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Abstract. We study stochastic programs where the decision maker cannot observe the
distribution of the exogenous uncertainties but has access to a finite set of independent
samples from this distribution. In this setting, the goal is to find a procedure that
transforms the data to an estimate of the expected cost function under the unknown data-
generating distribution, that is, a predictor, and an optimizer of the estimated cost function
that serves as a near-optimal candidate decision, that is, a prescriptor. As functions of the
data, predictors and prescriptors constitute statistical estimators. We propose a meta-
optimization problem to find the least conservative predictors and prescriptors subject to
constraints on their out-of-sample disappointment. The out-of-sample disappointment
quantifies the probability that the actual expected cost of the candidate decision under the
unknown true distribution exceeds its predicted cost. Leveraging tools from large devi-
ations theory, we prove that this meta-optimization problem admits a unique solution: The
best predictor-prescriptor-pair is obtained by solving a distributionally robust optimi-
zation problem over all distributions within a given relative entropy distance from the
empirical distribution of the data.
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1. Introduction
We study static decision problems under uncertainty,
where the decisionmaker cannot observe the probability
distribution of the uncertain problem parameters but
has access to a finite number of independent samples
from this distribution. Classical stochastic program-
ming uses this data only indirectly. The data serves as
the input for a statistical estimation problem that aims
to infer the distribution of the uncertain problem pa-
rameters. The estimated distribution then serves as an
input for an optimization problem that outputs a near-
optimal decision as well as an estimate of the expected
cost incurred by this decision. Thus, classical stochastic
programming separates the decision-making process
into an estimation phase and a subsequent optimiza-
tion phase. The estimation method is typically selected
with the goal to achieve maximum prediction accuracy
but without tailoring it to the optimization problem
at hand.

In this paper, we develop a method of data-driven
stochastic programming that avoids the artificial
decoupling of estimation and optimization and that

chooses an estimator that adapts to the underlying op-
timization problem. Specifically, we model data-driven
solutions toa stochastic programthrougha predictor and
its corresponding prescriptor. For any fixed feasible
decision, the predictor maps the observable data to an
estimate of the decision’s expected cost. The pre-
scriptor, on the other hand, computes a decision that
minimizes the cost estimated by the predictor.
The set of all possible predictors and their induced

prescriptors is vast. Indeed, there are countless pos-
sibilities to estimate the expected costs of a fixed
decision from data, for example, via the popular
sample average approximation (Shapiro et al. 2014,
chapter 5), by postulating a parametric model for the
exogenous uncertainties and estimating its parame-
ters via maximum likelihood estimation (Dupačová
and Wets 1988), or through kernel density estimation
(Parpas et al. 2015). Recently, it has become fash-
ionable to construct conservative (pessimistic) esti-
mates of the expected costs via methods of dis-
tributionally robust optimization. In this setting, the
available data are used to generate an ambiguity set
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that represents a confidence region in the space of
probability distributions and contains the unknown
data-generating distribution with high probability.
The expected cost of a fixed decision under the un-
known true distribution is then estimated by the
worst-case expectation over all distributions in the
ambiguity set. Since the ambiguity set constitutes a
confidence region for the unknown true distribution,
the worst-case expectation represents an upper con-
fidence bound on the true expected cost. The ambi-
guity set can be defined, for example, through con-
fidence intervals for the distribution’s moments (Delage
and Ye 2010). Alternatively, the ambiguity set may
contain all distributions that achieve a prescribed
level of likelihood (Wang et al. 2016), that pass a
statistical hypothesis test (Bertsimas et al. 2018a), or
that are sufficiently close to a reference distribution
with respect to a probability metric such as the Pro-
khorov metric (Erdoğan and Iyengar 2006), the Was-
serstein distance (Pflug andWozabal 2007, Mohajerin
Esfahani and Kuhn 2018, Zhao and Guan 2018), the
total variation distance (Sun and Xu 2016), or the
L1-norm (Jiang and Guan 2018). Ben-Tal et al. (2013)
have shown that confidence sets for distributions
can also be constructed using φ-divergences such
as the Pearson divergence, the Burg entropy, or the
Kullback-Leibler divergence. More recently, Bayraksan
and Love (2015) provide a systematic classification of
φ-divergences and investigate the richness of the
corresponding ambiguity sets.

Given the numerous possibilities for constructing
predictors from a given data set, it is easy to lose
oversight. In practice, predictors are often selected
manually from within a small menu with the goal
to meet certain statistical and/or computational re-
quirements. However, there are typically many dif-
ferent predictors that exhibit the desired properties,
and there always remains some doubt as to whether
the chosen predictor is best suited for the particular
decision problem at hand. In this paper, we propose a
principled approach to data-driven stochastic pro-
gramming by solving a meta-optimization problem
over a rich class of predictor-prescriptor pairs in-
cluding, among others, all examples reviewed in this
section. This meta-optimization problem aims to find
the least conservative (i.e., pointwise smallest) pre-
scriptor whose out-of-sample disappointment de-
cays at a prescribed exponential rate r as the sample
size tends to infinity—irrespective of the true data-
generating distribution. The out-of-sample disappoint-
ment quantifies the probability that the actual expected
cost of the prescriptor exceeds its predicted cost.
Put differently, it represents the probability that the
predicted cost of a candidate decision is over-optimistic
and leads to disappointment in out-of-sample tests.
Thus, the proposed meta-optimization problem tries to

identify thepredictor-prescriptor-pairs thatoverestimate
the expected out-of-sample costs by the least amount
possible without risking disappointment under any
thinkable data-generating distribution.
Our main results can be summarized as follows:
• By leveraging Sanov’s theorem from large de-

viations theory, we prove that the meta-optimization
problem admits a unique optimal solution for any
given stochastic program.
• We show that the optimal data-driven predictor

estimates the expected costs under the unknown true
distribution by a worst-case expectation over all
distributions within a given relative entropy distance
from the empirical distribution of the data. This
suggests that, amongall possibledata-driven solutions, a
distributionally robust approach based on a relative
entropy ambiguity set is optimal. This is perhaps sur-
prising because the meta-optimization problem does
not impose any structure on the predictors,which are ge-
neric functions of the data. In particular, there is no re-
quirement forcing predictors to admit a distributionally
robust interpretation.
• In contrast to most of the existing work on data-

driven distributionally robust optimization, our rel-
ative entropy ambiguity set does not play the role of a
confidence region that contains the unknown data-
generating distribution with a prescribed level of
probability (see the following discussions of Lam
2016, Gupta 2019 for exceptions). Instead, the ra-
dius of the relative entropy ambiguity set coincides
with the desired exponential decay rate r of the out-
of-sample disappointment imposed by the meta-
optimization problem.
• We prove that the optimal (distributionally ro-

bust) predictor admits a dual representation as the
optimal value of a one-dimensional convex optimi-
zation problem that can be solved highly efficiently.
For continuously distributed problem parameters,
this representation seems to be new.
To our best knowledge, we are the first to recognize

the optimality of distributionally robust optimization
in its ability to transform data to predictors and
prescriptors. The optimal distributionally robust pre-
dictor identified in this paper can be evaluated by
solving a tractable convex optimization problem. Under
standard convexity assumptions about the feasible set
and the cost function of the stochastic program, the
corresponding optimal prescriptor can also be evaluated
in polynomial time. Although perhaps desirable, the
tractability and distributionally robust nature of the
optimal predictor-prescriptor-pair are not dictated ex
ante but emerge naturally.
Relative entropy ambiguity sets have already attrac-

ted considerable interest in distributionally robust
optimization (Calafiore 2007, Ben-Tal et al. 2013,
Hu and Hong 2013, Lam 2016, Wang et al. 2016).
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Note, however, that the relative entropy constitutes
an asymmetric distance measure between two dis-
tributions. The asymmetry implies, among others,
that the first distribution must be absolutely contin-
uous to the second one but not vice versa. Thus,
ambiguity sets can be constructed in two different
ways by designating the reference distribution either
as the first or as the second argument of the relative
entropy. All papers listed previously favor the second
option, and thus the emerging ambiguity sets contain
only distributions that are absolutely continuous to
the reference distribution. Maybe surprisingly, the
optimal predictor resulting from our meta-optimization
problem uses the reference distribution as the first
argument of the relative entropy instead. Thus, the
reference distribution is absolutely continuous to ev-
ery distribution in the emerging ambiguity set. Rela-
tive entropy balls of this kind have previously been
studied by Lam (2016), Bertsimas et al. (2018b), and
Gupta (2019).

