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Chapter 1 Introduction 

This thesis focuses on the concept of human-like maneuvering for autonomous ships and 
studies the human-like decision-making method of autonomous ships. By establishing an 
independent machine learning method, the maneuvering decision-making mechanism in 
typical navigation scenarios is explored, and the processes of autonomous acquiring and 
learning seafarers’ maneuvering decision-making characteristics for autonomous ships are 
studied. Eventually, the autonomous ship human-like decision-making models are constructed. 
We collected data on the full-task handling simulation platform for merchant ships named 
Navi-Trainer Professional 5000. Moreover, we used data mining, machine learning, statistical 
analysis, fuzzy theory, etc., comprehensively to conduct this research. In particular, we applied 
different decision tree algorithms to study the decision-making mechanisms of different 
maneuvering behaviors in the specific maritime transport scenario. Then we validate the trees 
with empirical data from a full-task handling simulation platform to find the optimal decision 
tree algorithm. Thus to realize the automatic acquisition and representation of a seafarer’s 
decision-making and accurately identify the current maneuvering behavior. This research 
provides a new perspective and methodology for the development of autonomous ship 
technology in theory and practice and promotes the application and spreading of autonomous 
ships. In addition, it also gives theoretical guidance and feasibility bases for the simulation and 
realization of autonomous ship automatic maneuvering and berthing systems. In this chapter, 
the background of the thesis is introduced, followed by motivations, research questions, main 
contributions, and the outline of this thesis.  
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1.1 Background 
Maritime shipping is the lifeblood of the global economy, transports approximately 90% of 
international merchandise trade (ICS, 2020). According to the statistics, currently, waterway 
transportation accounts for 95% of total crude oil transportation and 99% of total iron ore 
transportation, and there are over 50,000 merchant ships trading internationally (AGCS, 2018). 
Maritime shipping becomes an irreplaceable transportation method. Therefore, the safety of 
vessels is a critical issue in global maritime shipping. 
 
At the same time, waterway transportation is recognized as a high-risk industry. With the 
development of the domestic economy and world trade, transportation is becoming 
increasingly busy, the number of ships is increasing, ships are becoming larger and more 
specialized, and the speed of ships is increasing. Coupled with the increase in the transportation 
of dangerous goods, the density of maritime traffic is increasing, and the navigation 
environment of ships is deteriorating, causing frequent maritime traffic accidents, which brings 
more attention to the risk of navigation (Akyuz and Celik, 2014; Goerlandt and Montewka, 
2015). Maritime accidents frequently occur, for instance, there were 2712 reported shipping 
incidents or casualties in 2017 (AGCS, 2018), and hull collisions and damages caused by 
personnel errors account for more than 80% of maritime accidents (Hanzu-Pazara et al., 2008; 
Rothblum, 2000), and one of the important ways to solve ship accidents caused by human 
factors is to utilize autonomous maneuvering of ships. Additionally, the safety of the seafarers 
in extreme weather conditions in recent years has also become a problem that cannot be ignored 
(Wang et al., 2014a). Besides, the number of seafarers is declining recently, while the wages 
of seafarers are rising year by year, which has become the second largest expenditure item after 
the fuel costs of shipping (Lun et al., 2016). 
 
In addition, with the development of marine technologies, information technologies, and “big 
data” intelligent applications, autonomous ship emergence is accelerating. Moreover, the world 
merchandise trade is moving in the direction of informatization and intelligence. Therefore, 
the study of autonomous merchant ships has become a “hot” topic internationally, as this would 
reduce the number and necessity for operators/seafarers onboard and increase maritime 
transport as a more environmental-friendly alternative to transport by trucks on land. The 
improvement of autonomous ships over the next 10 to 20 years will be an important factor in 
determining the future direction of the shipping industry. According to Global Marine 
Technology Trends 2030, co-launched by Lloyd’s Register (LR), the Aquinas TEEK group, 
and the University of Southampton, autonomous ships are listed as one of the 18 critical future 
marine technologies. German Industry 4.0, based on big data, is predicting technique-centric 
intelligent manufacturing. Through the integration of networks, entities, and "shore-sea 
integration" intelligent information service systems, it promotes the transformation of 
traditional manufacturing and the development of autonomous ships. "Manufacturing in China 
2025" views marine engineering equipment and high-tech shipbuilding as one of the top ten 
critical areas in which autonomous ships will be an essential part. Ship intelligence, green 
policies, and automation will become the mainstream of global cargo ships. With the continued 
improvement of ship intelligence, the development of unmanned engine room maintenance, 
auxiliary piloting technology, fault self-diagnosis technology, and other technologies will 
gradually reduce ship labor needs, potentially achieving unmanned operation of a ship. In the 
foreseeable future, the number of experienced seafarer will be greatly reduced, which will lead 
to increased ship safety requirements.  
 
Furthermore, although the current level of ship automation is relatively high, the regular 
operation of ships is always inseparable from human participation (Perera et al., 2015a). 
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Additionally, when an emergency occurs, it must be handled by the seafarers. Although the 
ship is maneuvered and supported by Automatic Identification System (AIS), Automatic Radar 
Plotting Aids (ARPA), Electronic Chart Display and Information System (ECDIS), Global 
Maritime Distress and Safety System (GMDSS), and ship autopilot system, etc., the ship bridge 
has not been to the level of unmanned. Autonomous ship technology has developed rapidly in 
recent years. However, there are still many problems that need to be solved and improved. 
Moreover, the existing research for automatically achieving the autonomous ships’ 
maneuvering decision-making by acquiring the seafarers’ operation characteristics is still 
scanty. In addition, it also lacks the appropriate theoretical methods to explore the problem of 
autonomous ship human-like maneuvering decision-making modeling. 
 
Overall, as autonomous ships have outstanding advantages in improving operational efficiency, 
safety management, decision-making efficiency, and energy consumption management of 
ships, the research on autonomous ships has become an inevitable tendency for future ship 
development and gained the interest of many researchers in both academia and industry. 
Besides, it is necessary to strengthen the relevant theoretical and technical research. The study 
for the autonomous ship human-like maneuvering decision-making mechanisms is 
indispensable and meaningful. 
 

1.2 Motivations 
This thesis explores the decision mechanisms of different maneuvering behaviors to realize the 
automatic acquisition and representation of the seafarer’s decision-making knowledge in the 
typical navigation scenario. In order to analyze and reproduce the seafarer’s decisions in a 
typical navigation scenario for autonomous ship maneuvering and let the autonomous ship 
make decisions like a human,  we mainly use data mining, machine learning, fuzzy and grey 
theories, etc., comprehensively to conduct this research. The main motivations of the research 
are as follows: 
 

Ø Research on autonomous ship human-like decision-making mechanisms in the typical 
navigation scenario. 
 

Ø Propose an integrated conceptual framework and methodology for modeling human-like 
decision-making of autonomous ships. 
 

Ø Help policy-makers and stakeholders make optimal management decisions during the 
typical navigational scenario for autonomous ships in the coming future. 

 
Ø Provide an easier understanding of all sorts of choice behaviors in contexts as diverse as 

traffic safety, marine management, and ocean governance, etc. 
 

1.3 Research questions 
The research objective of this thesis is to prioritize safety influencing factors of autonomous 
ships’ maneuvering decisions and develop a series of ship maneuvering knowledge learning 
models to give autonomous ship the ability to make decisions like a human, i.e., to recognize 
and model seafarers’ navigational decision-making characteristics and mechanisms for 
autonomous ships’ safety in a typical scenario. In order to achieve the above motivations, the 
main research question addressed in the thesis is as follows:  
 
How can the decision mechanisms of automatic acquisition and representation of the seafarer’s 
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decision-making knowledge in a typical navigation scenario be recognized? 

 

To answer the main research question, the following research sub-questions (SQ) should be 
addressed: 
 
Questions on research setup 
 
a) Which data analysis method is more suitable and effective for the selection of the main 

influencing factors of seafarers’ maneuvering decisions? 

 

Although numerous studies in academia have been conducted upon influencing factors 
assessment based on the grey and fuzzy theories, they seldom consider the relative importance 
of different influencing factors and lack expertise. In addition, some studies only consider the 
same weight to determine the judgments from different experts or only use the standard fuzzy 
number functions to evaluate the linguistic terms given by experts. However, the standard fuzzy 
membership function sometimes cannot determine different linguistic terms from different 
domain experts reasonably. In some specific situations, it treats different indexes equally, 
specifically, the same linguistic term from different domain experts. The answer to the SQ is 
looking for the method that not only considers the priority of the selection of the main maritime 
traffic safety influencing factors for seafarers’ maneuvering decisions but also has more 
suitable and applicable for the development of autonomous ships in a specific navigational 
scenario. 
 
b) Which approaches can be used to automatically acquire and represent the decision-making 

mechanism of the experienced seafarers’ maneuvering behavior in a typical navigation 

scenario? 

 

The automatic acquisition and representation of ship maneuvering decision-making are 
essential for getting accurate and rapid ship maneuvering decisions and ensuring water traffic 
safety. Currently, knowledge acquisition and representation are mainly based on knowledge-
based research methods, such as Support Vector Machine (SVM), neural network, statistical 
analysis, etc. However, there is no unified, comprehensive theoretical system, and there are 
shortcomings in the evaluation methods. For instance, the SVM method needs to compute the 
inverse matrix, and the time complexity is high. Meanwhile, the storage space and computation 
time requirements are large when the number of training samples is high. At the same time, a 
neural network model exhibits over-fitting and under-fitting phenomena. The knowledge is 
implied, not easily tested, and has poor flexibility. Therefore, to address the SQ, the 
approaches/algorithms that can reasonably complete the decision-making knowledge 
acquisition of the ship’s automatic maneuvering in a specific waterway/port and have a high 
degree of application and promotion still need to be reviewed and further developed. 

 
Questions on modeling 
 
c) What are the advantages and disadvantages of the prioritizing model of safety influencing 

factors of autonomous ships’ maneuvering decisions? 

 

The seafarers’ maneuvering decision-making is always influenced by multi-source information, 
for instance, the other ships in waterways/ports, the natural environmental factors, etc. (Kim et 
al., 2017). This requires ship maneuvering decision-making procedures expressed along with 
higher accuracy and effectiveness. However, due to the limited information acquiring and 
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processing capacity, the Officer On Watch (OOW) cannot achieve the multi-attribute or multi-
source information in a particular time and space concurrently. For instance, under high-
intensity work pressure, the OOW cannot always ensure to make correct decisions timely when 
facing constant changing factors in different navigation scenarios; thus, maneuvering decisions 
cannot still be made accurately and quickly, which could lead to maritime traffic accidents. 
Therefore, the automatic acquisition and representation of maneuvering decision-making are 
necessary, and it is essential to identify, analyze, prioritize the main influencing factors for 
efficient selection of the corresponding maneuvering decisions for autonomous ships. The 
answer to this SQ is to establish the safety influencing factors’ prioritizing model for 
autonomous ships’ maneuvering decisions and evaluate the performance of the proposed model 
in respect of advantages and drawbacks. 
 
d) How can the maneuvering decision-making processes of experienced seafarers under the 

typical navigation scenario be modeled? 

 

The ship maneuvering process is a multi-functional integrated system integrating multiple 
automation systems. However, the improvement of the degree of automation of ships has a 
certain gap from the ships with automatic perception, subjective analysis, and autonomous 
decision-making. The answer to this SQ is to explore the decision-making mechanisms of 
different maneuvering operations in order to realize the automatic acquisition and 
representation of a seafarers’ decision-making and develop a series of methods for ship 
maneuvering knowledge learning models to give autonomous ships the ability to make 
decisions like a human. 

 

e) How to evaluate and maintain the proposed Human-like Decision-making Maneuvering 

Decision Recognition (HDMDR) model to ensure its appropriate functioning throughout its 

entire life cycle? 

 

Based on the actual experienced seafarers’ operational data from the full-task handling 
simulation platform, this thesis uses the C4.5 decision tree method to propose a knowledge 
learning model under multiple environmental constraints to give intelligent ships the ability to 
make decisions like a human, i.e., an autonomous ship Human-like Decision-making 
Maneuvering Decision Recognition (HDMDR) model. It is crucial to ensure and evaluate the 
performance of the model and have a clear way to update the proposed model to maintain it 
has wide applicability. The answer to this SQ addresses the way to evaluate and update the 
proposed model throughout its entire life cycle. 
Questions on application 
 
f) To what extent could the proposed models in this thesis be applied in reality? 

 

The final objective of this study is to achieve the Degree Four: fully autonomous ship (IMO, 
2021) in a specific scenario for a particular ship type and explore the possibilities for a wide 
application for the proposed model for various scenarios and types of ships. However, 
considering the reality at this stage, there are still many challenges on the way to achieving 
fully autonomous shipping, and lots of conditions need to be satisfied. The answer to this SQ 
is to illustrate the detailed applicable scenarios and objects for the proposed models, explain 
how they would be extended at this stage, and present the advantages and significance for the 
models to be applied in the real-life maritime domain. 
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1.4. Main contributions 
In view of the shortcomings of the existing knowledge representation and acquisition methods, 
this thesis mainly focuses on the problem of modeling seafarers’ navigational decision-making 
in the typical scenario for autonomous ships’ safety. We propose the method to prioritize safety 
influencing factors of autonomous ships’ maneuvering decisions and a series of ship 
maneuvering knowledge acquiring and learning models to give autonomous ships the ability 
to make decisions like a human. In particular, we propose a novel method that has not been 
previously tested, which combines decision trees with fuzzy theories to identify the seafarers’ 
decision-making knowledge in a typical navigation scenario. Moreover, we develop the 
knowledge representation and acquisition method based on different decision tree algorithms, 
establish the maneuvering decision recognition model, and then verify the performance of the 
proposed method. 
  
The decision mechanisms of different maneuvering behavioral patterns and the execution 
mechanisms of ship operating modes are two important steps in simulating task aggregation 
and multi-source information stimulation (Xiao et al., 2015; Zheng et al., 2012). In addition, 
while we know of no other studies on autonomous ship maneuvering decision-making based 
on the experimental data from a simulation platform, several efforts have been made to 
construct decision mechanism using the simulator in other research domains (Kennedy et al., 
2010; Paschalidis et al., 2018). Therefore, it is essential and necessary to test the proposed 
method for ensuring accurate and rapid maneuvering decisions and maritime traffic safety. 
 
This thesis provides theoretical guidance and a feasibility basis for research into seafarers’ 
maneuvering decision-making and the realization of autonomous ships development and 
practical application of subsequent unmanned merchant ships as well as autonomous ship 
piloting and berthing systems. It is of significance to ensure transport safety, manage transport 
risks, reduce transport uncertainties, and prevent potential losses. The innovations of this 
research are as follows: 
 

Ø In this thesis, the problem of autonomous ship maneuvering is considered a machine 
learning issue, which transforms the problem of autonomous ship maneuvering decision-
making into a problem of establishing machine learning method to learn the seafarer’s 
maneuvering decision-making characteristics and constructing multi-constraint decision 
model. 

 
Ø “Autonomous” here can be understood as “human-like thinking”. It can comprehensively 

consider the specific tasks and various information obtained and develop a series of 
optimal decisions that meet the safety requirements of the ship’s navigation, economy, 
and environment. 

 
Ø This research considers the main influencing factors on the maneuvering rules in the 

typical navigation scenario. It solves the problem that the implementation of the 
experiment for an actual merchant ship in the real world is challenging due to the 
objective conditions of cost, feasibility, and other factors. It is unique and very valuable 
to obtain experimental data operated by an experienced senior seafarer on the full-task 
handling simulation platform. The number of experienced crew, especially captain and 
chief officers, is small, so it is challenging to organize large-scale multi-batch 
experiments in a certain time and space. Additionally, the cost of using the real 30,000-
ton ship to carry out this kind of experiment is very high, and the feasibility of collecting 
the data of multiple voyages from this kind of ship is too slow. Moreover, it takes almost 
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over ten years for the seafarer to grow from a third officer to a chief officer or a captain, 
so the data acquisition is rare and valuable. 

 
Ø This research establishes an autonomous ship human-like decision-making model with 

the optimal decision tree algorithms based on a comparative study of different decision 
tree theories, which can accurately characterize the seafarer’s perception, decision-
making, and operation process. The impact of the main influencing factors during the 
seafarer’s decision-making process is considered in our model, and it can reflect the 
seafarer’s decision-making characteristics in a typical traffic scenario. The proposed 
model provides new insights and methods for the development of autonomous ship 
technology both in theory and in practice and promotes the application and promotion of 
autonomous ships. 
 

1.5 Thesis outline 
This thesis is divided into seven chapters and the schematic overview of these chapters and 
their relationships are demonstrated in Figure 1.1. 
 

 

Figure 1.1 Outline of the thesis. 

Chapter 1 introduces the background, motivations, research questions, and main contributions 
of this thesis. 
 
Chapter 2 provides a comprehensive overview of the literature relevant to grey system theory, 
fuzzy theory, and decision tree algorithm and identifies the material contributing to our research. 
The overall background of knowledge acquisition and representation methods are briefly 
introduced, the advantages and disadvantages of these methods are discussed, and the related 
gaps are demonstrated. 
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Chapter 3 illustrates the multi-attribute decision-making method-based model for prioritizing 
maritime traffic safety influencing factors of autonomous ships’ maneuvering decisions. The 
framework of the prioritizing model and the applying framework is presented for the real-world 
merchant ship.  
 
Chapter 4 proposes an ID3 decision tree model for recognizing human-like decisions of 
autonomous ships in the specific ship maneuvering scenario for the first exploration and pre-
study. This chapter gives a detailed description of the experimental scenario design and the 
preparations and primary conditions for our research setup. In addition, the standardization 
principle of ship maneuvering is introduced. 
 
Chapter 5 develops a C4.5 decision tree model for human-like decision-making of autonomous 
ships to acquire the knowledge under multiple environmental constraints to give autonomous 
ships the ability to make decisions like a human: An autonomous ship Human-like Decision-
making Maneuvering Decision Recognition (HDMDR) model. The decision-making 
mechanism for the maneuvering behavior of Officer On Watch (OOW) is analyzed, and the 
OOW’s decision-making knowledge is automatically acquired and represented. 
 
Chapter 6 demonstrates a fuzzy decision tree model for human-like decision-making of 
autonomous ships, which could address problems of fuzziness and uncertainty, possess a high 
reasoning speed, and can accurately identify the experienced seafarers’ operations. The model 
acquires the decision mechanisms and knowledge of various berthing operations and realizes 
the simulated reproduction of the seafarers’ maneuvering behavior under the scenario of 
inbound ship analysis.   
 
Chapter 7 summarizes the main findings and conclusions of this thesis, and the 
recommendations for future research are provided as well. 
 



 

 

Chapter 2 Methodology and relevant models  

In order to address the proposed research questions, this chapter presents a comprehensive 
overview of the literature relevant to the grey system theory, fuzzy theory, decision tree 
algorithm and identifies the materials contributing to our research. In Section 2.1, the overall 
background of knowledge acquisition and representation methods is briefly introduced, and 
the reason for the selection of these theories and the combination of the methods for 
implementation in this thesis are detailed. Then, the specific illustration for the grey system 
theory and the representative research is demonstrated in Section 2.2. In Section 2.3, the 
introduction about the fuzzy theory and relevant literature review is given, especially the 
research in various aspects of the maritime domain. Finally, the mechanism of the decision tree 
algorithm is detailed, and the advantages and disadvantages of different decision tree 
algorithms are discussed in Section 2.4. 
 
This chapter is based on the following papers: 
 
Xue, J., van Gelder, P. H. A. J. M., Reniers, G., Papadimitriou, E., & Wu, C. (2019). Multi-
attribute decision-making method for prioritizing maritime traffic safety influencing factors of 
autonomous ships’ maneuvering decisions using grey and fuzzy theories. Safety Science, 120, 
323-340. 
 
Xue, J., Chen, Z., Papadimitriou, E., Wu, C., & van Gelder, P. H. A. J. M. (2019). Influence of 
environmental factors on human-like decision-making for intelligent ship. Ocean Engineering, 
186, 106060. 
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2.1 State-of-the-art and models selection 

The accuracy of maneuvering decisions of seafarers is directly related to the safety of maritime 
traffic. In the process of decision-making, seafarers’ maneuvering operation is often influenced 
by multi-source information from the seafarer themselves, the ship, and the environment. Due 
to humans’ limited information-processing capacity, the seafarer cannot consistently achieve 
knowledge acquisition and representation of the multi-source information so that maneuvering 
decisions can be carried out accurately and quickly, leading to maritime traffic accidents. 
 
The decision mechanisms of different seafarers’ maneuvering behavioral patterns and the 
execution mechanisms of ship operating modes are two important steps in simulating task 
aggregation and multi-source information stimulation (Wang and Yang, 2008; Wang and Yang, 
2006; Xiao et al., 2015; Zheng et al., 2012). Therefore, the automatic acquisition and 
representation of maneuvering decision-making is essential in ensuring accurate and rapid 
maneuvering decisions and maritime traffic safety. The selection of different evaluation 
methods will affect the seafarers’ decision-making efficiency and accuracy, thus affecting 
maritime traffic safety. At present, the methods of knowledge acquisition and representation 
are mainly based on knowledge-based research methods, such as fuzzy theory (Chen et al., 
2000), Support Vector Machine (SVM) (Tsang et al., 2005), statistical analysis (Chen et al., 
2015), rule extraction (Martınez et al., 2016; Moradi and Keyvanpour, 2015), neural networks 
(Liang et al., 2012), and sparse representation (Chen et al., 2017), etc. However, there is no 
unified, comprehensive theoretical system, and there are shortcomings in the evaluation 
methods. For instance, the SVM method can solve optimization problems, but it needs to 
compute Hessian or the inverse matrix, and the time complexity is high. Meanwhile, the storage 
space and computation time requirements are large when the number of training samples is 
high. While a neural network can achieve knowledge acquisition and representation, the model 
exhibits over-fitting and under-fitting phenomena. The knowledge is implied, not easily tested 
and has poor flexibility. Any changes in the system must be re-learned, so learning convergence 
can be slow. Therefore, the research on ship maneuvering decision-making methods needs to 
be improved and further developed. 
 
The grey system theory, proposed by Deng (Deng, 1982, 1989), is one of the most widely 
utilized pattern recognition methods. It is mainly utilized to analyze the proximity of the 
dynamic grey process development situation, determine the primary and secondary factors in 
the grey system, and control the main factors affecting the system (Huang et al., 2013). Grey 
system theory is suitable for multiple inputs and uncertain data. It can be utilized to resolve 
uncertainty problems, under partial information and discontinuous data effectively (Kumar et 
al., 2018). The grey relational analysis (GRA) is an effective algorithm for resolving 
uncertainty problems in the case of partial and discontinuous information (Deng, 1982). 
However, the traditional GRA has been largely criticized because it treats different indexes 
(influencing factors) equally and does not take the relative importance of different indexes into 
consideration. It does not fit with people’s preferences for a specific index. Nevertheless, the 
fuzzy logic theory is a beneficial method for modeling processes which are too complicated 
for conventional quantitative analysis or information obtained from the process is qualitative, 
uncertain or inexact (Abbassi et al., 2017; Balin et al., 2018; Tseng and Cullinane, 2018; Zhou 
and Thai, 2016). Moreover, fuzzy numbers are more compatible with phrases and ambiguities; 
it is better to use them in real-world decision-making and reflect human thoughts (Hatefi and 
Tamošaitienė, 2018). 
 
Decision tree is one of the most widely used classifiers in the machine learning research domain, 



 
Chapter 2 Methodology and relevant models 11  

  

mainly due to its straightforward model, its speed in classifying new patterns, and the ease with 
which the classification rules (which can also be graphically represented) can be understood. 
Specifically, the decision tree can handle both categorical and numerical data. It is good at 
processing non-numeric data, which can eliminate a significant amount of data preprocessing 
work when dealing with numerical data through algorithms, such as neural networks. Besides, 
the decision tree method is simple in structure and does not need much background knowledge 
in the process of learning. In addition, the decision tree model is more efficient and is more 
suitable for training sample sets with large amounts of data. Furthermore, the computational 
tree algorithm has a relatively small amount of computation. Then, the decision tree method 
typically does not require knowledge outside the training data and is good at processing non-
numeric data. Finally, the decision tree method has a higher classification accuracy. Therefore, 
the decision tree method is a crucial research direction in the field of machine learning. 
 
Ship maneuvering decision-making studies are a classification of the ship’s operating behavior 
in accordance with certain rules. A decision tree is a classification method of data mining that 
can potentially find valuable information by classifying a large amount of data. It has the 
advantages of simple descriptions, fast classifications and is suitable for large-scale data 
processing. It can learn from the sample, obtain classification rules, and classify the samples 
according to these rules. Decision tree methods integrate knowledge representation and 
acquisition with a simple and intuitive form. This is convenient for expert testing and has higher 
reasoning efficiency. Therefore, it is feasible and reasonable to apply the decision tree 
classification method to the decision-making of ship maneuvering. 
 
However, the decision tree construction algorithms above are all based on the assumption that 
the attribute and classification values are clear, so these algorithms cannot address the 
uncertainties related to human thinking and behavior. Quinlan (1986) noted that while 
classification results of a decision tree are clear, it cannot address potential uncertainty during 
the classification process. When the attribute value has a slight change, mutations can 
inappropriately affect the classification results. The resulting decision tree generally is not 
robust, and inaccurate or missing data can prevent in the decision tree growing phase 
(Kantardzic, 2011). As a data mining method, the Fuzzy Decision Tree (FDT) is an extension 
of the classical decision tree. It integrates the advantages of fuzzy theory and decision trees by 
combining the comprehensibility of decision trees and the comprehensive expressions of fuzzy 
technology. The FDT has strong decision-making abilities and can address the problems of 
ambiguity and uncertainty. Therefore, the decision tree is more robust, its comprehensibility is 
improved, and the expansion of the algorithm is enhanced (Janikow, 1998; Olaru and Wehenkel, 
2003).  
 
Therefore, in our thesis, we comprehensively utilize the grey system theory, fuzzy theory, and 
decision tree algorithm to address the research questions so as to obtain the objectives of this 
thesis. In the following sub-sections, we give an overview of these relevant contemporary 
studies in the literature relating to the above theories and algorithms and identify material that 
contributes to our research. 

 

2.2 Grey system theory 

Grey system theory is characterized by an uncertain system in which “partial information is 
known and some information is unknown”. Through the research on some known information, 
the system can be accurately understood (Liu and Forrest, 2010). Specifically, as shown in the 
typical grey system in Figure 2.1, if white represents completely clear data/information, and 
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black represents completely unknown data/information, grey represents other data/information 
that is known partially. If a system contains grey information, it can be called a grey system.  
 

 
Figure 2.1 The concept of the grey system. 

 
After more than twenty years of development, the grey system theory has penetrated many 
scientific research fields and has been confirmed and developed. It provides a new insight into 
to solve system problems in the case of poor information (Li, 1996). In order to analyze the 
system behavior of grey systems with uncertain information, the grey system theory develops 
a series of comprehensive analysis methods of grey systems, such as the Grey Relational 
Analysis (GRA) (Fu et al., 2017; Hao et al., 2017; Lee et al., 2018; Lilly Mercy et al., 2017; 
Rajesh et al., 2013).  
 
Specifically, the GRA method is suitable for the data with uncertain, multiple inputs and 
discrete properties; it does provide techniques for determining an appropriate solution for real-
world problems. Moreover, the GRA does not require too much sample size and does not 
require a typical distribution law during analysis. In addition, regardless of whether the system 
has adequate information, the GRA could capture the impact of the relationship between the 
main factor and influencing factors in the system (Deng, 1989; Shen and Du, 2005). As a 
systematic analysis technique, the GRA is a quantitative comparative analysis method, by 
calculating the correlation between the target value and the influencing factors, and the ranking 
of the relevance, the main factors affecting the target value are sought (Deng, 1982; Liu et al., 
2010). The results are corresponding to the qualitative analysis results, so the method has wide 
practicality (Chen and Ting, 2002; Deng, 1989).  
 
The GRA is applied to many research domains, for example, it was adapted to study the 
research output and growth of countries (Javed and Liu, 2017), and utilized to investigate the 
nonlinear multiple-dimensional model of the social economic activities’ impact on the city air 
pollution (Li et al., 2017). In addition, Lu et al. (2010) applied a mathematical approach and 
GRA to analyze the traffic situation trends of China and investigate the potential solutions for 
enhancing road traffic safety. Wang et al. (2007) proposed a grey model-based smoothness 
predictions; the results showed that the model provides promising results and is useful for 
evaluating the riding quality of pavement performance. Zhou and Thai (2016) utilized GRA 
and grey theory to evaluate the failure modes and analyze the effect for tanker equipment 
failure prediction; the priority ranking results show that both fuzzy theory and grey theory are 
quite similar and the proposed fuzzy and grey Failure Mode and Effects Analysis (FMEA) 
method is more practical and flexible for risk evaluation with respect to tank shipping. Rajesh 
et al. (2013) introduced the optimization steps to investigate the effects of different operations 
in the Computer Numerical Control (CNC) machine by using the GRA with entropy. Hatefi 
and Tamošaitienė (2018) presented a novel improved GRA method to evaluate construction 
projects on the basis of the sustainable development criteria in social, economic, and 
environmental dimensions using experts’ opinions. 
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2.3 Fuzzy theory 

Fuzzy theory was introduced by Zadeh (1965) to solve uncertainty on decision-making by 
extending the traditional notation of sets. Fuzzy logic is a type of multi-valued logic. The truth 
values of variables are considered to be “fuzzy” may be any real number within the unit interval 
[0,1] (Novák et al., 2012). It is an effective method to design a system for decision-making, 
and it can be used to solve the problems related to conducting inaccurate and uncertain data 
(Balmat et al., 2011). Zadeh (1965) proposed the fuzzy sets in 1965, and it provides a useful 
mathematical tool for reliability analyses and to solve system vagueness and uncertainty on 
decision-making by extending the traditional notation of sets (Zadeh, 1983). A membership 
function specifies and assigns a value between 0 and 1 in the usual case for each element of 
discourse. The assigned value is called a membership degree and determines the extent to 
which a given element belongs to the fuzzy set. Besides, any fuzzy set can be uniquely 
determined by its membership (Wang et al., 2009; Zhou et al., 2018).  
 
Fuzzy numbers are cases of fuzzy sets, and the most commonly used fuzzy numbers are 
trapezoidal and triangular fuzzy numbers (Hadi-Vencheh and Mokhtarian, 2011). In addition, 
the triangular fuzzy numbers have the advantages of promoting representation and processing 
imprecise information due to its computational simplicity (Pedrycz, 1994). In practical 
applications, fuzzy membership functions are utilized to convert the linguistic estimations into 
fuzzy numbers for quantitative evaluation. The triangular membership functions are shown in 
Figure 2.2, and respectively defined as follows: 

 

.                                          (2.1) 

 
In practical applications, linguistic estimations are converted into fuzzy numbers using fuzzy 
membership functions for quantitative evaluation. Assume  and  are 
two triangular fuzzy numbers, then the basic fuzzy arithmetic operations with these fuzzy 
numbers are defined as follows (Wang et al., 2009). Addition: ; 
Subtraction: ; Multiplication: ; 
Division: . 

 
Figure 2.2 Triangular membership functions. 
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In the maritime domain, many studies using fuzzy theories have been implemented. For 
instance, in the aspect of shipping accident risk analysis and prevention, Senol and Sahin (2016) 
used the defuzzification process of fuzzy logic to transform the fuzzy numbers from Crisp 
Failure Possibility (CFP) to fault probability and proposed a dynamic real-time continuous 
fuzzy fault tree model for the analysis of ship collision and grounding. Balmat et al. (2011) 
applied a novel fuzzy technique to conduct a maritime risk assessment for the prevention of 
pollution on the open sea based on the decision-making system named Mritime RISk 
Assessment (MARISA). Yang and Wang (2015) developed an approach for analyzing 
engineering system risks based on a Fuzzy Evidential Reasoning (FER) method, and applied it 
to the safety modeling of an offshore engineering system, then performed the failure criticality 
analysis in a collision of a Floating, Production, Storage, and Offloading (FPSO) system with 
a shuttle tanker during tandem unloading operations. Celik et al. (2010) proposed a risk-based 
modeling algorithm on the basis of the fuzzy extended fault tree analysis to enhance the 
implementation process of the investigation for shipping accident; this approach allows 
accident stakeholders to clarify the technical failures that lead to the shipping accident. Yang 
et al. (2009) proposed a systematic framework to process the subjective maritime security 
assessment information based on the fuzzy evidential reasoning approaches. Goerlandt et al. 
(2015) developed a framework named: Risk-Informed ship Collision Alert System (RICAS), 
the result of the case-study for RICAS shows that it has an effective performance. Marken et 
al. (2015) used a fuzzy bow-tie analysis method to quantify the risk of delay for ships sailing 
in the northern sea route.  
 
