citationId=p_15
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0376-0421%2899%2900005-6&citationId=p_16

	Introduction
	Problem Formulation
	Adaptive Extended Rauch-Tung-Striebel Smoother
	Stochastic Modeling of the Wind Velocity
	State Estimation
	Adaptive Noise Covariance Matrices Estimation by the Expectation-Maximization Method

	Numerical Experiment Results
	Test Scenario 1: Accurate Inputs
	Test Scenario 2: Estimated Inputs

	Conclusion