Adopting a Bayesian perspective, Gupta (2019)
determines the smallest ambiguity sets that contain
the unknown data-generating distribution with a
prescribed level of confidence as the sample size tends
to infinity. Both Pearson divergence and relative
entropy ambiguity sets with properly scaled radii are
optimal in this setting. In the terminology of the
present paper, Gupta (2019) thus restricts attention to
the subclass of distributionally robust predictors and
operateswith an asymptotic notion of optimality. The
meta-optimization problem proposed here entails a
stronger notion of optimality, under which the dis-
tributionally robust predictor with relative entropy
ambiguity set emerges as the unique optimizer. Lam
(2016) also seeks distributionally robust predictors
that trade conservatism for out-of-sample perfor-
mance. He studies the probability that the estimated
expected cost function dominates the actual expected
cost function uniformly across all decisions, and he
calls a predictor optimal if this probability is as-
ymptotically equal to a prescribed confidence level.
Using the empirical likelihood theorem of Owen
(1988), he shows that Pearson divergence and rela-
tive entropy ambiguity sets with properly scaled radii
are optimal in this sense. This notion of optimality has
again an asymptotic flavor in the sense that it refers to
sequences of ambiguity sets that converge to a sin-
gleton, and it admits multiple optimizers.

The rest of the paper unfolds as follows. Section 2
provides a formal introduction to data-driven sto-
chastic programming on finite state spaces and de-
velops themeta-optimization problem for identifying
the best predictor-prescriptor-pair. Section 3 reviews
weak and strong large deviation principles, which are
then used in Section 4 to determine the unique op-
timal solution of the meta-optimization problem.

An extension to continuous state spaces is discussed
in Section 5.

1.1. Notation
The natural logarithm of p ∈ R+ is denoted by log(p),
where we use the conventions 0 log(0/p) � 0 for any
p ≥ 0 and p′ log(p′/0) � ∞ for any p′ > 0. A function
f : 3 → X from 3 ⊆ Rd to X ⊆ Rn is called quasi-
continuous at P ∈ 3 if for every ε > 0 and neighbor-
hood U ⊆ 3 of P there is a nonempty open set V ⊆ U
with | f (P) − f (Q)| ≤ ε for all Q ∈ V. Note that V does
not necessarily contain P. For any logical statement %,
the indicator function 1% evaluates to 1 if % is true and
to 0 otherwise.

2. Data-Driven Stochastic Programming
Stochastic programming is a powerful modeling para-
digm for taking informed decisions in an uncertain
environment. A generic single-stage stochastic program
can be represented as

minimize
x∈X EP� γ x, ξ( )[ ]

. (1)

Here, the goal is to minimize the expected value of a
cost function γ(x, ξ) ∈ R, which depends both on a
decision variable x ∈ X and a randomparameter ξ ∈ Ξ
governed by a probability distribution P�. We will
assume that the cost γ(x, ξ) is continuous in x for every
fixed ξ ∈ Ξ, the feasible setX ⊆ Rn is compact, andΞ �
{1, . . . , d} is finite. Thus, ξ has d distinct scenarios that
are represented—without loss of generality—by the
integers 1, . . . , d. We will relax this requirement in
Section 5, where Ξ will be modeled as an arbitrary
compact subset of Rd. A wide spectrum of decision
problems can be cast as instances of (1). Shapiro
et al. (2014) point out, for example, that (1) can be
viewed as the first stage of a two-stage stochastic
program,where the cost function γ(x, ξ) embodies the
optimal value of a subordinate second-stage problem.
Alternatively, problem (1) may also be interpreted
as a generic learning problem in the spirit of statistical
learning theory.
In the following, we distinguish the prediction

problem, which merely aims to predict the expected
cost associated with a fixed decision x, and the pre-
scription problem, which seeks to identify a decision
x� that minimizes the expected cost across all x ∈ X.
Any attempt to solve the prescription problem

seems futile unless there is a procedure for solving
the corresponding prediction problem. The generic
prediction problem is closely related to what Le
Maı̂tre and Knio (2010) call an uncertainty quantifi-
cation problem and is therefore of prime interest in
its own right. Throughout the rest of the paper, we
thus analyze prediction and prescription problems on
equal footing.
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In the what follows we formalize the notion of a
data-driven solution to the prescription and predic-
tion problems, respectively. Furthermore, we intro-
duce the basic assumptions as well as the notation
used throughout the remainder of the paper.

2.1. Data-Driven Predictors and Prescriptors
If the distribution P� of ξ is unobservable andmust be
estimated from a training data set consisting of fi-
nitely many independent samples from P�, we lack
essential information to evaluate the expected cost of
any fixed decision and to solve the stochastic pro-
gram (1). The standard approach to overcome this
deficiency is to approximate P� with a parametric or
nonparametric estimate P̂ inferred from the samples
and to minimize the expected cost under P̂ instead
of the true expected cost under P�. However, if
we calibrate a stochastic program to a training data
set and evaluate its optimal decision on a test data
set, then the resulting test performance is often
disappointing—even if the two data sets are sampled
independently from P�. This phenomenon has been
observed in many different contexts. It is particularly
pronounced in finance, where Michaud (1989) refers
to it as the “error maximization effect” of portfolio
optimization, and in statistics or machine learning,
where it is known as “overfitting.” In decision anal-
ysis, Smith and Winkler (2006) refer to it as the
“optimizer’s curse.” Thus, when working with
data instead of exact probability distributions, one
should safeguard against solutions that display
promising in-sample performance but lead to out-
of-sample disappointment.

Initially, the distribution P� is only known to belong
to the probability simplex 3� {P ∈Rd

+ :
∑

i∈ΞP(i) � 1}.
Over time, however, independent samples ξt, t ∈ N,
from P� are revealed to the decision maker that
provide increasingly reliable statistical information
about P�.

Any P ∈ 3 encodes a possible probabilistic model
for the data process. Thus, by slight abuse of termi-
nology, we will henceforth refer to the distributions
P ∈ 3 as models and to 3 as the model class. Evi-
dently, the true model P� is an (albeit unknown) el-
ement of 3. Next, we introduce model-based pre-
dictors and prescriptors corresponding to the stochastic
program (1), where the true unknown distribution P�

is replaced with a hypothetical model P ∈ 3.

Definition 1 (Model-Based Predictors and Prescriptors). For
any fixed model P ∈ 3, we define the model-based
predictor c(x,P)�EP[γ(x,ξ)]�∑

i∈ΞP(i)γ(x, i) as the ex-
pected cost of a given decision x ∈ X and the model-
based prescriptor x�(P) ∈ argminx∈X c(x,P) as a decision
that minimizes c(x,P) over x ∈ X.

Note that the model-based predictor c(x,P) is jointly
continuous in x and P because Ξ is finite and γ(x, ξ) is
continuous in x for everyfixed ξ ∈ Ξ. The continuity of
c(x,P) then guarantees via the compactness of X that
the model-based prescriptor x�(P) exists for every
model P ∈ 3. In view of Definition 1, the stochastic
program (1) can be identified with the prescription
problem of computing x�(P�). Similarly, the evalua-
tion of the expected cost of a given decision x ∈ X in (1)
can be identified with the prediction problem of
computing c(x,P�). These prediction and prescription
problems cannot be solved, however, as they depend
on the unknown true model P�.
If one has only access to a finite set {ξt}Tt�1 of in-

dependent samples from P� instead of P� itself, then it
may be useful to construct an empirical estimator
for P�.

Definition 2 (Empirical Distribution). The empirical dis-
tribution P̂T corresponding to the sample path {ξt}Tt�1 of
length T is defined through

P̂T i( ) � 1
T

∑T
t�1

1ξt�i ∀i ∈ Ξ.

Note that P̂T can be viewed as the vector of empirical
state frequencies. Indeed, its ith entry records the
proportion of time that the sample path spends in
state i. As the samples are drawn independently, the
state frequencies capture all useful statistical infor-
mation about P� that can possibly be extracted from a
given sample path. Note also that P̂T is in fact the
maximum likelihood estimator of P�. In the follow-
ing, we will therefore approximate the unknown
predictor c(x,P�) as well as the unknown prescriptor
x�(P�) by suitable functions of the empirical distri-
bution P̂T.

Definition 3 (Data-Driven Predictors and Prescriptors). A
continuous function ĉ : X ×3 → R is called a data-
driven predictor if ĉ(x, P̂T) is used as an approxima-
tion for c(x,P�). A quasi-continuous function x̂ : 3 →
X is called a data-driven prescriptor if there exists a
data-driven predictor ĉ with

x̂ P′( ) ∈ argmin
x∈X ĉ x,P′( )

for all possible estimator realizations P′ ∈ 3, and
x̂(P̂T) is used as an approximation for x�(P�).
Every data-driven predictor ĉ induces a data-driven

prescriptor x̂. To see this, note that the argminmapping
is non-empty-valued and upper semicontinuous due
to Berge’s maximum theorem (Berge 1963), which
applies because ĉ is continuous andX is both compact
and independent of P′. Corollary 4 inMatejdes (1987),
which applies because 3 is a Baire space and X is a
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metric space, thus ensures that the argmin mapping
admits a quasi-continuous selector, which serves as
a valid data-driven prescriptor. One can show that
the set of points where this quasi-continuous pre-
scriptor is discontinuous is a meagre subset of 3
(Bledsoe 1952). By the Baire category theorem, the
points of continuity of the data-driven prescriptor at
hand are thus dense in 3 (Baire 1899). Thus, data-
driven prescriptors in the sense of Definition 3 are
mostly continuous.