In addition, some fuzzy theory-based studies done for the reliability analysis for the human 
error and offshore operation issues for the shipping industry. Ung (2015) developed a novel 
fuzzy Cognitive Reliability and Error Analysis Methods (CREAM) methodology considering 
the weight of each Common Performance Condition (CPC), and validated the method using 
two axioms and demonstrated by the case of an oil tanker. Zhou et al. (2018) introduced a 
Bayesian network and fuzzy model for the quantitative analysis of human reliability of tanker 
shipping industry; the results show that the proposed model is up-and-coming and is in 
accordance with the CREAM approach. Similarly, Zhou et al. (2017) also proposed a 
quantitative CREAM method to estimate the human error probability in tanker operational 
safety using Fuzzy Analytic Hierarchy Process (FAHP) to establish a fuzzy congruous matrix. 
Abdussamie et al. (2018b) proposed an Adaptive Neuro-Fuzzy Inference System (ANFIS) 
algorithm to predict the ultimate strength reduction of locally corroded steel plates suffering 
from pitting corrosion for the marine structures. Abdussamie et al. (2018c) also developed a 
rule-based fuzzy logic model to calculate operational risk values of the transport barges and 
the offshore structure being loaded as well as the potential impacts on the safety of seafarers 
and environment. Rahman et al. (2019) proposed a robust logistics risk model based on the 
fuzzy and evidence theory to analyze criticality of the contributing factors for offshore oil and 
gas operations. 
 
Moreover, the location selection problem is another aspect of concern in the academia. For 
instance, Wu et al. (2018) developed a fuzzy multiple attribute decision-making approach to 
select the location of an offshore wind farm in the busy waterway of the Eastern China Sea, 
the proposed method considered the maritime safety and economic feasibility of installation 
and determined an optimal site selection scheme for the wind farm. Guneri et al. (2009) 
conducted the shipyard location selection question based on the fuzzy analytical network 
process algorithm, which provided reference to the decision makers based on quantitative 
analysis. 
 
Furthermore, many studies are explored by combining expert knowledge with fuzzy theories. 
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Such as, Abdussamie et al. (2018a) presented a rule-based fuzzy set approach to deal with the 
uncertainty of expert knowledge used for qualitative risk assessment for the hazardous 
scenarios of berthing operations of Liquefied Natural Gas (LNG) carrier and Floating LNG 
(FLNG) in open sea. Akyuz et al. (2016) integrated fuzzy rule-based expert system into fuzzy 
FMEA to identify potential failure and enhance maritime safety. Kose et al. (1995) presented 
an intelligent expert system for monitoring vessel safety by using the fuzzy logic inference 
engine. Perera et al. (2010) presented a fuzzy inference system for collision avoidance based 
on the expert knowledge and the International Maritime Organization Convention on the 
International Regulations for Preventing and Collisions at Sea (COLREGs) under critical 
situations. 
 
Also, fuzzy theories are applied to the research area of ship maneuvering and performance 
evaluation of the management of shipping company. Bhattacharyya et al. (2011) illustrated a 
mathematical fuzzy autopilot algorithm for nonlinear maneuvering of surface ships and its 
performance has been found acceptable. Surendran and Kiran (2007) used the fuzzy logic 
control algorithm to reduce the roll motions of a ship by active fins; the algorithm proved to be 
versatile and can be utilized for irregular sea conditions. Wei et al. (2019) put forward a fuzzy 
algorithm to plan the variable values for hybrid boarding system to compensate the wave 
disturbance in roll direction as well as other disturbances. Chou and Liang (2010) dealt with 
an application for the performance evaluation of shipping company through the proposed fuzzy 
Multiple Criteria Decision Making (MCDM) model.  
 

2.4 Decision tree algorithm 

As we all know, data mining is a process that uses analytical tools to extract information and 
knowledge, including knowledge that is hidden, unknown, or incomplete but potentially useful, 
from a large amount of incomplete, noisy, fuzzy, and random data. Moreover, data mining 
determines the relationship between models and data and uses it to make predictions (Aguiar-
Pulido et al., 2013; Sanil, 2001). The classification algorithm is a data analysis method 
belonging to predictive data mining. Its goal is to find models that accurately describe and 
distinguish data classes or concepts from important sample data sets, such that they can be 
grouped into a data category based on the entity’s attribute values and other constraints. The 
current technologies and methods mainly include decision tree algorithms (Calistru et al., 2015; 
Xie et al., 2003), Bayesian classification and Bayesian networks (Baksh et al., 2018), neural 
networks (Kheradpisheh et al., 2018), genetic algorithms (Peng et al., 2015), rough sets (Zhang 
et al., 2012), etc.  
 
A decision tree is a mathematical method that generates decision trees or decision tree rules by 
inductive learning of training samples and then classifies new data using decision trees or 
decision rules. As a supervised case-based inductive learning algorithm, decision tree is a 
method to solve complex decision problems through tree-like logical thinking. It can infer the 
classification rules of the decision tree representation from a set of unordered and irregular 
cases. It typically forms a classifier and a prediction model, which can classify, predict and 
analyze the unknown data for knowledge discovery. 
 
The decision tree consists of a root node, a series of internal nodes, and leaf nodes. Each node 
has only one root node and two or more leaf nodes, and the nodes are connected by branches 
(Yuan and Shaw, 1995). Each internal node of the decision tree corresponds to a collection of 
non-category attributes, with each edge corresponding to each possible value of the attribute. 
The leaf nodes of the decision tree correspond to a category attribute value, and different leaf 
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nodes can correspond to the same category attribute value. In addition to being represented in 
the form of a tree, a decision tree can also be represented as a set of production rules in the 
form of IF-THEN. Each root-to-leaf path in the decision tree corresponds to a rule. The 
condition of the rule is the rounding of all node attribute values on the path. The rule’s 
conclusion is the category attribute of the leaf node on the path. Compared with decision trees, 
rules are more concise and easier for people to understand, use and modify, which form the 
basis of the expert system. Therefore, in practical applications, more rules are used. 
 
Figure 2.3 shows an example for a typical decision tree model based a small training set shown 
in Table 1. From Figure 2.3, we can see that a decision node/attribute (e.g., Outlook, which 
represents the weather condition of a particular day) has two or more branches/values (e.g., 
Rainy, Overcast and Sunny, which represent several unique values of each attribute). Leaf node 
(e.g., Play) represents the class category or decision of each instance 

  

Table 2.1 A small training set. 

No. Attributes Play /Class 
Outlook Temperature Humidity Wind 

1 Rainy Mild High Strong No 
2 Sunny Hot Normal Strong Yes 
3 Overcast Mild Normal Strong No 
4 Overcast cool Normal Weak Yes 
5 Rainy Hot Normal Strong No 

  
Furthermore, the final decision can also be represented through the form of IF-THEN rule set 
shown as follows: 

Rule 1: IF Outlook=Sunny THEN Play=Yes 

Rule 2: IF Outlook=Overcast AND Wind=Strong THEN Play=No 

Rule 3: IF Outlook=Overcast AND Wind=Weak THEN Play=Yes 

Rule 4: IF Outlook=Rain THEN Play=No 

 

 
  

  
This example indicates whether a particular weather condition is suitable or not for some 
unspecified activity in a particular day. In this way, the attributes taken together provide a 
zeroth-order language for characterizing objects in the universe (Quinlan, 1986). 
 

Figure 2.3 A decision tree generated using the small training set.
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In the 1960s, decision tree algorithm was initially proposed by Hunt et al. (1966) to minimize 
the cost of classifying an object (Quinlan, 1986). The decision tree method is a key research 
direction in the field of machine learning. Muchoney et al. (2010) proposed the classification 
algorithms of decision tree, ANN, and maximum-likelihood to analyze the land cover 
classification problem in central United States, and the results show that the decision tree has 
the highest classification accuracy. Borak (1999) used decision trees to classify features from 
a large amount of data. The results show that the tree-based classifier can greatly reduce the 
dimensionality of the input data set without affecting the classification accuracy. Calistru et al. 
(2015) proposed a novel parallel decision tree algorithm, namely, PdsCART, to process a larger 
amount of data stream records and construct the tree efficiently. Saunier et al. (2011) used 
decision trees, the k-means algorithm, and the hierarchical agglomerative clustering method to 
identify patterns in the traffic event database and analyze the relationship between interaction 
attributes and collision. 
 
Common decision tree algorithms are Concept Learning System (CLS) (Angluin, 1988; Hunt 
et al., 1966), Iterative Dichotomiser 3 (ID3) (Quinlan, 1979; Quinlan, 1986), C4.5 (Quinlan, 
1993), C5.0 (Bujlow et al., 2012; Pandya and Pandya, 2015), Classification And Regression 
Trees (CART) (Calistru et al., 2015; Friedman et al., 1984), Chi-squared Automatic Interaction 
Detector (CHAID) (Kass, 1975; Rodriguez et al., 2016), etc. The internal variables of each 
subsample are highly consistent, and the corresponding variation/impurity falls between 
different subsamples as far as possible. All decision tree algorithms follow this criterion, and 
the data set is partitioned into subsets with different statistical approaches, such as Entropy 
(Lakkakula et al., 2014), Gain Ratio (Prasad and Naidu, 2013), Gini coefficient (Prasad et al., 
2013; V et al., 2013), etc. 
 
A series of follow-up decision tree algorithms, such as ID3, C4.5, and CART, etc. are all 
developed from CLS. Among them, the C4.5 algorithm developed based on ID3, is currently 
one of the most famous and popular decision tree algorithms (Lu et al., 2015), C4.5 is the most 
influential data mining algorithm identified by the IEEE International Conference on Data 
Mining (ICDM) in December 2006 (Wu et al., 2007). A comparative study of C4.5 and other 
learning algorithms shows that it can balance processing speed and error rate well (Lim et al., 
2000). C4.5 can convert the decision tree into an equivalent production rule, solve the learning 
problem of continuous value data, classify multiple categories, increase the Boosting 
technology, and complete the processing of large databases more efficiently. The C4.5 
algorithm also deals well with continuous and discrete values and attributes with missing 
attribute values (García-Laencina et al., 2015). The C4.5 algorithm solves the above problem 
well; however, the ID3 algorithm tends to favor more attributes and the data of discrete value 
attributes, but not the attributes with continuous values nor the samples with missing values, 
and is sensitive to noise (Hssina et al., 2014). C5.0 mainly adds support for Boosting, which 
also uses less memory. Compared with the C4.5 algorithm, it builds a smaller rule set; therefore, 
it is more accurate, but C5.0 is a commercial software, and the public cannot easily get the 
source code (Witten et al., 2016). CART uses the training set and the cross-validation set to 
continuously evaluate the performance of the decision tree to prune the decision tree, thus 
achieving a good balance between training error and test error. However, CART or CHAID 
only supports building binary trees, while C4.5 allows two or more outcomes and supports 
binary or multi-fork trees (Wu et al., 2007). Several prior studies on the C4.5 decision tree 
could be found from the literature. A prior study (Provost and Domingos, 2003) found that a 
C4.5 introduction learner without pruning and without node “collapsing” (Quinlan, 1993) can 
achieve the best prediction accuracy. A novel C4.5 was proposed by Cherfi et al. (2018) to 
build decision trees through reducing the number of cut points by using the arithmetic mean 
and median, the proposed algorithm could get excellent accuracy than the normal C4.5 
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algorithm. Reumers et al. (2013) used C4.5 decision tree-based model to infer activity types 
from Global Positioning System (GPS) traces, the results showed that the overfitting was 
minimal, in addition, the model enables researchers to infer activity types directly from activity 
start time and duration information obtained from GPS data. Dai and Ji (2014) proposed a 
parallel MapReduce algorithm to implement a typical C4.5 decision tree, the experimental 
results indicated that the algorithm exhibits both time efficiency and scalability. Some more 
detailed technical information on the related algorithms will be provided in Chapters 4-6. 
 

2.5 Conclusions 

This chapter provides a comprehensive overview of the literature relevant to grey system theory, 
fuzzy theory, and decision tree algorithm that contribute to our research. The state-of-the-art 
research is highlighted, and the advantages and limitations of various methods relevant to our 
thesis are addressed. In this thesis, grey system theory is introduced to prioritize the influencing 
factors; the fuzzy theory is presented for more rational use of expert knowledge for judging the 
prioritization of the influencing factors and thus to fuzzify the experimental dataset into several 
language items for the process of constructing decision trees. In addition, as scholars have 
proposed several different decision tree algorithms for both classification and decision-making 
problems in various domains and obtained good results. Based on the advantages of the 
decision tree algorithms and the ability to analyze the characteristics of multi-fork trees, this 
thesis aims to utilize various decision tree algorithms to learn the seafarers’ maneuvering 
decision characteristics. The autonomous ship human-like maneuvering decision-making 
problem is regarded as a machine learning problem based on the experts’ knowledge, the 
seafarers’ actual maneuvering data, and various influencing factors. The problem is converted 
using the decision tree algorithms to learn the seafarers’ maneuvering decision-making 
characteristics, thus constructing a series of optimal human-like decision-making models under 
multiple constraints. 

 



 

 

Chapter 3 Prioritizing safety influencing factors of 
autonomous ships’ maneuvering decisions 

Ship maneuvering decisions are influenced by several factors, and it is essential to prioritize 
the main influencing factors for efficient selection of the corresponding maneuvering decisions. 
Meanwhile, the autonomous ship maneuvering decision-making influencing factors constitute 
a typical grey system, which is suitable for research by grey relational analysis. Furthermore, 
linguistic assessment of factors is evaluated to obtain priorities numbers through the fuzzy 
approach. Therefore, this chapter mainly focuses on the concept of human-like maneuvering 
for autonomous ships. Based on experimental data of experienced seafarers and using a 
simulation platform under the scenario of the Shanghai Waigaoqiao wharf, an inference model 
utilizing grey and fuzzy theories is proposed. The proposed model is combined with expert 
linguistic terms to select the ship maneuvering decision-making main influencing factors from 
multi-source influencing factors (in overall and separated categories of natural environment, 
ship motion, force parameters, draft, and position), and to study the decision-making 
prioritization for maritime traffic safety for specific ship maneuvering scenarios. This method 
can prioritize the main factors which affect maneuvering decisions as well as guide an 
autonomous ship-assisted or automatic maneuvering evaluation system for the research of 
human-like maneuvering behavior. This chapter provides a new perspective on the 
identification of main ship maneuvering decision-making influencing factors in theory and in 
practice. It can be utilized for better decision-making concerning maritime traffic safety of 
autonomous ship maneuvering, which in turn makes shipping safer and promote the application 
and spreading of autonomous ships. 
 
This chapter is organized as follows. First, Section 3.1 illustrates the background of this chapter, 
followed by the methodology and specific steps of our proposed model are described in Section 
3.2. The experimental processes are introduced in Section 3.3 and Section 3.4 details the results 
of our experiment. Then, the discussions of the results are represented in Section 3.5. Finally, 
the conclusions are addressed in Section 3.6. 
 
The content of this chapter is an edited version of the following published paper: 
 
Xue, J., van Gelder, P. H. A. J. M., Reniers, G., Papadimitriou, E., & Wu, C. (2019). Multi-
attribute decision-making method for prioritizing maritime traffic safety influencing factors of 
autonomous ships’ maneuvering decisions using grey and fuzzy theories. Safety Science, 120, 
323-340. 
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3.1 Introduction  

Maritime shipping industry transports approximately 90% of international merchandise trade 
(ICS, 2020). According to the statistics, there are over 50,000 merchant ships trading 
internationally (AGCS, 2018). Therefore, the safety of vessels is a critical issue in global 
seaborne transport. In addition, with the development of computer science and technology, 
especially the rapid development of technologies and theories such as The Internet of Things 
(IoT), Information Technology (IT), and Artificial Intelligence (AI), the world merchandise 
trade is moving in the direction of informatization and intelligence. Thereupon, the study of 
autonomous merchant ships has become a “hot” topic internationally, as this would reduce the 
need for operators/seafarers onboard, and increase maritime transport as a more environmental-
friendly alternative to transport by trucks on land. Several large companies have started to test 
such vessels, for instance, the Advanced Autonomous Waterborne Applications Initiative 
(AAWA) project of Rolls-Royce Holdings plc (Rolls-Royce, 2018). In addition, for the 
shipping industry, advancements in Network Technology (NT), Information and 
Communication Technology (ICT), and IT create new opportunities for developing electrical 
systems such as ships autonomous navigation (Lee et al., 2009; Perera et al., 2015b), Integrated 
Bridge System (IBS), and decision support system (Pietrzykowski et al., 2017), and the level 
of shipping modernization has been rapidly improved (Pazouki et al., 2018). The development 
of autonomous ships has been technically feasible. In addition, the economy of the world is 
experiencing a period of slow-moving recovery; thus shipping industries are falling into the 
long-term overcapacity. Hence the world’s major shipping companies have to shift their 
development planning to improve the operational efficiency and enhance the safety 
management of their merchant fleet, in order to reduce the seaborne transport costs and adapt 
to the market tendency. Moreover, the demands of ship owners and seafarers for safety and 
profitability of shipping are constantly increasing; it is also an essential influencing factor for 
the development of autonomous ships. 
 
Furthermore, since the implementation of the international energy conservation and emission 
reduction rules and regulations promoted the development of autonomous ships, the EU’s 
Monitoring, Reporting and Verification (MRV) regulations for greenhouse gas emissions of the 
shipping industry took effect on July 1, 2015, and began to monitor emissions according to 
MRV regulations on January 1, 2018. In addition, all ships larger than 5,000 gross tons and 
berthed in EU ports are required to meet MRV regulations. Moreover, the International 
Maritime Organization (IMO) has the program to start emissions monitoring under the Ship 
Energy Efficiency Management Plan (SEEMP) on January 1, 2019 (IMO, 2018). Besides, the 
number of seafarers in the world is declining recently, while the wages of seafarers are rising 
year by year, which has become the second largest expenditure item after the fuel costs of 
shipping (Lun et al., 2016). At the same time, maritime accidents frequently occur, for instance, 
there were 2712 reported shipping incidents/casualties in 2017 (AGCS, 2018), and hull 
collisions and damages caused by human errors account for more than 80% of marine accidents 
(Hanzu-Pazara et al., 2008; Rothblum, 2000). In addition, the safety of the seafarers in extreme 
sea conditions in recent years has also become a problem that cannot be ignored (Aziz et al., 
2019; Baksh et al., 2018; Khan et al., 2018; Wang et al., 2014b). 
 
In summary, as autonomous ships have outstanding advantages in improving operational 
efficiency, safety management, decision-making efficiency, and energy consumption 
management of ships, research for autonomous ships has become an inevitable tendency for 
future ship development, and gained the interest of many researchers in both academia and 
private sectors (Goerlandt and Montewka, 2015). Furthermore, although the control 
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technology of ships has gradually begun to change from traditional electromechanical control 
(Gupta et al., 2018) to the trend of networking, digitization, and automation, the ship-handling 
process has become a multi-functional integrated system integrating multiple automation 
systems, which improves the safety, profitability and management efficiency of shipping. 
However, the improvement of the degree of automation of ships has a certain gap from the 
ships with automatic perception, subjective analysis, and autonomous decision-making. 
 
The accuracy of ship maneuvering decisions is directly related to the safety of waterway 
transportation. The seafarers onboard vessels, especially the Officer On Watch (OOW), often 
perform duties in circumstances where technological, environmental factors, etc., emerge 
which may lead to the occurrence of human failures and marine accidents (Ugurlu et al., 2015). 
Likewise, in the process of autonomous ships human-like decision-making, the OOW 
maneuvering decision-making is also influenced by multi-source information, for instance, the 
other ships in waterways and ports, the natural environmental factors, etc. (Kim et al., 2017), 
this requires ship maneuvering decision-making procedures expressed along with higher 
effectiveness. However, due to the limited capacity of the information acquiring and processing, 
OOW cannot achieve the multi-attribute or multi-source information in a particular time and 
space concurrently (Xue et al., 2019). For instance, under high-intensity work pressure, the 
OOW cannot always ensure to make correct decisions timely when facing constant changing 
factors in different navigation scenarios, thus maneuvering decisions cannot still be made 
accurately and quickly, which could lead to maritime traffic accidents. Therefore, the automatic 
acquisition and representation of maneuvering decision-making are necessary for ensuring 
accurate maneuvering decisions and maritime traffic safety; moreover, it is essential to identify, 
analyze, and prioritize the main maritime traffic safety influencing factors for efficient 
selection from the multi-attribute or multi-source information for corresponding maneuvering 
decisions of autonomous ships. 
 
Multi-attribute decision-making is widely used in economics, society, military, and engineering 
technology (Liu et al., 2015). Due to the uncertainty and complexity of decision problems, the 
problems of multi-attribute decision-making are always combined with uncertain and fuzzy 
matters, so fuzziness is an essential factor to be considered in practical decision-making of 
real-world (Jin and Liu, 2010). In addition, when conducting the problems with poor 
information, the characteristics of grey (the data/information that is known partially) are also 
shown within the decision problems. Therefore, the decision-making problems in the real 
world are often fuzzy and grey, which are called the grey fuzzy multiple attribute decision-
making problems (Liu et al., 2015). 
 
Although a variety of previous studies in academia have been conducted upon impact factors 
assessment based on the grey and fuzzy theories, they seldom take into consideration the 
relative importance of different influencing factors (they only consider different influencing 
factors in the same weight) and in the absence of expertise. Some studies only consider the 
same weight to determine the judgments from different experts. Some studies  use the standard 
fuzzy number functions to evaluate the linguistic terms given by experts. However, the standard 
fuzzy membership function sometimes cannot determine different linguistic terms from 
different domain experts reasonably. In some specific situations, it equally treats different 
indexes, i.e., the same linguistic term from different domain experts. 
 
In this chapter, the autonomous ship human maneuvering decision factors are modeled as a 
typical “grey system”, and fuzzy numbers of the domain experts are utilized to optimize the 
proposed model. The maritime traffic safety influencing factors of autonomous ship 
maneuvering decision-making, such as force parameters, draft, environment, motion, and 
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position, etc., are obtained using data from a simulation platform. After collecting the judgment 
knowledge from domain experts, the Delphi method was utilized for comprehensively 
determining the fuzzy numbers of different linguistic terms combined with varying weights of 
each domain expert. Finally, the novel improved GRA and fuzzy theories based model is 
proposed for analyzing the final weights and rankings of the influencing factors. With 
computer assistance, the algorithm/model proposed in this chapter permits an automatic 
conversion from the comparative series of maritime traffic safety influencing factors and the 
corresponding maneuvering decisions (the combination of ship telegraph and rudder order) 
reference series to autonomous ship maneuvering influencing factors analysis system. 

3.2 The proposed prioritizing model 

This chapter utilizes the grey and fuzzy theories combined with quantitative and qualitative 
analysis, and comprehensively evaluates the maritime traffic safety influencing factors of 
autonomous ship maneuvering decisions. On the one hand, it can deal with the problems of 
imprecision and uncertainty. On the other hand, giving various weights of different experts 
leads to a more rational use of expert knowledge for judging the prioritization of the influencing 
factors. Furthermore, the evaluation results of the specific criteria of different experts on each 
linguistic term will be more accurate and reasonable by comprehensively utilizing the fuzzy 
numbers. The specific method is introduced below. 
 
Step 1 – Data preprocessing 

There are differences in the dimension and magnitude of each factor in the ship’s maneuvering 
decision system, in order to facilitate data processing, the original data need to be standardized, 
the dimension or the order of magnitude needs to be eliminated, and the data series need to be 
transformed into a comparative series due to the inconsistent dimension of various factors. 
 
Assume  is a grey relation factor set (discrete series),  as a 
reference series, representing the ship maneuvering decisions, which is the combination of ship 
Telegraph and Rudder Order (TRO) in the research (see Figure 3.5).  

 as comparative series, representing the influencing 
factors, such as wind, current, and waves. k stands for the number of the corresponding element 
(the specific value for the TRO and influencing factors Y1-Y33) in each row of the determinant 
(see Equation 3.7). Thus, the correlation mechanisms of the reference series and comparative 
series can be utilized to recognize the influential mechanism of four types of different factors 
(ship motion, natural environment, force parameters, and draft & position, shown in Table 3.3) 
for autonomous ship maneuvering. 
 
In the analysis and calculation process of the GRA, there are three methods for the non-
dimensionalization of the original data, namely, equalization, initialization, and standardization. 

 
Equalization First, the average value of each series is calculated separately, and then the 
original data in the corresponding series is divided by the average value, that is, the new data 
column obtained by the mean transformation. 
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.                              (3.2) 

 
Initialization The data of the same series is divided by the subsequent original data to obtain 
new multiple series, which is an initial valued series. 
 

,                                               (3.3) 
 

.                                (3.4) 
 
Standardization Firstly, the average value and standard deviation of each trait are respectively 
determined, and then the original data is subtracted from the average value and then divided 
by the standard deviation so that the new data column obtained is the standardized series. 
 

,                                    (3.5) 

 

,                          (3.6) 

where X’0 is a non-dimensionalized reference series; X’i is a dimensionless comparative 
series;  and are the standard deviation of the reference series and the comparative series, 
respectively. 
 
The original data series can be described by 
 

,                     (3.7) 

where  is the number of influencing factors. 
 
Step 2 – Range analyzing 

First, calculate , that is, the absolute value of the difference between the reference series 
and each sub-series at each point: 

 
,                                                     (3.8) 

 
among them, ， . 
 
Then find the two-level maximum range and the two-level minimum range. First, calculate the 
first-level maximum range and the first-level minimum range: 
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,                                                      (3.9) 

 
.                                                     (3.10) 

 
Then calculate the second-level maximum range: 
 

.                                                       (3.11) 

 
Similarly, the second-level minimum range is given by: 
 

.                                                       (3.12) 

 

Step 3 – Relational coefficient calculating 

The relational coefficient is used to measure the geometric difference between the comparative 
series and the reference series at each point. The relational coefficient of  to  is: 

 

,                                              (3.13) 

where  represents the correlation coefficient between the comparative series Xi  

and the reference series X0 at point k;  is a resolution ratio, in , if  is small, the 
greater the difference between the relationship coefficient, the stronger the ability to distinguish, 
and  usually takes a value of 0.5 (Wang et al., 2014b); ， . 

 
Step 4 – Fuzzy membership functions of linguistic terms establishing 

The traditional GRA does not fit with people’s preference for a specific index. In order to 
overcome this shortcoming, this chapter considers the relative importance weights of the 
influencing factors, but it is difficult to be precisely determined. Moreover, in many situations, 
the information and experts’ expertise are uncertain or vague. However, fuzzy sets provides a 
useful mathematical tool for directly working with the linguistic expression in reliability 
analyses (Lin and Wang, 1997; Page and Perry, 1994), and it is better to utilize fuzzy numbers 
in real-world decision-making to reflect human thoughts (Hatefi and Tamošaitienė, 2018). 
Therefore, we utilize fuzzy numbers of the domain experts to optimize our proposed model. 
The four domain experts are characterized as follows: 
 

•Expert No.1: An experienced captain with more than 15 years of experience on the 
operation of board ships (classes of certificates: class A, ≥ 3000 gross tons, unlimited 
voyages). 
 
•Expert No.2: A professor engaged in maritime research for more than ten years with 
particular reference to the ship operations. 
 
•Expert No.3: A senior officer in charge of safety management of port operations of 
Yangtze River Three Gorges Navigation Authority. 
 
•Expert No.4: A senior officer in charge of safety regulation of Shanghai Port from China 
Maritime Safety Administration. 
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The triangular fuzzy number, corresponding to linguistic terms, can be determined from 
domain expert knowledge based on the Delphi method (Ishikawa et al., 1993). Assuming that 
there are n experts, the i-th expert is assigned with the relative weight  (i= 1,. . . ,m), 
satisfying   and  > 0 for i = 1,. . . ,m. And the fuzzy judgment linguistic term for 

the specific influencing factors is , then according to the experts’ judgment, the 

triangular fuzzy number  corresponding to the fuzzy linguistic term of the 
variable can be summarized according to Equations (3.14) to (3.16). 

 

,                                                          (3.14) 

 

,                                                            (3.15) 

 

.                                                            (3.16) 

 
This chapter defines the maritime traffic safety influencing factors of autonomous ship 
maneuvering using five linguistic terms, namely, Very Low (VL), Low (L), Medium (M), High 
(H), Very High (VH). Different from each linguistic term utilized in the same separation 
distance, for instance, the corresponding midpoint or the b’ in triangular fuzzy number A of 
each linguistic term Very Low (VL), Low (L), Medium (M), High (H), Very High (VH) is 0, 
0.25, 0.5, 0.75, 1, respectively (Wang et al., 2009; Wu et al., 2018). In this research, the 
triangular fuzzy number of different linguistic terms is determined by the domain expert 
knowledge, and the weight of each expert is taken into consideration, as shown in Table 3.1. 
Hence, the fuzzy membership function of each linguistic term can be represented more 
rationally because we take into account the different evaluation criteria of each expert for 
various linguistic terms comprehensively. Fuzzy membership degrees of quantitative indexes 
can be obtained from Figure 3.1. Experts are invited to define the triangular fuzzy number of 
each linguistic term based their judgment, then the triangular fuzzy numbers of different 
linguistic terms are calculated through Equations (3.14) to (3.16), and the results are shown in 
Table 3.1. 

 

Table 3.1 Triangular fuzzy numbers of different linguistic terms. 

Expert 
No. Weights( )  

Triangular fuzzy numbers of different linguistic terms 
Very Low 
(VL)  

Low (L) Medium (M)  High (H) Very High 
(VH) 

1 0.30 (0, 0, 0.25) (0, 0.25, 0.50) (0.25, 0.50, 0.75) (0.50, 0.75, 1) (0.75, 1, 1) 
2 0.25 (0, 0, 0.20) (0, 0.20, 0.40) (0.20, 0.40, 0.60) (0.40, 0.60,0.80) (0.80, 1, 1) 
3 0.20 (0, 0, 0.25) (0.10, 0.30, 0.50) (0.30, 0.50, 0.70) (0.70, 0.90, 1) (0.90, 1, 1) 
4 0.25 (0, 0, 0.30) (0.20, 0.40, 0.50) (0.30, 0.50, 0.65) (0.60, 0.70, 0.90) (0.85, 1, 1) 
Total 1 (0, 0, 0.25) (0.07, 0.29, 0.48) (0.26, 0.48, 0.68) (0.54, 0.73, 0.93) (0.82, 1, 1) 
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Figure 3.1 Triangular membership functions of different linguistic terms. 

 
The specific process of utilizing fuzzy logic of this step is as follows: 

(i) The maritime traffic safety influencing factors of autonomous ship maneuvering 
decisions are evaluated by the experts using the linguistic terms defined in Table 3.1; 

 
(ii) The linguistic terms based on the judgments of domain expert are represented by the 

triangular fuzzy numbers, then the comprehensive evaluation fuzzy set of the weight of each 
influencing factor is established; 
 

(iii) The relative weights  for each domain expert are taken into consideration. 
Specifically, the relative weights of experts are assigned based on their experience with the 
following relative weights: 0.30, 0.25, 0.20, and 0.25, respectively, then the optimized 
comprehensive evaluation fuzzy set is obtained; 
 

(iv) The comprehensive evaluation weight of each influencing factor of autonomous ship 
maneuvering decisions is calculated. 
 
Step 5 – Defuzzification 

The linguistic terms from the judgments of domain experts need to be transformed into crisp 
values before further calculation. In other words, the fuzzy numbers should be converted into 
crisp numbers for priority ranking or comparison purpose, this process of transformation is 
called defuzzification. The defuzzification of fuzzy numbers is an important process, and it is 
the basis of applying the grey relational theory. Defuzzification can be conducted in many 
different ways, such as max criterion, center of gravity (COG), mean of maximum (MOM) 
methods, etc. (Akyuz et al., 2016; Balmat et al., 2011; Braae and Rutherford, 1978; Lee, 1990; 
Senol and Sahin, 2016). 
 
The COG method, which also is known as center of area (COA), is the most extensively used 
technique developed by Sugeno (1999) as it is relatively accurate and takes the total output 
distribution into consideration (Patel and Mohan, 2002). Hence, the COG method can yield a 
better steady-state performance (Lee, 1990). This COG method can be used as a centroid 
defuzzification method to find the center of gravity point of the fuzzy set (Kumar et al., 2018). 
 
