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A B S T R A C T   

Droughts and changing rainfall patterns due to natural climate variability and climate change, threaten the 
livelihoods of Malawi’s smallholder farmers, who constitute 80% of the population. Provision of seasonal climate 
forecasts (SCFs) is one means to potentially increase the resilience of rainfed farming to drought by informing 
farmers in their agricultural decisions. Local knowledge can play an important role in improving the value of 
SCFs, by making the forecast better-suited to the local environment and decision-making. This study explores 
whether the contextual relevance of the information provided in SCFs can be improved through the integration of 
farmers’ local knowledge in three districts in central and southern Malawi. A forecast threshold model is 
established that uses meteorological indicators before the rainy season as predictors of dry conditions during that 
season. Local knowledge informs our selection of the meteorological indicators as potential predictors. Verifi-
cation of forecasts made with this model shows that meteorological indicators based on local knowledge have a 
predictive value for forecasting dry conditions in the rainy season. The forecast skill differs per location, with 
increased skill in the Southern Highlands climate zone. In addition, the local knowledge indicators show 
increased predictive value in forecasting locally relevant dry conditions, in comparison to the currently-used El 
Niño-Southern Oscillation (ENSO) indicators. We argue that the inclusion of local knowledge in the current 
drought information system of Malawi may improve the SCFs for farmers. We show that it is possible to capture 
local knowledge using observed station and climate reanalysis data. Our approach could benefit National 
Meteorological and Hydrological Services in the development of relevant climate services and support drought- 
risk reduction by humanitarian actors.   

Practical implications  

Seasonal climate forecasts (SCFs) have the potential to inform 
farmers in their agricultural decisions thereby improving pre-
paredness to droughts. However, barriers remain in the uptake of 
SCFs to decision-making. Local knowledge can play an important 
role in improving SCFs as it may lead to SCFs that are better suited 
to local environmental and decision-making contexts. Integrating 

SCFs and local knowledge may be better understood and trusted 
by local users, leading to a better uptake of SCFs. 

However, using local knowledge to inform the choice of indicators 
in seasonal forecast systems and using local knowledge to validate 
seasonal forecasts remains inadequately explored. This study has 
therefore characterised the local knowledge through focus group 
discussions, where we ask farmers how they forecast drought and 
how they define drought conditions. Subsequently, the local 
knowledge is linked to long-term observation data and used in a 
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scientific drought forecasting model. The results show that at 
some locations of local knowledge forecasts can successfully 
forecast locally relevant dry conditions; the timing of the onset of 
rain and the number of dry spell occurring the rainy season. The 
local knowledge indicators can complement indicators commonly 
used in drought forecasting, such as the El Nino-Southern Oscil-
lation (ENSO). 

Local knowledge and forecast models can work together more 
closely (e.g. to shape what meteorological data is collected, how 
forecast models are designed, how forecasts are communicated, 
etc.). Integrating local knowledge in the co-production of SCFs 
could be an effective tool to achieve this (Kalanda-Joshua et al., 
2011). The trust and uptake of information by farmers could be 
enhanced by alligning the content and timing of SCFs to the local 
knowledge of farmers (Alessa et al., 2008; Kniveton et al., 2015). 
Taking farmers is important to take farmers own expectations 
about the upcoming rainy season into account is therefore very 
important when communicating a forecast, particularly when they 
contradict local expectations (Nkomwa et al.,2014). 

In some areas of climate services there is a potential in bringing 
together and accessing the skill of different predictors for different 
purposes. For the agricultural sector the onset of rain and dry 
spells are important predictands and local knowledge based in-
dicators could enhance these forecasts. In addition, local knowl-
edge predictors can be included in ongoing drought forecasting 
efforts. Examples of efforts include anticipatory forecast models 
and phased approaches in early action protocols for humanitarian 
agencies. 

There are concerns that the value of local knowledge is being 
eroded by the increased variability and unpredictability due to 
climate change and investments in conventional SCFs approaches 
(Plotz et al., 2017). This study, however, found that with a recent 
dataset the meteorological indicators may have a predictive value. 
These findings suggest that, despite climate change, meteorolog-
ical indicators based on local knowledge are not decreasing in its 
reliability. On the contrary, it could even create opportunities in a 
changing and more unpredictable environment.   

1. Introduction 

Throughout sub-Saharan Africa, more than 95% of cultivated land is 
devoted to rainfed agriculture (Wani et al., 2009). This is a production 
system that is vulnerable to climate variability. Droughts and frequent 
dry spells can reduce crop yield and lead to food insecurity (Ibrahim and 
Alex, 2008). Climate change is projected to aggravate the effects of 
climate variability, causing more erratic rainfall and an overall increase 
in temperature (Winsemius et al., 2014; Ziervogel et al., 2014), even for 
low-emission scenarios (Engelbrecht et al., 2015). 

Both climate information and the local knowledge of farmers can 
have an instrumental role within adaptation and reduce vulnerability to 
drought (Tschakert and Dietrich, 2010). Here we adopt FAO’s definition 
of local knowledge as “a collection of facts related to the entire system of 
concepts, beliefs, and perceptions that people hold about the world 
around them. This includes the way people observe and measure their 
surroundings, solve problems, and validate new information. It includes 
the processes whereby knowledge is generated, stored, applied and 
transmitted to others.” (FAO, 2005). As the continually evolving product 
of interaction and exchange, we recognize that local knowledge is 
diverse and hybrid. Whilst distinct from, it may not fully be independent 
of the knowledge developed within more formal academic or research 
institutions. In addition, local knowledge of climate variability is 
deemed important as it reflects local conditions and concerns (Danielsen 
et al., 2005) and focuses on the actual impacts of climate variability on 
people’s lives (Laidler, 2006). 