Example 1 (Sample Average Predictor). The model-based
predictor c introduced in Definition 1 constitutes a
simple data-driven predictor ĉ � c, that is, c(x, P̂T) can
readily be used as a naı̈ve approximation for c(x,P�).
Note that the model-based predictor c is indeed con-
tinuous as desired. By the definition of the empirical
estimator, this naı̈ve predictor approximates c(x,P�)with

c x, P̂T
( ) � 1

T

∑T
t�1

γ x, ξt( ),

which is readily recognized as the popular sample
average approximation.

2.2. Optimizing over All Data-Driven Predictors
and Prescriptors

The estimates ĉ(x, P̂T) and x̂(P̂T) inherit the random-
ness from the empirical estimator P̂T, which is con-
structed from the (random) samples {ξt}Tt�1. Note that
the prediction and prescription problems are natu-
rally interpreted as instances of statistical estimation
problems. Indeed, data-driven prediction aims to
estimate the expected cost c(x,P�) fromdata. Standard
statistical estimation theorywould typically endeavor to
find a data-driven predictor ĉ that (approximately)
minimizes the mean squared error,

E

⃒⃒
⃒c x,P�
( ) − ĉ x, P̂T

( )⃒⃒⃒2
[ ]

,

over some appropriately chosen class of predictors ĉ,
where the expectation is taken with respect to the
distribution (P�)∞ governing the sample path and the
empirical estimator. The mean squared error penal-
izes the mismatch between the actual cost c(x,P�) and
its estimator ĉ(x, P̂T). Events in which we are left
disappointed (c(x,P�) > ĉ(x, P̂T)) are not treated dif-
ferently from positive surprises (c(x,P�) < ĉ(x, P̂T)).
In a decision-making context where the goal is to
minimize costs, however, disappointments (under-
estimated costs) aremoreharmful thanpositive surprises
(overestimated costs). Although statisticians strive for
accuracy by minimizing a symmetric estimation error,
decision makers endeavor to limit the one-sided pre-
diction disappointment.

Definition 4 (Out-of-Sample Disappointment). For any
data-driven predictor ĉ, the probability

P∞ c x,P( ) > ĉ x, P̂T
( )( ) (2a)

is referred to as the out-of-sample prediction disap-
pointment of x ∈ X under model P ∈ 3. Similarly, for
any data-driven prescriptor x̂ induced by a data-
driven predictor ĉ, the probability

P∞ c x̂ P̂T
( )

,P
( )

> ĉ x̂ P̂T
( )

, P̂T
( )( ) (2b)

is termed the out-of-sample prescription disappoint-
ment under model P ∈ 3.

The out-of-sample prediction disappointment quan-
tifies the probability (with respect to the sample path
distribution P∞ under some model P ∈ 3) that the
expected cost c(x,P) of a fixed decision x exceeds the
predicted cost ĉ(x, P̂T). Thus, the out-of-sample pre-
diction disappointment is independent of the actual
realization of the empirical estimator P̂T, but depends
on the hypothesizedmodel P. A similar statement holds
for the out-of-sample prescription disappointment.
The main objective of this paper is to construct

attractive data-driven predictors and prescriptors,
which are optimal in a sense to be made precise later.
We first develop a notion of optimality for data-
driven predictors and extend it later to data-driven
prescriptors. As indicated earlier, a crucial require-
ment for any data-driven predictor is that itmust limit
the out-of-sample disappointment. This informal re-
quirement canbe operationalized either in anasymptotic
sense or in a finite sample sense:
i. Asymptotic guarantee: As T grows, the out-of-

sample prediction disappointment (2a) decays ex-
ponentially at a rate at least equal to r > 0 up to first
order in the exponent, that is,

limsup
T→∞

1
T
logP∞ c x,P( )> ĉ x, P̂T

( )( )≤−r ∀x∈X, P ∈3.

(3)
ii. Finite sample guarantee: For every fixed T, the

out-of-sample prediction disappointment (2a) is boun-
ded above by a known function g(T) that decays
exponentially at rate at least equal to r > 0 to first
order in the exponent, that is,

P∞ c x,P( )> ĉ x, P̂T
( )( )≤ g T( ) ∀x∈X, P∈3, T ∈N, (4)

where lim supT→∞
1
T log g(T) ≤ −r.

The inequalities (3) and (4) are imposed across all
models P ∈ 3. This ensures that they are satisfied under
the true model P�, which is only known to reside
within 3. By requiring the inequalities to hold for all
x ∈ X, we further ensure that the out-of-sample predic-
tion disappointment is eventually small irrespective of
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the chosen decision. Note that the finite sample guar-
antee (4) is sufficient but not necessary for the as-
ymptotic guarantee (3). Knowing the finite sample
bounds g(T) has the advantage, among others, that
one can determine the sample complexity,

min T0 ∈ N : g T( ) ≤ β, ∀T ≥ T0
{ }

,

that is, the minimum number of samples needed to
certify that the out-of-sample prediction disappointment
does not exceed a prescribed significance level β ∈ [0, 1].

At first sight, the requirements (3) and (4)may seem
restrictive, and the existence of data-driven predic-
tors with exponentially decaying out-of-sample dis-
appointment may be questioned. Later we will argue,
however, that these requirements are in fact natural
and satisfied by all reasonable predictors. To see this,
note that if the training data are generated by P, then
the empirical distribution P̂T converges P∞-almost
surely to P by virtue of the strong law of large
numbers. Thus, the out-of-sample disappointment
of a predictor ĉwith ĉ(x,P) > c(x,P)must decay to 0 as
T grows. Conversely, if ĉ(x,P) < c(x,P), then the out-
of-sample disappointment of ĉ must approach 1 as T
tends to infinity. The following example shows that the
out-of-sample disappointment generically fails to vanish
asymptotically in the limiting casewhen ĉ(x,P) � c(x,P).
Example 2 (Large Out-of-Sample Disappointment). Set
the cost function to γ(x, ξ) � ξ. In this case, the sam-
ple average predictor approximates the expected cost
c(x,P) �∑

i∈Ξ iP(i) by its samplemean c(x, P̂T) � 1
T
∑T

t�1 ξt.
As the sample size T tends to infinity, the central limit
theorem implies that

̅
T̅

√
c x, P̂T
( ) − c x,P( )[ ]

converges in law to a normal distributionwithmean 0
and variance EP[(ξ − EP[ξ])2]. Thus,

lim
T→∞P∞ c x,P( ) > ĉ x, P̂T

( )( )

� lim
T→∞P∞ ̅

T̅
√

ĉ x, P̂T
( ) − c x,P( )( )

< 0
( )

� 1
2
,

which means that the out-of-sample prediction dis-
appointment remains large for all sample sizes. The
sample average predictor hence violates the asymp-
totic guarantee (3) and the stronger finite sample guar-
antee (4). Note that by adding any positive constant to
the sample average predictor,we recover a predictorwith
exponentially decaying out-of-sample disappointment.

In the following we call a predictor ĉ conservative if
ĉ(x,P′) > c(x,P′) for all decisions x ∈ X and estimator
realizations P′ ∈ 3. The previous discussion shows
that if we require the out-of-sample disappointment

to decay asymptotically, we must focus on conser-
vative predictors. Basic results from large deviations
theory further ensure that the out-of-sample disap-
pointment of any conservative predictor necessarily
decays at an exponential rate. Specifically, asymptotic
guarantees of the type (3) hold whenever the empiri-
cal distribution P̂T satisfies a weak large deviation
principle, while finite sample guarantees of the type (4)
hold when P̂T satisfies a strong large deviation prin-
ciple. As will be shown in Section 3, the empirical
distribution does satisfy weak and strong large de-
viation principles. One predictor that fails to be con-
servative is the sample average predictor.
For ease of exposition, we henceforth denote by #

the set of all data-drivenpredictors, that is, all continuous
functions that map X ×3 to the reals. Moreover, we
introduce a partial order �# on # defined through

ĉ1 �# ĉ2 ⇐⇒ ĉ1 x,P′( ) ≤ ĉ2 x,P′( ) ∀x ∈ X, P′ ∈ 3,

for any ĉ1, ĉ2 ∈ #. Thus, ĉ1 �# ĉ2 means that ĉ1 is
(weakly) less conservative than ĉ2. The problem of
finding the least conservative predictor among all data-
driven predictors whose out-of-sample disappoint-
ment decays at rate at least r > 0 can thus be formalized
as the following vector optimization problem:

minimize
ĉ∈# �# ĉ

subject to limsup
T→∞

1
T
logP∞ c x,P( )> ĉ x,P̂T

( )( )≤−r
∀x∈X, P∈3. (5)