The linguistic terms from the judgments of domain experts for maritime traffic safety 
influencing factors of autonomous ship maneuvering decisions can be defuzzified according to 
the fuzzy membership function; the crisp number can be calculated as follows: 

ib
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,                                                       (3.17) 

where A(X) denotes the crisp value, x is the output variable, and  is the membership 
function for linguistic terms from the judgments of domain experts, as shown in Figure 3.1. 
 
Specifically, the defuzzification of a triangular fuzzy number based the Equation (3.17) can be 
calculated as follows: 

 

.                             (3.18) 

 
Then, we can get a crisp number of different linguistic terms as shown in Table 3.2. 
 

Table 3.2 The crisp number of different linguistic terms. 

Name The triangular fuzzy number and crisp number of different linguistic terms 
Linguistic term Very Low (VL)  Low (L) Medium (M)  High (H) Very High (VH) 
Fuzzy number (0, 0, 0.25) (0.07, 0.29, 

0.48) 
(0.26, 0.48, 
0.68) 

(0.54, 0.73, 
0.93) 

(0.82, 1, 1) 

Crisp number 0.0833 0.2800 0.4733 0.7333 0.9400 
 
Step 6 – Relational Grade Ranking 

The traditional grey relational grade is calculated according to the Equation (3.19): 
 

,                                                    (3.19) 

where ， . 
 
Since the influence degree from each maritime traffic safety influencing factor of autonomous 
ship maneuvering decisions varies, assuming that the weight of each influencing factor is , 
then the relational grade between the reference series and comparative series can be obtained 
by the Equation (3.20): 

 

,                                      (3.20) 

where ，  can be determined by fuzzy sets based the domain expert knowledge. 

 
When determining the relational grade, each sub-series of Y1-Y33 is compared to the reference 
series of TRO. Hence, the relationship between each sub-series and the reference series is 
sorted. Thereby, the main maritime traffic safety influencing factors of the autonomous ship 
maneuvering decisions in the specific navigational scenario are prioritized and identified. 
 
The framework of our proposed model is shown graphically in Figure 3.3 that briefly illustrates 
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the maritime traffic safety influencing factors of autonomous ship maneuvering decisions 
prioritizing procedure of the proposed GRA and fuzzy theories based methodology. The right-
hand part of Figure 3.3 shows the steps of obtaining the weights for different influencing factors; 
the middle part presents the process of applying the traditional GRA theory, while the left-hand 
part provides the priority ranking and analyzing procedure of the maritime traffic safety 
influencing factors analysis system for autonomous ship maneuvering. And the logic 
framework for applying the proposed model is shown in Figure 3.2. 
 

   

Figure 3.2 The logic framework for applying the proposed model. 
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Figure 3.3 Fram
ew

ork of the proposed m
odel using grey and fuzzy theory. 
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3.3 Experiments 

3.3.1 Scenario design 

 
Figure 3.4 The designed experimental scenario. 

 
In our experiment, the Shanghai Waigaoqiao wharf was selected to be the simulator scenario 
when the ship was downstream of the berthing into the port. We use a 30,000-ton bulk carrier, 
i.e., Own Ship (OS) 1, as our experimental ship. We define the process as when the ship’s stern 
leaves the main channel near the port side of the boundary line in the electronic chart (Figure 
3.4(b) shows the initial boundary) to the ship berths docked at the end of the cable (Figure 
3.4(c) shows the end boundary) as a complete berthing process. The experimental scenario is 
shown in Figure 3.4. More details are presented in Chapter 4. 
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3.3.2 Data collection and processing 

We collect the data from the full-task handling simulation platform (Navi-Trainer Professional 
5000) from the Maneuvering Simulator Laboratory in Wuhan University of Technology 
Waterway Road Traffic Safety Control and Equipment Ministry of Education Engineering 
Research Center. The operational data from the exercises and assessment exams of unlimited 
navigational class seafarers are collected as our experimental data. In this experiment, there are 
96 skilled maneuvering level captain/chief officer. More details are presented in Chapter 4. It 
should be noted that, in our case, the OOW is the captain or chief officer. Although, in the real 
situation, the captain is not on duty. The captain will go to the bridge only in special 
circumstances, and if necessary, the captain may take over the duty of the OOW to maneuver 
the ship, but it is an assessment and evaluation scenario in our experiment; therefore, the 
captain also acts as the OOW. 
 
The multisource information of ship maneuvering traffic environment were collected. For 
instance, the location (longitude, latitude), environment (wind, current, etc.), control (rudder 
order, marine telegraph), ship movement (heading, roll rate, etc.), the ship’s draft, tugs, 
mechanical contact force-related parameters, and other related parameters. The above factors, 
such as the environment, the control, location and the relevant parameters of the tug and other 
factors (see Table 3.3 and Table 3.4), were selected from the weakly related parameters. Table 
3.4 lists some of the training samples. 

 
Table 3.3 The category of influencing factors. 

Influencing factors Meaning Units Category 
Y1 Current draft at ship bow Meters Draft 
Y2 Current draft at ship stern Meters Draft 
Y3 Under keel clearance aft Meters Draft 
Y4 Under keel clearance fwd Meters Draft 
Y5 Current direction Degrees Environment 
Y6 Current speed Knots Environment 
Y7 Relative current direction Degrees Environment 
Y8 Relative wave direction Degrees Environment 
Y9 Relative wind direction Degrees Environment 
Y10 Relative wind speed Knots Environment 
Y11 Water depth Meters Environment 
Y12 Wave height Meters Environment 
Y13 Lateral force Tonne-force Force Parameters 
Y14 Longitudinal force Tonne-force Force Parameters 
Y15 Summary force Tonne-force Force Parameters 
Y16 Vertical force Tonne-force Force Parameters 
Y17 Lateral force of mooring lines  Tonne-force Force Parameters 
Y18 Longitudinal force of mooring lines Tonne-force Force Parameters 
Y19 Summary force of mooring lines Tonne-force Force Parameters 
Y20 Vertical force of mooring lines  Tonne-force Force Parameters 
Y21 Heading Degrees Motion 
Y22 Height above the water Meters Motion 
Y23 Lateral speed Knots Motion 
Y24 Longitudinal speed Knots Motion 
Y25 Pitch angle Degrees Motion 
Y26 Pitch rate Degrees/min Motion 
Y27 Rate of turn Degrees/min Motion 
Y28 Roll angle Degrees Motion 
Y29 Roll rate Degrees/min Motion 
Y30 Vertical speed Knots Motion 
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Y31 Yaw rate Degrees/min Motion 
Y32 Latitude Degrees Position 
Y33 Longitude Degrees  Position 

 
Table 3.4 Original data of the studied area (partially). 

No. 
X Y1 

(Meters) 
Y2 
(Meters) 

Y3 
(Meters) 

Y4 
(Meters) … Y33 

(Degrees) Rudder order 
(Degrees) 

Telegraph 
order (%) 

1 -1.0000  50.0000  10.1766  10.8138  4.2631  4.8818  … 121.6474  
2 -1.0000  50.0000  10.1812  10.8184  4.2574  4.8783  … 121.6474  
3 -1.0000  50.0000  10.1898  10.8270  4.2478  4.8706  … 121.6474  
4 -1.0000  50.0000  10.2095  10.8468  4.2267  4.8523  … 121.6473  
5 -1.0000  50.0000  10.2152  10.8526  4.2200  4.8474  … 121.6473  
6 -1.0000  46.2955  10.1926  10.8300  4.2411  4.8714  … 121.6473  
7 -1.0000  40.0000  10.1809  10.8183  4.2521  4.8837  … 121.6473  
8 -1.0000  40.0000  10.1915  10.8290  4.2398  4.8748  … 121.6473  
9 -1.0000  40.0000  10.2082  10.8457  4.2220  4.8591  … 121.6473  
10 -1.0000  40.0000  10.2006  10.8381  4.2284  4.8678  … 121.6472  
11 -3.3119  40.0000  10.1846  10.8221  4.2431  4.8849  … 121.6472  
12 -11.2792  40.0000  10.1958  10.8334  4.2307  4.8747  … 121.6472  
13 -11.9016  40.0000  10.2208  10.8584  4.2045  4.8507  … 121.6472  
… … … … … … … … … 

 
According to the scenario shown in Figure 3.4, the principle of the rudder angle and the 
propeller speed are defined based on the data collected from the simulator and the navigation 
experience. Figure 3.5 and Table 3.5 show 64 possible maneuvering decisions based on various 
standardization principle of speed control (propeller state) and course control (rudder angle). 
 
The OOW maneuvers the ship by operating different TROs to change ship’s speed and 
direction. Figure 3.5 shows TROs of ship OS1 and the Table 3.5 shows the combining TROs; 
this control procedure is a multi-dynamic process. Moreover, it should be noted that, in 
combination with the actual situation of the experimental scenario. Unlike the ship sailing on 
the open sea, the OOW needs to call the TROs frequently in the inbound decision-making ship 
handing process; therefore, in this chapter, we do not consider “Stop/Standby/Finished with 
engines” and “Midships” regardless of the rudder angle and if the power output is 0. Table 3.5 
shows the standardization principle for output maneuvering decision-making factor. 

 

 
Figure 3.5 The telegraph and rudder orders of ship OS1. 
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Table 3.5 Ship maneuvering decision-making factors and standardization principle. 

Attributes 
Speed control Course control 
Symbolic principle Status Symbol Symbolic principle Status Symbol 

Variety 
 Changed C1  Changed C2 

 Unchanged U1  Unchanged U2 

Value 
 Fast F1  Large L2 

 Slow S1  Small S2 

Direction 
 Ahead D1  Starboard D2 

 Astern T1  Port T2 
Maneuvering 
factors Decisions Symbols Decisions Symbols 

X 
(Dimensionless) 

U1F1D1U2L2T2 X1 U1F1D1C2L2T2 X33 
U1F1D1U2S2T2 X2 U1F1D1C2S2T2 X34 
U1S1D1U2L2T2 X3 U1S1D1C2L2T2 X35 
U1S1D1U2S2T2 X4 U1S1D1C2S2T2 X36 
U1F1T1U2L2T2 X5 U1F1T1C2L2T2 X37 
U1F1T1U2S2T2 X6 U1F1T1C2S2T2 X38 
U1S1T1U2L2T2 X7 U1S1T1C2L2T2 X39 
U1S1T1U2S2T2 X8 U1S1T1C2S2T2 X40 
U1F1D1U2L2D2 X9 U1F1D1C2L2D2 X41 
U1F1D1U2S2D2 X10 U1F1D1C2S2D2 X42 
U1S1D1U2L2D2 X11 U1S1D1C2L2D2 X43 
U1S1D1U2S2D2 X12 U1S1D1C2S2D2 X44 
U1F1T1U2L2D2 X13 U1F1T1C2L2D2 X45 
U1F1T1U2S2D2 X14 U1F1T1C2S2D2 X46 
U1S1T1U2L2D2 X15 U1S1T1C2L2D2 X47 
U1S1T1U2S2D2 X16 U1S1T1C2S2D2 X48 
C1F1D1C2L2T2 X17 C1F1D1U2L2T2 X49 
C1F1D1C2S2T2 X18 C1F1D1U2S2T2 X50 
C1S1D1C2L2T2 X19 C1S1D1U2L2T2 X51 
C1S1D1C2S2T2 X20 C1S1D1U2S2T2 X52 
C1F1T1C2L2T2 X21 C1F1T1U2L2T2 X53 
C1F1T1C2S2T2 X22 C1F1T1U2S2T2 X54 
C1S1T1C2L2T2 X23 C1S1T1U2L2T2 X55 
C1S1T1C2S2T2 X24 C1S1T1U2S2T2 X56 
C1F1D1C2L2D2 X25 C1F1D1U2L2D2 X57 
C1F1D1C2S2D2 X26 C1F1D1U2S2D2 X58 
U1S1D1C2L2D2 X27 C1S1D1U2L2D2 X59 
C1S1D1C2S2D2 X28 C1S1D1U2S2D2 X60 
C1F1T1C2L2D2 X29 C1F1T1U2L2D2 X61 
C1F1T1C2S2D2 X30 C1F1T1U2S2D2 X62 
C1D1T1C2L2D2 X31 C1S1T1U2L2D2 X63 
C1D1T1C2S2D2 X32 C1S1T1U2S2D2 X64 

3.4 Results 

In our experiment, we select X and the related parameters Y1-Y33 to apply the proposed model, 
among them, X is the main factor and reference series, which consists of the 64 possible 
maneuvering decisions (the OOW’s actual operation in the simulator, a different combination 
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of TROs, see Table 3.5). Y1-Y33 are the influencing factors, and their values constitute the 
comparative series, such as the environment, ships, and other influencing factors. In addition, 
we collected a total of 20,534 samples as our data set. 

3.4.1 Standardizing of the original data set 

In this chapter, X presents the percentage of the number of each maneuvering decision of X1- 
X64 in a total number of the data set records. Limited to space, Table 3.6 lists only a part of 
multiple measured data. The data in Table 3.6 are standardized according to the principle of 
standardization of maneuvering decision-making influencing factors in Table 3.5 and the non-
dimensionalization method of standardization (see Equations (3.5) and (3.6)).   

 
Table 3.6 Dataset with the principle of standardization (partially). 

No. X 
Y1 Y2 Y3 … Y33 

 Symbols  Proportion Standardization  
1 X2 0.0300  -0.9848  0.5448  0.6840  -0.4284  … 0.7903  
2 X2 0.0300  -0.9848  0.6719  0.7840  -0.4414  … 0.7782  
3 X2 0.0300  -0.9848  0.9643  1.0135  -0.4704  … 0.7684  
4 X2 0.0300  -0.9848  1.0498  1.0807  -0.4795  … 0.7555  
5 X52 0.0196  -1.0784  0.7140  0.8186  -0.4506  … 0.7433  
6 X52 0.0196  -1.0784  0.5404  0.6830  -0.4356  … 0.7320  
7 X4 0.2955  1.4108  0.6975  0.8064  -0.4524  … 0.7214  
8 X4 0.2955  1.4108  0.9452  1.0003  -0.4768  … 0.7100  
9 X4 0.2955  1.4108  0.8325  0.9122  -0.4681  … 0.6986  
10 X36 0.0098  -1.1667  0.5955  0.7270  -0.4479  … 0.6865  
11 X35 0.0062  -1.1992  0.7622  0.8576  -0.4649  … 0.6744  
12 X35 0.0062  -0.9848  0.5448  0.6840  -0.4284  … 0.7903  
13 X35 0.0062  -0.9848  0.6719  0.7840  -0.4414  … 0.7782  
… … …  … … … … … 

3.4.2 Applying the proposed analysis model 

According to the ranking criteria of the grey relational grade, the greater the grey relational 
grade of the comparative series, the greater the relevance of the comparative series to the 
reference series, the greater the degree of influence on the reference series, and the higher the 
ranking of the influencing factors. The GRA method is able to quantitatively describe the 
similarity and consistency degree between each comparative series and reference series and 
uses relational grades to complete the matching order of influencing factors. We use the original 
data matrix as defined by Equation (3.21). 
 

.   (3.21) 

 
This way, we obtain the original data series. There is a case where the initial value is zero with 
respect to the influencing factors. Considering the value of the denominator should not be zero 
in a division operation; thus it is not suitable for the calculation based on Equation (3.4). 
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Moreover, the standardization method may genuinely reflect the relevance of the influencing 
factors to ship maneuvering decisions. Therefore, we use the standardization methods to 
explore the results of the interaction between ship maneuvering decisions and various 
influencing factors. 
 
From Table A.1 and Equations (3.8) to (3.12), we can get the extreme values 

, , and we can calculate the grey relational 
coefficient based on the Equation (3.13),  then calculating the traditional grey relational grade 
according to the Equation (3.19), the results are shown in Table A.2.  
 
The convenient fuzzy numbers are defined for making pairwise comparisons shown in Table 
3.1. Table A.3 shows the linguistic terms survey results from the four experts, and the crisp 
number and weights of different maneuvering influencing factors. 
 
Then the defuzzification procedure is conducted based on Equation (3.18) and Table 3.2. The 
crisp number of different influencing factors are calculated with the relative weights , then 

, the weights of different maneuvering influencing factors can be determined, the results 
are shown in Table A.3. 
 
Finally, using Equations (3.19) and (3.20), and the results of grey relational coefficient from 
Table A.2, the priority ranking results of comparing grey algorithm with our proposed model 
are obtained and are shown in Table 3.7. 
 

Table 3.7 Results of comparing grey method with our proposed model. 

Influencing 
factors 

Grey method Our proposed model 
Grey  
relational 
grade 

Rank 
No. 1 Category  Rank 

No. 2 
Modeling 
grade 

Rank 
No. 3 Category  Rank 

No. 4 

Y1 0.963331321  18 Draft 3 0.022296521 26 Draft 4 
Y2 0.963022501  21 Draft 4 0.028357107 22 Draft 2 
Y3 0.964702382  13 Draft 1 0.031169444 17 Draft 1 
Y4 0.964360060  15 Draft 2 0.025634601 24 Draft 3 
Y32 0.955548915  33 Position 6 0.016264792 30 Position 6 
Y33 0.962805458  23 Position 5 0.018028349 28 Position 5 
Y5 0.962321061  26 Environment 7 0.022824349 25 Environment 6 
Y6 0.962607649  24 Environment 6 0.022279772 27 Environment 7 
Y7 0.964744459  12 Environment 3 0.036003278 10 Environment 4 
Y8 0.967877544  8 Environment 1 0.040086883 3 Environment 1 
Y9 0.962919694  22 Environment 5 0.037689118 9 Environment 3 
Y10 0.964861416  11 Environment 2 0.039961964 4 Environment 2 
Y11 0.964247007  16 Environment 4 0.033350178 14 Environment 5 
Y12 0.961966953  27 Environment 8 0.012658338 31 Environment 8 
Y13 0.968696019  3 Forces  3 0.037915206 7 Forces  5 
Y14 0.968659475  4 Forces  4 0.037913776 8 Forces  6 
Y15 0.969245754  1 Forces  1 0.040143551 1 Forces  1 
Y16 0.969236192  2 Forces  2 0.033081376 15 Forces  7 
Y17 0.968609094  5 Forces  5 0.038352880 5 Forces  3 
Y18 0.968266306  7 Forces  7 0.038339307 6 Forces  4 
Y19 0.968451261  6 Forces  6 0.040110645 2 Forces  2 
Y20 0.967668141  9 Forces  8 0.029048175 18 Forces  8 
Y21 0.957594808  31 Motion 10 0.007249314 33 Motion 11 

max .D = 56 71438286 min .D = -6 03501E 06

ib

kl
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Y22 0.957995484  29 Motion 8 0.007667484 32 Motion 10 
Y23 0.957976209  30 Motion 9 0.035314460 12 Motion 2 
Y24 0.955638214  32 Motion 11 0.035228273 13 Motion 3 
Y25 0.962322084  25 Motion 6 0.028887693 21 Motion 7 
Y26 0.964491499  14 Motion 2 0.035554637 11 Motion 1 
Y27 0.963209744  20 Motion 5 0.028914340 20 Motion 6 
Y28 0.964126732  17 Motion 3 0.028941867 19 Motion 5 
Y29 0.965110499  10 Motion 1 0.031182631 16 Motion 4 
Y30 0.961761784  28 Motion 7 0.018008806 29 Motion 9 
Y31 0.963209766  19 Motion 4 0.026155744 23 Motion 8 
 
The rankings of ship maneuvering decision-making influencing factors are shown in Table 3.7, 
ranking result number 3. Furthermore, the result of grey method are sorted based on the ranking 
result number 1. Combining the results of Table 3.7 and Figure 3.6, the top ten influencing 
factors in Rank No. 1 and Rank No. 3 could be recognized, then the common seven influencing 
factors in the top ten most influential factors of both methods could be observed: Y15 
(Summary force), Y19 (Summary force of mooring lines), Y8 (Relative wave direction), Y17 
(Lateral force of mooring lines), Y18 (Longitudinal force of mooring lines), Y13 (Lateral force), 
Y14 (Longitudinal force), which should be given more attention when making decisions in 
ship maneuvering process. Furthermore, the result of top ten most influential factors sorted 
through our optimal model shows that: Y19 (Summary force of mooring lines) has risen four 
places to second place; Y8 (Relative wave direction) has risen five places to third place; Y10 
(Relative wind speed) has risen seven places to fourth place; Y9 (Relative wind direction) has 
risen thirteen places to ninth place; Y7 (Relative current direction) has risen two places to tenth 
place. Y10, Y9, and Y7 became the new factors in the top ten of autonomous ship maneuvering 
decision process, which is corresponding to the judgment/operation of experienced seafarers 
in the real word shipping: when the seafarer (i.e., OOW) maneuvering the ship inbound the 
port, they need to pay more attention to the influencing factors of forces (e.g., forces of mooring 
lines and tugs), relative wave direction, relative wind direction, relative current direction, 
relative wind speed etc., so as to ensure the safety of ship and cargo. Therefore, the results 
indicate that our proposed model can identify the influencing factors of autonomous ship 
maneuvering decisions under real word maritime traffic safety context, and the priority ranking 
results are more reasonable than the original GRA method. 
 
To compare the results from the proposed method and the GRA method more intuitively and 
clearly, we settle different coordinate systems in the same specific figure to compare the trend 
of different graphics. The x-axis denotes the number of influencing factors, and the y-axis 
represents the grey relational grade get from grey method or the modeling grade get from our 
proposed method. The ranking results of comparing grey algorithm with our proposed model 
are visualized in Figure 3.6. Meanwhile, the priority ranking analysis for four types of 
influencing factors is shown in Figure 3.7. 
 
As can be seen from Figure 3.6, the changing tendency of the curves for the GRA method and 
our proposed model are the same basically, however the fluctuation trend of the curve of our 
proposed model is more evident than the GRA method (the dispersion of the fluctuation for 
GRA is 0.0137; the dispersion of the fluctuation for the proposed model is 0.0329), which 
means that the sensitivity of the prediction result of each influencing factor of our proposed 
model is higher than GRA method. Meanwhile, the curve of the original GRA method is 
relatively flat (especially for the influencing factors with respect to force parameters of Y13-
Y20), which also proves the drawbacks of the traditional GRA method: it treats different 
indexes (influencing factors) equally and takes no account of the relative importance of them. 
Moreover, it does not fit with people’s preferences for a specific index. 
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Figure 3.6 The results of comparing the grey method with our proposed model. 

 
In addition, as shown in Figure 3.6, the comparing results of the histogram heights of the 
maritime traffic safety influencing factors Y9 (Relative wind direction), Y10 (Relative wind 
speed), Y23 (Lateral speed), and Y24 (Longitudinal speed) of our proposed method are 
obviously higher than the numbers in the GRA method, which indicates that OOW needs to 
take more attention about these factors when maneuvering the ship. In other words, when we 
design the program for the analysis system of the autonomous ship maneuvering decisions in 
the specific scenarios, we should assign a larger weight for these influencing factors than the 
original weight obtained from the grey method. Similarly, we should assign a smaller weight 
for the influencing factors Y12 (Wave height), Y21 (Heading), Y22 (Height above the water), 
Y30 (Vertical speed), and Y33 (Longitude) considering their histogram heights are obviously 
lower than the numbers in the GRA method. 
 
It should be noted that, for the influencing factors of the same property, we may get different 
grey relational grades in different maritime traffic scenarios. For instance, in the specific 
experimental navigation scenario of Shanghai Waigaoqiao wharf, the ship’s position of 
longitude did not change basically, and it’s just a change in the position of latitude when it was 
berthing into the port, so the grey method gives us the different grey relational grades for the 
same property of longitude and latitude. However, when it is extended to the real general word 
maritime traffic scenarios or other domains, in common sense, the change of longitude and 
latitude always coincide. Thus the results are consistent with the proposed model. Therefore, 
the results displayed in Figure 3.6 are reasonable and meaningful, and the traditional GRA 
approach can sort the maneuvering influencing factors efficiently so that the OOW can get the 
main maritime traffic safety influencing factors intuitively through the correction and 
optimization of expert judgment knowledge and fuzzy theory. Then through the proposed 
model, the influencing factors which affect the ship maneuvering decisions are obtained, the 
proposed model could be applied in a more general and widespread maritime situation. 
 
As shown in Figure 3.7, the diagrams of four categories of influencing factors are drawn 
independently (the histogram depicts the variation tendency of the proposed method and the 
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scatter diagram in the form of a smooth curve represents the variation tendency of the GRA 
method). Overall, the changing tendency of each diagram for the GRA method and our 
proposed model are the same basically, but there are some details/differences which need to be 
described and explained. 
 

 
Figure 3.7 The ranking results analysis for four types of influencing factors. 

 
Draft & Position: It can be seen from Figure 3.7(a), compared with the diagram of the grey 
method and the proposed method, the most influential factor within draft and position aspects 
is Y3 (Under keel clearance aft), it indicates that the OOW needs to take more attention about 
the under-keel clearance aft within the influencing factors of draft and position. Meanwhile, 
when we design the program for the analysis system of the autonomous ship maneuvering 
decisions in the specific scenarios considering maritime traffic safety, we should assign a 
larger weight for the keel clearance aft. Similarly, when it comes to the influencing factors 
longitude and latitude, the specific weight of Y32 (Latitude) has been increased, and the weight 
of Y33 (Longitude) has been reduced. As the above analysis, in the proposed method, the 
weight of latitude is higher, and the weight of longitude is lower than the original weight 
obtained via the grey method, that indicates the proposed model has a property of general 
flexibility for the analysis of the maritime traffic safety influencing factors for the ship 
maneuvering decisions. 
 
Natural environment: As shown in Figure 3.7(b), Y8 (Relative wave direction) and Y10 
(Relative wind speed) are the top two most influential factors in both the grey method and the 
proposed method, which indicates the OOW needs to focus on the relative wave direction and 
relative wind speed when it comes to the natural environment. In addition, the Y9 (Relative 
wind direction), Y10 (Relative wind speed), and Y11 (Water depth) have been increased in the 
results of proposed method. Among them, the increase of Y9 is greatest, which indicates that, 
in the scope of natural environment, according to the judgments of domain experts based on 
the fuzzy theory, the OOW should pay more attention to the relative wind direction when 
maneuvering the ship. Furthermore, it is similar to the program design for the analysis system, 
the heavyweight of relative wave direction and relative wind speed needs to be given. 
Moreover, the weight of influencing factor of relative wind direction needs to be increased. 
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Force parameters: According to Figure 3.7(c) and Figure 3.6, the ranking and grade of force 
parameters maintain a relatively stable trend in various influencing factors, meanwhile, all the 
force parameters keep a high ranking and grade in both two methods (all remain in the top 18, 
seen from Table 3.7). It indicates that all the force parameters play a crucial role in autonomous 
ship maneuvering decision-making in the specific scenario. Besides, it is also corresponding 
to the operation of experienced seafarers in the real world shipping, the force parameters are 
the crucial and direct influencing factors for the maneuvering of ships and maritime traffic 
safety. Furthermore, we can see that the most influential factor of force parameters is Y15 
(Summary force); Y17 (Lateral force of mooring lines), Y18 (Lateral force of mooring lines), 
and Y19 (Lateral force of mooring lines) has been increased and occupy a heavyweight, and 
Y16 (Vertical force) has been decreased. Similarly, it is reasonable for the real word shipping, 
especially for the inbound scenario. For instance, when a ship inbound a port, the pilots always 
call the tugs for assistance, the tugs push (there is no vertical force in this procedure) or pull 
through the mooring lines then assist the ship in getting into the port, this has a great influence 
on the maneuvering of ships. For another example, when the ship is close to the berth, the ship 
usually uses the mooring winch to assist the berthing, so the forces from mooring lines are the 
main influencing factors for ship maneuvering and maritime traffic safety. Therefore, when the 
program design for the analysis system of the influencing factors of autonomous ship 
maneuvering decisions in the specific scenario, the force parameters should take into 
consideration and attach the heavyweights. 
 
Ship motion: It is observed from Figure 3.7(d) that the most influential factor of ship motion 
is Y26 (Pitch rate); Y23 (Lateral speed) and Y24 (Longitudinal speed) have been increased, 
and Y30 (Vertical speed) has been decreased. In addition, the changing tendency of each 
influencing factor for the GRA method and our proposed model are the same basically, except 
Y 23 and Y24. The changes are reasonable and meaningful in the real-world shipping and 
traffic safety domain. When the ship is berthing to the port, the OOW/operator needs to pay 
attention to the lateral and longitudinal speed at all times, thus ensuring the safety of ships and 
cargo. For instance, if the ship has an obvious lateral speed, it would do damage for the berth 
and port; if the ship has a greater longitudinal speed, it will cause a collision with the ships 
before and after the berth. However, the vertical speed is usually not considered as the 
significant influencing factor of maritime safety when a ship is berthing into the port. Hence, 
when the OOW is maneuvering the ship, the lateral and longitudinal speed, as well as pitch 
rate, should be given more attention, as the same to the program design for the analysis system 
of the autonomous ship maneuvering decisions for evaluating maritime traffic safety 
influencing factors. 

3.5 Discussion 

Ship maneuvering decision-making is influenced by multi-source information, such as the 
information from the aspects of people, ships, environment, and it has an interaction with 
various influencing factors, and each factor plays a different role in the ship maneuvering 
decision-making process. At the same time, some factors interact with each other (e.g., when 
Y21 (Heading) of the ship changed, then Y8 (relative wave direction) changed correspondingly; 
when the position changed, i.e., Y32 (Latitude) and Y33 (Longitude) changed, then Y11 
(Water depth) changed correspondingly) to form a grey system with clear and partially unclear 
information, thus constitute a typical “grey system”. In this chapter, the maritime traffic safety 
influencing factors of autonomous ship maneuvering decision-making are identified and 
classified into four aspects: “Draft & Position”, “Natural environment”, “Force parameters”, 
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“Ship motion”. Then the proposed grey and fuzzy algorithms are applied to prioritize these 
influencing factors using the linguistic terms of the judgments of domain experts; among these 
procedures, the relative importance of the linguistic terms of experts’ judgments is also taken 
into consideration. 
 
The results from the grey relational analysis showed that the values of grey relational grade for 
different influencing factors are relatively large (the minimum value is over 0.95), moreover, 
the values of grey relational grade between the reference series TRO and comparative series of 
different influencing factors are different, which indicates that the ship maneuvering decision-
making is affected by different influencing factors and each influencing factor plays a specific 
role. 
 
Furthermore, grey relational analysis combined with the fuzzy theory is a simple and practical 
method. The model elaborated in this innovative study is utilized to prioritize the influencing 
factors of autonomous ship maneuvering decision-making. The top ten most influential factors 
in the proposed method are Y15 (Summary force), Y19 (Summary force of mooring lines), Y8 
(Relative wave direction), Y10 (Relative wind speed), Y17 (Lateral force of mooring lines), 
Y18 (Longitudinal force of mooring lines), Y13 (Lateral force), Y14 (Longitudinal force), Y9 
(Relative wind direction), and Y7 (Relative current direction). In addition, among the four 
categories of influencing factors, the most influential factor within each aspect are Y3 (Under 
keel clearance aft), Y8 (Relative wave direction), Y15 (Summary force), and Y26 (Pitch rate), 
respectively. The results are corresponding to the judgment/operation of experienced seafarers 
in the real world shipping. Likewise, they are reasonable and meaningful in the specific 
navigational scenarios under maritime traffic safety domain. 
 
Therefore, in the process of ship maneuvering decision-making, as well as the program design 
for the analysis system of the influencing factors of autonomous ship maneuvering decision-
making in specific scenarios, the above ten factors should be taken as the main influencing 
factors. At the same time, the most influential factor in each category also needs to be 
paid particular attention, especially when the OOW/operators considering the impact of a 
certain type of influencing factors on ship maneuvering decision-making or the engineers 
design the maneuvering decisions programs for autonomous ships in specific maritime traffic 
scenarios. Furthermore, the degree of influence of various factors and the actual economic cost 
of ships operation should be further considered, thus to promote the development of 
autonomous merchant shipping, reduce transportation costs and improve transportation 
efficiency and maritime traffic safety. 
 