Seasonal climate forecasts (SCFs) can inform the agricultural de-
cisions farmers take, thereby improving preparedness for droughts 

(Hansen et al., 2011). However, barriers remain in the uptake of SCFs in 
decision-making (e.g. Tadesse et al., 2015; Christel et al., 2018). SCFs 
are often not sufficiently representative at a local scale (i.e., high reso-
lution) and are, therefore, not applicable to the local context (Bruno 
Soares et al., 2018). This may lead to information that is not trusted or 
applicable for the farmers. Moreover, SCFs are sometimes not usable or 
applicable as they are not clearly linked to actionable information (Patt 
and Gwata, 2002). Appropriate and sustained engagement with users is 
required for climate service providers to understand and respond to their 
users’ needs (Tall et al., 2014). This realisation typically manifests in 
calls for providers to involve users in co-design and co-evaluation of 
information products and services, and to develop effective communi-
cation mechanisms (Mittal et al., 2021; Vincent et al., 2020). Local 
knowledge can play an important role in improving the utility of SCFs 
(Kniveton et al., 2015) by ensuring they are better-suited to local envi-
ronmental and decision-making contexts, as well as being better- 
understood and trusted by local users (Plotz et al., 2017; Andersson 
et al., 2020). Local knowledge includes different categories, such as 
ecological (e.g. flora and fauna), celestial (e.g. star positions), or mete-
orological (e.g. wind processes, sensible temperature feelings, and 
rainfall and observations of clouds) observations (Trogrlić et al., 2019). 
Most approaches in the literature focus on the local knowledge in-
dicators under the meteorological category. 

A variety of approaches have been used to integrate local knowledge 
with SCFs in different studies. Plotz et al. (2017) proposed a decision- 
framework for choosing the most appropriate method to combine SCFs 
and local knowledge. This includes the ‘consensus approach’ whereby 
an ‘agreed upon’ final forecast is built on both local knowledge and a 
forecast based on contemporary scientific information (e.g. Guthiga and 
Newsham, 2011; Kolawole et al., 2014; Dube et al., 2016). Another 
approach is the ‘science integration approach’ and is typically based on 
collecting data on local knowledge forecasts to create a mathematical 
model or formula (e.g. Mackinson, 2001; Waiswa et al., 2007; Masinde, 
2015; Mwagha & Masinde, 2015; Nyadzi et al., 2020; Gbangou et al., 
2021)). The latter approach has the advantage that, if this conversion 
and combination is possible, the forecast can be up-scaled to more re-
gions beyond that of the original knowledge holders. The ability to 
expand means that the likelihood of combined forecast continuity is 
greater (Plotz et al., 2017). However, using meteorological local 
knowledge to inform the choice of indicators in seasonal forecast sys-
tems and using local knowledge to validate seasonal forecasts has been 
inadequately explored. 

Following the scientific integration approach, this study character-
ises the local knowledge of farmers in central and southern Malawi 
through focus group discussions. Their responses are then used to inform 
the predictors and the predictands of a drought forecast model and 
evaluate the predictive value of this model. 

2. Methods 

2.1. Case study central and Southern Malawi 

The study focuses on three districts in Central and South Malawi: 
Salima, Mangochi, and Zomba (Fig. 1a). The criteria for selecting the 
districts were: area under rainfed maize cultivation, previous experi-
ences of drought and flood, high food insecurity risk (World Bank, 
2009), and the presence of excisting climate services programmes. We 
refer to Mittal et al., 2021 for a detailed justification of the selection of 
the research locations. The Department of Climate Change and Meteo-
rological Services (DCCMS) has meteorologically divided Malawi into 
five climate zones: Northern Areas, Central Areas, Lakeshore Areas, the 
Southern Highlands and the Shire Valley (Fig. 1b). The research loca-
tions are in the Lakeshore Areas and Southern Highlands. There are six 
weather stations located in the Lakeshore Areas, and five stations in the 
Southern Highlands (Fig. 1b). Fig. 1b also shows the digital elevation 
model (DEM) and locations of these eleven weather stations. For the 
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provision of SCFs, DCCMS has divided Malawi into two parts; the 
northern and southern half of the country which are influenced differ-
ently by El Niño Southern Oscillation (ENSO). The rainy season is 
approximately from November to April, in which 95% of the annual rain 
falls. This means rainfed-agriculture is not practiced in the dry season 
and people are predominantly reliant on the rainy season for domestic 
crop production (Coulibaly et al., 2015). 

Malawian households have a long history of adapting to droughts 
using traditional and emerging practices (Tschakert and Dietrich, 2010). 
Based on their study in Chikwawa in Southern Malawi, Nkomwa et al. 
(2014) indicate that communities can recognise the changes in climate 
and local environment. Examples of changes include delayed and un-
predictable onset of rainfall, declined rainfall trends, increased tem-
peratures and increased frequency of prolonged dry spells in the region. 
In southern Malawi, Chidanti-Malunga (2011) found that when a 
drought is expected, farmers introduced a variety of adaptation mea-
sures, including mulching, pit planting, crop diversification, managing 
of residual moisture, shifting of planting dates and seeking alternative 
sources of income. However, Kalanda-Joshua et al. (2011) found that 
current scientifically-based weather and climate predictions in Malawi 
are not widely used to inform adaptive decision making. The authors 
attribute the unuse to a lack of integration of local knowledge in those 
forecasts. 

In Malawi, maize is a staple crop. In our research districts, farmers 
allocated the largest proportion of their agricultural lands to the pro-
duction of maize. Other crops included cotton, rice, groundnuts, sweet 
potatoes, tobacco, sorghum and pigeon peas. Farm sizes vary between 
0.4 and 2.4 ha, with a majority of farm sizes between 0.6 and 1.2 ha. 

2.2. Qualitative data collection on local knowledge 

Qualitative data were collected to understand local practices and 
identify meteorological indicators within local knowledge. Ten partici-
patory focus group discussions (FGDs) were held with smallholder 
farmers in the Salima (2 FGDs), Mangochi (6 FGDs), and Zomba (2 
FGDs) district, see Fig. 1(a). In Malawi, districts consist of several 
Extension Planning Areas (EPAs). Two FGDs were held for each EPA: 
Khombedza (Salima), Nankumba, Mbwadzulu and Maiwa (Mangochi), 
and Mpokwa (Zomba). The FGDs were performed in collaboration with 
the study of Mittal et al., 2021, who identified agro-climatic indices that 

can inform agricultural decisions of maize-growing farmers. There were 
70 female and 48 male farmers who took part in the FGDs. The facilitator 
of the FGDs was a local research assistant, holding the discussions in 
Chichewa, the local language. The facilitator also transcribed and 
translated the recordings into English. Mittal et al., 2021 gives more 
information on the protocol used, participant characteristics, the choice 
of sampling and research locations. 