We highlight that the minimization in (5) is under-
stood with respect to the partial order �#. Thus, the
relation ĉ1 �# ĉ2 between two feasible decision means
that ĉ1 is weakly preferred to ĉ2. However, not all pairs
of feasible decisions are comparable, that is, it is
possible that both ĉ1 ��# ĉ2 and ĉ2 ��# ĉ1. A predictor ĉ�

is a strongly optimal solution for (5) if it is feasible and
weakly preferred to every other feasible solution
(i.e., every ĉ �� ĉ� feasible in (5) satisfies ĉ� �# ĉ).
Similarly, ĉ� is a weakly optimal solution for (5) if it is
feasible and if every other solution preferred to ĉ� is
infeasible (i.e., every ĉ �� ĉ� with ĉ �# ĉ� is infeasible
in (5)). Although vector optimization problems can
have many weak solutions, we point out that strong
solutions are necessarily unique. To see this, assume
for the sake of contradiction that ĉ�1 and ĉ�2 are two
strong solutions of (5). In this case, the strong opti-
mality of ĉ�1 implies that ĉ�2 �# ĉ�1 , whereas the strong
optimality of ĉ�2 implies that ĉ�1 �# ĉ�2 . These two re-
lations imply that ĉ�1 � ĉ�2 , that is, there cannot be two
different strongly optimal solutions.
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We are now ready to construct a meta-optimization
problem akin to (5), which enables us to identify the
best prescriptor. To this end, we henceforth denote by
- the set of all data-driven predictor-prescriptor pairs
(ĉ, x̂), where ĉ ∈ #, and x̂ is a prescriptor induced by ĉ
as perDefinition 3.Moreover,weequip-with a partial
order �-, which is defined through the following:

ĉ1, x̂1( ) �- ĉ2, x̂2( ) ⇐⇒ ĉ1 x̂1 P′( ),P′( ) ≤ ĉ2 x̂2 P′( ) ,P′( )
∀P′ ∈3.

Note that ĉ1 �# ĉ2 actually implies (ĉ1, x̂1) �- (ĉ2, x̂2),
but not vice versa. The problem of finding the least
conservative predictor-prescriptor pair whose out-of-
sample prescription disappointment decays at rate at
least r > 0 can now be formalized as the following
vector optimization problem:

minimize
ĉ,x̂( )∈- �-

ĉ, x̂( )

subject to limsup
T→∞

1
T
logP∞ c x̂ P̂T

( )
,P

( )(
> ĉ x̂ P̂T

( )
, P̂T

( ))

≤ −r ∀P ∈ 3. (6)
Generic vector optimization problems typically only
admit weak solutions. In Section 4 we will show,
however, that (5) as well as (6) admit (unique) strong
solutions in closed form. In fact, we will show that
these closed-form solutions have a natural interpre-
tation as the solutions of convex distributionally ro-
bust optimization problems.

Remark 1 (Out-of-Sample and In-Sample Performance).
The natural performance measure to quantify the
goodness of a data-driven prescriptor x̂ is its out-of-
sampleperformance c(x̂(P̂T),P�) under the truemodelP�.
As P� is unknown, however, the out-of-sample perfor-
mance cannot be optimized directly. A naı̈ve remedy
would be to formulate a meta-optimization problem that
minimizes the worst case (or some average) of the out-of-
sample performance of x̂ across all models P ∈ 3. The
approach proposed here optimizes the out-of-sample
performance implicitly. Indeed, the meta-optimization
problem (6) represents x̂ as a minimizer of some pre-
dictor ĉ, where ĉ(x̂(P̂T), P̂T) should be interpreted as the
in-sample performance of x̂. Instead of minimizing the
out-of-sample performance of x̂, problem (6) minimizes
the in-sample performance of x̂ but ensures through
the constraints on the disappointment that the out-of-
sample performance is smaller than the in-sample per-
formancewith increasingly high confidence as the sample
size grows. In this sense, problem (6) minimizes a tight
upper bound on the out-of-sample performance of x̂.

3. Large Deviation Principles
Large deviations theory provides bounds on the exact
exponential rate at which the probabilities of atypical

estimator realizationsdecayunder amodelP as the sample
size T tends to infinity. These bounds are expressed in
terms of the relative entropy of P̂T with respect to P.

Definition 5 (Relative Entropy). The relative entropy of
an estimator realization P′ ∈ 3 with respect to a model
P ∈ 3 is defined as:

I(P′,P) � ∑
i∈Ξ

P′ i( ) log P′ i( )
P i( )

( )
,

where we use the conventions 0 log(0/p) � 0 for any
p ≥ 0 and p′ log(p′/0) � ∞ for any p′ > 0.

The relative entropy is also known as information
for discrimination, cross-entropy, information gain,
or Kullback-Leibler divergence (Kullback and Leibler
1951). The following proposition summarizes the
key properties of the relative entropy relevant for
this paper.

Proposition 1 (Relative Entropy). The relative entropy
enjoys the following properties:
i. Information inequality: I(P′,P) ≥ 0 for all P,P′ ∈ 3,

while I(P′,P) � 0 if and only if P′ � P.
ii. Convexity: For all pairs (P′

1,P1), (P′
2,P2) ∈ 3 ×3,

and λ ∈ [0, 1] we have

I((1 − λ)P′
1 + λP2′ , (1 − λ)P1 + λP2).

iii. Lower semicontinuity: I(P′,P) ≥ 0 is lower semi-
continuous in (P′,P) ∈ 3 ×3.

Proof. Assertions (i) and (ii) follow from theorems 2.6.3
and 2.7.2 in Cover and Thomas (2006), respectively,
whereas assertion (iii) follows directly from the defi-
nition of the relative entropy and our standard con-
ventions regarding the natural logarithm. □

Wenowshow that the empirical estimators satisfy a
weak large deviation principle (LDP). This result
follows immediately from a finite version of Sanov’s
classical theorem. A textbook proof using the so-
called method of types can be found in Cover and
Thomas (2006, theorem 11.4.1). As the proof is illu-
minating and to keep this paper self-contained, we
sketch the proof in Online Appendix A.

Theorem 1 (Weak LDP). If the samples {ξt}t∈N are drawn
independently from some P ∈ 3, then for every Borel set$⊆3,
the sequence of empirical distributions {P̂T}T∈3 satisfies

lim sup
T→∞

1
T
logP∞ P̂T ∈ $

( ) ≤ − inf
P′∈$

I(P′,P). (7a)

If additionally P > 0, then for every Borel set $ ⊆ 3
we have1

lim inf
T→∞

1
T
logP∞ P̂T ∈ $

( ) ≥ − inf
P′∈int$

I(P′,P). (7b)
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Note that the inequality (7a) provides an upper LDP
bound on the exponential rate at which the proba-
bility of the event P̂T ∈ $ decays under model P. This
upper bound is expressed in terms of a convex op-
timization problem that minimizes the relative en-
tropy of P′ with respect to P across all estimator re-
alizations P′ within $. Similarly, (7b) offers a lower
LDP bound on the decay rate. Note that in (7b), the
relative entropy is minimized over the interior of $
instead of $.

If the data-generating model P itself belongs to $,
then infP′∈$I(P′,P)�I(P,P)�0, which leads to the trivial
upper bound P∞(P̂T ∈ $) ≤ 1. On the other hand, if$ has
empty interior (e.g., if$ � {P} is a singleton containing
only the true model), then infP′∈int$ I(P′,P) �∞, which
leads to the trivial lower bound P∞(P̂T ∈ $) ≥ 0.
Nontrivial bounds are obtained if P /∈ $ and int $ �� ∅.
In these cases, the relative entropy bounds the ex-
ponential rate at which the probability of the atypical
event P̂T ∈ $ decays with T. For some sets $, this rate
of decay is precisely determined by the relative en-
tropy. Specifically, a Borel set $ ⊆ 3 is called I-con-
tinuous under model P if

inf
P′∈int$

I(P′,P) � inf
P′∈$

I(P′,P).