Though the proposed grey and fuzzy model is a promising model, this study still has some 
shortcomings as follows, which should be solved in future research. In the specific 
experimental navigation scenario, as the above description and analysis for Figure 3.6 and 
Figure 3.7 in Section 3.4, our proposed model is rational and widely applicable to the analysis 
of the maritime traffic safety influencing factors for the ship maneuvering decisions. However, 
when in a specific navigational scenario, for instance, the influencing factors of longitude and 
latitude do not change correspondingly, there still has some shortcomings when adding the 
general expert knowledge using general common sense; in this case, the accuracy of our 
proposed model for analyzing these influencing factors is affected. Therefore, although the 
traditional grey theory has been largely criticized for the reason that it treats different indexes 
(influencing factors) equally and takes no account of the relative importance of them, and does 
not fit with people’s preferences for a specific index, it still has the accuracy and sensitivity in 
specific experimental scenario for particular factors, so it is better to combine with the results 
from traditional grey method when we apply the proposed model. Hence, further research is 
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needed to find out more influencing factors and navigational scenarios that can conduct a more 
comprehensive analysis of traffic safety influencing factors which affecting autonomous ship 
maneuvering decision-making. 

3.6 Conclusions 

With the development of modern science and technology, the improvement of autonomous 
ships has been technically feasible. However, autonomous ship maneuvering decisions are 
influenced by several influencing factors. The main purpose of our study is to select/prioritize 
the main influencing factors from all the decision-making influencing factors, thereby 
establishing the decision-making model efficiently for our subsequent autonomous ships 
human-like decision-making algorithm studies. 
 
In this chapter, the standardization principle of ship maneuvering is introduced, and an 
innovative grey and fuzzy theories based inference model combined with the expert linguistic 
terms with different weights is proposed. This model can recognize the main decision-making 
factors of ship maneuvering from multi-source influencing factors, so as to study the decision-
making prioritization for maritime traffic safety in specific ship maneuvering scenario 
accurately and efficiently, and it also can provide the theoretical basis for the decision-making 
of OOW and improve the maritime traffic safety as well as the program design for the analysis 
system of the influencing factors of autonomous ship maneuvering decisions in specific 
scenarios. 
 
In this chapter, the overall influencing factors and four categories of influencing factors are 
analyzed and prioritized separately. The result provides guidance for the OOW’s attention to 
different navigational information for ship maneuvering decision-making under specific 
maritime traffic scenarios. It not only emphasizes the main influencing factors in the overall 
attributes but also pays attention to the maritime traffic safety influencing factors and their 
dynamic change features in each category. The results of the proposed model are more related 
to real word shipping scenarios and are found to be satisfactory. 
 
Furthermore, the fuzzy number functions are utilized to apply expert knowledge to the process 
of the main influencing factors selecting/prioritizing of autonomous ship maneuvering 
decisions, which realizes the identification of the main influencing factors. Moreover, through 
using the fuzzy theory with expert knowledge, the order of the ranking results of various 
influencing factors obtained from the traditional grey relational analysis is changed. The results 
show that the proposed model improves the ranking results of the influencing factors, it is more 
rational and applicable. Likewise, it provides guidance for autonomous ship maneuvering 
decisions. In addition, with computer assistance, the model proposed in this chapter permits an 
automatic conversion from the comparative series of maritime traffic safety influencing factors 
and the corresponding maneuvering decisions (the combination of ship telegraph and rudder 
order) reference series to autonomous ship maneuvering influencing factors analysis system. 
The proposed algorithm solves the computational problem of complex fuzzy systems under 
big data by computer programming (computing advantage), which is of great significance to 
the development of autonomous ship maneuvering decisions analysis system. 
 
Overall, this chapter proposes a prioritizing model for the influencing factors of autonomous 
ship maneuvering decision-making using grey and fuzzy theories. Based on the actual 
operation data of the experienced seafarers collected from the simulator, a reference series is 
established by using the combination of ship telegraph and rudder orders which directly 
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corresponding to the control of a ship. Additionally, we establish the comparative series for 
various influencing factors concerning motion and environment, which affect ship 
maneuvering decision-making. Moreover, combined with the expert knowledge, the proposed 
model is further optimized to ensure the rationality, accuracy, and generalizability of it, to 
select/prioritize the main maritime traffic safety influencing factors of the autonomous ship 
maneuvering decisions in the specific navigational scenario.  
 
The results of this research provide theoretical and practical insights for prioritizing/evaluating 
the influencing factors in the autonomous ship maneuvering and maritime safety management 
for the shipping industry. The model can be further applied to the more general widespread 
way of the analysis system for autonomous ships human-like decision-making in specific 
scenarios. In further research, we will explore more about the optimization method for the 
selection/prioritization of influencing factors and use different data sets to compare the research 
findings. Moreover, we need to illustrate and combine the expert knowledge for various 
specific navigational scenarios when we apply our proposed model. 
 

 



 

Chapter 4 Modeling for recognizing human-like 
decisions of autonomous ships 

Chapter 3 introduces a prioritizing model using grey and fuzzy theories to recognize the main 
safety decision-making factors of ship maneuvering from multi-source influencing factors to 
study the decision-making prioritization for maritime traffic safety in a specific ship 
maneuvering scenario accurately and efficiently. In this chapter, a novel algorithm for 
modeling human decision-making of inbound merchant ships is proposed. This method can be 
used to realize the automatic acquisition and representation of the seafarer’s decision-making 
knowledge in inbound merchant ships analysis. To verify the performance of the model, a case 
study based on this method is conducted in the Waigaoqiao Phase IV Port of Shanghai. The 
experimental results indicate that the maneuvering decision recognition model combined with 
the method of classification interval division, which is proposed in this chapter, can accurately 
and scientifically standardize the boundary of the interval of influencing factor data and 
identify current maneuvering behavior. The proposed methods and the evaluation results 
provide useful insights for effective safety management of the inbound merchant ships. In this 
chapter, Section 4.1 introduces the background of this chapter; the proposed model is 
developed in Section 4.2; then the experiments are conducted in Section 4.3; Section 4.4 
illustrates the results of this chapter and ends with conclusions in Section 4.5. 
 
Parts of this chapter have been published in the following papers: 
 
Xue, J., Wu, C. Z., & van Gelder, P. (2019). A Novel Algorithm for Modeling Human Decision 
Making of Inbound Merchant Ships–A Case Study of the Shanghai Waigaoqiao Phase IV Port. 
In Advances in Marine Navigation and Safety of Sea Transportation (pp. 51-56). CRC Press 
Taylor & Francis Group. 
 
Xue, J., Wu, C., Chen, Z., van Gelder, P. H. A. J. M., & Yan, X. (2019). Modeling human-like 
decision-making for inbound smart ships based on fuzzy decision trees. Expert Systems with 

Applications, 115, 172-188. 

  



 
 44 Modeling Seafarers’ Navigational Decision-Making for Autonomous Ships’ Safety 

  

4.1 Introduction 

Currently, waterway transportation plays an increasingly important role in cargo 
transportation. It accounts for 95% of total crude oil transportation and 99% of total iron ore 
transportation. However, with the increasing number of vessels and the increasingly busy 
routes, the environmental pollution related to waterway transportation, the high labor costs and 
the lack of safety have also received more attention (Lun et al., 2016). In addition, with the 
development of technologies, such as computers science, information and communications 
technologies (ICT), artificial intelligence (AI), internet of things (IoT), and information physics 
systems, have greatly advanced the process of ship intelligence and made unmanned 
autonomous ships a possibility. Autonomous ship technology has developed rapidly in recent 
years. However, there are still many problems need to be solved. In addition, the existing 
research does not form a set of theoretical methods to solve the problem of autonomous 
learning of the autonomous merchant ship for the maneuvering decision-making characteristics 
of crew. 
 
At the same time, water transportation is recognized as a high-risk industry. With the 
development of the domestic economy and world trade, transportation is becoming 
increasingly busy, the number of ships is increasing, ships are becoming larger and more 
specialized, and the speed of ships is increasing. Coupled with the increase in the transportation 
of dangerous goods, the density of water traffic is increasing, and the navigation environment 
of ships is deteriorating, causing frequent water traffic accidents, which causes people to pay 
more attention to the risk of navigation (Akyuz and Celik, 2014; Goerlandt and Montewka, 
2015). Moreover, the intensity of seafarers’ duty is very large, the OOW is on duty for eight 
hours a day in three shifts (chief officer: 04:00-08:00, 16:00-20:00; second officer: 00:00-04:00, 
12:00-16:00; third officer: 08:00-12:00, 20: 00-00:00). However, people’s energy is limited, 
especially in the ocean navigation environment, which may lead to visual fatigue, distraction, 
and other situations. At the same time, under high-intensity work pressure, the OOW cannot 
always ensure to make correct decisions timely when facing changing factors in the navigation 
environment. Besides, due to the water resistance and the limitation of the huge ship type, the 
ship has slower speed and poor flexibility in the water, and its slow pace may easily cause the 
OOW to relax his vigilance, leading to poor timeliness and promptness of the ship’s 
maneuvering decision-making, and mistakes in the decision-making of OOW, coupled with the 
inertia of large vessels, are often prone to accidents and cause irreversible losses. According to 
statistics (Hanzu-Pazara et al., 2008), in ship collision accidents, 89% to 96% of accidents are 
caused directly or indirectly by human factors , and one of the important ways to solve ship 
accidents caused by human factors is to utilize intelligent maneuvering of ships. In addition, 
the safety of the seafarer in extreme weather conditions in recent years has also become a 
problem that cannot be ignored (Wang et al., 2014a). Besides, the number of seafarers is 
declining recently, while the wages of seafarer are rising year by year, which has become the 
second largest expenditure item after the fuel costs of shipping (Lun et al., 2016). As 
autonomous ships have outstanding advantages in improving the safety management, energy 
consumption management, and operational efficiency of ships, therefore, the researches for 
autonomous ships have become an inevitable trend for future ship development, and gained 
the interest of many researchers in both academia and private sectors (Goerlandt and Montewka, 
2015). 
 
Classification is a data mining (DM) technique used to predict or forecast the unknown 
information using the historical data. Many classification algorithms have been developed such 
as decision tree (Cohen et al., 2007), classification and regression tree (Friedman et al., 1984), 
Bayesian classification (Heckerman, 1998), neural networks (Rojas, 1996) and K-nearest 
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neighbor classification (Denœux, 1995), etc. Among them, the decision tree has become more 
popular algorithm as it has several advantages over others. Common decision tree algorithms 
are Iterative Dichotomiser 3 (ID3), C4.5, C5.0, Classification And Regression Trees (CART), 
Chi-squared Automatic Interaction Detector (CHAID), etc. In these algorithms, the ID3 
algorithm is the influential and wide used decision tree generation algorithm. It chooses the 
attribute with the highest information gain as the test attribute of the current node. It divides 
the sample set based on the value of the test attribute, how many different values of the test 
attribute exist, the number of subset divisions, and then further divides the corresponding 
subset of the sample using a recursive method. The C4.5 algorithm is complex when 
continuously processing data, and its workload is large. C5.0 mainly adds support for Boosting, 
which uses less memory and is more accurate, but C5.0 is a commercial software, and the 
public cannot easily get the source code (Witten et al., 2016). CART uses the training set and 
the cross-validation set to continuously evaluate the performance of the decision tree to prune 
the decision tree, thus achieving a good balance between training error and test error. However, 
CART or CHAID only supports building binary trees, while ID3 or C4.5 allows two or more 
outcomes and supports binary or multi-fork trees (Wu et al., 2007). Therefore, this chapter 
utilizes the ID3 algorithm to learn the seafarer’s maneuvering decision characteristics 
considering the advantages of it, thus to construct a human-like decision-making model under 
multiple constraints in a specific scenario. 
 
In summary, this chapter focuses on the concept of human-like maneuvering for autonomous 
merchant ships and studies the human-like decision-making mechanism for autonomous 
merchant ships. We proposed an autonomous ship human-like decision-making recognition 
model. By establishing the autonomous learning method of maneuvering decision-making, the 
maneuvering decision-making rules of the typical maneuvering style in the specific scenario 
are explored, and the processes of autonomous learning OOW’s maneuvering decision-making 
characteristics for autonomous ships are studied. This chapter provides a new perspective and 
methodology for the development of autonomous ship technology in theory and practice and 
promotes the application and spreading of autonomous merchant ships. 

4.2 The proposed recognizing model 

The machine learning technique for inducing a decision tree from data is called decision tree 
learning, or decision trees. In decision theory and decision analysis, a decision tree is a graph 
or model of decisions and their possible consequences. It is a method to solve complex decision 
problems through tree-like logical thinking and can be used to create a plan to reach a goal. 
Decision trees are constructed in order to help with making decisions. A decision tree is a 
special form of tree structure and a descriptive means for calculating conditional probabilities. 
 
Decision tree learning is a common method used in data mining. Each internal node 
corresponds to a variable. A leaf node represents a possible value of target variable given the 
values of the variables represented by the path from the root node. A tree can be “learned” by 
splitting the source set into subsets based on an attribute value test. This process is repeated on 
each derived subset in a recursive manner. The recursion is completed when splitting is either 
non-feasible, or a singular classification can be applied to each element of the derived subset. 
Figure 4.1 shows the flowchart for tree-based classification. 
 
Decision tree-based classification is also one of the most widely used classification methods in 
the field of data mining. The goal is to create a model that predicts the value of a target variable 
based on several input variables. Each internal node corresponds to one of the input variables. 
Each leaf node represents a value of the target variable given the values of the input variables 
represented by the path from the root node to the leaf node. Some of the key advantages of 
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using decision trees are the ease of use and overall efficiency. A decision tree can be 
represented as a set of production rules in the form of IF-THEN. Each root-to-leaf path in the 
decision tree corresponds to a rule, and the rule set can be derived that are easy to interpret. 
 
The ID3 algorithm is a typical decision tree learning algorithm. It uses the information gain as 
the attribute selection criterion to determine the appropriate attributes to be used when 
generating each node. In this way, the attribute with the maximum information gain can be 
selected as the test attribute of the current node, so that the information required for 
classification using the training sample subset obtained by the attribute is minimized. 
 

 
Figure 4.1 The flowchart for tree-based classification. 

 

Information theory  

Shannon (1948) proposed the information theory in 1948, and the amount of information on 
events could be calculated as follows: 

,                                                             (4.1) 

where  is the probability of occurrence of event . 
 
Suppose that there are v mutually exclusive events , and only one of them happens. 
The average amount of information can be measured as follows: 
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Information entropy 

Assume that D is the autonomous ship human-like decision-making training data set containing 
a set of m classes,  stands for the total number of samples in data set D, and  is the 
number of samples in data set D that belongs to class . If we randomly select a 
sample from D, and this sample belongs to class , then we can get a prior probability of the 
event as follows: 

.                                                                         (4.3) 

 
The expected information (also referred to as entropy) needed to classify D into m classes is 
defined as: 

.                                          (4.4)  

 
Suppose a feature/attribute A has n distinct values, , feature/attribute A partitions 

D into n subsets, , is the number of samples in subset , and 

 stands for the number of samples in subset  that belongs to class . Then, the expected 
information is defined as: 

.                                         (4.5)  

 
Note that the smaller the entropy value is, the higher the purity of the subset partition, where 
m for a given subset , 

.                                      (4.6)   

 
Information gain 
The information gain of feature/attribute A is expressed as follows: 

.                                           (4.7)  

 
A good rule of thumb would seem to be to choose that attribute to branch on which gains the 
most information. ID3 examines all candidate attributes and chooses A to maximize , 
then forms the tree and then uses the same process recursively to build decision trees for the 
residual subsets. 

4.3 Experiments 

4.3.1 Scenario identification 

The data for this thesis is compiled from the full-task handling simulation platform for large 
ships, Navi-Trainer Professional 5000, which conforms to the International Maritime 
Organization (IMO) STCW78/10 convention and the requirements of the China Maritime 
Safety Administration (MSA), the Det Norske Veritas (DNV), the British MSA, the British 
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Lloyd’s Register, the British Maritime and Coast Guard (MCG), the Russian Ministry of 
Shipping and other authoritative certifications. We collected the operational data of the 
exercises and assessment exams as our experimental data (unlimited navigational class seafarer, 
captain/chief officer). The simulator scene was the Shanghai Waigaoqiao wharf, and the ship 
was downstream berthing into the port. 
 
We define the process as when the ship’s stern leaves the main channel near the port side of 
the boundary line in the electronic chart (Figure 4.2(f) shows the initial boundary) to the ship 
berths docked at the end of the cable (Figure 4.2(g) shows the end boundary) as a complete 
berthing process. The experimental scene is shown in Figure 4.2. 

 

 
Figure 4.2 The experimental scene. 
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4.3.2 Data collection and processing 

Information was collected on the ship’s berthing process, including the environment (wind, 
flow, tide and 15 other factors), location (longitude, latitude – 2 factors), control (rudder order, 
marine telegraph – 2 factors), the target ship in the channel (Ship types, speed, quantities and 
other factors), ship movement (ship heading, steering rate and 11 other factors), the ship’s draft 
(ship’s bow, the bow and other factors), tugs, the main collection control (power, rudder order 
– 7 factors), mechanical contact force-related parameters (4), cable force-related parameters 
(4), ship movements (bow, 11 ratio factors, etc.), and other related parameters. These above 
factors, such as the ship’s own movement, the environment, the control, location and the 
relevant parameters of the tug and other factors, were extracted from fixed factors and the 
weakly related parameters. We record the maneuvering behavior and environment, including 
inside and outside the multi-source information.  

 

 
(a)                                                                         (b) 

 

Figure 4.3 The Navi-Trainer Professional 5000 system. 

 
Figure 4.3(a) shows the spatial arrangement for The Navi-Trainer Professional 5000 system, it 
is mainly composed by the Main Bridge, Instructor room, and three Secondary Bridge systems. 
Figure 4.3(b) is the panorama of the Main Bridge. The experimental scheme of this chapter is 
shown in Table 4.1. 
 

Table 4.1 Experimental program. 

Name Contents 
Time 8: 00-11: 00 and 14: 00-17: 00 on May 17 to June 2. 
Place Wuhan University of Technology Waterway Road Traffic Safety Control and Equipment 

Ministry of Education Engineering Research Center, Maneuvering Simulator Laboratory 
for ships.  

Seafarer Unlimited navigational class A chief officer or captain, 4 groups of 96 people, 32-45 years 
old, skilled maneuvering level. 

Ship 30,000 tons bulk carrier (experimental simulation ship OS1, see Figure 4.4(a)). 33089.0t, 
182.9 meters long, 22.6 meters wide. 

Scenes 1) Ship downstream berthing into the Shanghai Waigaoqiao Phase IV Port. 2) Sailing in 
narrow water. 3) Poor visibility. 4) Two tugs help berthing. 

Equipment Navi-Trainer Professional 5000 and 40 Desktop NT-Expert V3.35 system for full-task 
handling simulation platform for large ships. See Figure 4.2(d), (e) and  Figure 4.3(a), (b). 
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Figure 4.4 Data collection and processing. 

 
From Table 4.2, we can get the average age of the seafarer participating in this experiment is 
38.76 years old, and their average maneuvering experience is 8.89 years. From Figure 4.5, we 
can get the distribution of seafarers’ age and their maneuvering experience. The captains’ 
average age and maneuvering age are both higher than those of chief officers’. Note that for 
the definition of “ideal OOW”, there is no precedent in the industry for the study of autonomous 
maneuvering decision characteristics by using the maneuvering data of experienced seafarers. 
Thus, there is no reference standard for the definition of “ideal OOW”. However, in this chapter, 
in the context of security as a prerequisite, we consider that ship maneuvering experience (most 
directly reflected in driving age) is the core reference standard of an “ideal OOW”, and it 
provides guarantees for high-quality experimental data. In addition, the chief officers or 
captains have a high social status and sense of responsibility. Most of them are trained 
professionals so both experimental and professional qualities of experimental personnel are 
guaranteed. Additionally, it also should be noted that, in this thesis, we regard the tugboat as a 
power plant system of target ship OS1 to facilitate the ship’s overall situation of a simplified 
analysis and we consider the tugs and the ship OS1 as a whole dynamic model. Under the 
premise of this hypothesis, the ship OS1 completes the inbound operation through the 
combination of rudder orders and telegraph orders, according to the actual navigational 
situation of its force and movement. Moreover, for ships, there are six different motion 
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components are utilized to determine the orientation and position in six degrees of freedom 
(DOFs). In our case, there is a fixed dynamic ship model in the full-task handling simulation 
platform (Navi-Trainer Professional 5000) for the target ship OS 1. It is the same with the 
actual situation in the natural world port with changing environment surroundings when the 
OOW maneuvers the ship to berth on the ship bridge using the simulator, and there are six 
DOFs for the fixed ship model in that case. In our thesis, the complicated dynamic conditions 
are simplified to learn the procedures that the experienced OOW maneuver ships by operating 
different telegraph and rudder orders to change ship’s speed and direction, and to complete the 
ship’s control in the designed specific navigational scenario (no matter the changing 
environmental conditions and the dynamic situations for the ship, the OOW always needs to 
maneuver the ship through the combination of telegraph and rudder orders). 
  

 

Figure 4.5  Analysis of participants’ information. 
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Table 4.2 Participants’ information. 

 Number of 
Participants  

Age (years) Maneuvering experience 
(years) 

Mean SD Mean SD 
All 96 38.76 4.13 8.89 2.10 
Captain 35 42.29 2.18 10.74 1.29 
Chief Officer 61 36.74 3.59 7.82 1.69 

 
In order to let the maneuvering decision-making knowledge to be automatically obtained and 
expressed along with higher decision-making knowledge effectiveness, it is typically necessary 
to divide the number of linguistic terms by experience (Yuan and Shaw, 1995). In this chapter, 
experimental data of each maneuvering decision-making factor are trisected into three levels, 
namely, small (a), medium (b), and large (c). 
 

Table 4.3 Standardization principle of environmental influencing factors for inbound maneuvering 
decision-making (input). 

Influencing 
factors Meaning 

Symbolic principle 
Small (a) Medium (b) Large (c) 

Y1 Current 
direction(degrees) 

[313.9000, 
315.5000] 

[315.5000, 
317.1000] [317.1000, 318.7001] 

Y2 Current 
speed(knots) (1.0107, 1.0432) [1.0432, 1.0756] [1.0756, 1.1080] 

Y3 Relative current 
direction(degrees) 

[-60.0000, 0.0000] [-120.0000, -
60.0000] (-180.0000, -120.0000) 

[0.0000, 60.0000] [60.0000, 120.0000] [120.0000, 180.0000] 

Y4 Relative wave 
direction(degrees) 

[-41.5000, 0.0000] [-83.0000, -
41.5000] (-124.5000, -83.0000) 

[0.0000, 41.5000] [41.5000, 83.0000] [83.0000, 124.8000] 

Y5 Relative wind 
direction(degrees) 

[-59.0205, 0.0000] [-118.0411, -
59.0205] (-179.7170, -118.0411) 

[0.0000, 59.0205] [59.0205, 118.0411] [118.0411, 179.8750] 

Y6 Relative wind 
speed(knots) (0.0228, 7.5154) [7.5154, 14.7664] [14.7664, 22.1793] 

  
Table 4.4 Training samples for the studied area (partially). 

No. 
X 

Y1 Y2 Y3 Y4 Y5 Y6 Rudder order 
(Degrees) 

Telegraph order 
(%) 

1 -1.070  -30.000  318.400  1.108  -173.755  83.414  -77.200  7.724  
2 -1.767  -30.000  318.400  1.108  -173.387  83.553  -77.200  7.724  
3 -2.000  -30.000  318.400  1.108  -173.291  83.605  -77.195  7.723  
4 -2.000  -30.000  318.400  1.108  -172.999  83.751  -77.100  6.704  
5 -2.000  -30.000  318.400  1.108  -172.891  83.809  -77.095  6.704  
6 -2.000  -30.000  318.400  1.108  -172.651  84.000  -77.000  6.704  
7 -2.000  -30.000  318.400  1.108  -172.600  84.000  -77.000  6.704  
8 -2.000  -30.000  318.400  1.108  -172.202  84.349  -76.931  6.685  
9 -2.000  -30.000  318.400  1.108  -172.100  84.400  -76.900  6.685  
10 -2.000  -30.000  318.400  1.108  -171.716  84.684  -76.758  6.685  
11 -2.000  -30.000  318.400  1.108  -171.600  84.800  -76.700  6.685  
12 -2.000  -30.000  318.400  1.108  -171.307  85.093  -76.633  6.685  
13 -2.000  -30.000  318.400  1.108  -171.200  85.200  -76.600  6.685  
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14 -2.000  -30.000  318.400  1.108  -170.900  85.300  -76.600  6.685  
15 -2.000  -30.000  318.400  1.108  -170.900  85.300  -76.600  6.685  
… … … … … … … … … 

 
Moreover, to objectively describe the characteristics of each influencing factor, and make it 
easier to describe how each factor influences final maneuvering decisions. We select six 
environmental influencing factors as the input of our proposed model to study the decision-
making mechanisms for different maneuvering behaviors: Current direction (Y1), current 
speed (Y2), relative current direction (Y3), relative wave direction (Y4), relative wind direction 
(Y5), relative wind speed (Y6). Note that the factors Y1-Y6 here are different from the 
influencing factors, which have the same subscript number in Chapters 3 and 6. Table 4.4 lists 
some of the training samples. 
 

Table 4.5 The symbol of telegraph orders (speed control) and rudder orders (course control). 

Attributes 
Speed control Course control 
Symbolic 
principle Status Symbo

l 
Symbolic 
principle Status Symbo

l 

Variety 
 Changed C1  Changed C2 

 Unchanged U1  Unchange
d U2 

Direction 

 Ahead D1  Starboard D2 

 
Stop/Standby/Finished 
with engines M1 

 
Midships M2 

 Astern T1  Port T2 
 
The OOW maneuvers the ship by operating different telegraph and rudder orders to change 
ship’s speed and direction and to complete the ship’s control, the symbol are shown in Table 
4.5. The standardization principle of the input selected influence factors for inbound 
maneuvering decision-making can be seen from Table 4.3. Moreover, Table 4.6 shows the 
combining telegraph and rudder orders and the standardization principle for output 
maneuvering decision-making factors. For instance, X1 (U1D1U2T2) indicates that the 
maneuvering decision-making is: {Keep the propeller forward and keep the current rudder 
angle-port rudder}. 

 
Table 4.6 Ship maneuvering decision-making factors and standardization principle (output). 

Maneuvering 
factors Decisions Symbols Decisions Symbols 

X(Dimensionless) 

U1D1U2T2 X1 C1M1C2T2 X19 
U1T1U2T2 X2 C1M1C2D2 X20 
U1D1U2D2 X3 U1M1C2T2 X21 
U1T1U2D2 X4 U1M1C2D2 X22 
C1D1C2T2 X5 C1M1U2T2 X23 
C1T1C2T2 X6 C1M1U2D2 X24 
C1D1C2D2 X7 U1D1U2M2 X25 
C1T1C2D2 X8 U1T1U2M2 X26 
U1D1C2T2 X9 C1D1C2M2 X27 
U1T1C2T2 X10 C1T1C2M2 X28 
U1D1C2D2 X11 U1D1C2M2 X29 
U1T1C2D2 X12 U1T1C2M2 X30 
C1D1U2T2 X13 C1D1U2M2 X31 

1 0i ia a+ - ¹ 1 0i ib b+ - ¹

1 =0i ia a+ - 1 =0i ib b+ -

0ia > 0ib >
=0ia =0ib
0ia < 0ib <
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C1T1U2T2 X14 C1T1U2M2 X32 
C1D1U2D2 X15 U1M1U2M2 X33 
C1T1U2D2 X16 U1M1C2M2 X34 
U1M1U2T2 X17 C1M1U2M2 X35 
U1M1U2D2 X18 C1M1C2M2 X36 

4.4 Results 

4.4.1 Standardizing of training set 

The data in Table 4.4 are standardized according to the principle of standardization of 
maneuvering decision influence factors in Table 4.3, Table 4.5 and Table 4.6; then we get the 
training set as shown in Table 4.7. 
 

Table 4.7 Training set for constructing the decision tree (partially). 

No. X Y1 Y2 Y3 Y4 Y5 Y6 

  a b c a b c a b c a b c a b c a b c 
1 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
2 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
3 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
4 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
5 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
6 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
7 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
8 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
9 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
10 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
11 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
12 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
13 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
14 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
15 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
… … … … … … … … … … … … … … … … … … … … 

4.4.2 Constructing the decision tree 

In the ID3 decision tree algorithm analysis, approximately 80% of the data is randomly selected 
as the training set, and the remaining 20% is used as the test set. Then, through the proposed 
model in Section 4.2, we could obtain the decision tree structure, as shown in Figure 4.6. Then 
we can get the decision-making rule set based on the decision tree structure in the form of IF-
THEN. Each path from the root node to the leaf node constitutes a rule. For instance, we can 
get the rule from the left side of the tree structure: IF Y2=a AND Y3=a AND Y6=a THEN 
X=X1. The characteristics of the internal nodes of the path correspond to the conditions of the 
rule, and the classification of the leaf nodes corresponds to the conclusion of the rule. As a 
result, we can easily extract the human-like decision-making knowledge using the decision tree 
and rule set. 
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Figure 4.6 The experim
ental decision tree structure. 
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4.5 Conclusions 

With the continuous development of large-scale, high-speed and professional ships, and the 
increasing construction of modern intelligent deep-water ports, the safety of inbound merchant 
ships receives more and more attention. In addition, with the development of modern science 
and technology, the improvement of autonomous ships has been technically feasible. The 
purpose of this chapter is to recognize the automatic acquisition and representation of the 
seafarer’s decision-making knowledge and to provide a basis and reference for the 
development of decision-making algorithms for autonomous ships. In this chapter, to achieve 
the above research objective, some preparations and primary conditions for our research are 
conducted and set up, e.g., the experimental scenario, the research design, the data collection 
and processing, etc. In addition, the standardization principle of ship maneuvering is introduced, 
and the ID3 decision tree model for learning human-like decision-making mechanisms of 
autonomous ships is proposed for the first exploration and pre-study. 
 
This chapter provides a new perspective for the development of autonomous ships and 
promotes the application and promotion of autonomous ships in a specific scenario. In the 
follow-up study, we will pay attention to the detailed standardization principles of various 
influencing factors and maneuvering decision-making factors and the application of our 
proposed model, both in the aspects of the detailed application framework and decision tree 
algorithm. 

 
 



 

Chapter 5 Modeling human-like decision-making for 
autonomous ships using navigational 
decision tree 

Chapter 4 presents the primary experimental preparations for our research. Moreover, the 
standardization principle of ship maneuvering is introduced, and the ID3 decision tree model 
for learning human-like decision-making mechanisms of autonomous ships is proposed. Based 
on the actual seafarers’ operational data from the full-task handling simulation platform, this 
chapter combines a 30,000-ton bulk carrier inbound navigation scenario and uses the C4.5 
decision tree method to propose a knowledge learning model under multiple environmental 
constraints to give autonomous ships the ability to make decisions like a human: An 
autonomous ship Human-like Decision-making Maneuvering Decision Recognition (HDMDR) 
model. The decision-making mechanism for the maneuvering behavior of Officer On Watch 
(OOW) under the influence of the specific water traffic environment in the inbound scenario 
is analyzed, and the OOW’s decision-making knowledge is automatically acquired and 
represented. The validation tests and the comparative analysis with the classic classification 
algorithms of k-Nearest Neighbours (k-NN) and Support Vector Machine (SVM) are 
performed to demonstrate the accuracy of the proposed HDMDR model. This study provides 
a feasible basis for the human-like decision-making analysis of autonomous ships.  
 
The structure of this chapter is organized as follows. Initially, the background and the main 
contributions of this chapter are introduced in Section 5.1. Section 5.2 briefly presents the 
proposed decision-making model. The experimental processes are introduced in Section 5.3. 
Section 5.4 details the experimental results and the performance of our optimization 
methodology. The conclusions and future directions of research are addressed in Section 5.5. 
 
The main content of this chapter is based on the following published paper: 
 
Xue, J., Chen, Z., Papadimitriou, E., Wu, C., & van Gelder, P. H. A. J. M. (2019). Influence of 
environmental factors on human-like decision-making for intelligent ship. Ocean Engineering, 
186, 106060. 
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5.1 Introduction  

To date, the increasing density of water traffic has caused the ship’s navigation environment to 
deteriorate, resulting in frequent water traffic accidents. In addition, a majority of maritime 
accidents are caused directly or indirectly by human factors, and one of the important ways to 
solve the ship accidents caused by human factors is to utilize intelligent maneuvering of ships. 
In addition, the natural environment is an important factor affecting the safety of waterborne 
traffic (Zhang et al., 2018). Among the natural environmental factors surrounding the ship, 
meteorological conditions, sea states, topographical environments and water facilities will 
bring restrictions to the navigation of the ship. These factors affect the ship’s navigation and 
the seafarer’s decisions by affecting the ship’s maneuverability, along with the skill and 
mentality of the shipper. The natural environmental factors that typically affect the safe 
environment of maritime traffic are weather conditions and ocean conditions, specifically, wind, 
current, and waves. 
 