The focus of this study was to characterise:  
i) Predictands – what weather conditions (during the rainy season) do 

farmers perceive as dry to inform their decision-making?  
ii) Predictors – what meteorological observations (before the rainy 

season) do farmers make to predict dry conditions (during the rainy 
season) as part of their local knowledge to inform their decision- 
making? 

In the focus group discussions, participants completed two seasonal 
calendars, addressing specific topics throughout the year. The first 
seasonal calendar included: 1) weather conditions related to a good 
rainfall season; 2) weather conditions related to a poor rainfall season; 
3) other conditions related to a good or bad rainfall season (e.g. changes 
in flora and fauna). In the second calendar, the participants were asked 
to identify an extreme drought year and discuss weather conditions 
during that year in detail. 

Transcriptions of the FGDs were analysed through coding of in-
terviews and categorising the responses into the categories of local 
knowledge as explained in the introduction. The results provide insights 
into available local knowledge of the farmers throughout the year. This 
includes knowledge of ecological (e.g., mango trees and bird species), 
celestial (e.g., sun and moon positions) and meteorological indicators (e. 
g., wind direction, sensible temperature). In this study, we solely 
included knowledge related to the meteorological indicators as we focus 
on how local knowledge can add context to seasonal climate forecasts. 
Further details on ecological and celestial indicators found in this 
research can be found in Streefkerk (2020), Appendix C. We used the 
transcription of the meteorological local knowledge to link meteoro-
logical indicators (predictors) and dry conditions in the rainy season 
(predictands) to in-situ observations and reanalysis data (see method 
Section 2.3.2). 

2.3. Quantitative data collection on predictors and predictands 

Both the knowledge of the farmers and the SCFs produced by DCCMS 
rely on meteorological indicators for forecasting drought conditions. In 
this research, both types of meteorological indicators are used to predict 
dry conditions, and compared with one another. The meteorological 
indicators and the computation of the dry conditions are based on 
observed and reanalysis data. 

Table 1 provides an overview of the data sources of the conditions 
during the rainy season considered as dry (predictands) and the mete-
orological indicators (predictors) identified. We note that the choice of 
predictands and predictors is based on the results of the qualitative data 
collection from the FGDs. There are eleven stations across two climate 
zones, though the period of record differs per station (see Supplemen-
tary Materials Tables A1-2 for further details). The seasonal climate 
forecast by DCCMS mostly relies on the ENSO phenomenon, and ENSO is 
therefore included in this study (Cash et al., 2006) and quantified by the 
Oceanic Nino Index (ONI). The ONI dataset is obtained from the Na-
tional Oceanic and Atmospheric Administration (NOAA) and span form 
1950 to 2018 (NOAA, 2019). ERA5 is a gridded climate reanalysis 
dataset from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Muñoz Sabater, 2019). The hourly ERA5 data have a 0.25◦ ×

0.25◦ horizontal resolution and span from 1979 to 2019. The common 
period of analysis is from 1979 (start of ERA-5 data availability) and 
2016/2018, depending on the availability of weather station records. 

Fig. 1. a) Research Areas b) Climate Zones and Digital Elevation Model.  
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2.3.1. Linking meteorological data with local knowledge 
The qualitative data on farmers’ local knowledge on drought (both 

predictands and predictors) is matched with the quantitive datasets 
presented in Table 1. 

2.3.1.1. Dry conditions (predictands). Farmers aim to predict dry con-
ditions (predictands) to inform their decision making. During the FGDs, 
the farmers provided qualitative descriptions of what dry conditions 
(predictands) entail. For the sake of the explanation of the methodology, 
we already express here what the dry conditions (predictands) are: 
timing of the onset of rain, the number of dry spells and an overall 
indication of the severity of drought in the rainy season. Here, farmers 
describe drought as a rainy season with (a combination of) dry condi-
tions when wet conditions would be expected, i.e. short rainy season, 
late onset of rain, dry spells, few rainy days, low total rainfall. As a first 
step, the conditions identified by the farmers and considered as dry are 
used to construct a set of indicator variables that are derived from 
rainfall observations, and further specified based on literature (see 
Table 2). 

To facilitate further analysis, the indicator variables in Table 2 are 
expressed as dry conditions that can inform farmer’s decision-making 
(predictands). The description of historical drought events by the 
farmers in the second calendar developed in the FGD are compared to 
timeseries of these indicator variables (effective planting onset and 
number of dry days) calculated from the rainfall data at each of the 
eleven stations. An iterative process of comparing the indicator variables 
and the drought events described during the FGDs was used to define the 
parameters in the definition of the dry conditions (predictands): number 
of dry spells, timing of the onset of rain and the drought index (Table 3). 
A ‘drought index’ was additionally established to represent a composite 
measure of dry conditions in the rainy season at larger scale. The 
drought index is computed by a Principle Component Analysis (PCA) 
which statistically derives a number of ‘principle components’ of the 
(inverse) normalised variables to explain the variance in the dataset (e.g. 
(Arabzadeh et al., 2016)). The drought index is determined using the 
first principle component and its coefficients (see Table 3). The first 
principle component explained 46.9% of the variance and has a 
Kaiser-Meyer-Olkin (KMO) measure of 0.57. Adding a second principle 
component would include negative coeffients in the drought index and 

be in contradiction with the farmers’ perceptions of dry conditions. The 
drought index is continuous and always positive; the higher the drought 
index, the more extreme the drought is considered to be. The final 
definitions of the predictands and the thresholds used in the forecast 
model are presented in Table 3. The timing of the onset and the number 
of dry spells are computed for each station, while the drought index is 
computed for each the two climate zones using precipitation interpo-
lated from the stations using Thiessen polygons. 