Clearly, every open set $ ⊆ 3 is I-continuous under
any model P. Moreover, as the relative entropy is
continuous in P′ for any fixed P > 0, every Borel set
$ ⊆ 3 with $ ⊆ cl(int($)) is I-continuous under P

whenever P > 0. The LDP (7) implies that for large T,
the probability of an I-continuous set$ decays at rate

infP′∈$ I(P′,P) under model P to first order in the ex-
ponent, that is, we have

P∞ P̂T ∈ $
( ) � e−T infP′∈$ I(P′,P)+o T( ). (8)

If we interpret the relative entropy I(P′,P) as the
distance of P from P′, then the decay rate of P∞(P̂T ∈ $)
coincides with the distance of the model P from the
atypical event set $ (see Figure 1). Moreover, if $ is
I-continuous under P, then (8) implies that P∞(P̂T ∈ $)
≤ β whenever

T>∼
1
r
· log 1

β

( )
,

where r�infP′∈$I(P′,P) is the I-distance fromP to the set$,
and β ∈ (0, 1) is a prescribed significance level.
The weak LDP of Theorem 1 provides only as-

ymptotic bounds on the decay rates of atypical events.
However, one can also establish a strong LDP, which
offers finite sample guarantees. Most results of this
paper, however, are based on the weak LDP of
Theorem 1.

Theorem 2 (Strong LDP). If the samples {ξt}t∈N are drawn
independently from someP ∈ 3, then for every Borel set$ ⊆ 3,
the sequence of empirical distributions {P̂T}T∈3 satisfies

P∞ P̂T ∈ $
( ) ≤ T + 1( )de−T infP′∈$ I(P′,P) ∀T ∈ N. (9)

Proof. The claim follows immediately from inequal-
ity (27) in the proof of Theorem 1 in Online Appen-
dix A. Note that (27) does not rely on the assumption
that P > 0. □

4. Distributionally Robust Predictors and
Prescriptors Are Optimal

Armed with the fundamental results of large devia-
tions theory, we now endeavor to identify the least
conservative data-driven predictors and prescriptors
whose out-of-sample disappointment decays at a rate
no less than some prescribed threshold r > 0 under
any model P ∈ 3, that is, we aim to solve the vector
optimization problems (5) and (6).

4.1. Distributionally Robust Predictors
The relative entropy lends itself to constructing a
data-driven predictor in the sense of Definition 3. We
will now show that this predictor is strongly optimal
in (5).

Definition 6 (Distributionally Robust Predictors). For any
fixed threshold r ≥ 0, we define the data-driven pre-
dictor ĉr : X ×3 → R through

ĉr x,P′( ) � sup
P∈3

c x,P( ) : I(P′,P) ≤ r{ }
∀x ∈ X, P′ ∈ 3. (10)

Figure 1. Visualization of the LDP (7)

Notes: If $ ⊆ 3 is I-continuous and P /∈ $, then the probability
P∞(P̂T ∈ $) decays at the exponential rate infP′∈$ I(P′,P), which can
be viewed as the relative entropy distance of P from $.

Van Parys et al.: Distributionally Robust Optimization Is Optimal
Management Science, 2021, vol. 67, no. 6, pp. 3387–3402, © 2020 INFORMS3394



The data-driven predictor ĉr admits a distributionally
robust interpretation. In fact, ĉr(x,P′) represents the
worst-case expected cost associated with the decision x,
where the worst case is taken across all models P ∈ 3
whose relative entropy distance to P′ is at most r.
Observe that the supremum in (10) is always attained
because c(x,P) is linear in P and the feasible set of (10)
is compact, which follows from the compactness of 3
and the lower semicontinuity of the relative entropy
in P for any fixed P′ (see Proposition 1(iii)). Note also
that ĉr(x,P′) can be evaluated efficiently because (10)
constitutes a convex conic optimization problemwith
d decision variables. A particularly simple and effi-
cient method to evaluate ĉr(x,P′) is to solve the one-
dimensional convex minimization problem dual to (10)
by using bisection or another line search method.

Proposition 2 (Dual Representation of ĉr ). If r > 0 and
γ̄(x) � maxi∈Ξ γ(x, i) denotes the worst-case cost function,
then the distributionally robust predictor admits the dual
representation

ĉr x,P′( ) � min
α≥γ̄ x( )

α − e−r
∏
i∈Ξ

α − γ x, i( )( )P′ i( ). (11)

Problem (11) has a minimizer α� that sat i sfies
γ̄(x) ≤ α� ≤ γ̄(x)−e−rc(x,P′)

1−e−r .

Proof. See Online Appendix A. □

Remark 2 (Sample Average Predictor). For r � 0, the
distributionally robust predictor ĉr collapses to the sam-
ple average predictor of Example 1. Indeed, because of
the strict positivity of the relative entropy I(P′,P) > 0
for P′ �� P (see Proposition 1(i)), we have that

ĉ0 x,P′( ) � c x,P′( ).
As shown in Example 2, the sample average predictor
fails to offer asymptotic or finite sample guarantees of
the form (3) and (4), respectively.

Remark 3 (Alternative Distributionally Robust Predictors).
The relative entropy can also be used to construct a
reverse distributionally robust predictor čr ∈ # de-
fined through

čr x,P′( ) � sup
P∈3

c x,P( ) : P � P′ , I(P,P′) ≤ r{ }
∀x ∈ X, P′ ∈ 3, (12)

In contrast to ĉr, the reverse distributionally robust
predictor čr fixes the second argument of the relative
entropy and maximizes over the first argument. Note
that čr can be viewed as the entropic value-at-risk of
the uncertain cost γ(x, ξ) (see Ahmadi-Javid 2012,
theorem 3.3). Another predictor related to ĉ is the

restricted distributionally robust predictor c̄r ∈ #
defined through

c̄r x,P′( ) � sup
P∈3

c x,P( ) : P � P′ , I(P′,P) ≤ r{ }
∀x ∈ X, P′ ∈ 3, (13)

where P � P′ expresses the requirement that P must
be absolutely continuouswith respect to P′. Formally,
P � P′ means that P(i) � 0 for all outcomes i ∈ Ξwith
P′(i) � 0. By Ahmadi-Javid (2012, definition 5.1), c̄r
can be interpreted as the negative log-entropic risk
of γ(x, ξ).
The predictors ĉr and čr differ because the relative

entropy fails to be symmetric. We emphasize that the
reverse predictor čr has appeared often in the litera-
ture on distributionally robust optimization (see, e.g.,
Calafiore 2007, Ben-Tal et al. 2013, Hu andHong 2013,
Lam 2016, Wang et al. 2016). The predictors ĉr and c̄r
differ, too, because of the additional constraint P � P′,
which is significant when not all outcomes in Ξ have
been observed. The statistical properties of the pre-
dictor c̄r have been analyzed by Lam (2016) and more
recently by Duchi et al. (2016) from the perspective
of the empirical likelihood theory introduced by
Owen (1988). The predictor ĉr suggested here has not
yet been studied extensively even though—as we will
demonstrate later—it displays attractive theoretical
properties that are not shared by either čr or c̄r. The
difference between ĉr and čr or c̄r is significant. Indeed,
both čr and c̄r hedge only against models P that are
absolutely continuous with respect to the (observed
realization of the) empirical distribution P′. Although
it is clear that the empirical distribution must be
absolutely continuous with respect to the data-
generating distribution, however, the converse im-
plication is generally false. Indeed, an outcome can
have positive probability even if it does not show up
in a given finite time series. By taking the worst case
only over models that are absolutely continuous with
respect to P′, both predictors čr and c̄r potentially
ignore many models that could have generated the
observed data.
We first establish that ĉr indeed belongs to the set #

of all data-driven predictors, that is, the family of
continuous functions mapping X ×3 to the reals.

Proposition 3 (Continuity of ĉr ). If r ≥ 0, then the dis-
tributionally robust predictor ĉr is continuous on X ×3.

Proof. By Proposition 2, the distributionally robust
predictor ĉr admits the dual representation (11). Note
that the objective function of (11) is manifestly con-
tinuous in (α, x,P′) and that (11) is guaranteed to have a
minimizer in the compact interval [γ̄(x), γ̄(x)−e−rc(x,P′)

1−e−r ],
whose boundaries depend continuously on (x,P′).

Van Parys et al.: Distributionally Robust Optimization Is Optimal
Management Science, 2021, vol. 67, no. 6, pp. 3387–3402, © 2020 INFORMS 3395



Consequently, the predictor ĉr is continuous by Berge’s
celebrated maximum theorem (Berge 1963). □

We now analyze the performance of the dis-
tributionally robust data-driven predictor ĉr using
arguments from large deviations theory. The pa-
rameter r encoding the predictor ĉr captures the
fundamental trade-off between out-of-sample dis-
appointment and accuracy, which is inherent to any
approach to data-driven prediction. Indeed, as r in-
creases, the predictor ĉr becomes more reliable in
the sense that its out-of-sample disappointment de-
creases. However, increasing r also results in more
conservative (pessimistically biased) predictions.
In the following, we will demonstrate that ĉr strikes
indeed an optimal balance between reliability
and conservatism.

Theorem 3 (Feasibility of ĉr ). If r ≥ 0, then the predictor ĉr
is feasible in (5).