Autonomous ships use sensors, communications, Internet of Things, the Internet and other 
technical ways to automatically sense and obtain information and data on the ship itself, the 
marine environment, logistics, ports, etc. Based on computer technology, automatic control 
technology, big data processing and analysis technology, it utilizes intelligent operation in ship 
navigation, management, maintenance, cargo transportation, etc. (Lazarowska, 2017), making 
ships safer, more environmentally friendly, more economical and more reliable. “Intelligent” 
here can be understood as “human-like thinking”. It can comprehensively consider the specific 
tasks and various information obtained and develop a series of optimal decisions that meet the 
safety requirements of the ship’s navigation, economy, and environment. It takes a long 
transition period for an autonomous ship to fully realize unmanned maneuvering. Presently, 
although the current level of ship automation is relatively high, the normal operation of ships 
is always inseparable from human participation (Perera et al., 2015a). Even under a good 
navigation situation, the seafarer must be handled when an emergency occurs. Although the 
ship is maneuvered by satellite navigation, electronic compass, Electronic Nautical Charts 
(ENC), and autopilot system, the bridge has not been unmanned. Autonomous ship technology 
has developed rapidly in recent years, however, there are still many problems need to be solved. 
In addition, the existing research does not form a set of theoretical methods to solve the 
problem of autonomous learning of the autonomous ship for the maneuvering decision-making 
characteristics of Officer On Watch (OOW) and lacks the corresponding theoretical methods 
to solve the problem of autonomous ship human-like maneuvering decision-making modeling.  
 
Researchers have proposed several different decision tree algorithms for both classification 
and decision-making problems based on different aspects and obtained good results. Based on 
the advantages of the C4.5 algorithm and the ability to analyze the characteristics of multifork 
trees, this chapter uses the C4.5 algorithm to learn the OOW’s maneuvering decision 
characteristics. We regard the autonomous ship human-like maneuvering decision-making 
problem as a machine learning problem based on the OOW’s experience, the OOW’s actual 
maneuvering data, and the environmental influencing factors, such as wind, wave, and current 
in specific water areas, and the problem is converted using the decision tree C4.5 method to 
learn the OOW’s maneuvering decision-making characteristics, thus constructing a human-like 
decision-making model under multiple constraints. 
 
Overall, this study focuses on the concept of human-like maneuvering for the autonomous ship 
and studies the human-like decision-making method of autonomous ships. By establishing 
autonomous learning method of maneuvering decision-making, the maneuvering decision-
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making rules of typical maneuvering style is explored, and the processes of autonomous 
learning OOWs’ maneuvering decision-making characteristics for autonomous ships are 
studied, and the autonomous ship human-like decision-making model is constructed. The main 
contributions of this chapter are as follows: 
 

1) A novel autonomous ship Human-like Decision-making Maneuvering Decision 
Recognition (HDMDR) model is proposed. 
 

2) The standardization principle of environmental influencing factors and maneuvering 
decision-making factors is developed. 
 

3) The decision-making mechanism of the OOW’s maneuvering behavior is analyzed on the 
basis of the actual OOW’ operational data from full-task handling simulation platform, 
and the OOW’s decision-making knowledge under the specific environmental 
influencing factors in the inbound scenario is automatically acquired and represented. 
 

4) Considering the high cost of using the real 30,000-ton ship to carry out this kind 
of experiment, and the low feasibility of collecting the data of multiple voyages from the 
real-world ship, therefore, it is unique and very valuable to obtain the experimental data 
operated by an experienced OOW on the full-task handling simulation platform in a 
certain time and space. 

5.2 Methodology 

5.2.1 A navigational decision tree 

The input of the decision tree learning algorithm is a set of training samples represented by 
combinations of attributes, attribute values and decisions registered for them, and the output is 
a decision tree (which can also be extended to other representations, such as rule sets). Decision 
tree generation typically uses a top-down recursive approach. The optimal attribute is selected 
as the node of the tree by some method, and the attribute values are compared on the node, and 
the branch from the node is judged according to the different attribute values that correspond 
to the training samples. The lower nodes and branches are repeatedly established in each branch 
subset, and the growth of the tree is stopped under certain conditions, and the conclusions are 
obtained at the leaf nodes of the decision tree to form a decision tree. The decision tree is 
generated by performing decision tree learning on the training samples. The decision tree can 
classify an unknown sample set according to the value of the attribute, which is the decision 
tree classification. 
 
Figure 5.1(c) shows an example of a typical binary decision tree based on the data shown in 
Table 5.1. From Figure 5.1(c), we can see that a decision node/attribute (i.e., Crossing 
orientation, which represents the position of Vessel 2) has two branches/values (i.e., Right 
section and Left section, which represent the unique values for the specific attribute). Leaf node 
(i.e., Class, which represents the crossing situation) represents the class category or decision 
of each instance. 

 
 
 
 
 

 



 
 60 Modeling Seafarers’ Navigational Decision-Making for Autonomous Ships’ Safety 

  

Table 5.1 The data for the example. 

No. Crossing orientation (attributes) Class 

1 Left a 
2 Right b 

 

 
Figure 5.1 The collision avoidance operation in the encounter scenario of different crossing situations and 

the decision tree generated from this case. 

 
Furthermore, the COLREGs (Convention on International Regulations for Preventing 
Collisions at Sea) navigation rules provide safe operation guidelines for maritime navigation. 
As shown in Figure 5.1(a), if Vessel 2 is at the left crossing section (Class a), Vessel 2 should 
turn right and Vessel 1 should keep its course; if Vessel 2 is at the right crossing section (Class 
b), Vessel 1 should turn right, and Vessel 2 should keep its course, shown as Figure 5.1(b). 
Therefore, the final decision can also be represented through the form of IF-THEN rule set 
shown as follows: 

 
Rule 1: IF Crossing orientation=Left THEN Class=a (Vessel 1 keeps course and Vessel 2 turns right) 
 Rule 2: IF Crossing orientation=Right THEN Class=b (Vessel 1 turns right and Vessel 2 keeps course) 

 

This example indicates a maritime problem of COLREGs situation: the decision tree generated 
from collision avoidance operation in the encounter scenario of different crossing situations. 
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This way, the attributes taken together provide a zeroth-order language for characterizing 
objects in the universe (Quinlan, 1986). Note that the COLREGs should be implemented 
explicitly and followed by every Offer On Watch (OOW) when navigating at sea. In this case, 
as shown in Figures 5.1 (a) and 5.1(b), it strictly followed the COLREGs of crossing situation: 
when two power-driven vessels are crossing so as to involve risk of collision, the vessel which 
has the other on her own starboard side shall keep out of the way and shall, if the circumstances 
of the case admit, avoid crossing ahead of the other vessel. This is only a simple example to let 
the readers easily understand the decision tree’s basic logic and structure and how the final 
decision can be represented through the form of the IF-THEN rule set. However, in this thesis, 
no other ships sail in the designed experimental inbound scenario (from the initial boundary 
and end boundary shown in Figure 3.4), so some situations, such as overtaking, head-on, as 
well crossing situation, are not applicable in our case. 

 
Generally, the decision tree method consists of two main steps. The first step is to use the 
training sample set to build and generalize a decision tree and build a decision tree model. This 
process is actually a process of acquiring knowledge from the data and doing machine learning. 
It is usually divided into two phases: building and pruning. The second step is the process of 
classifying new data using a built-in decision tree. 

5.2.2 The proposed HDMDR model 

Information gain ratio 

From Chapter 4, we could get the information gain of feature/attribute A based on the Equations 
(4.1) to (4.7). 
  
The split information is defined as: 

,                                               (5.1)  

where  is the information generated by partitioning D based on the values of A; it 
indicates the outcome of the test rather than the class to which the sample belongs. 
 
The Gain Ratio could be calculated by the following:  

.                                                   (5.2) 

 

Constructing the C4.5 decision tree 

C4.5 is an extension of ID3 and was presented by J.R. Quinlan (Quinlan, 1993). ID3 selects 
the attribute with the largest information gain value as the node of the tree. However, C4.5 
introduces the concept of information gain ratio and selects the attribute with the largest 
information gain ratio. Moreover, each possible value is used as a branch of this node to 
recursively form a decision tree, In addition, C4.5 adds significant functions compared to ID3, 
such as rules generation, uncertainty processing functions and attribute discretization. C4.5 
overcomes the shortcomings of the ID3 algorithm using information gain to select attributes 
when biasing the selection of more attributes and can build a decision tree with as simple a 
structure as possible while ensuring the accuracy of training set classification. Algorithm 1 
depicts the procedures of the process of construction of the proposed maneuvering C4.5 
decision tree of autonomous ship Human-like Decision-making Maneuvering Decision 
Recognition (HDMDR) model. 
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Algorithm 5.1 Construct the proposed C4.5 decision tree of HDMDR model 
Input: The training dataset D of the maneuvering factor (X) and environmental factors 
(Y1~Y6 in our case; new factors can be upgraded here); attribute A. 
Output: A proposed maneuvering C4.5 decision tree. 

1: for every attribute A do 
2:    Calculate the information gain ratio for using A to splitting D;  
3: end  
4: if GainRatio> threshold then 
5:   return A degenerated tree with only one node 

6: end 

7: Construct a root node with the selected environmental factor; 
8: for every subtree do 
9:    Move all samples belonging in the subtree to a continuous memory area; 
10:    Recursively call C4.5 to construct the subtrees, using the subset of training 

   samples as its training set; 
11: end 

 

Pruning the decision tree 

The initial construction of the C4.5 decision tree is often complicated by the inclusion of a 
large number of classification attributes and branches, and there are inevitably some errors, 
namely, noise. This noise gradually accumulates in the decision classification process, which 
will eventually cause the C4.5 decision tree to have a large deviation from the classification of 
the actual sample, and the accuracy is reduced, i.e., over-fitting. Thus, the C4.5 decision tree 
generated by the training set is very good for classifying the training set, but it may not be ideal 
to use it to classify the new data set that does not participate in the decision tree generation 
process. Therefore, the preliminary constructed C4.5 decision tree needs to be pruned, and the 
purpose of pruning is to optimize the C4.5 decision tree or simplify the generated rules. There 
are two kinds of decision tree pruning methods: prepruning and postpruning. 
 
For the problem of over-fitting, this study uses postpruning methods to eliminate branching 
anomalies caused by noise data and isolated points. Quinlan (1993) proposed using pessimistic 
error pruning to compensate for optimistic bias in tree generation during pruning (Because the 
decision tree is generated from the training data set, in most cases, the decision tree is consistent 
with the training data set. However, when the decision tree is used to classify data other than 
the training data, it is obvious that the error rate will be greatly increased). 
 
The postpruning rule adopts the principle of minimum expected error rate, i.e., starting from 
the root node of the tree, and calculating the expected error rate that may occur for each branch 
node pruning/no pruning: If the node is clipped, resulting in a higher expected error rate, the 
subtree is retained. Otherwise, the subtree is clipped, and finally, the C4.5 decision tree with 
the smallest expected error rate is obtained. 
 
In this chapter, the upper limit of the confidence interval is used as the erroneous estimation 
under pessimistic conditions. Given a confidence level  (0.25 in the C4.5 algorithm), the 
total number of errors obeys the Bernoulli distribution; then, there is a probability equation: 

,                                             (5.3)  

where N is the total number of instances under the pruned subtree, E is the number of error 
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instances that occur after pruning,  is the actual observed error rate, and  is the 
estimated error rate. Let , taking the upper limit of the confidence interval as the 
pessimistic error rate estimate of this node. Then, the equation for calculating the false positive 
rate of the node: 

 

 
Figure 5.2 Framework of the proposed HDMDR model. 

f E N= q
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,                                           (5.4)  

where  is the actual observed error rate, and  is the estimated error rate. 
 
Set the maximum value of the expected false positive rate to . If the estimated false 
positive rate  after pruning is higher than , the original subtree is retained. Otherwise, 
the subtree is cut and replaced with leaves. After the pruning, the inbound human-like decision-
making tree is shown in Figure 5.5. Figure 5.2 is the basic process and framework for our 
proposed HDMDR model.  

 

5.3 Experiments 

5.3.1 Scenario design and data collection 

The scenario design was the same as the aforementioned scenario in Chapters 3 and 4, i.e., the 
ship was downstream berthing into the Shanghai Waigaoqiao wharf port. Additionally, the data 
collection and basic processing procedures are the same as well. 
 
We collect the operational data of the exercises and assessment exams as our experimental data 
(unlimited navigational class seafarer, 4 groups of 96 people, 32-45 years old, skilled 
maneuvering level, captain/chief officer). From Figure 5.3, we can get the distribution of 
OOWs’ age and their maneuvering experience. The ship handing and environment, including 
inside and outside multisource information, were collected on the ship’s berthing process, 
including the environment (wind, current, wave, etc.), control (rudder order, marine telegraph 
order - 2 factors). Table 5.2 lists some of the training samples. Note that the factors Y1-Y6 here 
are the same as the influencing factors in Chapter 4. 
 

Table 5.2 Training samples for evaluation of the studied area (partially). 

No. 

X 

Y1 Y2 Y3 Y4 Y5 Y6 Rudder 
order 
(Degrees) 

Telegraph  
order (%) 

1 -2.0000  -30.0000  318.4000  1.1080  -170.3351  85.6474  -76.3763  6.6652  
2 -2.0000  -30.0000  318.4000  1.1080  -170.1000  86.0000  -76.2000  6.6652  
3 -2.0000  -35.9724  318.4000  1.0754  -169.9281  86.2437  -76.0806  6.6652  
4 -2.0000  -40.0000  318.4000  1.0753  -169.8000  86.5000  -76.0000  6.6652  
5 -2.0000  -45.6276  318.4000  1.0753  -169.4059  86.7626  -75.8687  6.6752  
6 -2.0000  -50.0000  318.4000  1.0755 -169.2000  86.9000  -75.8000  6.6852  
7 -2.0000  -50.0000  318.4000  1.1080  -168.9564  87.1718  -75.6761  6.7052  
8 -2.0000  -50.0000  318.4000  1.1080  -168.5000  87.4000  -75.6000  6.7552  
9 -2.0000  -50.0000  318.4000  1.1080  -168.6957  87.6273  -75.5497  6.8043  
10 -2.0000  -50.0000  318.4000  1.1080  -169.3000  87.8000  -75.5000  7.1655  
11 -2.0000  -62.0366  318.4000  1.1080  -168.0185  88.1405  -75.4000  7.2612  
12 -2.0000  -70.0000  318.4000  1.0755  -167.7000  88.3000  -75.4000  7.3272  
13 -1.9030  -70.0000  318.4000  1.1080  -167.5368  88.5632  -75.3000  7.6652  

2 2 2
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14 -1.8120  -70.0000  318.4000  1.1080  -167.3000  88.8000  -75.3000  7.6652  
15 -1.7090  -70.0000  318.4000  1.1080  -166.6993  89.0801  -75.3000  7.6510  
… … … … … … … … … 

 

 
Figure 5.3 The distribution of OOWs’ age and their maneuvering experience. 

5.3.2 Standardization principle setting 

Maneuvering decision-making processes are often influenced by multisource information, such 
as human, ship and environmental factors. These influencing factors act together to determine 
the next action strategy of the ship’s OOW.  
 
For a particular person-ship unit, the overall reliability is constant for a certain period of time 
or during a trip; therefore, the person and ship factors have less influence on maneuvering 
decisions. With the operation of the ship, the OOW’s waterway and the environment will 
change with time and space, and the changing waterway and environmental factors will have 
a greater impact on maneuvering decisions. In this research, we mainly focus on the 
environmental influencing factors and study their effect on the decision-making of the OOW. 
Based on the strategy and the current maneuvering environment, the experienced OOW can 
quickly and accurately make maneuver decisions, thus laying the foundation for the study of 
human-like maneuvering behavior for the application to autonomous ships. We select six 
environmental influencing factors as the input of our proposed HDMDR model to study the 
decision-making mechanisms for different maneuvering behaviors. 
 
In order to let the maneuvering decision-making knowledge to be automatically obtained and 
expressed along with higher decision-making knowledge effectiveness, it is typically necessary 
to divide the number of linguistic terms by experience (Yuan and Shaw, 1995). In this study, 
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experimental data of each maneuvering decision-making factor are trisected into three levels, 
namely, small (a), medium (b), and large (c), see Table 4.3 in Chapter 4, to objectively describe 
the characteristics of each influencing factor, and make it easier to describe how each factor 
influences final maneuvering decisions. We select six environmental influencing factors as the 
input of our proposed model to study the decision-making mechanisms for different 
maneuvering behaviors: Current direction, current speed, relative current direction, relative 
wave direction, relative wind direction, relative wind speed (In other case, the other new factors 
can also be upgraded according to Algorithm 4.1 in Section 4.2.2 using specific standardization 
principle).  

 
The OOW maneuvers the ship by operating different telegraph and rudder orders to change 
ship’s speed and direction and to complete the ship’s control. Table 5.3 shows the combining 
telegraph and rudder orders (speed and course control respectively); this control is a multi-
dynamic process. Moreover, it should be noted that, unlike the ship sailing on the open sea, the 
OOW needs to call the rudder and telegraph orders frequently in the inbound decision-making 
ship handing process in the actual situation of the experimental scenario. Therefore, in this 
chapter, we do not consider “Midships” and “Stop/Standby/Finished with engines”, regardless 
of the rudder angle and if the power output is 0. Table 5.3 shows the standardization principle 
for output maneuvering decision-making factors. 
 

Table 5.3 Maneuvering decision-making factors and the proposed standardization principle (output). 

Attributes 
Speed control Course control 
Symbolic 
principle Status Symbol Symbolic 

principle Status Symbol 

Variety 
 Changed C1  Changed C2 

 Unchanged U1  Unchanged U2 

Direction 
 Ahead D1  Starboard D2 
 Astern T1  Port T2 

Maneuvering 
factors Decisions Symbols Decisions Symbols 

X(Dimensionless) 

U1D1U2T2 X1 U1D1C2T2 X9 
U1T1U2T2 X2 U1T1C2T2 X10 
U1D1U2D2 X3 U1D1C2D2 X11 
U1T1U2D2 X4 U1T1C2D2 X12 
C1D1C2T2 X5 C1D1U2T2 X13 
C1T1C2T2 X6 C1T1U2T2 X14 
C1D1C2D2 X7 C1D1U2D2 X15 
C1T1C2D2 X8 C1T1U2D2 X16 

5.4 Results and discussion 

5.4.1 Standardizing of training set 

The data in Table 5.2 are standardized according to the principle of standardization of 
maneuvering decision influencing factors in Table 4.3 and Table 5.3. Then the standardized 
training set is obtained, as shown in Table 5.4. 
 
 
 

1 0i ia a+ - ¹ 1 0i ib b+ - ¹

1 =0i ia a+ - 1 =0i ib b+ -

0ia ³ 0ib ³
0ia < 0ib <
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Table 5.4 The standardized training set (partially). 

No. X Y1 Y2 Y3 Y4 Y5 Y6 

  a b c a b c a b c a b c a b c a b c 
1 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
2 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
3 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
4 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
5 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
6 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
7 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
8 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
9 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
10 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
11 X14 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
12 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
13 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
14 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
15 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
… …    … … … … … … … … … … … … … … … 

5.4.2 Constructing and pruning the decision tree 

The C4.5 algorithm can be divided into two phases. First, a certain attribute is selected 
according to the criterion of maximum information gain to divide the training set, and the 
recursive call is performed until all the examples in each division belong to the same class; 
then, the established tree is pruned, i.e., the branch established above the noise data is cut. In 
the decision tree analysis, approximately 80% of the data is randomly selected as the training 
set, and the remaining 20% is used as the test set. Then, through Equations (4.3) to (4.7) and 
(5.1) to (5.4), we could obtain the decision tree structure, as shown in Figure 5.5, partitioned 
into 3 parts, Part I, II and III. The number and proportion of different decisions are shown in 
Figure 5.4. 
 

 
Figure 5.4 The number and proportion of different decisions. 
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Figure 5.5 The proposed navigational decision tree structure. 
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5.4.3 Establishing maneuvering decision classification rules 

The result of our proposed HDMDR model is a set of classification rules in the form of IF-
THEN. Each path from the root node to the leaf node constitutes a rule. The characteristics of 
the internal nodes of the path correspond to the conditions of the rule, and the classification of 
the leaf nodes corresponds to the conclusion of the rule. As a result, we can easily extract the 
human-like decision-making knowledge using the decision tree and rule set. The optimized 
maneuvering decision recognition rule set is shown in Table 5.5. 

 
Table 5.5 The established ship maneuvering decision classification rule set. 

No. Maneuvering decision classification rule set 

1 IF Y2=a AND Y3=a AND Y6=a THEN X=X1 
2 IF Y2=a AND Y3=a AND Y6=b AND Y5=b THEN X=X1 
3 IF Y2=a AND Y3=a AND Y6=b AND Y5=c AND Y1=c AND Y4=a THEN X=X1 
4 IF Y2=a AND Y3=a AND Y6=c AND Y5=c THEN X=X1 
5 IF Y2=a AND Y3=a AND Y6=c AND Y5=b AND Y1=c AND Y4=a THEN X=X1 
6 IF Y2=a AND Y3=b AND Y6=a AND Y5=b/c AND Y1=c AND Y4=a THEN X=X3 
7 IF Y2=a AND Y3=b AND Y6=b/c AND Y1=c AND Y4=a AND Y5=c THEN X=X3 
8 IF Y2=a AND Y3=c AND Y6=a AND Y1=c AND Y4=a AND Y5=c THEN X=X1 
9 IF Y2=a AND Y3=c AND Y6=b AND Y5=b THEN X=X1 
10 IF Y2=a AND Y3=c AND Y6=b AND Y5=c AND Y1=c AND Y4=a THEN X=X13 
11 IF Y2=a AND Y3=c AND Y6=c THEN X=X1 
12 IF Y2=b AND Y3=a AND Y5=b AND Y6=a AND Y1=c AND Y4=a THEN X=X9 
13 IF Y2=b AND Y3=a AND Y5=b AND Y6=b AND Y1=c AND Y4=a THEN X=X3 
14 IF Y2=b AND Y3=a AND Y5=b AND Y6=c THEN X=X1 
15 IF Y2=b AND Y3=a AND Y5=c AND Y6=a AND Y1=c AND Y4=a THEN X=X9 
16 IF Y2=b AND Y3=a AND Y5=c AND Y6=b AND Y1=c AND Y4=a THEN X=X7 
17 IF Y2=b AND Y3=a AND Y5=c AND Y6=c AND Y1=c AND Y4=a THEN X=X11 
18 IF Y2=b AND Y3=b AND Y5=b AND Y6=a AND Y1=c AND Y4=a THEN X=X3 
19 IF Y2=b AND Y3=b AND Y5=b AND Y6=b AND Y1=a/b THEN X=X3 
20 IF Y2=b AND Y3=b AND Y5=b/c AND Y6=b AND Y1=c AND Y4=a THEN X=X13 
21 IF Y2=b AND Y3=b AND Y5=b AND Y6=c AND Y1=c AND Y4=a THEN X=X3 
22 IF Y2=b AND Y3=b AND Y5=c AND Y6=a AND Y1=b THEN X=X1 
23 IF Y2=b AND Y3=b AND Y5=c AND Y6=a/c AND Y1=c AND Y4=a THEN X=X7 
24 IF Y2=b AND Y3=b AND Y5=c AND Y6=b AND Y1=a AND Y4=a THEN X=X3 
25 IF Y2=b AND Y3=b AND Y5=c AND Y6=b AND Y1=b THEN X=X11 
26 IF Y2=b AND Y3=c THEN X=X1 
27 IF Y2=c AND Y1=a THEN X=X3 
28 IF Y2=c AND Y1=b AND Y5=b AND Y6=a/c AND Y3=a AND Y4=a THEN X=X3 
29 IF Y2=c AND Y1=b AND Y5=b AND Y6=b AND Y3=a AND Y4=a THEN X=X9 
30 IF Y2=c AND Y1=b AND Y5=c AND Y3=a AND Y6=a THEN X=X3 
31 IF Y2=c AND Y1=b AND Y5=c AND Y3=a AND Y6=b/c AND Y4=a THEN X=X3 
32 IF Y2=c AND Y1=b AND Y5=c AND Y3=b AND Y6=a AND Y4=a THEN X=X3 
33 IF Y2=c AND Y1=b/c AND Y5=c AND Y3=b AND Y6=b AND Y4=a THEN X=X13 
34 IF Y2=c AND Y1=b AND Y5=c AND Y3=b AND Y6=c AND Y4=a THEN X=X3 
35 IF Y2=c AND Y1=c AND Y5=b AND Y3=a AND Y4=a THEN X=X3 
36 IF Y2=c AND Y1=c AND Y5=c AND Y3=a AND Y6=a AND Y4=a THEN X=X9 



 
 70 Modeling Seafarers’ Navigational Decision-Making for Autonomous Ships’ Safety 

  

37 IF Y2=c AND Y1=c AND Y5=c AND Y3=a AND Y6=b AND Y4=a THEN X=X15 
38 IF Y2=c AND Y1=c AND Y5=c AND Y3=a AND Y6=c AND Y4=a THEN X=X3 
39 IF Y2=c AND Y1=c AND Y5=c AND Y3=b AND Y6=a AND Y4=a THEN X=X2 
40 IF Y2=c AND Y1=c AND Y5=c AND Y3=b AND Y6=c AND Y4=a THEN X=X1 

5.4.4 Performances assessment 

Applying rules for classification 

We use the maneuvering decision-making model proposed in this chapter to identify the 
decision-making data to be identified in Table 5.6. We compare the recognition results with 
the actual ship maneuvering decisions and use the accuracy of the recognition to verify the 
validity of the model. The standardized maneuvering decision-making data are identified in 
Table 5.6, using classification rules 33, 29, and 37, and the recognition result is X13, X13, X13, 
X9, X9, and X15. This result is consistent with actual maneuvering decisions and demonstrates 
high reasoning efficiency. 
 
The test data set was evaluated and validated using the generated decision tree model. There 
were 135531 samples participating in the test, accounting for 20% of the overall data set. To 
assess the accuracy of the HDMDR model, the data in the test data set is used for prediction, 
and the degree of agreement between the test results and the actual situation is compared. For 
the classified dataset, the performance could be measured by using a confusion 
matrix/contingency, the accuracy of the proposed module (ACC) could be calculated as: 

,                                                (5.5) 
where TN is true negatives (correct negative assignments), TP is true positives (correct positive 
assignments), FN is false negatives (incorrect negative assignments), and FP is false positives 
(incorrect positive assignments). The classification average accuracy of our proposed HDMDR 
model using C4.5 decision trees based on the test data set can reach about 80.58%. 

 
Table 5.6 Maneuvering decision data to be identified and its standardization. 

Maneuvering decision aata to be identified 

No. 

X (Actual maneuvering 
decision) Y1 Y2 Y3 Y4 Y5 Y6 Rudder 
order  

Telegraph 
order 

1 -35.0000  16.3207  315.3000  1.0802  -65.1521  -1.2042  121.7873  9.5846  
2 -35.0000  18.9076  315.3000  1.0802  -62.0192  -0.9383  120.5850  9.5745  
3 -35.0000  20.0000  315.3000  1.0802  -60.9662  -0.8662  119.8690  9.5714  
4 -10.0000 20.0000  315.3000  1.0802  -59.8343  -0.6030  117.7910  9.5586  
5 -5.0000 20.0000  316.5000  1.0802  -59.7830  -0.4652  116.2045  9.5551  
6 10.0000 5.3301  317.2000  1.0802  -59.5314  0.0373  118.1805  9.5551  
Standardized maneuvering decision data to be identified 

No. 
X Y1 Y2 Y3 Y4 Y5 Y6 
Rudder 
order 

Telegraph 
order a b c a b c a b c a b c a b c a b c 

1 -35.0000 16.3207  0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
2 -35.0000 18.9076  0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
3 -35.0000 20.0000 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
4 -10.0000 20.0000 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 
5 -5.0000 20.0000 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 

TN TPACC
TN TP FN FP

+
=

+ + +
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6 10.0000 5.3301 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 

Comparative analysis 

To further validate the effectiveness of the HDMDR model, in this chapter, we compare the 

performance of the proposed C4.5 decision tree algorithm with two classic classification 

algorithms: k-NN and SVM. In our case, we use the radial basis function (RBF) to conduct the 

SVM and k=1 in the k-NN. Besides, we use classification accuracy, shown as Equation (4.12), 

to measure the proposed C4.5 algorithm. In addition,  in this chapter, the code for the basic 

versions of k-NN and SVM classifiers is adopted from the Waikato Environment for 

Knowledge Analysis (WEKA), which is open source data mining software (Hall et al., 2009). 

WEKA is a comprehensive software that implements many state-of-the-art machine learning 

and data mining algorithms. 

 

 

 

 

 
   

Classifier algorithms  

k-NN Fold Accuracy 

 1 75.36  

 2 73.79  

 3 73.81  

 4 74.62  

 5 72.87  

 6 76.86  

 7 72.37  

 8 75.72  

 9 74.89  

 10 75.66  

Average - 74.60  

SVM  Accuracy 

 1 70.26  

 2 72.62  

 3 75.43  

 4 73.62  

 5 77.79  

 6 72.83  

 7 70.29  

 8 71.63  

 9 74.13  

 10 73.09  

Average - 73.17  

Proposed method  Accuracy 

 1 80.33  

 2 79.88  

 3 83.42  

 4 76.59  

 5 79.16  

 6 83.76  

 7 79.78  

We conduct a ten-fold cross-validation (10-CV) experiment using the data from training set.

10-CV breaks data into ten sets equally, then trains the classifier on nine data sets and uses it 

to test the remaining one data set. Repeating ten times like this, and finally taking an average 

accuracy, thus to compare the performance of the proposed C4.5 decision tree algorithm with 

k-NN and SVM. The performance of different classifier algorithms on our data set is shown in 

Table 5.7 and Figure 5.6. According to the classification accuracy results, the proposed method 

can achieve the highest accuracy among these three algorithms. 

Accuracy (performance is measured in %)

Table 5.7 The performance of different classifier algorithms.
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 8 82.56  
 9 81.86  
 10 78.43  
Average - 80.58  

 

 

Figure 5.6 The accuracy of different classifier algorithms. 

5.5 Conclusions 

In this chapter, an autonomous ship Human-like Decision-making Maneuvering Decision 
Recognition (HDMDR) model and a novel standardization principle of maneuvering decision-
making factors are proposed for the learning of human-like decision-making mechanisms of 
autonomous ships. By establishing an autonomous learning method of maneuvering decision-
making, the processes of autonomous learning OOWs’ maneuvering decision-making 
characteristics are studied. In addition, it is unique and very valuable to obtain experimental 
data operated by an experienced OOW on the full-task handling simulation platform in a certain 
time and space. To validate the performance and effectiveness of our proposed model, the 
assessment of applying rules for classification and the comparative analysis with the k-NN and 
SVM are compared. According to the results, the classification accuracy of our proposed 
HDMDR model can reach more than 81.6%. In addition, the proposed method is superior to 
the representative classification algorithms. 
 
This chapter provides a new perspective and methodology for the development of autonomous 
ship maneuvering decision-making technology in theory and practice, promotes the application 
and spreading of autonomous ships under specific scenarios, and is conducive to the 
development of water transportation in the direction of safety, sustainability and economy. In 
the subsequent research, some advanced machine learning methods and various inbound and 
outbound scenarios with more complicated navigational situations will be explored combined 
with COLREGs rules or predicted trajectories based on the historical AIS data (in the broader 
region from offshore to the port). Additionally, the remote human-machine interaction assistant 
systems in combination with the information from VTS could also be employed in the future. 
In addition, in Chapter 6, we will study the classification of the influencing factors, the fuzzy 
processing of data sets, etc., to further optimize our proposed algorithm. 