2.3.1.2. Meteorological indicators (predictors). The meteorological in-
dicators that are based on local knowledge (Table 1, predictors) are 
compared to the dry conditions (Table 3) to identify distinctive patterns 
that can be used in the forecast model. This is done through time series 
analysis of the data variables at each station (or single grid cell in which 
the station falls) for the years that are discussed during the second cal-
endar of the FGD. This linking allows us to investigate whether there are 
temporal patterns that resemble the meteorological indicators from 
local knowledge and can be used as predictors in the forecast model. The 
wind-related local knowledge is expressed in two indicators: wind speed 
and direction. In addition to the time series analysis, a spatial analysis is 
done by visual presentation of larger-scale wind processes at grid level, 
representing North and South Easterly winds with respect to the FGD 
locations. Wind direction was one of the meteorological indicators 
mentioned by the farmers (Sections 3.1 and 3.2). The local knowledge 
related to temperature is expressed in three indicators: minimum and 
maximum temperature, and relative humidity. Relative humidity is 
taken into consideration due to mention by farmers of thermal sensa-
tion. For example, the feeling of ‘hot’ may be explained by a high 
relative humidity (Berglund, 1998). 

2.4. Model setup and analysis 

Our threshold model relates monitored meteorological indicators 
based on wind direction and wind speed, temperature, and relative 

Table 1 
Dry conditions (predictands), meteorological indicators (predictors), and their data sources.   

Based on Data Variable Source Temporal Resolution Spatial Resolution 

Predictands 
Dry Conditions Local knowledge Rainfall DCCMS Observations 1889–1980 to 2012/2019 (differs per station). Daily. Point observation 
Predictors 
Wind Local knowledge Wind speed & direction ERA5 Reanalysis data 1971–2019. Hourly. 0.25◦ x 0.25◦

Temperature Local knowledge Minimum & Maximum Temperature 
Relative Humidity 

DCCMS Observations 
ERA5 Reanalysis data 

1961/1983 to 2005/2019 (differs per station). Daily. 
1971–2019. Hourly. 

Point observation 
0.25◦ x 0.25◦

ENSO DCCMS ONI NOAA 1950–2018. Monthly. Point observation  

Table 2 
Definitions of indicator variables used to construct the Dry Conditions  

Indicator variable Definition 

Length of Rainy 
Season 

The difference in days between the onset and end of the rainy 
season (Liebmann and Marengo, 2001). 

Effective Planting 
Onset 

A period of t days that exceeded the threshold of more than ×
mm, not followed by a dry spell of n days in the next c days ( 
Stern et al., 1982). (t = 3 days, x  = 25 mm, n = 1 day, c = 5 
days) 

Number of Rainy 
Days 

The sum of the number of rainy days. A rainy day is defined as 
a day that exceeds a rainfall threshold value of 2 mm (Savenije, 
2004). 

Total Rainfall The sum of all rainfall within the ‘length of the rainy season’. 
Number of dry 

days 
The cumulative number of ‘dry days’ (Mittal et al., 2021). A 
dry day is a day with <2 mm (Savenije, 2004).  

Table 3 
Definitions of Dry Conditions (predictands)  

Dry 
Condition 

Level Definition Forecast thresholds 

Timing 
Onset of 
Rain 

Station Days after 1st of October of 
‘Effective Planting Onset’ 

+5, +10, +15, +20 
and +25 days later 
than the average onset 
of rain 

Number of 
Dry Spells 

Station Amount of ‘Dry spells’. ‘Dry 
spell’defined as 5 or more 
‘number of dry days’. 

2, 3, 4 and 5 dry spells 

Drought 
Index 

Climate 
Zone 

Drought index = α∙‘Number 
of Rainy Days’ (inverse 
normalised) + β∙‘Total Rain’ 
(inverse normalised) +
γ∙‘Length Of Rainy Season’ 
(inverse normalised) +
δ∙‘Effective Planting Onset’ 
(normalised) + ε∙‘Number of 
Dry Spells’ (normalised). 
(α=0.882, β=0.76, γ=0.756, 
δ=0.522 ε=0.113) 

55th, 60th, 65th, 70th 

and 75th percentile  
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humidity anomalies and ENSO before the rainy season (June to 
November), to the occurrence of dry conditions during the season 
(November to April). The objective of the model is to determine whether 
meteorological indicators informed by local knowledge (temperature 
and wind) have skill in forecasting dry conditions at a range of monthly 
lead times (June to November). 

For every year in the available datasets (given in Table 1), we 
calculate monthly aggregates of the meteorological indicators (wind, 
temperature and ENSO) for the dry season months (June to November) 
prior to the rainy season of interest (November to April). Dry conditions 
as defined by the timing of the onset of the rain, number of dry spells, 
and the value of the drought index within that rainy season are calcu-
lated for every year in the dataset. The dry season is the period when 
farmers make predictions about the upcoming rainy season, and observe 
wind and temperature-related local knowledge indicators. These pre-
dictions may inform agricultural decisions they take in the dry season 
prior to the coming cropping (rainy) season (e.g. choosing seed/crop 
types, land preparations). Once they have made decisions in the dry 
season, it is hard to adapt or reverse their decisions as they have already 
invested (either in time or in money). 

The forecast model is applied at several lead times before the start of 
the rainy season, where the predictors are incorporated depend on the 
lead time that is provided. For example, the forecast at a lead time of 
three months (August), includes the indicators of June (start of new 
cropping season), July, and August. Fig. 2 shows the dry and rainy 
seasons, the lead times, and the time windows within which the dry 
conditions occur (as expressed by the farmers, see Section 3.1). 

As a ‘pre-processing’ step, and to determine which meteorological 
indicators are suitable as predictors, a pair-wise correlation analysis was 
done. The meteorological indicators (Table 1, predictors) were corre-
lated one by one with each of the three different dry conditions (Table 3) 
using the Spearman Rank method to find the significantly correlated 
indicators (|r| greater than 0.25) at the p-value of p < 0.075. Signifi-
cantly correlated indicators are then selected as inputs for the forecast 
model. The correlations may differ per rainfall station and this analysis 
enables us to identify which predictors are relevant for each location. 