Proof. From Proposition 3, we already know that
ĉr ∈ #. It remains to be shown that the out-of-sample
disappointment of ĉr decays at a rate of at least r. We
have c(x,P) > ĉr(x, P̂T) if and only if the estimator P̂T

falls within the following disappointment set:

$ x,P( ) � P′ ∈ 3 : c x,P( ) > ĉr x,P′( ){ }.
Note that by the definition of ĉr, we have

I(P′,P) ≤ r ⇒ ĉr x,P′( )
� sup

P′′∈3
c x,P′′( ) : I P′,P′′( ) ≤ r{ } ≥ c x,P( ).

By contraposition, this implication is equivalent to

c x,P( ) > ĉr x,P′( ) ⇒ I(P′,P) > r.

Therefore, $(x,P) is a subset of

( P( ) � P′ ∈ 3 : I(P′,P) > r{ },
irrespective of x ∈ X. We thus have

lim sup
T→∞

1
T
logP∞ P̂T ∈ $ x,P( )( )

≤ lim sup
T→∞

1
T
logP∞ P̂T ∈ ( P( )( )

≤ − inf
P′∈( P( )

I(P′,P) ≤ −r,

where the first inequality holds because $(x,P) ⊆ ((P),
whereas the second inequality exploits the weak LDP
upper bound (7a). Thus, ĉr is feasible in (5). □

Note that any predictor ĉwith ĉr �# ĉ has a smaller
disappointment set than ĉr, and thus the out-of-
sample disappointment of ĉ decays at least as fast

as that of ĉr. Hence, ĉ is also feasible in (5). In par-
ticular, this immediately implies that if we inflate the
relative entropy ball of the distributionally robust
predictor ĉr to any larger ambiguity set, we obtain
another predictor that is feasible in (5). As an example,
consider the total variation predictor

ĉtvr x,P′( ) � sup
P∈3

c x,P( ) : P − P′⃦⃦ ⃦⃦
tv ≤ ̅̅̅

2r
√{ }

∀x ∈ X, P′ ∈ 3,

where P − P′‖ ‖tv denotes the total variation distance
between P and P′. Pinsker’s classical inequality as-
serts that P − P′‖ ‖tv ≤ ̅̅̅̅̅̅̅̅̅̅̅

2 I(P′,P
√ ) for all P and P′ in 3.

Thus, we have ĉr �# ĉtvr , which implies that the total
variation predictor is feasible in (5). This suggests that
(5) has a rich feasible set.
The following main theorem establishes that ĉr is

not only a feasible but even a strongly optimal so-
lution for the vector optimization problem (5). This
means that if an arbitrary data-driven predictor ĉ
predicts a lower expected cost than ĉr even for a single
estimator realization P′ ∈ 3, then ĉmust suffer from a
higher out-of-sample disappointment than ĉr to first
order in the exponent.

Theorem 4 (Optimality of ĉr ). If r > 0, then ĉr is strongly
optimal in (5).

Proof. Assume for the sake of argument that ĉr fails to
be a strong solution for (5). Thus, there exists a data-
driven predictor ĉ ∈ # that is feasible in (5) but not
dominated by ĉr, that is, ĉr ��# ĉ. This means that there
exists x ∈ X and P′

0 ∈ 3 with ĉr(x,P′
0) > ĉ(x,P′

0). For
later reference we set ε � ĉr(x,P′

0) − ĉ(x,P′
0) > 0. In the

remainder of the proof we will demonstrate that ĉ
cannot be feasible in (5), which contradicts our ini-
tial assumption.

Let P0 ∈ 3 be an optimal solution of problem (10) at
P′ � P′

0. Thus, we have I(P′
0,P0) ≤ r and

ĉr x,P′
0

( ) � c x,P0( ). (14)
In the following, we will first perturb P0 to obtain a
model P1 that is ε

2-suboptimal in (10) but satisfies
I(P′

0,P1) < r. Subsequently, we will perturb P1 to ob-
tain a model P2 that is ε-suboptimal in (10) but sat-
isfies I(P′

0,P2) < r as well as P2 > 0.
To construct P1, consider all models P(λ) � λP′

0 +(1 − λ)P0, λ ∈ [0, 1], on the line segment between P′
0

and P0. As r is strictly positive, the convexity of the
relative entropy implies that

I(P′
0,P(λ)) ≤ λI(P′

0,P
′
0) + 1 − λ( )I(P′

0,P0)
≤ 1 − λ( )r < r ∀λ ∈ 0, 1( ].
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Moreover, as the expected cost c(x,P(λ)) changes
continuously in λ, there exists a sufficiently small λ1 ∈
(0, 1] such that P1 � P(λ1) and r1 � I(P′

0,P1) satisfy 0 <
r1 < r and

c x,P0( ) < c x,P1( ) + ε

2
.

To construct P2, we consider all models P(λ) � λU+
(1 − λ)P1, λ ∈ [0, 1], on the line segment between the
uniform distribution U on Ξ and P1. By the convexity
of the relative entropy we have

I(P′
0,P(λ)) ≤ λI(P′

0,U) + 1 − λ( )I(P′
0,P1)

≤ λI(P′
0,U) + 1 − λ( )r1 ∀λ ∈ 0, 1[ ].

As r1 < r and the expected cost c(x,P(λ)) change
continuously in λ, there exists a sufficiently small λ2 ∈
(0, 1] such that P2 � P(λ2) and r2 � I(P′

0,P2) satisfy
0 < r2 < r, P2 > 0, and

c x,P0( ) < c x,P2( ) + ε. (15)
In summary, we thus have

ĉ x,P′
0

( ) � ĉr x,P′
0

( ) − ε � c x,P0( ) − ε < c x,P2( )
≤ ĉr x,P′

0

( )
,

(16)

where the first equality follows from the definition of ε,
and the second equality exploits (14). Moreover, the
strict inequality holds due to (15), and the weak in-
equality follows from the definition of ĉr and the fact
that I(P′

0,P2) � r2 < r.
In the remainder of the proof, wewill argue that the

prediction disappointment P∞
2 (c(x,P2) > ĉ(x, P̂T)) under

model P2 decays at a rate of at most r2 < r as the
sample size T tends to infinity. In analogy to the proof
of Theorem 3, we define the set of disappointing es-
timator realizations as

$ x,P2( ) � P′ ∈ 3 : c x,P2( ) > ĉ x,P′( )}.{

This set contains P′
0 due to the strict inequality in (16).

Moreover, as ĉ ∈ # is continuous, $(x,P2) is an open
subset of 3. Thus, we find

inf
P′∈int$ x,P2( )

I(P′,P2) � inf
P′∈$ x,P2( )

I(P′,P2)
≤ I(P′

0,P2) � r2,

where the inequality holds because P′
0 ∈ $(x,P0), and

the last equality follows from the definition of r2.
As the empirical distributions {P̂T}T∈N obey the LDP
lower bound (7b) under P2 > 0, we finally con-
clude that

− r < −r2 ≤ − inf
P′∈int$ x,P2( )

I(P′,P2)

≤ lim inf
T→∞

1
T
logP∞

2 P̂T ∈ $ x,P2( )( )
.

The previous chain of inequalities implies, however,
that ĉ is infeasible in problem (5). This contradicts our
initial assumption, and thus, ĉr must indeed be a
strong solution of (5). □

Theorem 4 asserts that the distributionally robust
predictor ĉr is optimal among all data-driven predictors
representable as continuous functions of the empirical
distribution P̂T. That is, any attempt to make it less
conservative invariably increases the out-of-sample
prediction disappointment. We remark that the class
of predictors that depend on the data only through P̂T is
vast. These predictors constitute arbitrary continuous
functions of the data that are independent of the order
in which the samples were observed. As the samples
are independent and identically distributed (i.i.d.),
there are in fact nomeaningful data-driven predictors
that display a more general dependence on the data.
Note that in the previous discussion all guarantees

are fundamentally asymptotic in nature. Using The-
orem 2 one can show, however, that ĉr also satisfies
finite sample guarantees.

Theorem 5 (Finite Sample Guarantee). The out-of-sample
disappointment of the distributionally robust predictor ĉr
enjoys the following finite sample guarantee under any
model P ∈ 3 and for any x ∈ X:

P∞ c x,P( ) > ĉr x, P̂T
( )( ) ≤ T + 1( )de−rT ∀T ∈ N. (17)

Proof. The proof of this result widely parallels that of
Theorem 3 but uses the strong LDP upper bound (9) in
lieu of the weak upper bound (7a). Details are omitted
for brevity. □

4.2. Distributionally Robust Prescriptors
The distributionally robust predictor ĉr of Definition 6
induces a corresponding prescriptor.

Definition 7 (Distributionally Robust Prescriptors). Denote
by ĉr, r ≥ 0, the distributionally robust data-driven
predictor of Definition 6. We can then define the data-
driven prescriptor x̂r : 3 → X as a quasi-continuous
function satisfying

x̂r P′( ) ∈ argmin
x∈X ĉr x,P′( ) ∀P′ ∈ 3. (18)

Note that the minimum in (18) is attained becauseX is
compact and ĉr is continuous due to Proposition 3.
Thus, there exists at least one function x̂r satisfy-
ing (18). In the next proposition,we argue that this func-
tion can be chosen to be quasi-continuous as desired.