 



 

Chapter 6 Modeling human-like decision-making 
for autonomous ships based on fuzzy 
decision tree 

In this chapter, we use an improved decision tree, which could address problems of fuzziness 
and uncertainty. This will allow us to study the decision mechanisms of different maneuvering 
behaviors in order to realize the automatic acquisition and representation of the seafarer’s 
decision-making knowledge in inbound ship analysis as well as the simulated reproduction 
of the seafarer’s behavior. The simulation results show that the maneuvering decision 
recognition model, based on the fuzzy Iterative Dichotomiser 3 (ID3) decision tree, possesses 
a high reasoning speed and can accurately identify current maneuvering behavior. This 
provides theoretical guidance and a feasibility basis for research into human-like 
maneuvering behavior and the realization of automatic autonomous ship maneuvering 
systems. 
 
This chapter is organized as follows. First, Section 6.1 introduces the motivation and 
background of this chapter. Second, the maneuvering decision-making model and the 
optimization methodology are given in Section 6.2. Then, the experimental processes, the 
method of classification interval division, and the standardization principle of maneuvering 
decision-making factors are introduced in Section 6.3. Finally, the performance of the model 
and optimization methodology are shown in section 6.4, and we end with conclusions in 
Section 6.5. 
 
The content of this chapter is an edited version of the following published paper: 
 
Xue, J., Wu, C., Chen, Z., van Gelder, P. H. A. J. M., & Yan, X. (2019). Modeling human-
like decision-making for inbound smart ships based on fuzzy decision trees. Expert Systems 

with Applications, 115, 172-188. 
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6.1 Introduction 

The further development of marine and information technologies promotes intelligence, 
green policies and automation become mainstream for global cargo ships. Ship labor costs 
increase every year, so for the foreseeable future, the number of experienced seafarers will 
be greatly reduced as autonomous ship emergence accelerates. At present, there is no mature 
research system for the human-like maneuvering of autonomous ships. Ship maneuvering 
decision-making studies are a classification of the ship’s operating behavior in accordance 
with certain rules. A decision tree is a classification method of data mining that can potentially 
find valuable information by classifying a large amount of data. It has the advantages of 
simple descriptions, fast classifications and is suitable for large-scale data processing. It can 
learn from the sample, obtain classification rules, and classify the samples according to these 
rules. Decision tree methods can overcome the previously mentioned defects in the 
introduction part of Chapter 2. They integrate knowledge representation and acquisition with 
a simple and intuitive form. This is convenient for expert testing and has higher reasoning 
efficiency. Therefore, it is feasible and reasonable to apply the decision tree classification 
method to the decision-making of ship maneuvering. 
 
At present, the commonly used decision tree classification algorithms include the Iterative 
Dichotomiser 3 (ID3) algorithm, C4.5 algorithm, Classification and Regression Trees 
algorithm (CART) algorithm, etc., (Wang and Jiang, 2011). In these algorithms, the C4.5 
algorithm is very complex when continuously processing data, and its workload is large. The 
CART algorithm is a statistical analysis method appropriate for large samples but is not 
applicable when processing small sample sizes. The ID3 algorithm is the most influential 
decision tree generation algorithm. It chooses the attribute with the highest information gain 
as the test attribute of the current node. It divides the sample set based on the value of the test 
attribute, how many different values of the test attribute exist, the number of subset divisions, 
and then further divides the corresponding subset of the sample using a recursive method. 
However, the decision tree construction algorithms above are all based on the assumption that 
the attribute and classification values are clear, so these algorithms cannot address the 
uncertainties related to human thinking and behavior. Quinlan (1986) noted that while 
classification results of a decision tree are clear, it cannot address potential uncertainty during 
the classification process. When the attribute value has a slight change, mutations can 
inappropriately affect the classification results. The resulting decision tree generally is not 
robust, and inaccurate or missing data can prevent in the decision tree growing phase 
(Kantardzic, 2011). As a data mining method, the Fuzzy Decision Tree (FDT) is an extension 
of the classical decision tree. It integrates the advantages of fuzzy theory and decision trees 
by combining the comprehensibility of decision trees and the comprehensive expressions of 
fuzzy technology. The FDT has strong decision-making abilities and can address the problems 
of ambiguity and uncertainty. Therefore, the decision tree is more robust, its 
comprehensibility is improved, and the expansion of the algorithm is enhanced (Janikow, 
1998; Olaru and Wehenkel, 2003).  
 
In view of this, in this chapter, we collect data on the full-task handling simulation platform 
for large-scale ships named Navi-Trainer Professional 5000. We use the fuzzy ID3 decision 
tree to study the decision-making mechanisms of different maneuvering behaviors in order to 
realize the automatic acquisition and representation of a seafarer’s decision-making. This will 
overcome the shortcomings of phase separation between representation and acquisition. We 
use parameters  and  to control tree generation and carry out pre-pruning. We take the 
average of the optimal interval of the FDT, the significance level , and truth level threshold 

a b
a
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. This method can identify the current maneuvering behavior accurately and has high 
reasoning efficiency, which provides theoretical guidance and feasibility bases for the 
simulation and realization of autonomous ship automatic maneuvering systems.  

6.2 Maneuvering decision-making model 

6.2.1 Grey relation entropy model 

The grey relational analysis method is based on the degree of dissimilarity or similarity of 
target system to measure the correlation degree between factors or factors and system 
behaviors (Deng, 1989; Zhang et al., 1996). The grey relation entropy analysis method is 
based on the grey relational analysis method. By using this method, it could avoid the loss 
when the local node correlation value controlling the tendency of the whole grey correlation 
in determining the grey correlation degree (Deng, 1990). Therefore, it can distinguish the 
impacts of major factors and secondary factors on the whole system more effectively. 

Grey relational grade 

Let  be grey relation factor set (discrete series),  as reference 
columns and  as comparison columns. Due to the 

inconsistent dimension of various factors,  and  need to be standardized. Then we get 
the sequences  and , as shown in Equations (6.1) and (6.2):  

,                                    (6.1) 

 

,                          (6.2) 

 
which is a standardized matrix for evaluation problems consisting of n objects and m 
indicators. 
Among them, is the standard deviation of the sequence . 
                                                                                           
the correlation coefficient of  to  is: 

,                    (6.3) 

among them,  is the minimum difference of two levels, and 

 is the maximum difference of two levels.  is a resolution ratio, 

in (0,1), if  is small, the greater the difference between the relationship coefficient, the 
stronger the ability to distinguish, and  usually takes a value of 0.5 (Wang et al., 2014b). 

Grey relation entropy 

Let  be grey relation factor set (discrete series),  as reference 
columns and  as comparison columns. 
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, so the grey correlation coefficient distribution map is 
called the density value of the distribution, as shown in Equation (6.4): 

.                                                          (6.4) 

 

The grey relation entropy of  is expressed as: 

.                                                          (6.5) 

 
From the entropy law, we can see that when the grey entropy of sequence  is the largest, 
it means that the influence of  points on the reference column is equal, which indicates 
that the distance between  and the reference column is more balanced, so  is closer to 
the reference column geometry, and  is the strongest associated column. From the grey 
entropy theorem, the entropy correlation equation is: 

.                                                              (6.6) 

Where  is the maximum value of grey entropy, , and n represents the maximum 
value of the difference information column consisting of n elements (Deng, 1989). 
 
By entropy correlation criterion, the greater the entropy correlation degree of the comparison 
column, the stronger the correlation between the comparison column and the reference 
column. Therefore, using the above model, take the ship entry maneuvering decision 
(reflected on the control side, it is the ship rudder combination) as the reference sequence, 
and various influencing factors as the comparison sequence, then comprehensively judge the 
influence degree of each influence factor on the ship entry maneuvering decision, thus 
determining the order of each influence factors. 

6.2.2 Fuzzy decision tree model 

A decision tree, also known as a tree model or tree structure model, is extensively applied in 
the field of data mining. Its principle is not complicated, as its basic idea is similar to variation 
analysis. Its basic purpose is to divide the total study sample into several relatively 
homogeneous sub-samples using some characteristic(s) (independent variable(s)). The 
internal variables of each sub-sample are highly consistent, and the corresponding 
variation/impurity falls between different sub-samples as far as possible. All decision tree 
algorithms follow this principle, with the difference being in the definition of 
variation/impurity, such as the use of P values, variance, entropy, Gini coefficient, etc. as a 
measurement index. According to the predicted dependent variable type, the decision tree can 
be divided into two categories: classification tree and regression tree. A decision tree is a tree 
consisting of internal nodes and leaf nodes for classification and decision-making, where each 
internal node represents a test on an attribute, each branch represents a test output, and each 
leaf node represents a class or class distribution. The top node of the tree is the root node, and 
a path from the root node to the leaf node forms a classification rule. Decision trees are very 
intuitive classification representations and can be easily converted into classification rules. 
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The FDT is the expansion and perfection of a traditional decision tree, which extends decision 
tree learning to handle uncertainty. There is a lot of blurring in real life. Most knowledge is 
ambiguous and uncertain. Thus, experts usually use vague expertise to solve practical 
problems, and this transforms the traditional decision tree learning method. 
 
To create a FDT, we first must select the classification attribute at each node. The fuzzy ID3 
algorithm uses the concept of entropy. This concept is inversely proportional to the order 
degree of the data in the sample space. The more ordered the data, the smaller the entropy, 
and vice versa. If you select a classification attribute to classify the sample data at the node 
so that the entropy of the node deceases the most, then it is optimal to choose it as a 
classification attribute. The fuzzy ID3 algorithm defines the information gain to represent the 
reduction of this entropy (Umanol et al., 1994), so the attribute with the largest information 
gain should be selected as the extended attribute of the node. 
 
Set the domain as  to represent the example set that summarizes the 

forecast rules. Each element  in the example set has  fuzzy attributes: 

. The range of each attribute  is , the j-th 

example  around the value of the i-th attribute is represented by the 
corresponding membership degree , which constitutes a fuzzy subset defined on the range 

 of , and the classification to be divided is .   
 
The information gain  for the attribute  is calculated as follows: 

,                                                 (6.7) 
where                                                     

,                                                       (6.8) 

,                                                                  (6.9) 

,                                                           (6.10) 

,                                                             (6.11) 

，                                                        (6.12) 

among them, let  to be a fuzzy subset in  whose class is ,  is the sum of the 

membership values of the set of data , and  is the sum of the membership values of 

the set of data ,  is
 
the sum of the membership values of the set of data  and 

calculate the . After that, we obtain the fuzzy information gain of each attribute at 

each node calculated by  through Equations (6.7) to (6.12) and select the attribute 
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with the largest information gain as the extended attribute of the node to realize the division 
of the example set.  
 
The fuzzy ID3 algorithm needs to calculate the information gain of each decision attribute, 
and the attribute with the largest fuzzy information gain is selected as the decision attribute 
node of the given data set. We then set up the branch of the node by the value of each attribute.  
 
The FDT algorithm consists of three steps: 
 

1) Data preprocess: We need to fuzzify the data items of quantitative attributes and divide 
the quantitative attributes into several linguistic terms. In other words, they must be converted 
into character attribute values; 

 
2) Establish decision tree: Using fuzzy entropy as the heuristic, we select the extended 

attribute from the root to the leaf, divide the example set, and establish the FDT; 
 

3) Match: We predict unknown examples and use the fuzzy matching method to 
determine the category based on the FDT that has been generated. 

Fuzzifying the training data 

In a classification issue, the training data attributes are either categorical attributes or 
continuous numerical attributes. When the data is quantity type, it needs to be fuzzified, and 
the data set is fuzzified into several linguistic terms. That is, they must be converted into 
character type attribute values. This transformation process is a conceptual process of 
reducing decision information (Yuan and Shaw, 1995). There are two steps in the fuzzification 
process. The first step is to select an effective membership function, such as the triangular 
membership function, the trapezoidal membership function, or the Gaussian membership 
function (Chang et al., 2010; Fan et al., 2011; Pulkkinen and Koivisto, 2008). The second 
step is to find the center point of the fuzzy domain, but the number of central points (divided 
into several linguistic terms) need to pre-set by experience. Some studies have shown that the 
fuzzy effect of the Gaussian membership function is better. However, in practical applications, 
the triangular membership functions are used more often due to their simplicity (Fan et al., 
2011; Wang et al., 2015; Wang et al., 2008). Therefore, in this chapter, we use the triangular 
membership function to fuzzify the quantitative database. The following is a triangular 
membership function definition (Yuan and Shaw, 1995). 
 
Definition 1: For all examples, attribute that A has a quantitative attribute value , expressed 
as , We want to cluster  to  linguistic terms . And 

the triangular membership function equation for each linguistic term  is shown in 
Equations (5.13) to (5.15), the 
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.                     (6.15) 

 
Assume that the mentioned dataset D above, where each data has n values for each attribute 
and one classified class  . In addition, if the attribute has three center points, 
then the three alternative classified classes could be defined over a value range in fuzzy terms 
and expressed using the triangular membership function, as shown in Figure 6.1. 
 

 
Figure 6.1 Example of triangular membership function. 

Pruning decision trees 

The FDT algorithm is an improvement over the traditional Clear Decision Tree (CDT) 
algorithm. The fuzzy ID3 algorithm uses fuzzy entropy as the heuristic to select the extended 
attribute, establishes the FDT, converts each path from the root to the leaf into the rule, 
generates the fuzzy rule set, matches the example with the fuzzy matching method, and draws 
conclusions that are closer to human thought (Maimon and Rokach, 2014). The CDT pruning 
method can be used in the FDT algorithm with only a few modifications (Yuan and Shaw, 
1995). 
 
The CDT algorithm is not suitable for pre-pruning. Therefore, it focuses on post-pruning 
methods (Esposito et al., 1997; Quinlan, 2014). Unlike CDT, the FDT algorithm contains pre-
pruning strategies. During the establishment of the FDT, the significance level  and truth 
level threshold  can be well controlled when constructing the FDT. 
 
In addition, unlike the CDT algorithm, the training accuracy and test accuracy are not changed 
greatly when the rule of FDT is simplified and the lifting range is between 0.001 to 0.005. It 
has been proven that the decision tree produced by the FDT algorithm has strong prediction 
abilities, and regular set-pruning strategies cannot further improve its prediction accuracy. 
The main reasons are as follows (Sun and Wang, 2006): 
 

1) The FDT algorithm establishes the decision tree after blurring the continuous data. 
The fuzziness expresses the correlation and dissimilarity of the attribute value better than the 
discretization of the CDT algorithm. It can also reduce the interference of the noise data to a 
certain extent. 
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2) In the construction process, the FDT algorithm uses  and  to control tree 
generation and carry out pre-pruning; 

 
3) The matching strategy of the fuzzy rule set can reduce the noise in the test data so that 

the matching results are close to the best classification results. 
 

In the process of the FDT generation, there is overlap between the examples covered by the 
same attribute value, which affects the selection of extended attributes. The introduction of 
significant level  can reduce the influence of this overlap and reduce the uncertainty of 
classification so that the entire generation process of the FDT is performed on a given 
significance level . Meanwhile, in the FDT generation process, the parameter  is an 
important condition that is used to control the leaves’ generation. The value of  and  
directly affects the performance of the FDT. Often, as the value of  increases, the 
classification uncertainty in the process of building is reduced, but the excessive value of  
will lose some sample information during the tree-building process. The higher the value of 

, the larger the decision tree, but the extension ability of the decision tree is reduced. If the 
value of  is too low, then the decision tree will be too small to summarize the feature set. 
In addition, in (Sun and Wang, 2006), the author, through the control variate method, noted 
that the vicinity of 0.7 to 0.8 usually obtains a better decision tree, and this conclusion has 
been verified by genetic algorithm; when  ranges from 0.30 to 0.45, good results are 
obtained. 
 
The FDT algorithm can effectively control the pre-pruning due to its own parameters  and 

, resulting in a small-shaped tree with strong forecasting ability. The values of parameters 
 and  are easily determined and can be derived empirically or experimentally. FDT’s 

post-pruning method can also reduce the size of the tree and improve the prediction ability to 
a certain extent, but the effect is not obvious unless the parameters of the FDT algorithm are 
not selected suitably; then, the pruning effect will be obvious. 
 
The FDT algorithm is superior to or equivalent to the CDT method with regular simplification 
in terms of efficiency tree size and prediction ability. Therefore, in this chapter, we construct 
the FDT with a fuzzy ID3 algorithm and take the average of the optimal interval of the FDT, 
the significance level , and truth level threshold  interval set =0.375 and = 0.750, 
to control the pre-pruning process of FDT. 

6.3 Experiments 

The scenario design was the aforementioned scenario in Chapters 3-5, i.e., the ship was 
downstream berthing into the Shanghai Waigaoqiao wharf port. Additionally, the data 
collection and basic processing procedures are the same as well. Note that the factors Y1-Y33 
here are the same as the influencing factors in Chapter 3 but different from the influencing 
factors, which have the same subscript number in Chapters 4 and 5.  
 
Moreover, in this chapter, the optimized data set partitions and standardization principle for 
the input maneuvering decision-making factors are proposed. Fuzzifying the data set as a 
linguistic term is essentially a conceptualization of reduced decision information. It is usually 
necessary to divide the number of linguistic terms by experience (Yuan and Shaw, 1995). For 
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instance, the temperature can be conceptualized into three linguistic terms: Cool, Mild, and 
Hot. In this chapter, experimental data of each maneuvering decision-making factor are 
trisected into three levels: small (a), medium (b), and large (c), to objectively describe the 
characteristics of each influencing factor, facilitate the construction of a hierarchical and 
fuzzy decision tree model, and make it easier to describe and mine in detail how each factor 
influences final driving decisions. Among them, for directional vector influencing factors, 
such as direction, speed, turning rate, etc., if there is a situation in which the directions are 
different (There are positive and negative signs in the original data), and the data is 
asymmetrical, then the extreme value with a large absolute value is selected as the endpoint 
of the equalization to perform equalization processing. Moreover, the actual physical meaning 
of each influencing factor, such as Wave Height, Height above the Water and other 
influencing factors should be fully considered. Although they are vectors and have positive 
and negative values, they are still directly divided equally and are no longer considered using 
the above absolute value to get the endpoint. When the data are preprocessed, all the influence 
factors whose internal data are all zero or unchanged are removed, and the remaining 
influence factors are sorted in descending order. And the 30 sets of data with large saltation 
at both ends of the descending order data set are removed, and the extreme values at both 
ends of the processed data set are selected as the equalization endpoint values to determine 
the intermediate split points, in order to describe the various characteristics of each factor 
more objectively. Table 6.1 shows the processed data set partitions. 
 

Table 6.1 The processed data set partitions and standardization principle of maneuvering decision-
making factors (input). 

Influence 
factors Meaning 

Symbolic principle 
Small (a) Medium (b) Large (c) 

Y1 Current draft at ship 
bow(meters) 

[9.9751, 
10.16570) [10.1657, 10.3562) [10.3562, 

10.5468) 

Y2 Current draft at ship 
stern(meters) 

[10.5908, 
10.8096) [10.8096, 11.0283) [11.0283, 

11.2470) 

Y3 Under keel clearance 
aft(meters) [1.3714, 3.3516) [3.3516, 5.3318) [5.3318, 7.3120) 

Y4 Under keel clearance 
fwd(meters) [3.3407, 4.8641) [4.861, 6.3874) [6.3874, 7.9108) 

Y5 Current direction(degrees) [313.9000, 
315.5000) 

[315.5000, 
317.1000) 

[317.1000, 
318.7000) 

Y6 Current speed(knots) [1.0108, 1.0432) [1.0432, 1.0756) [1.0756, 1.1080) 

Y7 Relative current 
direction(degrees) 

[-60.0000, 
0.0000) 

[-120.0000, -
60.0000) 

[-180.0000, -
120.0000) 

[0.0000, 60.0000) [60.0000, 
120.0000) 

[120.0000, 
180.0000) 

Y8 Relative wave 
direction(degrees) 

[-41.5000, 
0.0000) 

[-83.0000, -
41.5000) 

[-124.5000, -
83.0000) 

[0.0000, 41.5000) [41.5000, 83.0000) [83.0000, 
124.5000) 

Y9 Relative wind 
direction(degrees) 

[-59.0205, 
0.0000) 

[-118.0411, -
59.0205) 

[-177.0616, -
118.0411) 

[0.0000, 59.0205) [59.0205, 
118.0411) 

[118.0411, 
177.0616) 

Y10 Relative wind 
speed(knots) [0.2644, 7.5154) [7.5154, 14.7664) [14.7664, 

22.0174) 

Y11 Water depth(meters) [13.0034, 
14.0023) 

[14.0023, 
15.00113) 

[15.00113, 
16.0000) 
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Y12 Wave height(meters) [-0.4155, -
0.1234) [-0.1234, 0.1686) [0.1686, 0.4607) 

Y13 Forces Parameters. 
Lateral force(tonne-force) 

[-37.5423, 
0.0000) 

[-75.0846, -
37.5423) 

[-112.6269, -
75.0846) 

[0.0000, 
37.542302) — — 

Y14 
Forces Parameters. 
Longitudinal force(tonne-
force) 

[-142.0715, 
0.0000) 

[-284.1429, -
142.0715) 

[-426.2144, -
284.1429) 

[0.0000, 
142.0715) — — 

Y15 
Forces Parameters. 
Summary force(tonne-
force) 

[0.0000, 
160.2039) 

[160.2039, 
320.4078) 

[320.4078, 
480.6117) 

Y16 
Forces 
Parameters .Vertical 
force(tonne-force) 

[-11.6871, 
0.0000) 

[-23.3742, -
11.6871) 

[-35.0612, -
23.3742) 

[0.0000, 11.6871) [11.6871, 23.3742) [23.3742, 
35.0612) 

Y17 Mooring lines. Lateral 
force(tonne-force) 

[-162.9374, 
0.0000) — — 

[0.0000, 
162.9374) 

[162.9374, 
325.8748) 

[325.8748, 
488.8122) 

Y18 
Mooring lines. 
Longitudinal force(tonne-
force) 

[-44.9968, 
0.0000) 

[-89.9937, -
44.9968) 

[-134.9905, -
89.9937) 

[0.0000, 44.9968) [44.9968, 89.9937) [89.9937, 
134.9905) 

Y19 Mooring lines. Summary 
force(tonne-force) 

[0.0000, 
167.8068) 

[167.8068, 
335.6137) 

[335.6137, 
503.4205) 

Y20 Mooring lines. Vertical 
force(tonne-force) 

[-33.1281, 
0.0000) 

[-66.2562, -
33.1281) 

[-99.3843, -
66.2562) 

Y21 Heading(degrees) [100.5245, 
178.1916) 

[178.1916, 
255.8587) 

[255.8587, 
333.5258) 

Y22 Height above the 
water(meters) [1.4207, 2.0598) [2.0598, 2.6989) [2.6989, 3.3381) 

Y23 Lateral speed(knots) 
[-0.7564, 0.0000) [-1.5129, -0.7564) — 

[0.0000, 0.7564) [0.7564, 1.5129) [1.5129, 2.2693) 

Y24 Longitudinal speed(knots) 
[-2.6398, 0.0000) — — 

[0.0000, 2.6398) [2.6398, 5.2797) [5.2797, 7.9195) 

Y25 Pitch angle(degrees) [0.1575, 0.1887) [0.1887, 0.2200) [0.2200, 0.2512) 

Y26 Pitch rate(degrees/min) 
[-0.9887, 0.0000) [-1.9774, -0.9887) [-2.9660, -1.9774) 

[0.0000, 0.9887) [0.9887, 1.9774) [1.9774, 2.9660) 

Y27 Rate of turn(degrees/min) 
[-13.3700, 
0.0000) 

[-26.7401, -
13.3700) 

[-40.1101, -
26.7401) 

[0.0000, 13.3700) [13.3700, 26.7401) — 

Y28 Roll angle(degrees) 
[-1.4621, 0.0000) — — 

[0.0000, 1.4621) [1.4621, 2.9242) [2.9242, 4.3864) 

Y29 Roll rate(degrees/min) 

[-13.9547, 
0.0000) 

[-27.9093, -
13.9547) 

[-41.8640, -
27.9093) 

[0.0000, 13.9547) [13.9547, 27.9093) [27.9093, 
41.8640) 

Y30 Vertical speed(knots) [-0.2744, 0.0000) [-0.5488, -0.2744) [-0.8232, -0.5488) 
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Furthermore, when the optimized middle split point is determined, the extreme value of the 
sorted original data is selected as the extreme value of both ends when the saltation is 
inconspicuous; when it is judged that the saltatorial extremum is beyond the normal range 
extension according to the real physical meaning of the influence factors, then the 
corresponding row of the influence factor data at the moment of saltatorial occurrence is 
deleted, and then the processed endpoint extreme value is selected. Meanwhile, in order to 
contain all the data in each influencing factor, the selected rules do not completely follow the 
principle of rounding. And after four digits are retained after the decimal point, the open 
interval and closed interval of the split points are determined flexibly according to the trade-
off situation. For instance, when the number 12.364512 is the left boundary of the interval, it 
is retained as 12.3645, and the open interval is selected; when it is the right boundary of the 
interval, then it is retained as 12.3646 and the open interval is selected; and if the boundary 
is an integer, it is selected as the boundary value and the closed interval is selected. The 
partition of the optimized data set segmentation interval is shown in Table 6.2. 

 
Table 6.2 The optimized data set partitions and standardization principle of maneuvering decision-

making factors (input). 

[0.0000, 0.2744) [0.2744, 0.5488) [0.5488, 0.8232) 

Y31 Yaw rate(degrees/min) 
[-13.3700, 
0.0000) 

[-26.7401, -
13.3700) 

[-40.1101, -
26.7401) 

[0.0000, 13.3700) [13.3700, 26.7401) — 

Y32 Latitude(degrees) [31.3410, 
31.3447) [31.3447, 31.3483) [31.3483, 

31.3520) 

Y33 Longitude(degrees ) [121.6420, 
121.6444) 

[121.6444, 
121.6467) 

[121.6467, 
121.6490) 

Influence 
factors Meaning 

Symbolic principle 
Small (a) Medium (b) Large (c) 

Y1 Current draft at ship 
bow(meters) 

(9.0160, 
10.16570) [10.1657, 10.3562) [10.3562, 

10.8347) 

Y2 Current draft at ship 
stern(meters) (9.6172, 10.8096) [10.8096, 11.0283) [11.0283, 

14.3239) 

Y3 Under keel clearance 
aft(meters) (0.7235, 3.3516) [3.3516, 5.3318) [5.3318, 7.9108) 

Y4 Under keel clearance 
fwd(meters) (2.7321, 4.8641) [4.861, 6.3874) [6.3874, 8.9840) 

Y5 Current direction(degrees) [313.9000, 
315.5000) 

[315.5000, 
317.1000) 

[317.1000, 
318.7001) 

Y6 Current speed(knots) (1.0107, 1.0432) [1.0432, 1.0756) [1.0756, 1.1080) 

Y7 Relative current 
direction(degrees) 

[-60.0000, 
0.0000) 

[-120.0000, -
60.0000) 

(-180.0000, -
120.0000) 

[0.0000, 60.0000) [60.0000, 
120.0000) 

[120.0000, 
180.0000] 

Y8 Relative wave 
direction(degrees) 

[-41.5000, 
0.0000) 

[-83.0000, -
41.5000) 

(-124.5000, -
83.0000) 

[0.0000, 41.5000) [41.5000, 83.0000) [83.0000, 
124.8000] 

Y9 Relative wind 
direction(degrees) 

[-59.0205, 
0.0000) 

[-118.0411, -
59.0205) 

(-179.7170, -
118.0411) 

[0.0000, 59.0205) [59.0205, 
118.0411) 

[118.0411, 
179.8750) 

Y10 Relative wind (0.0228, 7.5154) [7.5154, 14.7664) [14.7664, 
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speed(knots) 22.1793) 

Y11 Water depth(meters) (12.5530, 
14.0023) 

[14.0023, 
15.00113) 

[15.00113, 
16.0000] 

Y12 Wave height(meters) [-0.7300, -
0.1234)  [-0.1234, 0.1686) [0.1686, 0.6900] 

Y13 Forces Parameters. 
Lateral force(tonne-force) 

[-37.5423, 
0.0000) 

[-75.0846, -
37.5423) 

(-1025.9804, -
75.0846) 

[0.0000, 
37.542302) [37.5423, 75.0846) [75.0846, 

2607.3083) 

Y14 
Forces Parameters. 
Longitudinal force(tonne-
force) 

[-142.0715, 
0.0000) 

[-284.1429, -
142.0715) 

(-24592.3230, -
284.1429) 

[0.0000, 
142.0715) — — 

Y15 
Forces Parameters. 
Summary force(tonne-
force) 

[0.0000, 
160.2039) 

[160.2039, 
320.4078) 

[320.4078, 
25144.6958) 

Y16 
Forces 
Parameters .Vertical 
force(tonne-force) 

[-11.6871, 
0.0000) 

[-23.3742, -
11.6871) 

(-4547.0121, -
23.3742) 

[0.0000, 11.6871) [11.6871, 23.3742) [23.3742, 
2024.0176) 

Y17 Mooring lines. Lateral 
force(tonne-force) 

(-162.9374, 
0.0000) — — 

[0.0000, 
162.9374) 

[162.9374, 
325.8748) 

[325.8748, 
953.2618) 

Y18 
Mooring lines. 
Longitudinal force(tonne-
force) 

[-44.9968, 
0.0000) 

[-89.9937, -
44.9968) 

(-286.8233, -
89.9937) 

[0.0000, 44.9968) [44.9968, 89.9937) [89.9937, 
333.4608) 

Y19 Mooring lines. Summary 
force(tonne-force) 

[0.0000, 
167.8068) 

[167.8068, 
335.6137) 

[335.6137, 
983.4908) 

Y20 Mooring lines. Vertical 
force(tonne-force) 

[-33.1281, 
0.0000] 

[-66.2562, -
33.1281) 

[-246.0158, -
66.2562) 

Y21 Heading(degrees) [100.2441, 
178.1916) 

[178.1916, 
255.8587) 

[255.8587, 
339.7877) 

Y22 Height above the 
water(meters)  (1.1746, 2.0598) [2.0598, 2.6989) [2.6989, 4.0339) 

Y23 Lateral speed(knots) 
[-0.7564, 0.0000) [-1.5129, -0.7564)  (-1.2774, -

1.5129) 
[0.0000, 0.7564) [0.7564, 1.5129) [1.5129, 4.0375) 

Y24 Longitudinal speed(knots) 
[-2.6398, 0.0000) —  (-1.7988, -

5.2797) 
[0.0000, 2.6398) [2.6398, 5.2797) [5.2797, 8.6558) 

Y25 Pitch angle(degrees)  (-0.9631, 
0.1887) [0.1887, 0.2200) [0.2200, 1.4851) 

Y26 Pitch rate(degrees/min) 
 (-92.3133, 
0.0000) [-1.9774, -0.9887) [-2.9660, 37.1897) 

[0.0000, 0.9887) [0.9887, 1.9774) [1.9774, 2.9660) 

Y27 Rate of turn(degrees/min) 

[-13.3700, 
0.0000) 

[-26.7401, -
13.3700) 

(-216.4195, -
26.7401) 

[0.0000, 13.3700) [13.3700, 26.7401) [26.7401, 
82.5781 ) 

Y28 Roll angle(degrees) 
(-7.1696, 0.0000) — — 

[0.0000, 1.4621) [1.4621, 2.9242) [2.9242, 12.1096) 

Y29 Roll rate(degrees/min) [-13.9547, [-27.9093, - (-219.3305, -
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The method of classification interval division that is proposed in this chapter fully considers 
the distribution of data sets and the endpoint extreme value within a reasonable range, so that 
all influencing factor data can be standardized accurately and scientifically, and maximally 
respect and restore the OOW’s actual operation and decision-making for the inbound ship 
under typical scenarios on the simulator. The performance of the optimized data set partitions 
and standardization principle is shown in Table 6.3. 
 

Table 6.3 Performance of the optimized data set partitions and standardization principle. 

 

 

0.0000) 13.9547) 27.9093) 

[0.0000, 13.9547) [13.9547, 27.9093) [27.9093, 
220.8617) 

Y30 Vertical speed(knots) 
[-0.2744, 0.0000) [-0.5488, -0.2744) (-1.1612, -0.5488) 

[0.0000, 0.2744) [0.2744, 0.5488) [0.5488, 2.5488) 

Y31 Yaw rate(degrees/min) 

[-13.3700, 
0.0000) 

[-26.7401, -
13.3700) 

(-216.4195, -
26.7401) 

[0.0000, 13.3700) [13.3700, 26.7401)  [26.7401, 
82.5781 ) 

Y32 Latitude(degrees) (31.1022, 
31.3447) [31.3447, 31.3483) [31.3483, 

31.3521) 

Y33 Longitude(degrees ) (121.3144, 
121.6444) 

[121.6444, 
121.6467) 

[121.6467, 
121.6494) 

Segmentation of intervals Total number  Selected number Accuracy (%) Total time (s) 
Table 6.1 677650.00 675670.00 99.71 7.65  
Table 6.2 677650.00 677650.00 100.00  7.73 

Figure 6.2 Analysis of the experimental ship.
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According to the simulation scene shown in Figure 4.2 of Chapter 4 and Figure 6.2, the size 

of the rudder angle and the propeller speed are defined according to the navigation experience 

and the situation of data collection from the emulator. When the output power ≥ 50%, it is 

defined as the propeller rapid rotation state, the value range is 

   100%,  50% 50%,  100%   . When the output power 50%  , it is defined as the 

propeller slow rotation state, the value range is    50%,  0 0,  50%  . When the rudder 

angle value belongs to the interval      10,  0 0,  10 , it is defined as the small steering angle. 