The meteorological indicators (predictors) are separated into three 
categories: wind, temperature and ENSO (Table 1, predictors). Wind and 
temperature indicators are included as these were extracted from 
farmers’ local knowledge during the FGDs, while ENSO is a commonly 
used predictor in drought forecasting. For every meteorological indi-
cator, a separate predictor threshold is set that indicates whether it 
predicts drought. In particular, when the meteorological indicator value 
exceeds the corresponding threshold, we set the indictor to 1, showing 
that drought conditions are predicted. When the meteorological indi-
cator value is below the threshold, we set the indictor to 0, showing that 
drought conditions are not predicted. To ensure an equal participation of 
the predictors in the three categories, the resulting ones or zero are 

averaged per wind, temperature or ENSO category. If the majority in-
dicators predicted a drought (total average of the categories greater or 
equal to 0.5) the final binary output for the predicted event will be set to 
1 (=predicted drought), otherwise 0 (=no predicted drought). 

Observed drought is identified as when the dry conditions (Table 3) 
as calculated using observed rainfall data exceeds the set drought 
threshold (=1) or not (=0). The drought thresholds of the dry conditions 
can be varied to find the performance of the meteorological indicator for 
different ‘severities’ of drought (see Table 3). For the drought index the 
thresholds are the 55th, 60th, 65th, 70th and 75th percentiles. For the 
timing of the onset the thresholds are +5, +10, +15, +20 and +25 days 
later than the average onset of rain at a station. For the number of dry 
spells the thresholds are 2, 3, 4 and 5 dry spells (or more). 

The best set of threshold value combinations for the predictors is 
found by a global optimization method called ‘Differential Evolution’ in 
the SciPy environment of Python (Storn & Price, 1997). The model 
minimizes a goodness of fit function, expressed as the mean absolute 
difference between the predictions (P) and observations (O). Commonly 
known as mean absolute error (ME), whereby N represents the length of 
the yearly dataset per station or climate zone (that differs for each 
location): 

ME =
1
N
∑N

i=1
|(Pi − Oi)|

The forecast model eventually gives a binary outcome that represents 
the predicted events for every year (drought=1, no drought=0). For 
each model which has at least two predictors, the following analysis 
steps are performed: 

i. The best predictors are ranked and selected based on the computed 
mean error (ME), for each location and dry condition (predictand). 

ii. Leave one-out (LOO) and k-fold (k = 5) cross validation. Both 
validation methods are performed to ensure we do not train and eval-
uate the model using the same data. The LOO maximises the amount of 
training, but can be susceptible to autocorrelation in the time series. The 
repeated k-fold method uses less training data, but is less susceptible to 
effects of autocorrelation. 

iii. Analysis of the performance of the validated models by calcula-
tion of Heidke Skill Score (HSS). HSS is a measure of proportion correct 
over the chance forecast (Heidke, 1926) and is computed as follows for a 
standard 2x2 contingency table (TP = True Positives; TN True Nega-
tives; FP False Positives; FN False Negatives) 

HSS =
2((TP⋅TN) − (FP⋅FN))

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

The HSS ranges from − ∞ to 1. Negative values indicate no skill, 
meaning that a chance forecast is better. Scores between 0 and 1 indicate 
skill. A perfect forecast has a score of 1. 

iv. Bootstrapping (n=1000) of the HSS by resampling the scores of 

Fig. 2. Visual representation of lead times. The lead times are defined as the number of months before the start of the rainy season. The sun symbols represent the dry 
season and the clouds with rain symbols the rainy season. The dashed lines represent the period for which predictors are used in the forecast model for the given 
lead time. 
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the cross-validated models. The 5th and 95th percentiles are obtained as 
confidence intervals of the scores. 

3. Results 

3.1. Local knowledge on forecasting dry conditions 

Farmers have local knowledge in predicting dry conditions in the 
rainy season. Farmers expressed dry conditions in terms of the variables 
they use for their agricultural decision-making: the timing of the onset of 
rain, the occurrence of dry spells and a seasonal outlook on the occur-
rence of drought. The onset of the rains typically occurs mid-November. 
However, during dry years the onset of the rains that is effective for 
planting may be extended to January. The occurrence of dry spells may 
start from the onset of the rainy season to February. Farmers explained 
drought as a rainy season with dry conditions when there should be wet 
conditions, i.e., short rainy season, late onset of rain, dry spells, few 
rainy days, and low total rainfall. Information on these dry conditions 
may inform various decisions such as the timing of planting and land 
preparations, and what type of seeds to plant or ridges to make. 
Streefkerk (2020) contains a more elaborate analysis on how predictions 
of dry conditions can inform agricultural decisions. 

Both wind and temperature observations are part of the farmers’ 
knowledge on the prediction of dry conditions. Wind indicators are 
expressed as a deviation in direction and severity from what is expected 
during normal conditions. ‘Mwera’ winds are strong South Easterly 
winds, typically occurring from June to July. When they occur from 
September to November, dry conditions are expected in the rainy sea-
son. The wind indicators often coincide with the temperature indicators. 
When winds are mentioned, mostly the relative temperatures are 
mentioned as well; “When there are cold winds in October or November, we 
know that rains will delay.” (Female farmer, FGD location Maiwa, Man-
gochi). Temperature indicators are described as a relative feeling, 
compared to what is considered the normal temperature of that month. 
It should be relatively cold from June to half of August. If it is very hot in 
June, people are already expecting it to be cold in October, which in-
dicates dry conditions in the rainy season. An overview of the ‘normal’ 
conditions and when dry conditions are expected is given in Fig. 3. 
Overall, there was a consensus on the relations between the wind and 
temperature conditions in the dry season and rainfall conditions in the 
rainy seasons for all study locations. The wind and temperature in-
dicators forecasting dry conditions were mentioned 45 times in total. 

3.2. Linking local knowledge to scientific data 

3.2.1. Identifying predictors and predictors 
Table 4 gives some example quotes from the FGD transcripts of how 

local knowledge of the farmers is linked to different predictors and 
predictands. These examples are included because of their clear 
description of meteorological indicators (predictors) and dry conditions 
(predictands) and the diversity of predictor-predictand relations. 