Proposition 4 (Quasi-Continuity of x̂r ). If r ≥ 0, then there
exists a quasi-continuous data-driven predictor x̂r satisfy-
ing (18).

Proof. Denote byΓ(P′) � argminx∈X ĉr(x,P′) the argmin-
mapping of problem (10), and observe that Γ(P′) is
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compact and nonempty for every P′ ∈ 3 because ĉr is
continuous andX is compact. AsX is independent of P′,
Berge’s maximum theorem (Berge 1963) further implies
that Γ is upper semicontinuous. As3 is a Baire space and
X is a metric space, Matejdes (1987, corollary 4) finally
guarantees that there exists a quasi-continuous function
x̂r : 3 → X with x̂r(P′) ∈ Γ(P′) for all P′ ∈ 3. □

Propositions 3 and 4 imply that (ĉr, x̂r)belongs to the
family - of all data-driven predictor-prescriptor pairs.
Using a similar reasoning as in Theorem 3, we now
demonstrate that the out-of-sample disappointment
of x̂r decays at rate at least r asT tends to infinity. Thus,
x̂r provides trustworthy prescriptions.

Theorem 6 (Feasibility of (ĉr , x̂r)). If r ≥ 0, then the pre-
dictor-prescriptor-pair (ĉr, x̂r) is feasible in (6).

Proof. Propositions 3 and 4 imply that (ĉr, x̂r) ∈ -. It
remains to be shown that the out-of-sample disap-
pointment of x̂r decays at a rate of at least r. To this end,
define $(x,P) and ((P) as in the proof of Theorem 3,
and recall that $(x,P) ⊆ ((P) for every decision x ∈ X
and model P ∈ 3. Thus, for every fixed estimator re-
alization P′ ∈ 3 the following implication holds:

c x̂r P′( ),P( ) > ĉr x̂r P′( ),P′( )
⇒ ∃x ∈ X with c x,P( ) > ĉr x,P′( )
⇒ P′ ∈ ∪

x∈X$ x,P( )
⇒ P′ ∈ ( P( ),

which in turn implies

lim sup
T→∞

1
T
logP∞ c x̂r P̂T

( )
,P

( )
> ĉr x̂r P̂T

( )
, P̂T

( )( )

≤ lim sup
T→∞

1
T
logP∞ P̂T ∈ ( P( )( ) ≤ −r,

for everymodel P ∈ 3. Note that the second inequality
in this expression has already been established in the
proof of Theorem 3. Thus, the claim follows. □

Next, we argue that (ĉr, x̂r) is a strongly optimal
solution for the vector optimization problem (6).

Theorem 7 (Optimality of (ĉr , x̂r )). If r > 0, then (ĉr, x̂r) is
strongly optimal in (6).

Proof. Assume for the sake of argument that (ĉr, x̂r)
fails to be a strong solution for (6). Thus, there exists a
data-driven prescriptor (ĉ, x̂) ∈ - that is feasible in (6)
but not dominated by (ĉr, x̂r), that is, (ĉr, x̂r) ��- (ĉ, x̂).
This means that there exists P′

0 ∈ 3with ĉr(x̂r(P′
0),P′

0) >
ĉ(x̂(P′

0),P′
0). As X is compact and ĉ is continuous,

the cost ĉ(x̂(P′),P′) of the prescriptor x̂ under the
corresponding predictor ĉ is continuous in P′
(Berge 1963). Similarly, ĉr(x̂r(P′),P′) is continuous inP′.
Recall also that x̂ is quasi-continuous and therefore

continuous on a dense subset of3 (Bledsoe 1952). Thus,
we may assume without loss of generality that x̂
is continuous at P′

0. For later reference, we set
ε � ĉr(x̂(P′

0),P′
0) − ĉ(x̂(P′

0),P′
0) > 0.

In the remainder of the proof, we will demonstrate
that (ĉ, x̂) cannot be feasible in (6), which contradicts
our initial assumption. To this end, let P0 ∈ 3 be an
optimal solution of problem (10) at x � x̂(P′

0) and
P′ � P′

0. Thus, we have I(P′
0,P0) ≤ r and

ĉr x̂ P′
0

( )
,P′

0

( ) � c x̂ P′
0

( )
,P0

( )
. (19)

Next, we first perturb P0 to obtain a model P1 that is
strictly ε

2-suboptimal in (10) but satisfies I(P′
0,P1) � r1 < r.

Subsequently, we perturb P1 to obtain a model P2 that
is strictly ε-suboptimal in (10) but satisfies I(P′

0,P2) �
r2 < r as well and P2 > 0. The distributions P1
and P2 can be constructed exactly as in the proof of
Theorem 4. Details are omitted for brevity. Thus,
we find

ĉ x̂ P′
0

( )
,P′

0

( ) � ĉr x̂ P′
0

( )
,P′

0

( ) − ε � c x̂ P′
0

( )
,P0

( )
− ε < c x̂ P′

0

( )
,P2

( ) ≤ ĉr x̂ P′
0

( )
,P′

0

( )
, (20)

where the first equality follows from the definition
of ε, and the second equality exploits (19). Moreover,
the strict inequality holds because P2 is strictly
ε-suboptimal in (10), whereas the weak inequality
follows from the definition of ĉr and the fact
that I(P′

0,P2) � r2 < r.
It remains to be shown that the prediction disap-

pointment P∞
2 (c(x̂(P̂T),P2) > ĉ(x̂(P̂T), P̂T)) under model

P2 decays at a rate of at most r2 < r as the sample size T
tends to infinity. To this end, we define the set of
disappointing estimator realizations as

$ P2( ) � P′ ∈ 3 : c x̂ P′( ),P2( ) > ĉ x̂ P′( ),P′( )}.{

This set contains P′
0 due to the strict inequality in (20).

Recall now that x̂ is continuous at P′ � P′
0 due to our

choice of P′
0. As the predictors ĉ and ĉr are both

continuous on their entire domain, the compositions
ĉ(x̂(P′),P′) and c(x̂(P′),P2) arebothcontinuousatP′ � P′

0.
This implies that P′

0 belongs actually to the interior
of $(P2). Thus, we find

inf
P′∈int$ P2( )

I(P′,P2) ≤ I(P′
0,P2) � r2,

where the last equality follows from the definition of r2.
As the empirical distributions {P̂T}T∈N obey the LDP
lower bound (7b) under P2 > 0, we finally con-
clude that

− r < −r2 ≤ − inf
P′∈int$ P2( )

I(P′,P2)

≤ lim inf
T→∞

1
T
logP∞

2 P̂T ∈ $ P2( )( )
.

Van Parys et al.: Distributionally Robust Optimization Is Optimal
Management Science, 2021, vol. 67, no. 6, pp. 3387–3402, © 2020 INFORMS3398



The previous chain of inequalities implies, however,
that (ĉ, x̂) is infeasible in problem (6). This contradicts
our initial assumption, and thus, (ĉr, x̂r) must indeed
be a strong solution of (6). □

All guarantees discussed so far are asymptotic in
nature. As in the case of the predictor ĉr, however, the
prescriptor x̂r can also be shown to satisfy finite
sample guarantees.

Theorem 8 (Finite Sample Guarantee). The out-of-sample
disappointment of the distributionally robust prescriptor x̂r
enjoys the following finite sample guarantee under any
model P ∈ 3:

P∞ c x̂r P̂T
( )

,P
( )

> ĉr x̂r P̂T
( )

, P̂T
( )( )

≤ T + 1( )de−rT ∀T ∈ N.
(21)

Proof. The proof of this result parallels those of The-
orems 3 and 6 but uses the strong LDP upper bound (9)
in lieu of the weak upper bound (7a). Details are
omitted for brevity. □

We stress that the finite sample guarantees of
Theorems 5 and 8 as well as the strong optimality
properties portrayed in Theorems 4 and 7 are inde-
pendent of a particular data set. They guarantee that
ĉr and x̂r provide trustworthy predictions and pre-
scriptions, respectively, before the data are revealed.

Remark 4 (Optimal Hypothesis Testing). Bertsimas et al.
(2018b) propose to construct predictors and pre-
scriptors from statistical hypothesis tests. A hypothesis
test uses i.i.d. samples ξ1, . . . , ξT drawn from the un-
known true distribution P� to decide whether the null
hypothesis P� � P is false for a fixed model P ∈ 3.
Specifically, the null hypothesis is rejected (it is de-
clared that P� �� P) if the empirical distribution P̂T

associated with the observed sample path falls outside
of a (measurable) acceptance region AT(P) ⊆ 3, which
depends on the conjectured model P and the sample
size T. Otherwise, it is deemed that there is insufficient
data to reject the null hypothesis.