When the value of the rudder angle belongs to the interval    35,  10 10,35  , it is defined 

as the large steering angle. See Figure 6.2 and Table 3.5 of Chapter 3 (showing 64 possible 

maneuvering factors, i.e., maneuvering decisions, are regarded as the output of our proposed 

model). In addition, this thesis does not consider “Midships” and “Stop/Standby/Finished 

with engines”, regardless of the rudder angle and if the power output is 0.  
 

Captains maneuver ships by operating different telegraph and rudder orders, so as to change 

ship’s speed and direction, and to complete the ship’s control. Combining telegraph and 

rudder orders, this control is a multi-dynamic process. Figures 6.2(c) and (d) 

reveal the changing rule of telegraph order and rudder order within the time in a typical 

situation that a ship sails from the initial boundary to the end boundary designed in scenario 

design part. See Figures 4.2 (c), (f), and (g) of Chapter 4. 

6.4 Results and discussions 

Maneuvering decision-making is stimulated and influenced by multi-source information, 

such as people, boats, environment, as well as real-time requirements. This requires 

maneuvering decision-making knowledge to be automatically obtained and expressed along 

with higher decision-making knowledge effectiveness. 

6.4.1 Determining maneuvering decision main influence factor 

Maneuvering decision-making processes are often influenced by multi-source information 

such as human, ship and environmental factors. These factors are collectively referred to as 

maneuvering decision-making factors. They act together to determine the next action strategy 

of the OOW. According to this strategy and the current maneuvering environment, the OOW 

can quickly and accurately develop maneuvering decisions and thus lay the foundation for 

the research of human-like maneuvering behavior. For a particular person-ship unit, the 

overall reliability is constant for a certain period of time or during a trip, so the person and 

ship factors have less influence on maneuvering decisions. With the operation of the ship, the 

OOW’s waterway and the environment will change with time and space, and the changing 

waterway and environmental factors will have a greater impact on maneuvering decisions. 

Therefore, this chapter uses the grey relation entropy analysis to focus on the maneuvering 

decision-making factors from the waterway and environment, where the factors are squeezed 

and sorted. The maneuvering of decision-making factors related to the information are shown 

in Table 3.5 of Chapter 3 and Table 6.4. 

 

According to the sorting criteria of the grey relational sequence, the greater the degree of 

entropy correlation of the comparison column, the greater the relevance of the comparison 

column to the reference column, the greater the degree of influence on the reference column, 

and the higher the ranking of the influencing factors. The grey entropy analysis method uses 

information entropy to quantitatively describe the similarity and consistency degree between 

file:///D:/Program%20Files%20(x86)/Youdao/Dict/7.2.0.0703/resultui/dict/
file:///D:/Program%20Files%20(x86)/Youdao/Dict/7.2.0.0703/resultui/dict/
file:///D:/Program%20Files%20(x86)/Youdao/Dict/7.2.0.0703/resultui/dict/


 

 
Chapter 6 Modeling human-like decision-making for autonomous ships based on fuzzy decision tree 87  

  

each comparison column and reference column and uses entropy correlation degrees to 

complete the matching order of influencing factors. In this chapter, we select X0 (X0 presents 

the percentage of the number of each maneuvering decision of X1-X64 in a total number of 

the data set records) as the reference column and Y1-Y33 as the comparison column. Limited 

to space, Table 6.4 lists only a part of multiple measured data. 

 

Table 6.4 Sample data set for evaluation of the studied area (partially). 

 

According to the grey relation entropy principle, the grey correlation coefficient, and the 

entropy correlation degree of each comparison column is obtained by quantitative calculation 

of the data in Table 6.4; the results are shown in Table 6.5 and Table 6.6.  

 

Influence factors 
Sample set 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 … 

X0 (Dimensionless) 0.0384 0.0728 0.0384 0.2728 0.0454 0.0128 … 

Y1 (meters) 10.1110 10.1516 10.1538 10.1560 10.1296 10.1355 … 

Y2 (meters) 10.7500 10.7948 10.7961 10.7974 10.7643 10.7614 … 

Y3 (meters) 4.2833 4.2363 4.2345 4.2327 4.2611 4.2589 … 

Y4 (meters) 4.7445 4.7017 4.6990 4.6963 4.7179 4.7068 … 

Y5 (degrees) 314.9000 314.9000 314.9000 314.9000 314.9000 314.9000 … 

Y6 (knots) 1.0497 1.0497 1.0497 1.0497 1.0497 1.0497 … 

Y7 (degrees) 28.0777 122.9068 -12.7913 -148.4894 -179.4163 -179.4000 … 

Y8 (degrees) -8.9422 -8.9000 -8.9000 -8.9000 -8.8513 -8.8000 … 

Y9 (degrees) 69.8398 70.0158 70.0536 70.0913 70.5728 71.0000 … 

Y10 (knots) 1.9827 1.9827 1.9827 1.9827 1.9733 1.9633 … 

Y11 (meters) 14.9400 14.9400 14.9400 14.9400 14.9351 14.9300 … 

Y12 (meters) 0.0401 -0.0016 -0.0054 -0.0091 0.0562 -0.0900 … 

Y13 (tonne-force) 2.3463 2.3463 2.3463 2.3463 2.3463 2.3463 … 

Y14 (tonne-force) 0.2803 0.2803 0.2803 0.2803 0.2803 0.2803 … 

Y15 (tonne-force) 2.3630 2.3630 2.3630 2.3630 2.3630 2.3630 … 

Y16 (tonne-force) -0.0092 -0.0092 -0.0092 -0.0092 -0.0092 -0.0092 … 

Y17 (tonne-force) 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 … 

Y18 (tonne-force) -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 -0.0213 … 

Y19 (tonne-force) 0.0786 0.0786 0.0786 0.0786 0.0786 0.0786 … 

Y20 (tonne-force) -0.0754 -0.0754 -0.0754 -0.0754 -0.0754 -0.0754 … 

Y21 (degrees) 233.9447 233.9200 233.9183 233.8878 233.8264 233.7855 … 

Y22 (meters) 2.9483 2.9222 2.9225 2.9399 2.9623 2.9477 … 

Y23 (knots) 1.0905 1.0908 1.0910 1.0939 0.9871 1.0972 … 

Y24 (knots) 5.6254 5.6152 5.6152 5.6149 5.4510 5.5839 … 

Y25 (degrees) 0.2091 0.2100 0.2097 0.2020 0.2193 0.2035 … 

Y26 (degrees/min) -0.3208 -0.3458 -0.3713 -0.7965 0.5707 -0.4372 … 

Y27 (degrees/min) -2.1088 -2.1241 -2.1421 -2.4411 -1.9075 -1.8242 … 

Y28 (degrees) 0.0188 0.0233 0.0236 0.0272 0.0322 0.0331 … 

Y29 (degrees/min) 0.3844 0.3141 0.3100 0.2430 0.0469 -0.0326 … 

Y30 (knots) -0.0395 -0.0112 -0.0076 0.0528 -0.0161 -0.0336 … 

Y31 (degrees/min) -2.1088 -2.1241 -2.1421 -2.4411 -1.9075 -1.8242 … 

Y32 (degrees) 31.3495 31.3494 31.3494 31.3494 31.3494 31.3494 … 

Y33 (degrees) 121.6494 121.6493 121.6493 121.6493 121.6493 121.6492 … 

javascript:;
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Table 6.5 Grey correlation coefficient for the sample data (partially). 

 

Table 6.6 Grey relation entropy and entropy correlation of each comparative column. 

Impact 

factors 

Grey correlation coefficient R  

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 … 

Y1 0.948821  0.944801  0.935685  0.933054  0.940548  0.945995  … 

Y2 0.944423  0.941285  0.934170  0.932106  0.937298  0.941518  … 

Y3 0.980756  0.981198  0.982183  0.982491  0.978342  0.977833  … 

Y4 0.984270  0.984636  0.985512  0.985749  0.981410  0.980826  … 

Y5 0.958720  0.958720  0.958720  0.958720  0.955696  0.955696  … 

Y6 0.940306  0.940306  0.940306  0.940306  0.937397  0.937397  … 

Y7 0.977801  0.977892  0.977932  0.977993  0.974925  0.974957  … 

Y8 0.971251  0.971392  0.971609  0.971735  0.974998  0.975096  … 

Y9 0.841280  0.841107  0.840897  0.840735  0.838168  0.838051  … 

Y10 0.998258  0.998170  0.998126  0.998081  0.998665  0.998729  … 

Y11 0.983231  0.983231  0.983231  0.983231  0.980051  0.980051  … 

Y12 0.944236  0.944220  0.994049  0.977954  0.934740  0.944329  … 

Y13 0.965905  0.965905  0.965905  0.965905  0.962835  0.962835  … 

Y14 0.964395  0.964395  0.964395  0.964395  0.961335  0.961335  … 

Y15 0.968953  0.968953  0.968953  0.968953  0.965865  0.965865  … 

Y16 0.966102  0.966102  0.966102  0.966102  0.963031  0.963031  … 

Y17 0.969357  0.969357  0.969357  0.969357  0.966265  0.966265  … 

Y18 0.967034  0.967034  0.967034  0.967034  0.963957  0.963957  … 

Y19 0.969569  0.969569  0.969569  0.969569  0.966476  0.966476  … 

Y20 0.963393  0.963393  0.963393  0.963393  0.960339  0.960339  … 

Y21 0.909890  0.910029  0.910146  0.910297  0.907702  0.907830  … 

Y22 0.954179  0.955253  0.956160  0.956446  0.951070  0.950563  … 

Y23 0.907782  0.907409  0.908501  0.908866  0.906425  0.906430  … 

Y24 0.950644  0.950756  0.950573  0.950536  0.947538  0.947568  … 

Y25 0.938662  0.938578  0.938564  0.938505  0.935553  0.935517  … 

Y26 0.965855  0.965857  0.965923  0.965895  0.962822  0.962899  … 

Y27 0.993808  0.993416  0.992348  0.991987  0.988237  0.987177  … 

Y28 0.966143  0.966234  0.966354  0.966462  0.963519  0.963702  … 

Y29 0.966916  0.966278  0.966579  0.966699  0.963888  0.964242  … 

Y30 0.970562  0.972582  0.973802  0.958892  0.950538  0.968439  … 

Y31 0.993808  0.993416  0.992348  0.991987  0.988237  0.987177  … 

Y32 0.902639  0.902687  0.902726  0.902784  0.900150  0.900198  … 

Y33 0.941088  0.941467  0.941775  0.942178  0.939635  0.939989  … 

Impact 

factors 

Grey relation 

entropy ( )H R  

Entropy 

correlation ( )E Y  

Impact 

factors 

Grey relation 

entropy ( )H R  

Entropy 

correlation ( )E Y  

Y1 9.9293545  0.9999514  Y18 9.9294521  0.9999612  

Y2 9.9293573  0.9999517  Y19 9.9294144  0.9999574  

Y3 9.9294876  0.9999648  Y20 9.9294297  0.9999590  

Y4 9.9295372  0.9999698  Y21 9.9293154  0.9999474  

Y5 9.9294551  0.9999615  Y22 9.9295775  0.9999738  

Y6 9.9294348  0.9999595  Y23 9.9294079  0.9999568  

Y7 9.9293085  0.9999467  Y24 9.9293957  0.9999555  

Y8 9.9295981  0.9999759  Y25 9.9294056  0.9999565  

Y9 9.9293199  0.9999479  Y26 9.9294307  0.9999591  
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According to Table 6.6, the influence factors are sorted according to the influence degree: Y8> 

Y22> Y4> Y31> Y27> Y16> Y33> Y11> Y3> Y13> Y14> Y15> Y12> Y30> Y5> Y18> Y6> 

Y26> Y20> Y10> Y17> Y19> Y23> Y25> Y29> Y24> Y28> Y32> Y2> Y1> Y9> Y21> Y7. 

For simplicity, this chapter selects the first six factors to study the decision-making 

mechanisms for different maneuvering behaviors. Table 6.7 lists some of the training samples. 

 

Table 6.7 Training samples (partially). 

 

The data in Table 6.7 are standardized according to the principle of standardization of 

maneuvering decision influence factors in Table 6.2 and Table 3.5 of Chapter 3. 

 

Table 6.8 Training set with the principle of standardization (partially). 

 

In accordance with the optimized standardization principle of influence factors for 

maneuvering decisions in Table 6.2, the attributes of the six factors selected in Table 6.7 are 

fuzzified, the number of center points k is 3, and the set of center points is 

{ , 1, 2, , }iM m i k  . By simple division method, the linguistic term Small is calculated 

using Equation (5.13), the linguistic term Medium is obtained by Equation (6.15), and the 

linguistic term Large is obtained by Equation (6.14). Here we opt for K-means clustering 

algorithm combines with the algorithm proposed in data collection and processing part, then 

generate the center points of impact factors as shown in Table 6.9. The training set with fuzzy 

representation is shown in Table 6.10.  

Y10 9.9294223  0.9999582  Y27 9.9295344  0.9999695  

Y11 9.9295045  0.9999665  Y28 9.9293906  0.9999550  

Y12 9.9294607  0.9999621  Y29 9.9294052  0.9999565  

Y13 9.9294823  0.9999642  Y30 9.9294555  0.9999615  

Y14 9.9294797  0.9999640  Y31 9.9295355 0.9999696  

Y15 9.9294764  0.9999636  Y32 9.9293865  0.9999546  

Y16 9.9295335  0.9999694  Y33 9.9295294  0.9999690  

Y17 9.9294209  0.9999581  — — — 

No. 

X 

Y4 Y8 Y16 Y22 Y27 Y31 Rudder order 

(Degrees) 

Telegraph 

order (%) 

1 -35.0000 0.0000 4.7793  -1.6463  -0.0092  2.7666  -10.1748  -4.9876  

2 -35.0000 0.0000 4.7833  -1.5230  -0.0092  2.8756  -10.0944  -4.6709  

3 -35.0000 0.0000 4.8618  -1.3379  -0.0092  2.8889  -10.4877  -4.8759  

4 -35.0000 -4.3207 4.9425  -1.2042  -0.0092  3.0291  -10.3155  -4.7104  

5 -35.0000 -17.9076 5.0001  -0.9383  -0.0092  3.0278  -10.4462  -4.5943  

6 -35.0000 -20.0000 4.9737  -0.8662  -0.0092  2.9371  -10.3930  -4.4932  

… … … … … … … … … 

No. X Y4 Y8 Y16 Y22 Y27 Y31 

  a b c a b c a b c a b c a b c a b c 

1 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

2 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

3 X3 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

4 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

5 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

6 X55 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

… …    … … … … … … … … … … … … … … … 
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Table 6.9  The center points of selected impact factors. 

 

Table 6.10 Training set with fuzzy representation (partially). 

6.4.2 Inducing maneuvering fuzzy decision tree  

The maneuvering decision classification tree is constructed by using the fuzzy ID3 

classification algorithms and fuzzy membership standard training samples in Table 6.10. The 

fuzzy ID3 classification algorithm is summarized as follows. First, select the maneuvering 

decision-making main influence factors with the maximum fuzzy information gain to 

generate decision tree nodes and establish a branch by the different values of the nodes. 

Second, take the instance subset of the branch and use this method to establish the nodes and 

branches of the decision tree until the instances in a subset belong to the same classification. 

Finally, the maneuvering decision classification tree constructed by the fuzzy ID3 

classification algorithm. And the classification rules are graphically represented by the 

decision tree structure in Figure 6.3. The algorithm scheme is as follows: 

 

Impact factors  
1m  

2m  
3m  

Y4 4.0241  5.3161  6.6080  

Y8 31.2000  62.4000  93.6000  

Y16 -0.0521  -0.0274  -0.0027  

Y22 2.0750  2.4000  2.7250  

Y27 -2.1606  22.4190  46.9986  

Y31 -4.4106  17.9190  40.2486  

No. X 
Y4 Y8 Y16 

a b c a b c a b c 

1 X3 0.629  0.371  0.000  0.000  0.019  0.981  0.720  0.280  0.000  

2 X3 0.625  0.375  0.000  0.000  0.016  0.984  0.706  0.294  0.000  

3 X3 0.601  0.399  0.000  0.000  0.013  0.987  0.710  0.290  0.000  

4 X55 0.593  0.407  0.000  0.000  0.009  0.991  0.726  0.274  0.000  

5 X55 0.597  0.403  0.000  0.000  0.005  0.995  0.710  0.290  0.000  

6 X55 0.618  0.382  0.000  0.000  0.001  0.999  0.691  0.309  0.000  

… … … … … … … … … … … 

No. X Y22 Y27 Y31 

  a b c a b c a b c 

1 X3 0.992  0.008  0.000  0.918  0.082  0.000  0.975  0.025  0.000  

2 X3 0.997  0.003  0.000  0.926  0.074  0.000  0.963  0.037  0.000  

3 X3 0.999  0.001  0.000  0.938  0.062  0.000  0.953  0.047  0.000  

4 X55 0.997  0.003  0.000  0.949  0.051  0.000  0.943  0.057  0.000  

5 X55 0.998  0.002  0.000  0.970  0.030  0.000  0.926  0.074  0.000  

6 X55 1.000  0.000  0.000  0.985  0.015  0.000  0.926  0.074  0.000  

… … … … … … … … … …  
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Figure 6.3 D
ecision tree structure for m

aneuvering decision classification rules.  
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1) Create a root node. Set the fuzzy training as the root node of the input and the other nodes 
of the tree as a fuzzy subset of the training set. 

 
2) Classify the example set. Select the attribute with the highest fuzzy information gain as 

the extended attribute of the node. Each attribute  performs a fuzzy segmentation on the root 
node. Then, calculate the fuzzy information gain  generated by each attribute  at the 
root node. 

 
3) If the confidence level of a certain class in the node is greater than  (the truth level 

threshold used in this chapter is 0.750), then the leaf is generated. 
 

4) If all the attributes on a node have been used, then the leaf is generated. 
 

5) Otherwise, select the unused attribute with the highest fuzzy information gain as the 
extension attribute. If the fuzzy information gain is less than the given value, the leaf is generated. 
Conduct the current node by the extended attribute value to generate its sub-node. Then, repeat 
the above process until the whole decision tree is established. 

6.4.3 Establishing maneuvering decision classification rules 

For the resulting maneuvering decision tree, the path from the root node to each leaf node of the 
decision tree corresponds to the combination of a set of attribute tests. The decision tree represents 
these conjunctive separations. With the maneuvering decision classification tree, we can easily 
extract the decision-making knowledge described by the decision tree and can use the "IF-THEN" 
form to extract the rules. Each maneuvering decision can be obtained along the path from the root 
node to the leaf node of the decision tree. A collection of attributes and their values encountered 
along the given path constitutes a prerequisite for the rule (IF part). The leaf node gives the 
predicted value of the classification, forming the conclusion part of the rule (THEN part). Finally, 
all rules are merged to form the maneuvering decision recognition rule base, as shown in Table 
6.11.  

 
Table 6.11 Maneuvering decision classification rules. 

No. Maneuvering decision classification rules 
1 IF Y8=a AND Y27=a AND Y22=a AND Y4=a AND Y16=a AND Y31=a THEN X=X33 
2 IF Y8=a AND Y27=a AND Y22=c AND Y4=a AND Y16=a AND Y31=a THEN X=X43 
3 IF Y8=a AND Y27=a AND Y22=c AND Y4=b AND Y16=a AND Y31=a THEN X=X33 
4 IF Y8=a AND Y27=a AND Y22=b AND Y4=a AND Y16=a AND Y31=a THEN X=X30 
5 IF Y8=a AND Y27=a AND Y22=b AND Y4=b AND Y16=a AND Y31=a THEN X=X10 
6 IF Y8=a AND Y27=c AND Y4=a THEN X=X1 
7 IF Y8=a AND Y27=c AND Y4=b AND Y22=c AND Y16=a AND Y31=c THEN X=X1 
8 IF Y8=a AND Y27=c AND Y4=b AND Y22=b THEN X=X1 
9 IF Y8=a AND Y27=b AND Y22=a AND Y4=a AND Y16=a AND Y31=b THEN X=X54 
10 IF Y8=a AND Y27=b AND Y22=c AND Y4=a AND Y16=a AND Y31=b THEN X=X33 
11 IF Y8=a AND Y27=b AND Y22=c AND Y4=b AND Y16=a AND Y31=b THEN X=X33 
12 IF Y8=a AND Y27=b AND Y22=b AND Y4=a AND Y16=a AND Y31=b THEN X=X33 
13 IF Y8=a AND Y27=b AND Y22=b AND Y4=b AND Y16=a AND Y31=b THEN X=X1 

iA
( , )iG A D iA

b
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14 IF Y8=c AND Y22=a AND Y27=a AND Y4=a AND Y16=a AND Y31=a THEN X=X44 
15 IF Y8=c AND Y22=a AND Y27=a AND Y4=a AND Y16=c THEN X=X12 
16 IF Y8=c AND Y22=a AND Y27=a AND Y4=a AND Y16=b THEN X=X12 
17 IF Y8=c AND Y22=a AND Y27=a AND Y4=b AND Y16=a AND Y31=b THEN X=X55 
18 IF Y8=c AND Y22=a AND Y27=a AND Y4=b AND Y16=c THEN X=X12 
19 IF Y8=c AND Y22=a AND Y27=a AND Y4=b AND Y16=b THEN X=X12 
20 IF Y8=c AND Y22=a AND Y27=c THEN X=X4 
21 IF Y8=c AND Y22=a AND Y27=b AND Y4=a AND Y16=a AND Y31=b THEN X=X55 
22 IF Y8=c AND Y22=a AND Y27=b AND Y4=a AND Y16=c THEN X=X12 
23 IF Y8=c AND Y22=a AND Y27=b AND Y4=a AND Y16=b THEN X=X12 
24 IF Y8=c AND Y22=a AND Y27=b AND Y4=b AND Y16=a AND Y31=b THEN X=X3 
25 IF Y8=c AND Y22=c AND Y4=a AND Y27=a AND Y16=a AND Y31=a THEN X=X36 
26 IF Y8=c AND Y22=c AND Y4=a AND Y27=b AND Y16=a AND Y31=b THEN X=X3 
27 IF Y8=c AND Y22=c AND Y4=c AND Y27=a AND Y16=a AND Y31=a THEN X=X36 
28 IF Y8=c AND Y22=c AND Y4=c AND Y27=a AND Y16=c AND Y31=a THEN X=X2 
29 IF Y8=c AND Y22=c AND Y4=c AND Y27=a AND Y16=b AND Y31=a THEN X=X2 
30 IF Y8=c AND Y22=c AND Y4=c AND Y27=b AND Y16=a AND Y31=b THEN X=X2 
31 IF Y8=c AND Y22=c AND Y4=c AND Y27=b AND Y16=c AND Y31=b THEN X=X2 
32 IF Y8=c AND Y22=c AND Y4=c AND Y27=b AND Y16=b AND Y31=b THEN X=X12 
33 IF Y8=c AND Y22=c AND Y4=b AND Y27=a AND Y16=a AND Y31=a THEN X=X46 
34 IF Y8=c AND Y22=c AND Y4=b AND Y27=a AND Y16=c AND Y31=a THEN X=X12 
35 IF Y8=c AND Y22=c AND Y4=b AND Y27=a AND Y16=b AND Y31=a THEN X=X12 
36 IF Y8=c AND Y22=c AND Y4=b AND Y27=c AND Y16=a AND Y31=c THEN X=X27 
37 IF Y8=c AND Y22=c AND Y4=b AND Y27=b AND Y16=a AND Y31=b THEN X=X32 
38 IF Y8=c AND Y22=b AND Y27=a AND Y4=a AND Y16=a AND Y31=a THEN X=X44 
39 IF Y8=c AND Y22=b AND Y27=a AND Y4=b AND Y16=a AND Y31=a THEN X=X55 
40 IF Y8=c AND Y22=b AND Y27=a AND Y4=b AND Y16=c THEN X=X12 
41 IF Y8=c AND Y22=b AND Y27=b AND Y4=a AND Y16=a AND Y31=b THEN X=X55 
42 IF Y8=c AND Y22=b AND Y27=b AND Y4=b AND Y16=a AND Y31=b THEN X=X7 
43 IF Y8=b AND Y27=a AND Y22=a AND Y4=a AND Y16=a AND Y31=b THEN X=X54 
44 IF Y8=b AND Y27=a AND Y22=c AND Y4=a AND Y16=a AND Y31=b THEN X=X44 
45 IF Y8=b AND Y27=a AND Y22=c AND Y4=b AND Y16=a AND Y31=b THEN X=X32 
46 IF Y8=b AND Y27=a AND Y22=b AND Y4=a AND Y16=a AND Y31=a THEN X=X54 
47 IF Y8=b AND Y27=a AND Y22=b AND Y4=b AND Y16=a AND Y31=a THEN X=X43 
48 IF Y8=b AND Y27=c AND Y22=a THEN X=X4 
49 IF Y8=b AND Y27=c AND Y22=c AND Y4=a AND Y16=a AND Y31=c THEN X=X2 
50 IF Y8=b AND Y27=c AND Y22=c AND Y4=b AND Y16=a AND Y31=c THEN X=X33 
51 IF Y8=b AND Y27=c AND Y22=b AND Y4=a AND Y16=a AND Y31=c THEN X=X2 
52 IF Y8=b AND Y27=b AND Y22=a AND Y4=a AND Y16=a AND Y31=b THEN X=X43 
53 IF Y8=b AND Y27=b AND Y22=c AND Y4=a AND Y16=a AND Y31=b THEN X=X33 
54 IF Y8=b AND Y27=b AND Y22=c AND Y4=b AND Y16=a AND Y31=b THEN X=X33 
55 IF Y8=b AND Y27=b AND Y22=b AND Y4=a AND Y16=a AND Y31=b THEN X=X33 
56 IF Y8=b AND Y27=b AND Y22=b AND Y4=b AND Y16=a AND Y31=b THEN X=X10 
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The following conclusions can be drawn from Figure 6.3 and Table 6.11: 
1) In the maneuvering decision-making process, maneuvering behavior is often stimulated 

and influenced by seafarers, ships, waterways, environment and other factors. These factors 
together lead the seafarer to gradually form the next moment action (action, strategy or tactics) in 
their mind. According to this long-term strategy and the current maneuvering environment, the 
seafarer can quickly and accurately develop maneuvering decisions and prepare to establish the 
seafarer’s comprehensive cognitive sequence activity execution mechanism. 
 

2) Maneuvering decision-making also depends on the seafarer’s personality type. For 
instance, in the same navigational environment, when the variable speed change conditions are in 
a critical state, conservative seafarers will not risk changing speed or direction, even if this would 
lead to great traffic delay. Impulsive seafarers are more likely to risk shifting or changing direction. 

 
3) Fuzzy ID3 decision tree sets features as main factors that determine whether the seafarer 

will take the main maneuvering force or take rudder operation during navigation, which is 
consistent with the actual navigation experience. These rules and the current skilled seafarer’s 
background knowledge are also consistent. These factors can be an important reference for 
maneuvering behavior selection and can also be used to create a knowledge base of an expert 
system. The results contain high reference value and practical value. 

 
4) The classification accuracy of data mining using fuzzy ID3 decision trees can reach more 

than 86.40%, close to or even exceeding the effect of an empirical seafarer judgment (under the 
premise of ensuring navigation safety, assuming duty hour is an 8-hour shift time, when the OOW 
could maintain efficient and correct maneuvering decisions more than 80% of the duty time, we 
consider that is an empirical judgment), which well proves the validity of the fuzzy ID3 decision 
tree algorithm in navigational maneuvering behavior data mining. 

6.4.4 Comparative analysis 

To validate the effectiveness of the fuzzy decision tree algorithm we proposed in this chapter, the 
experiments are conducted with the experimental environment: an Intel (R) Core (TM) i7-5600U 
2 Duo Processor 2.6 GHz processor (4 MB Cache), 12 GB of RAM, Windows10, and Python 
2.7.14.  
 
In implementing the algorithm, the experimental samples are divided into two categories; we 
randomly select 80% of samples as a training sample set, and the remaining 20% of samples are 
used as a test sample set.  
 

Table 6.12 The information of dataset used in our experiments. 

Database Number of Instances Number of Features Number of Classes 

Our database 677655 18 64 
 
To test the performance of the proposed Fuzzy ID3 algorithm, SVM, and Naïve Bayes (NB) are 
compared. And we use classification accuracy to measure the proposed Fuzzy ID3 algorithm. 
Assume the dataset , each data record is represented as , D 

also contains a set of classes  , then we can get the classification performance 
symbol and equations or meanings (as the same as Chapter 5), as shown in Table 6.13. 

 
 

{ }1 2, ,..., nD X X X= { }1 2, ,...,i nX x x x=

{ }1 2, ,..., nC C C C=
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Table 6.13 Classification performance symbols and their equations or meanings. 

 Symbol Equation/Meaning 
TN  xi not predicted to be in Ci and is not actually in it  
TP xi predicted to be in Ci  and is actually in it  
FN xi not predicted to be in Ci  but is actually in it 
FP xi predicted to be in Ci  but is not actually in it 

Accuracy 
 

 
For the dataset, described in Table 6.12, a ten-fold cross-validation (10-CV) is conducted, the 
performance of different classifier algorithms is shown in Table 6.14. 
 

Table 6.14 The performance of different classifier algorithms with 10-fold cross-validation. 

Classifier algorithms Accuracy (performance is measured in %) 
SVM Fold Accuracy 
 1 80.57 
 2 79.26 
 3 81.29 
 4 81.89 
 5 87.33 
 6 79.72 
 7 83.33 
 8 86.56 
 9 83.79 
 10 87.11 
Average - 83.09 
NB  Accuracy 
 1 86.91 
 2 82.55 
 3 85.75 
 4 81.21 
 5 80.54 
 6 84.23 
 7 91.46 
 8 82.57 
 9 79.75 
 10 86.54 
Average - 84.15 
Proposed method  Accuracy 
 1 86.33 
 2 85.32 
 3 87.23 
 4 86.75 
 5 85.44 
 6 89.12 
 7 84.77 
 8 86.86 
 9 85.46 
 10 86.76 
Average - 86.40 

 
The classification accuracy using different classifiers on our dataset is shown in Table 6.14. 
According to the classification accuracy results, the proposed method can achieve the highest 
accuracy among these three algorithms. And the proposed method can obtain the best average 

TN TPACC
TN TP FN FP

+
=

+ + +
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classification accuracy of 86.40%, followed by NB at 84.15%, and the SVM at 83.09%. Therefore, 
we can conclude that the proposed method outperforms the compared methods. 

6.5 Conclusions 

Based on the experimental data of the full-task handling simulation platform and in view of the 
shortcomings of the existing knowledge representation and acquisition methods, in this chapter, 
we use decision trees to integrate the advantages of knowledge representation and acquisition. We 
combine a decision tree with a fuzzy theory to address the potential uncertainty in the process of 
classification. We then put forward the knowledge representation and acquisition method based 
on the fuzzy ID3 decision tree, establish the maneuvering decision recognition model, and apply 
it to research on the decision-making mechanism of the different maneuvering behavior of an 
inbound ship to verify the performance of the method. We achieve the following conclusions from 
the simulation results:  
 

1) The proposed method uses the fuzzy ID3 decision tree to express the maneuvering 
decision recognition model, which has high reasoning efficiency (the results of this chapter show 
the proposed fuzzy ID 3 model has better performance (average accuracy is 86.40%) than the 
proposed C4.5 model in Chapter 5 (average accuracy is 80.58%)).  
 

2) The method integrates the advantages of fuzzy theory and decision trees, combining the 
comprehensibility of decision trees and the comprehensive expression ability of fuzzy technology. 
It has strong decision analysis ability and can address the problem of ambiguity and uncertainty. 
It improves the decision tree’s robustness, comprehensibility, and efficiency.  