3.2.1.1. Dry conditions (predictands) 
The predictands are expressed in terms of various dry conditions that 

are related to rainfall. The predictands include the timing of the onset of 
rain (e.g. ‘rain on time’, ‘rains will delay’), the occurrence of dry spells (e. 
g. ‘erratic rains’, ‘dry spell’) expressed as the number of dry spells, or an 
overall indication of the season (e.g. ‘the worst’, ‘not adequate rainfall’, 
‘erratic rains’) expressed as the drought index. The computation and 
definitions of the predictands is previously explained in section 2.3.2. 

Table 4 
Examples of the linkage between local knowledge and different predictors and 
predictands  

Local knowledge of farmers 
during FGD 

Meteorological 
Indicator (Predictor) 

Dry Condition 
(Predictand) 

“When in September and October 
and we have little winds, it is a 
sign that we will have rain on 
time. But when it is windy, 
chances of good rains are 
minimal.” 

Wind speed Timing onset of 
rain 

“Heavy winds in October and 
November is an indication that 
there will be erratic rains in 
that season. Especially when we 
experience whirlwinds.” 

Wind speed Dry spells 

“If we have Mwera winds 
blowing heavily in October up 
to November, we expect a dry 
spell. And North Easterly winds 
are a sign of good rains. Mwera 
winds block the Northeasterly 
wind.” 

Wind direction Dry spells 

“If we experience high 
temperatures in June, we start 
having doubts to say, if it is this 
hot in June, what will October 
bring us? Usually in this case, 
we have low temperatures in 
October. This is a sign that we 
will not have adequate 
rainfall.” 

Minimum, maximum 
temperature, relative 
humidity 

Total rainfall, rainy 
days (drought 
season) 

“The month of July is normally 
cold. But when we see that it is 
sunny and the temperatures 
are high, we expect the worst.” 

Minimum, maximum 
temperature, relative 
humidity 

Drought season 

“Early august, it is cold to warm. 
The temperatures then rise the 
second half of the month. But 
when we see that it is cold 
throughout the month, it is a 
sign that rains will delay.” 

Minimum, maximum 
temperature, relative 
humidity 

Timing onset of 
rain 

“When we have cold weather in 
October and November, we 
look forward to a dry spell. But 
when we have high 
temperatures, we know for 
sure that it will rain.” 

Minimum, maximum 
temperature, relative 
humidity 

Dry spell  

Fig. 3. Conditions before and in the rainy season during normal and dry conditions, according to farmers. NE = North Easterly winds. Mwera = strong South 
Easterly winds. 
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3.2.2.1. Meteorological indicators (predictors). The predictors are 
expressed as local knowledge on temperature and wind (see Table 3). 
The predictors are aggregated to a monthly time step, as the local 
knowledge is expressed on a monthly scale (e.g. in September and 
October we have little winds). For local knowledge related to tempera-
ture, relative humidity, minimum and maximum temperature are taken 
into consideration. For local knowledge related to wind this includes 
wind direction and speed. Fig. 2 shows an example of how large-scale 
wind processes are visually assessed and linked to local knowledge. In 
the FGDs farmers expressed the mwera winds as a strong South Easterly 
wind, both referring to the direction and the speed component of the 
wind. The visual representation of large-scale wind processes of histor-
ical dry and normal year (from FGDs) allows the selection of spatial NE 
and SE regions (Fig. 4). The average wind speed and direction of the NE 
and SE regions are incorporated as predictors in the analysis and models, 
together with the wind indicators at the location of the stations at 
climate zones. 

3.3. Forecast model 

3.3.1. Correlations between predictands and predictors 
In this section the links between the predictands and predictors are 

elaborated on. Table 5 gives an overview of the Spearman Rank corre-
lation results for different predictands and predictors. Predictors that 
have at least two significant correlations with a predictand are included 
in Table 5. The wind speed and wind direction predictors in Table 5 

represent all measured locations (both at station locations and the large 
NE and SE regions). Supplementary Materials Tables B1-5 give a more 
detailed overview. 

Both wind and temperature predictors are included in predicting the 
number of dry spells during the rainy season. The (monthly mean daily) 
maximum and minimum temperatures are negatively correlated with an 
increased number of dry spells. For maximum temperature, this asso-
ciation is found only in the Southern Highlands region during the 
months July to November. Relative humidity is positively correlated 
with dry spells in the months July to November. For wind-related pre-
dictors, wind speed has a negative correlation for the month November, 
while both wind speed and wind directions have positive correlations 
from June to September. 

The (monthly mean daily) maximum temperature, relative humidity, 
and wind speed correlate positively with the timing of the onset of train. 
These predictors are corroborated by local knowledge. Maximum tem-
peratures during the dry season are positively correlated with the 
(delayed) onset of the rainy season. Relative humidity shows negative 
correlations in the months September to November, while for one sta-
tion it is positively correlated in August. Wind speed in different regions 
(at station, NE or SE region) show correlations with the timing of the 
onset of rain. Wind speed has negative correlations in June to August, 
and positive correlations in September to November. 

The correlation results for the drought index show that the ENSO 
related predictor, ONI, is an important indicator of drought in both re-
gions. This contrasts with the previous results of the onset and dry spells 
where the predictors informed by local knowledge showed more and 
stronger correlations; here, only one ‘local knowledge’ predictor, wind 
speed in June, shows significant negative correlations with the drought 
index. 

3.3.2. Performance of models 
In Figs. 5–7, the performance of the models is illustrated, for different 

lead times before the rainy season and thresholds of dry conditions (such 
as onset). The performance is expressed as the Heidke Skill Score (HSS) 
for the k-fold cross validation. The HSS for the LOO cross validated 
models can be found in Supplementary Materials Figs. C1-3. The models 
show skill in some cases; however, the performance differs per station, 
dry conditions, threshold, and lead times. Skilful forecasts are observed 
when the HSS is above zero, including the 5th and 95th confidence in-
tervals. If there are not two or more predictors (significant correlations) 
at a certain lead time or station, the scores for that lead or station are 
empty. 

Out of the eleven stations, nine stations had two or more predictors 
for the number of dry spells predictand as shown in the yellow plots in 

Fig. 4. Spatial selection of ’North Eastern (NE)’ and ’South Eastern (SE)’ re-
gions. In these NE and SE regions, we analyzed the wind direction and speed. 
Left shows a ‘dry’ year (high drought index) and right a ‘normal’ year (average 
drought index). The FGDs took place in the four squared boxes. The size of the 
grid represents 0.25◦ by 0.25◦ (~30 by 30 km). 