 
3) This method can recognize the key factors which affect maneuvering decisions, accurately 

identify the current maneuvering behavior and provide guidance for an autonomous ship-assisted 
or automatic maneuvering system for the research of human-like maneuvering behavior. 

 
Furthermore, considering the cost and feasibility of using real ships, computer simulations and 
simulator experiments are more commonly used. In addition, the number of captain, officers and 
experienced seafarer is small, so it is difficult to organize large-scale multi-batch experiments in 
a certain time and space. With the opportunity of Wuhan University of Technology’s training 
assessment, it is valuable and unique to obtain experimental data operated by an experienced 
senior seafarer on the full-task handling simulation platform. However, there are still some 
problems with the models and experiments described in this chapter, which need to be improved 
in subsequent studies: 
 

1) According to the actual situation of the Shanghai Waigaoqiao Phase IV Port and the actual 
simulation data of an inbound ship, in this chapter, we do not take into account the impact of other 
vessels on the waterway. Based on the definition of the inbound scene proposed in this chapter, 
there are no other ships interfering with ship OS1 into the port, so there is no need to consider this 
situation. However, follow-up studies should consider outward ship maneuvering decisions. 

 
2) In this chapter, considering the relevant output information of the maneuvering decision 

influence factors, only the third level of information is considered. This includes the forward and 
reverse rotation of the propeller, the propeller speed condition, the rudder angle direction, the 
rudder angle size and the corresponding maintenance and change conditions. Although we made 
a detailed division of the information and its guiding significance on the ship into the port 
maneuvering decision-making process, the ship rudder is a multi-dynamic factor, so follow-up 
research needs to do further scientific division and consideration. 



 
Chapter 6 Modeling human-like decision-making for autonomous ships based on fuzzy decision tree 97  

  

 
In future research, the above problems will be further studied and explored. We hope to improve 
the ship maneuvering behavior decision-making theory and system for autonomous ship 
maneuvering behavior decision-making research to provide theoretical guidance and a feasibility 
basis for the development of autonomous ships. 
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Chapter 7 Conclusions and future research  

This thesis focuses on the problem of modeling seafarers’ navigational decision-making in 
typical scenario for autonomous ships’ safety. We propose a method to prioritize safety 
influencing factors of autonomous ships’ maneuvering decisions and a series of ship 
maneuvering knowledge learning models to give autonomous ship the ability to make decisions 
like a human.  
 
In this chapter, the main research findings and the answers to the research questions are 
summarized in Section 7.1. Subsequently, the recommendations for future research and the 
limitations of this research are described in Section 7.2. 
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7.1 Answer to research questions  

In this section, the main findings are summarized to answer the research questions in Section 
1.3 of Chapter 1.  
 
Main research question 
 
How can the decision mechanisms of automatic acquisition and representation of the seafarer’s 

decision-making knowledge in a typical navigation scenario be recognized? 

To answer the main research question, a comprehensive overview of the relevant literature 
related to the utilized methodology is conducted, and the materials contributing to our research 
are identified in Chapter 2. Then the grey system theory is introduced, in order to prioritize the 
influencing factors, and the fuzzy theory is presented for more rational use of expert knowledge 
to judge the prioritization of the influencing factors (Chapter 3) and to fuzzify the experimental 
dataset into several language items for the process of constructing decision trees (Chapter 6). 
Chapter 4 proposes an ID3 decision tree model for recognizing human-like decisions of 
autonomous ships in the specific ship maneuvering scenario for the first exploration and pre-
study. An autonomous ship Human-like Decision-making Maneuvering Decision Recognition 
(HDMDR) model is proposed in Chapter 5 to acquire knowledge under multiple environmental 
constraints. Another improvement takes place in Chapter 6, where a fuzzy decision tree model 
is developed, combining the comprehensibility of decision trees and the comprehensive 
expression ability of fuzzy technology, which has strong decision analysis ability and can 
address the problem of ambiguity and uncertainty. 
 

More specifically, the six research sub-questions (SQ) relevant to the main research question 
addressed in Chapter 1 are answered as follows. 

 
Questions on state-of-the-art and methodology 

 
a) Which data analysis method is more suitable and effective for the selection of the main 

influencing factors of seafarers’ maneuvering decisions? 

Ø As presented in Chapter 2, the grey system theory is one of the most widely utilized 
pattern recognition methods, it is mainly utilized to analyze the proximity of the 
dynamic grey process development situation, determine the primary and secondary 
factors in the grey system, and control the main factors affecting the system. 
Additionally, as a systematic analysis technique, the Grey Relational Analysis (GRA) 
is a quantitative comparative analysis method. By calculating the correlation between 
the target value and the influencing factors, and the ranking of their relevance, the main 
factors affecting the target value are sought. The GRA method is suitable for the data 
with uncertain, multiple inputs and discrete properties; it does provide techniques for 
determining an appropriate solution for real-world problems. Moreover, the GRA does 
not require too much sample size and does not require a typical distribution law during 
analysis. In addition, regardless of whether the system has adequate information, the 
GRA could capture the impact of the relationship between the main factor and 
influencing factors in the system. The results correspond to the qualitative analysis 
results, and the method has proved practicality. The grey relational analysis is an 
effective algorithm for resolving uncertainty problems in the case of partial and 
discontinuous information. However, the traditional GRA has mainly been criticized 
because it treats different indexes (influencing factors) equally and does not consider 
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the relative importance of different indexes. It does not fit with people's preferences for 
a specific index. Nevertheless, the fuzzy logic theory is a beneficial method for 
modeling processes that are too complicated for conventional quantitative analysis or 
information obtained from the process is qualitative, uncertain, or inexact. Moreover, 
fuzzy numbers are more compatible with phrases and ambiguities; it is better to use 
them in real-world decision-making and reflect human thoughts. Furthermore, many 
studies are explored by combining expert knowledge with fuzzy theories, and it is 
widely used in the maritime research domain (Chapter 2). 
 
Therefore, this thesis proposes a prioritizing model for the influencing factors of 
autonomous ship maneuvering decision-making using grey and fuzzy theories in 
Chapter 3. Based on the actual operation data of the experienced seafarers collected 
from the simulator, a reference series is established by using the combination of ship 
telegraph and rudder orders, which directly correspond to a ship’s control. Likewise, 
we establish the comparative series for various influencing factors of ship motion and 
natural and traffic environment that affect ship maneuvering decision-making. 
Moreover, combined with the expert knowledge, the proposed model is further 
optimized to ensure its rationality, accuracy, and generalizability, to select/prioritize the 
main maritime traffic safety influencing factors of the autonomous ship maneuvering 
decisions in the specific navigational scenario. 
 

b) Which approaches can be used to automatically acquire and represent the decision-making 

knowledge of the experienced seafarers’ maneuvering behavior in a typical navigation 

scenario? 

Ø The basic logic for the ship maneuvering decision-making mechanism is the 
classification of the ship’s maneuvering and operating behavior according to specific 
rules. A decision tree is a classification method of data mining that can potentially find 
valuable information by classifying a large amount of data. It has the advantages of 
simple descriptions, fast classifications and is suitable for large-scale data processing. 
It can learn from the sample, obtain classification rules, and classify the samples 
according to these rules. Decision tree methods integrate knowledge representation and 
acquisition with a simple and intuitive form. This is convenient for expert testing and 
has higher reasoning efficiency. Therefore, it is feasible and reasonable to apply the 
decision tree classification method to the decision-making of ship maneuvering. 
Therefore, in Chapters 4, we proposed an ID3 decision tree model for recognizing 
human-like decisions of autonomous ships in the designed ship maneuvering scenario 
for the first exploration and pre-study. Then Chapter 5 develops the HDMDR model 
using the C4.5 decision tree algorithm to acquire knowledge under multiple 
environmental constraints to give autonomous ships the ability to make decisions like 
a human. The OOW’s decision-making knowledge is automatically acquired and 
represented. 
 
However, the decision tree construction algorithms aforementioned in Chapter 2 are all 
based on the assumption that the attribute and classification values are clear, so these 
algorithms cannot address the uncertainties related to human thinking and behavior. 
While classification results of a decision tree are clear, it cannot address potential 
uncertainty during the classification process. When the attribute value has a slight 
change, mutations can inappropriately affect the classification results. The resulting 
decision tree is generally not robust, and inaccurate or missing data can prevent the 
growth of the decision tree. As a data mining method, the Fuzzy Decision Tree (FDT) 
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extends the classical decision tree. It integrates the advantages of fuzzy theory and 
decision trees by combining the comprehensibility of decision trees and the 
comprehensive expressions of fuzzy technology. The FDT has strong decision-making 
abilities and can address the problems of ambiguity and uncertainty. Therefore, the 
decision tree is more robust, its comprehensibility is improved, and the expansion of 
the algorithm is enhanced. In Chapter 6, the fuzzy ID3 decision algorithm is applied to 
autonomous ship decision-making for the first time based on empirical simulator 
maneuvering data. The algorithm can reasonably complete the simulation and decision-
making knowledge acquisition of the ship’s automatic driving in experimental waters 
and has a high degree of application and promotion. The improvement of the 
algorithm’s training set is of great significance for the development of autonomous 
merchant ships. Moreover, it is unique and very valuable to obtain experimental data 
operated by an experienced senior crew on the full-task handling simulation platform 
in a certain time and space. 
 

Questions on modeling 
 
c) What are the advantages and disadvantages of the prioritizing model of safety influencing 

factors of autonomous ships’ maneuvering decisions? 

Ø The proposed prioritizing model in Chapter 3 has the following four advantages: (i) By 
applying the expert knowledge to the process of prioritizing autonomous ship 
maneuvering decisions influencing factors, furthermore, by establishing fuzzy 
linguistic terms sets and the corresponding fuzzy numbers, the basis is provided for 
qualitative evaluation of the influencing factors of the autonomous ship maneuvering 
decision-making. (ii) Through the procedure of defuzzification, the fuzzy numbers are 
transformed into crisp numbers for priority ranking and comparison purpose. Therefore, 
the analysis of maritime traffic safety influencing factors for autonomous ship 
maneuvering decision-making can be conducted, thereby improving accuracy and 
rationality as well as expanding the application scope of the proposed model. (iii) both 
the weight of each expert and the weight of each influencing factor in the whole grey 
system are introduced, allowing to rank and compare the order of various influencing 
factors more reasonably and more accurately. Hence, the importance degree of each 
influencing factor and the preference of decision makers are comprehensively 
considered according to the actual situation. (iv) The simulator used in this research 
can simulate various actual navigational scenarios in different ports all over the world, 
combining with the actual operation data of experienced seafarers, thus, it can provide 
meaningful guidance for the selection/prioritization of the maritime traffic safety 
influencing factors of the autonomous ship maneuvering decisions and promote the 
development of autonomous ships.  

 
Although the proposed grey and fuzzy model is a promising model, this study still has 
some shortcomings as follows: in the specific experimental navigation scenario, as the 
above description and analysis in Section 3.4 of Chapter 3, the proposed model is 
rational and widely applicable to the analysis of the maritime traffic safety influencing 
factors for the ship maneuvering decisions. However, when in a specific navigational 
scenario, for instance, the influencing factors of longitude and latitude do not change 
correspondingly, there are still some shortcomings when adding the general expert 
knowledge using general common sense; in this case, the accuracy of our proposed 
model for analyzing these influencing factors is affected. Therefore, although the 
traditional grey theory has mainly been criticized because it treats different indexes 
(influencing factors) equally and takes no account of their relative importance, it does 
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not fit with people’s preferences for a specific index. It still has the accuracy and 
sensitivity in the specific experimental scenario for certain factors, so it is better to 
combine with the results from the traditional grey method when we apply the proposed 
model. 

 
d) How can the maneuvering decision-making processes of experienced seafarers under the 

typical navigation scenario be modeled? 

Ø This thesis collects the empirical data on the full-task handling simulation platform for 
large-scale ships named Navi-Trainer Professional 5000. A series of decision tree 
algorithms are utilized to study the decision-making mechanisms of different 
maneuvering behaviors in order to realize the automatic acquisition and representation 
of seafarers’ decision-making in Chapters 4-6. In addition, a framework for the 
complete navigational decision tree method, containing the procedures of constructing 
the decision tree, pruning the decision tree, establishing manoeuvring decision 
classification rules, is designed. This thesis conducts preliminary exploratory research 
on the influencing factors on human-like decision-making theory for autonomous ships. 
It eliminates the limitations of objective conditions of cost, feasibility, and other factors 
for the traditional real-world merchant ship experiment and uses the operations from 
the experienced seafarers based on the simulator to conduct modeling research. 
 

e) How to evaluate and maintain the proposed Human-like Decision-making Maneuvering 

Decision Recognition (HDMDR) model to ensure its appropriate functioning throughout its 

entire life cycle? 

Ø The proposed HDMDR model in Chapter 5 is based on the C4.5 decision tree algorithm, 
which is one of the most famous and popular decision tree algorithms and the most 
influential data mining algorithm. In addition, in pruning the decision tree, we also 
utilized the post pruning method to eliminate branching anomalies caused by noise data 
and isolated points, thus overcoming the over-fitting problem in this model during its 
entire life cycle. 
 
Furthermore, we developed the optimized standardization principle of influencing 
factors to maintain the functioning of the model. The method of classifying the interval 
division that is proposed in this thesis fully considers the distribution of data sets and 
the endpoint extreme value within a reasonable range, such that all influencing factors 
data can be standardized accurately and scientifically and fully respect and restore the 
OOW’s actual operation and decision-making for the inbound ship under typical 
scenarios on the simulator. Specifically, when the optimized middle split point is 
determined, the extreme value of the sorted original data is selected as the extreme 
value of both ends when the saltation is inconspicuous. When it is judged that the 
saltatorial extremum is beyond the normal range extension according to the real 
physical meaning of the influencing factors, then the corresponding row of the 
influencing factor data at the moment of saltatorial occurrence is deleted, and then the 
processed endpoint extreme value is selected. Meanwhile, to contain all the data in each 
influencing factor, the selected rules do not completely follow the rounding principle. 
When four digits are retained after the decimal point, the split points’ open and closed 
intervals are determined according to the trade-off situation.  

 
Moreover, in the process of machine learning training of the model, approximately 80% 
of the data is randomly selected as the training set, and the remaining 20% is used as 
the test set. We utilized the test set to assess the accuracy and feasibility of the HDMDR 
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model. In addition, we conducted a ten-fold cross-validation (10-CV) experiment using 
two classic classification algorithms: k-Nearest Neighbours (k-NN) and Support Vector 
Machine (SVM) to demonstrate further and evaluate the accuracy of the proposed 
method. Therefore, in the specific navigation scenario, our proposed HDMDR model 
has high accuracy and applicability. Overall, this can ensure the accuracy and maintain 
the functioning of our proposed model. 

 
Questions on application 
 

f) To what extent could the proposed models in this thesis be applied in reality? 

Ø This thesis is exploration research on the influencing factors on human-like decision-
making theory for the merchant ship in the real shipping industry (a 30,000-ton bulk 
carrier) under a specific navigation scenario. The simulation scenario is consistent with 
the actual port (the Shanghai Waigaoqiao wharf) environment according to the 
historical data at the same time, which has high value and application significance. 
Besides, the simulator can simulate various actual navigational scenarios using 
different types of merchant ships in different ports worldwide, combining with the 
actual operation data of the experienced seafarers (note that the corresponding various 
scenarios design with different target merchant ships’ characteristics in specific 
experiments are needed when to apply the models more widely). Therefore, the model 
has a high commercial and promotional value. The stakeholders could design and 
develop the berthing system for autonomous ships based on the seafarer’s operation 
rules obtained in the typical navigation scenario according to the empirical data from 
the full-task handling simulation platform. Additionally, the managers of ports and 
maritime authorities could also apply the optimal maneuvering decision-making rules 
(decision-making mechanisms) to enhance maritime traffic safety management. It is of 
great significance for the stakeholders to address the safety management and realize 
the intelligent decision-making of the merchant ships properly. 

 

7.2 Recommendations for future research 

In this section, the limitations of our research and several directions and challenging issues for 
future research are indicated. 
 

a) Recommendation on improving and applying HDMDR model in practice 

Ø The HDMDR model presented in Chapter 5 is a suitable initiative for processing 
existing environmental data, and it considers the analysis of current factors of maritime 
ship navigation in its current operational mode. The proposed model is established 
based on the experimental data collected from the designed navigational scenario (data-
driven method). Most of these factors are relevant to consider in developing new 
intelligent agents supporting the navigation of autonomous ships. However, the factors 
covered by the model represent just a part of the components needed for the 
development of the agents.   
 
Therefore, it is necessary to collect more environmental factors which may affect the 
autonomous operation of ships to further improve and optimize the model (the training 
dataset D of the maneuvering factor X and environmental factors Y1~Y6 in Chapter 5; 
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new factors can be upgraded in the Algorithm 5.1 using specific standardization 
principle; attribute A). When the proposed model is utilized in practice, depending on 
the specific environmental influencing factors in different scenarios, the factors should 
be selected according to the particular situation. Apart from setting the principle of 
standardization of environmental influencing factors to adjust the actual case, the 
proposed model could be upgraded and utilized to different operational scenarios. 
 
In addition, further study should constantly optimize the practicality of the decision 
tree algorithm through continuous learning and training to improve the accuracy of the 
algorithm and promote the application of the proposed model in different navigation 
scenarios. Thus, the model will have broader applicability and recognition accuracy. 
 
Moreover, achieving Degree Four: fully autonomous ship (IMO, 2021) is the 
final/future objective of this study. However, there are still have many challenges on 
the way to achieving fully autonomous shipping. In a specific scenario, the assumed 
ship can finally be the ship of Degree Four need to satisfy many conditions, such as the 
quality and quantity of data collection meet the requirements (from experienced OOW), 
the proposed model gets very high accuracy after a large amount of training, the port 
has complete intelligent infrastructure construction (could achieve port-autonomous 
ship interaction in real-time), and specific laws/regulations for autonomous ships have 
been formulated (some require amendments to current provisions for traditional 
human-operated ships, while others require the reconstruction of regulations), etc. 
Additionally, even though there are strong demands for autonomy shipping, human still 
plays an essential role from the first three degrees of autonomy based on the IMO’s 
classification (First, at this stage, a pilot is mandatory in most ports worldwide. Port 
pilotage is a symbol of national sovereignty. Most countries implement compulsory 
pilotage to ensure the safety of ports, ships, and facilities. Furthermore, according to 
the suggestions from regulatory scoping for the use of maritime autonomous surface 
ships, it seems difficult to determine the most appropriate way at this stage, and some 
actions such as developing unified interpretation/regulations should be avoided to 
prevent creating confusion and contradiction for the traditional human-operated ships 
and management of stakeholders (IMO, 2021). That means, at the policy/regulations 
level, the development of autonomous ships in port scenarios will require humans’ 
participation for a long time in the future. In addition, some sudden collision dangers 
still need the navigational assistance of experienced OOW, etc.).  
 

b) Recommendation on improving the segmentation of intervals  

Ø In Chapter 6, we have not elaborated on this classification interval division method. 
Besides, we mainly focus on guaranteeing that all the influencing factors data can be 
standardized to maximally respect and restore the seafarers’ actual operation and 
decision-making for the typical inbound berthing scenarios. Furthermore, an 
experiment to show the accuracy difference between these two partitions is presented 
(the performance is shown in Table 6.3). A future study could conduct detailed research 
about the method that we proposed or use a standard approach for the segmentation of 
intervals of maneuvering decision-making attributes according to the actual navigation 
situation, which is more suitable for the real-world ship-handing orders (specifically 
the combined rudder orders and telegraph orders). Therefore, a comparative analysis 
can be conducted about this method, mainly expounding the data pre-processing 
process, accuracy and time-consuming analysis, and mathematical statistics 
mechanism.   
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c) Recommendation on studying the impact and characteristics of human behavior  

Ø This thesis conducts exploratory research on the influencing factors on human-like 
decision-making theory for the autonomous ship. It addresses the cost limitations for 
the traditional real-world merchant ship experiment and uses the operation from the 
experienced seafarers based on the simulator to carry out modeling research. The 
proposed model is of considerable significance for the development of intelligent 
merchant ships. Moreover, it is unique and useful to obtain experimental data operated 
by an experienced senior crew on the full-task handling simulation platform at a 
specific time and space. Nevertheless, the waterborne transport and maneuver system 
will consist of autonomous ships and human-operated ships simultaneously for a very 
long period. In other words, the situation of a human-ship-environment interaction 
system with different autonomous levels will exist in various shipping scenarios for a 
long time. Therefore, a follow-up study could conduct a detailed research about human 
behavior and explore their performance and characteristics in specific navigational 
scenarios.   
  

d) Recommendation on the berthing module that supports autonomous ship maneuvering 

decision-making  in real-time 

Ø In our case, the proposed models in Chapters 4-6 can reasonably complete the 
simulation and decision-making knowledge acquisition of the ship’s automatic 
maneuvering process and has a high degree of application and promotion (the simulator, 
Navi-Trainer Professional 5000, which conforms to the IMO STCW78/10 convention 
and the Det Norske Veritas, has simulation scenarios for most ports worldwide). 
Moreover, as shown in Chapter 5, the upper limit of the quality confidence interval is 
used as the erroneous estimation under pessimistic conditions to maintain the accuracy 
and efficiency of our proposed model. The improvement of the algorithm is of great 
significance for the development of autonomous merchant ships.  
 
However, the decision tree cannot represent any feedback loop to inform the effect of 
the input action on a component and adapt its performance. It would be interesting to 
optimize our model for the autonomous operation of ships, decision classification rules 
and constantly optimize the practicality of our algorithm through continuous learning 
and training. Alternatively, reinforcement learning, deep learning, and transfer learning 
methods can be used to learn the human-like decision-making mechanism for 
autonomous merchant ships, which suits different navigational scenarios and proposes 
a model that supports autonomous ship maneuvering decision-making takes action in 
real-time. 
 

e) Recommendation on considering the function of tugs during the berthing maneuvering 

Ø In the thesis, we gave the hypothetical premise for our proposed model that the tugs are 
as a power plant system of target Own Ship (OS) 1 to facilitate the ship’s overall 
situation of simplified analysis, and we consider the tugs and the ship OS1 as a whole 
dynamic model. Under the premise of this hypothesis, the ship OS1 completes the 
inbound operation by combining rudder orders and telegraph orders, according to the 
actual navigational situation of its force and movement. 
 
In our case, as the designed experimental scenario in Chapter 3, we define the process 
as when the ship’s stern leaves the main channel near the port side of the boundary line 
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in the electronic chart to the ship berths docked at the end of the cable as a complete 
berthing process. The actual situation is that our data is collected in the initial boundary 
while the tug starts to work at the end of the whole inbound process of the ship OS1. 
This needs to be regarded as two different situations and modeling in different ways. 
In addition, taking the operations of ship OS1 and two tugs as the output of our 
proposed model into consideration at the same time is too complicated to establish the 
model.  
  
Therefore, based on the idea of simplification, this thesis considers the tugs and the 
ship OS1 as a whole dynamic model (the tug is considered to be a power plant system 
of ship OS1, in the future intelligent port construction, unmanned is also a significant 
trend, the tug would also be unmanned or would be uniformly deployed by autonomous 
ships, as part of the overall dynamics model of the autonomous ships. Therefore, this 
assumption has a specific practical significance). 
  
However, generally, in the berthing scenario, the tugs are always used in this kind of 
maneuver, and they significantly influence the decision model of the navigator. 
OOW/pilot uses propulsion and rudder very specifically (and indifferent way than 
maneuvering alone) in the presence of tugs, and engine orders are correlated highly 
with tugs orders. Moreover, the type and power of tugs play an essential role in 
maneuvering tactics. Future research could collect the relevant data from the tugs and 
add the data to the model analysis to further optimize our model and promote the 
application of our proposed models in different navigational scenarios. 
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Appendix 

Table A.1 The extreme values of our data set. 

Influencing factors Standardization 
   

Y1 10.75723437 0.000149400 
Y2 9.286000215 2.97525E-05 
Y3 6.670632875 0.000162331 
Y4 4.939213846 0.000240429 
Y5 2.677718534 0.001937135 
Y6 2.607298241 0.002782460 
Y7 4.896570329 4.70016E-05 
Y8 6.238392243 0.000341300 
Y9 5.742657263 0.000149654 
Y10 2.699055325 4.80284E-05 
Y11 6.230599999 0.000794324 
Y12 8.023167652 0.000179697 
Y13 45.23686934 0.001040272 
Y14 37.19534450 0.010007617 
Y15 36.16702220 0.006453297 
Y16 56.71438286 0.005779491 
Y17 26.88140323 0.001041084 
Y18 26.76096695 0.029507153 
Y19 25.52296248 0.005543666 
Y20 31.57740192 0.041646945 
Y21 6.406334561 3.47088E-05 
Y22 4.576141174 0.000154554 
Y23 4.212766847 0.000149660 
Y24 5.285008067 0.000186862 
Y25 13.21063113 7.98433E-05 
Y26 24.45508796 0.001488166 
Y27 6.267063219 0.000109524 
Y28 10.38202823 9.73156E-05 
Y29 12.12034909 6.66299E-05 
Y30 8.602456594 0.000166826 
Y31 6.267064612 0.000108035 
Y32 3.862857951 6.03501E-06 
Y33 4.661142861 2.04946E-05 

(max)iD (min)iD
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Summary 

Maritime shipping is essential to the global economy, while waterway transportation is 

recognized as a high-risk industry. Additionally, maritime accidents are frequently 

caused by human errors, and with the rapid improvement of science and technology, 

the improvement of autonomous ships has been technically feasible, which attracts the 

wide attention of researchers in academia and industry. However, the knowledge 

acquisition and representation methods are mainly based on knowledge-based research 

methods, while the existing research for automatically achieving the autonomous ships’ 

maneuvering decision-making by acquiring the seafarers’ operation characteristics is 

still scanty. In addition, it also lacks the appropriate theoretical methods to explore the 

problem of autonomous ship human-like maneuvering decision-making modeling. 

Therefore, the research on ship maneuvering decision-making methods still needs to be 

improved and further developed. 

 

This thesis focuses on the problem of modeling seafarers’ navigational decision-making 

in a typical scenario for autonomous ships’ safety. We propose the method to prioritize 

safety influencing factors of autonomous ships’ maneuvering decisions and a series of 

ship maneuvering knowledge learning models to give the autonomous ship the ability 

to make decisions like a human. The autonomous ship human-like maneuvering 

decision-making problem has been considered as a machine learning problem, and we 

translate the problem into learning the maneuvering decision characteristics of the 

officer on watch (OOW) using various decision tree algorithms. By constructing 

autonomous ship human-like decision-making maneuvering decision recognition 

models under multiple constraints in the specific scenarios, the decision-making 

mechanism of the OOW’s maneuvering behavior under specific water traffic safety 

influencing factors in the inbound scenario is analyzed, and the OOW’s decision-

making knowledge is automatically acquired and represented. 

 

Maritime traffic safety influencing factors prioritizing model of autonomous ships’ 
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maneuvering decisions 

 

Ship maneuvering decisions are influenced by several factors. Meanwhile, the 

autonomous ship maneuvering decision-making influencing factors constitute a typical 

grey system suitable for research by grey relational analysis. Furthermore, in the fuzzy 

approach, linguistic assessment of factors is evaluated to obtain priorities numbers. 

Therefore, this thesis proposes a maritime traffic safety influencing factors prioritizing 

model, which utilized the grey and fuzzy theories and combined with expert linguistic 

terms, thus to select the ship maneuvering decision-making main influencing factors 

from multi-source influencing factors (in overall and separated categories of natural 

environment, ship motion, force parameters, draft, and position), and to study the 

decision-making prioritization for maritime traffic safety for specific ship maneuvering 

scenarios. This proposed model can prioritize the main factors that affect maneuvering 

decisions and guide an autonomous ship-assisted or automatic maneuvering evaluation 

system for the research of human-like maneuvering behavior. This study provides a new 

perspective on identifying primary ship maneuvering decision-making influencing 

factors in theory and practice. It can be utilized for better decision-making concerning 

maritime traffic safety of autonomous ship maneuvering, making shipping safer, and 

promoting the application and spreading of autonomous ships. 

 

Navigational decision tree model of human-like decision-making for autonomous 

ships’ maneuvering  

 

Based on the advantages of the Iterative Dichotomiser 3 (ID3) and C4.5 algorithms and 

the ability to analyze the characteristics of multifork trees, a framework for the 

complete navigational decision tree method, containing the procedures of constructing 

the decision tree, pruning the decision tree, establishing maneuvering decision 

classification rules, is designed. Additionally, the novel navigational decision tree 

algorithms are utilized to recognize the OOW’s maneuvering decision characteristics. 

In this thesis, the autonomous ship human-like maneuvering decision-making problem 

is regarded as a machine learning problem based on the OOW’s experience, the OOW’s 

actual maneuvering data, and the environment influencing factors, such as wind, wave, 

and current in specific water areas, and the problem is converted using the decision tree 

methods to learn the OOW’s maneuvering decision-making characteristics, thus 

constructing a human-like decision-making model under multiple constraints. The 

proposed model could be applied to realize the automatic acquisition and representation 

of the OOW’s decision-making knowledge in inbound merchant ships analysis. 

Moreover, to verify the model’s performance, the case study based on this method is 

conducted in the Waigaoqiao Phase IV Port of Shanghai. The validation tests and the 

comparative analysis with the classic classification algorithms of k-Nearest Neighbours 

(k-NN) and Support Vector Machine (SVM) are performed to demonstrate the accuracy 

of the proposed model. 

 

Fuzzy decision tree model of human-like decision-making for autonomous ships’ 



 
 
Summary   127 

  

maneuvering 

 

The classification results of a decision tree are clear and easy to understanding; while 

it cannot address potential uncertainty during the classification process, the resulting 

decision tree is generally not robust. However, the Fuzzy Decision Tree (FDT) 

integrates the advantages of fuzzy theory and decision trees by combining the 

comprehensibility of decision trees and the comprehensive expressions of fuzzy 

technology, which could address problems of fuzziness and uncertainty. The FDT has 

strong decision-making abilities and can address the problems of ambiguity and 

uncertainty. Because of this, in this thesis, we collect data on the full-task handling 

simulation platform for large-scale ships and use an improved fuzzy ID3 decision tree 

to explore the decision-making mechanisms of different maneuvering behaviors to 

realize the automatic acquisition and representation of a seafarer’s decision-making. 

The significance level    and truth level threshold    are utilized to control tree 

generation and carry out pre-pruning. The simulation results combined with the method 

of classification interval division indicate that the proposed method can identify the 

seafarers’ maneuvering operations and characteristics accurately and has high 

reasoning efficiency.  

 

Insights into autonomous berthing system design and port safety management 

 

With the continuous development of large-scale, high-speed, and professional ships and 

the increasing construction of modern intelligent deep-water ports, inbound merchant 

ships’ safety is increasingly important. Thus, it is of great significance for the 

stakeholders to adequately address the safety management and realize the intelligent 

decision-making of the inbound merchant ships. In this thesis, based on the actual 

seafarers’ operational data from the full-task handling simulation platform, this study 

combines the navigation scenario of a 30,000-ton bulk carrier ship inbound port to 

propose a series of knowledge acquisition models under multiple constraints to give 

autonomous ships the ability to make decisions like a human. The experimental results 

indicate that the maneuvering decision recognition models can accurately and 

scientifically standardize the boundary of the interval of influencing factor data and 

identify current maneuvering behavior. The proposed methods and the evaluation 

results provide valuable insights for effective safety management of the inbound 

merchant ships for the stakeholders and managers of the port. In addition, the thesis 

also provides theoretical guidance and a feasibility basis for research into human-like 

piloting behavior and the realization of autonomous ship piloting and berthing systems. 

 

In summary, this thesis focuses on the concept of human-like maneuvering for 

autonomous merchant ships and studies the human-like decision-making mechanism 

for autonomous merchant ships. We propose the autonomous ship human-like decision-

making recognition models. Specifically, by establishing the autonomous learning 

method of maneuvering decision-making, the maneuvering decision-making rules of the 
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typical maneuvering style in the specific scenario are explored, and the processes of 

autonomous learning seafarer’s maneuvering decision-making characteristics for 

autonomous ships are analyzed. This study provides a new perspective and 

methodology for developing autonomous ship maneuvering decision-making 

technology in theory and practice, promotes the application and spreading of 

autonomous merchant ships, and is conducive to the development of water 

transportation in the direction of safety, sustainability, and economy. 
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