Table 5 
Spearman Rank Correlation Results between the different predictands (dry conditions) and predictors (meteorological indicators). The column # corr. indicates the 
number of stations that have significant correlations with the predictor in the climate zones (SH = Southern Highlands, LA = Lakeshore Areas)  

Predictand # corr. Predictor June July Aug Sept Oct Nov 

Number of Dry 
Spells 

SH (5/5) LA (0/4) Max. temp.  − 0.47 
–0.68 

− 0.40 − 0.47  − 0.33 − 0.35  

SH (4/5) LA (2/4) Rel. hum.  þ0.51 
þ0.36 

þ0.54  þ0.22 þ0.37 
− 0.34 

þ0.29 þ0.31  

SH (3/5) LA (2/4) Min temp.    − 0.27 − 0.19 − 0.26 − 0.18 − 0.42  
SH (4/5) LA (3/4) Wind speed þ0.33 þ0.33 

þ0.34 
þ0.54 þ0.40 

þ0.30  
− 0.42 − 0.41 − 0.36 − 0.43 − 0.29 
− 0.30  

SH (2/5) LA (2/4) Wind 
direction 

þ0.31 þ0.32  þ0.42 
–0.32 

þ0.32   

Timing of Onset SH (4/5) LA (1/5) Max. temp. þ0.35 þ0.48 þ0.33  þ0.33 
þ0.43 

þ0.43 
þ0.41 

þ0.45 þ0.35 þ0.35 þ0.69  

SH (4/5) LA (4/5) Rel. hum.   þ0.35 − 0.40 − 0.33 − 0.43 − 0.46 − 0.30 − 0.49 − 0.41 − 0.41  
SH (5/5) LA (5/5) Wind speed − 0.44 − 0.46 − 0.44 − 0.37 

− 0.31 − 0.33  
− 0.53 
− 0.55  

þ0.34 þ0.35 
þ0.30 

þ0.30 þ0.42 þ0.29 þ0.33 
þ0.38 þ0.34 þ0.29 

Drought Index SH (1/1) LA (1/1) ONI þ0.36 þ0.45 þ0.35 
þ0.45 

þ0.29 
þ0.41 

þ0.39 þ0.27 þ0.38 þ0.28 þ0.37  

SH (1/1) LA (1/1) Wind speed − 0.33 − 0.30 − 0.37       

I.N. Streefkerk et al.                                                                                                                                                                                                                            



Climate Services 25 (2022) 100268

8

Fig. 5; the two stations with less than two predictors are located in 
Lakeshore Areas (Monkey Bay and Nankumba). Most models perform 
well for only one or two thresholds and it differs per station which 
threshold that is. One out of nine stations (Salima) has skilful results (for 
at least one threshold) by June (longest lead time), five by July, and all 
stations by August.. 

Fig. 6 shows the results of nine stations for the predictions of the 
timing of the onset. Two stations in the Lakeshore Areas climate zones do 
not meet the requirement of having two predictors and are therefore not 
included in the figure. Four out of nine stations have skilful results (for at 
least one threshold) by June (longest lead time), five by July and August, 
and seven stations by September. The stations at Namiasi and Nan-
kumba in the Lakeshore Areas do not have skilful results for any lead 
time. 

For the predictand drought index skilful forecast can be observed for 
all lead times in both climate zones, as can be observed in Fig. 7. For 
forecasts in the Lakeshore Areas not all thresholds can be forecast skil-
fully. The 65th and 70th percentiles can be forecast skilfully across all 
lead times, while for the 55th and 60th percentiles it cannot. The forecast 
for Southern Highlands show skilful results at all lead times for the 55th, 
60th, 65th and 70th percentiles. There are no skilful results for the 75th 
percentiles. 

4. Discussion 

4.1. Integrating local knowledge predictors in seasonal climate forecasts 
at scale 

The approach taken to eliciting and utilising local knowledge in 
seasonal climate forecasts, presented here is replicable to other contexts. 
The local knowledge found in this study and the relationship between 
the predictors and predictands (Sections 3.1 and 3.3.1) is in line with 
those found in other studies. Waiswa et al. (2007) show a strong rela-
tionship could be found for a temperature indicator derived from local 
knowledge and the onset of the first rains. In addition, Gbangou et al. 
(2021) find that wind-related indicators are also used for forecasting 
rain. 

Local knowledge predictors (wind direction, speed and temperature) 
have been analysed separately in this study. However, farmers de-
scriptions of ‘cold Mwera winds’, for example, implies a combined 
interpretation of both wind speed, direction and temperature. Exploring 
those combined indicators – or other ecological or celestial indicators of 
drought used by farmers (e.g. Chisadza et al., 2015; Gbangou et al. 2021) 
may be of particular value in some contexts. 

Across the geographic contexts covered in this study, we find a 
stronger correlation between the number of dry spells and timing of onset 

Fig. 5. Heidke Skill Score (HSS) of k-fold cross validation results for stations in Lakeshore Areas (left) and Southern Highlands (right), at different thresholds for 
number of dry spells (2+, 3+,4+ and 5+). The error bars indicate the 5th and 95th percentiles of the HSS. Skilful forecasts are observed when the HSS is above zero, 
including the error bar. 
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predictands in the Southern Highlands than in Lakeshore Areas. This 
spatial variation could be explained by geographic features that could 
influence meteorological processes. The prevailing wind in Malawi is 
easterly (from the Indian Ocean). As the name suggests, the Lakeshore 
Areas climate zone is adjacent to Lake Malawi. The lake may well in-
fluence the atmospheric conditions and influence the wind conditions in 
these areas. Other conditions such as differences in altitude of the sta-
tions, the quality of the observation data and limited occurance drought 
therein may also have influenced the performance. 

4.2. Performance of local knowledge indicators 

Comparing the local knowledge indicators with the ENSO indicator 
(ONI) in the correlation analysis (Section 3.2.1), revealed that the local 
knowledge indicators are more significantly correlated with the locally 
relevant onset and dry spells predictands than the ENSO indicator. In 
addition, current seasonal forecasts mostly rely on large processes in the 
atmosphere and oceans like the ENSO. This study, however, focuses on 
station or climate zone level and tries to focus on local processes relevant 
for farmers. The results suggest that the ENSO phenomenon has a pre-
dictive value for predicting drought on larger scales (drought index), but 

Fig. 7. Heidke Skill Score (HSS) of k-fold cross validation results for Lakeshore Areas (left) and Southern Highlands (right), at different thresholds (55th, 60th, 65th, 
70th and 75th percentiles) for the drought index at climate zone scale. The error bars indicate the 5th and 95th percentiles of the HSS. Skilful forecasts are observed 
when the HSS is above zero, including the error bar. 

Fig. 6. Heidke Skill Score (HSS) of k-fold cross validation results for stations in Lakeshore Areas (left) and Southern Highlands (right), at different thresholds for a 
late onset (median +x days). The error bars indicate the 5th and 95th percentiles of the HSS. Skilful forecasts are observed when the HSS is above zero, including the 
error bar. 
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limited value for more local, small scale processes such as the onset of 
rain or dry spells. It is therefore argued that the use of wind and tem-
perature related indicators, and not just ENSO, should be further 
investigated when (seasonally) forecasting locally relevant variables of 
dry conditions. Gbangou et al. 2021 also show that forecasts based on 
local knowledge have higher skill than the forecast of the National 
meteorological office in Ghana. 

The question remains what level of skill is good enough to inform 
decision-making of farmers. Ziervogel et al. (2005) suggest that if 
forecasts are not correct 60–70% of the time, then they are unlikely to 
benefit farmers and may do more harm than good. It remains up to the 
farmers whether they are willing to adapt their decision making, accept 
wrong forecasts and lose the (time or financial) investments made. For 
this to happen, they should be well informed about the forecast skill, and 
the potential risk of acting on a forecast should be communicated and, if 
possible, mitigated (Budimir et al., 2020). This should be carefully 
considered and communicated by stakeholders providing forecast in-
formation as part of climate services. 

4.3. Local knowledge in climate services context 

This paper has focused on one aspect of the wider efforts of co- 
production of climate services. The local knowledge indicators have 
not solely been grounded in the design of a forecast but also triangulated 
and validated by using them as a basis for examining forecast model 
skill. This is an important element of the co-production of climate ser-
vices, especially seen through the lens of empowerment (Bremer and 
Meisch, 2017). However, there is further scope for iteration of local 
knowledge and forecast models and for these to work together more 
closely (e.g. to shape what meteorological data is collected, how forecast 
models are designed, how forecasts are communicated, etc.). 

Farmer decision-making is dynamic, multidimensional and contex-
tual; there is a large range of interacting factors that play a role in the 
decision-making at a particular point in time (Hermans et al., 2021). 
Calvel et al. (2020) illustrate that the current provision of SCFs in 
Central Malawi could be improved and better tailored to the farmers. 
This means that the end-user and their needs should be better under-
stood such that their needs are built into the design and dissemination of 
the SCFs (Mittal et al., 2021). Tailoring the content of SCFs to the local 
knowledge of farmers could enhance trust and uptake of information by 
farmers (Alessa et al., 2008; Kniveton et al., 2015). Bringing together 
local knowledge in the co-production of seasonal climate forecasts could 
be an effective way to achieve this (Kalanda-Joshua et al., 2011). Taking 
farmers’ own expectations about the upcoming rainy season into ac-
count is therefore very important when communicating a forecast, 
particularly when they contradict local expectations (Nkomwa 
et al.,2014). 

In some areas of climate services, there is a potential in bringing 
together and accessing the skill of different predictors for different 
purposes. For the agricultural sector, the onset of rains and dry spells are 
important predictands, and local knowledge-based indicators could 
enhance these forecasts. In addition, it might be worthwhile exploring 
ways in ongoing efforts on drought forecasting to include local knowl-
edge predictors. Examples of efforts include anticipatory forecast 
models and phased approaches in early action protocols for humani-
tarian agencies (e.g. TAMSAT Alert (Boult et al., 2020)). In these ap-
plications, wind and temperature predictors could be monitored in real- 
time to forecast dry conditions in the upcoming rainy season. 

Plotz et al. (2017) argue that the value of local knowledge for fore-
cast methods is eroded by the increased investment in conventional 
climate science approaches and the increased variability and unpre-
dictability caused by climate change. External stakeholders in Malawi 
perceive the lack of evidence that local knowledge works as its major 
limitation (Trogrlić et al., 2021). This study, however, found that with a 
recent dataset (Table 1), indicators may have a predictive value. These 
findings suggest that meteorological indicators based on local 

knowledge are not decreasing in its reliability. On the contrary, it could 
even create opportunities in a changing and more unpredictable 
environment. 

5. Conclusion 

Our research integrated local knowledge of smallholder farmers in 
central and southern Malawi with the seasonal climate forecast, espe-
cially drought forecast. Using local knowledge to inform the choice of 
indicators in seasonal forecast systems and using local knowledge to 
validate seasonal forecasts has remained inadequately explored in 
literature. Our forecasting model is based on meteorological indicators 
from local knowledge and can complement the ENSO forecast variable 
from the DCCMS. A threshold model was established that relates 
annually monitored meteorological indicators based on wind direction 
and wind speed, temperature, and relative humidity and ENSO before 
the rainy season, to the occurrence of dry conditions during the season. 
Dry conditions were expressed in variables that farmers require for their 
agricultural decision-making. 

The results show that meteorological indicators informed by local 
knowledge show a better performance in forecasting the locally relevant 
dry conditions in comparison to the currently used ENSO-related in-
dicators by the DCCMS. This study, therefore, argues that the local 
knowledge indicators used in this study can enhance drought forecasting 
for rainfed agriculture. The inclusion of local knowledge creates op-
portunities, both in terms of communication and the production of SCFs 
by national meteorological services. In addition, providing information 
that is informed by local knowledge can potentially improve the 
contextual relevance of forecast information for farmers. 
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