Bertsimas et al. (2018b) associate with each hy-
pothesis test a predictor,

ĉ x,P′( ) �
sup c x,P( )
s.t. P ∈ 3

P′ ∈ AT P( ),
⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (22)

which evaluates the worst-case expected cost across
all models P ∈ 3 that pass the hypothesis test in view
of the realization P′ ∈3T �3∩{0,1/T, . . . ,(T−1)/T,1}d
of the empirical distribution P̂T.

The quality of a hypothesis test is usuallymeasured
by its type I error P∞(P̂T /∈ AT(P)), that is, the proba-
bility of falsely rejecting the null hypothesis, aswell as

its type II errorQ∞(P̂T ∈ AT(P)), that is, the probability
of falsely accepting the null hypothesis if the data
follows a distribution Q �� P. A particularly popular
test is the likelihood ratio test, which uses the ac-
ceptance region,

A�
T P( ) � P′ ∈3T :P

∞ P̂T �P′( )/
sup
Q ��P

Q∞ P̂T �P′( )≥ e−rT
}
.

{

Zeitouni et al. (1992) prove that the likelihood ratio
test is optimal in the following sense. Among all
hypothesis tests whose type I error decays at a rate of
at least r, lim supT→∞

1
T logP

∞(P̂T /∈ AT(P)) ≤ −r, the
likelihood ratio testminimizes the negative decay rate
of the type II error lim supT→∞

1
T logQ

∞(P̂T ∈ AT(P))
simultaneously for all models Q ∈ 3 with Q �� P.
Cover and Thomas (2006, theorem 11.1.2) further
establish that the likelihood ratio of an estimator
realization P′ ∈ 3T under two alternative distribu-
tionsQ and P satisfies log(P∞(P̂T � P′)/Q∞(P̂T � P′)) �
−T(I(P′,P) − I(P′,Q)). The acceptance region of the
likelihood ratio test thus simplifies to

A�
T P( ) � P′ ∈ 3T : I P′,P( ) ≤ r + inf

Q ��P I(P
′,Q)

{ }

� P′ ∈ 3T : I(P′,P) ≤ r
{ }

,

where the equality holds because infQ ��P I(P′,Q) � 0.
Hence, the distributionally robust predictor ĉr that is
strongly optimal in the meta-optimization problem (5)
coincides with the hypothesis test-based predictor (22)
corresponding to the likelihood ratio test.

5. Extension to Continuous State Spaces
Assume now that the realizations of the random
parameter ξmay range over an arbitrary compact set
Ξ ⊆ Rd that is not necessarily finite. In analogy to the
discrete case, we denote by 3 the family of all Borel
probability distributions supported on Ξ. Note that3
is now a convex subset of an infinite-dimensional
space, which significantly complicates the problem
of finding optimal predictors and prescriptors. We
equip 3 with the standard topology of weak con-
vergence of distributions, recalling that the weak to-
pology is metrized by the Prokhorovmetric (Prokhorov
1956). Consequently, we equip X ×3 with the prod-
uct of the standard Euclidean topology on X and the
weak topology on 3. In the remainder of this section,
we analyze to what extent—and under what addi-
tional conditions—the results for finite state spaces
carry over to themore general continuous case. As this
analysis requires more subtle mathematical techniques,
we relegate all proofs to Online Appendix A.
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We first note that the definitions of model-based
predictors and prescriptors require no changes. To
evaluate the expectation in the definition of the
model-based predictor c(x,P) � ∫

Ξ
γ(x, ξ)dP(ξ), how-

ever, we nowneed to evaluate an integralwith respect
to P instead of a finite sum. Throughout this section,
we assume that the cost function γ(x, ξ) is jointly
continuous in x and ξ. This implies via the com-
pactness of X and Ξ that c(x,P) is continuous in x
and P, which in turn guarantees that a model-based
prescriptor x�(P) ∈ argminx∈X c(x,P) exists for ev-
ery P ∈ 3.

Lemma 1 (Continuity of Model-Based Predictors). If γ(x, ξ)
is continuous on the compact set X × Ξ, then c(x,P) is
continuous on X ×3.

As in the case of a discrete state space, we study
data-driven predictors and prescriptors that depend
on the training data {ξt}Tt�1 only through the empirical
distribution. Because Ξ may now have infinite car-
dinality, we redefine the empirical distribution as
P̂T � 1

T
∑T

t�1 δξt , where δξt denotes the Dirac point mass
at ξt. Using this new definition of P̂T, we then define
data-driven predictors and prescriptors exactly as in
Section 2.1. As Ξ is compact, one can show that 3 is
compact in the weak topology (Prokhorov 1956).
Moreover, as the weak topology is metrized by the
Prokhorov metric, 3 constitutes a (locally) compact
metric space. The Baire category theorem thus implies
that 3 is a Baire space (Baire 1899). Corollary 4 in
Matejdes (1987), which applies because 3 is a Baire
space and X is a metric space, further ensures that for
any valid (continuous) predictor ĉ, the set-valued
mapping argminx∈X ĉ(x,P′) admits a quasi-continuous
selector x̂, which serves as a valid data-driven pre-
scriptor. Using the exact same reasoning as in Sec-
tion 2.1, one can show that the points of continuity
of any quasi-continuous prescriptor are dense in 3.

The best predictors and predictor-prescriptor pairs
can again be found by solving the meta-optimization
problems (5) and (6), respectively. To construct near-
optimal solutions for these meta-optimization prob-
lems, we recall the definition of the relative entropy
between arbitrary distributions P′ and P on a compact
set Ξ ⊆ Rd.

Definition 8 (Generalized Relative Entropy). The relative
entropy of P′ ∈ 3 with respect to P ∈ 3 is defined as

I(P′,P) �
∫

Ξ
log dP′/dP ξ( )( )dP′ ξ( ) if P′ � P,

+∞ otherwise,

⎧⎪⎪⎨
⎪⎪⎩

where P′ � P means that P′ is absolutely continuous
with respect to P, whereas dP′/dP(ξ) denotes the
Radon-Nikodym derivative of P′ with respect to P,
which exists if P′ � P (Nikodym 1930).

The properties of the relative entropy portrayed in
Proposition 1 hold verbatim in the more general
setting considered here (Van Erven and Harremoës
2014). Using the generalized definition of the relative
entropy, the distributionally robust predictor ĉr and
the corresponding prescriptor x̂r can be constructed
as in Definitions 6 and 7, respectively. In the follow-
ing, we will show that the predictor ĉr is continuous,
which ensures that the prescriptor x̂r can always be
chosen to be quasi-continuous. To this end, we first
derive a dual representation for ĉr.

Proposition 5 (Dual Representation Revisited). If r > 0
and γ̄(x) � maxξ∈Ξ γ(x, ξ) is the worst-case cost function,
then the distributionally robust predictor admits the dual
representation,

ĉr x,P′( ) � min
α≥γ̄ x( )

α − e−r

· exp
∫
Ξ
log α − γ x, ξ( )( )

dP′ ξ( )
( )

.
(23)

Problem (23) has a minimizer α� ≤ γ̄(x)−e−rc(x,P′)
1−e−r .

Proposition 5 extends Proposition 2 to compact
continuous state spaces and suggests that ĉr(x,P′) can
be computed via bisection or other line search methods.
Thus, the computational tractability of problem (23)
largely hinges on our ability to efficiently evaluate the
geometric mean exp(∫

Ξ
log(α − γ(x, ξ))dP′(ξ)) for any

fixed α. For example, if P′ coincides with (a realiza-
tion of) the empirical distribution P̂T, we recover the
geometric mean of α − γ(x, ξ) along a sample path,
which can be reformulated as the optimal value of a
tractable second-order cone program involving 2(T)
constraints and auxiliary variables (Nesterov and
Nemirovskii 1994, section 6.2.3.5):

exp
∫
Ξ

log α − γ x, ξ( )( )
dP′ ξ( )

( )
� ∏T

t�1
α − γ x, ξt( )( )( )1/T

.

To our best knowledge, the dual representation (23) is
new. The closest result we are aware of is the dual
representation of the negative log-entropic risk mea-
sure derived in Ahmadi-Javid (2012, theorem 5.1).
Indeed, the negative log-entropic risk of γ(x, ξ) co-
incides with the restricted distributionally robust
predictor c̄r(x,P′). Recall from (13) that c̄r(x,P′) differs
from cr(x,P′) only in that it imposes the additional
constraint P � P′ when evaluating the worst-case
expected cost. Using theorem 5.1 by Ahmadi-Javid
(2012), one can thus show that the dual representation
of c̄r(x,P′) differs from (23) only in that it replaces γ̄(x)
with inf{γ̄ : P′[γ(x, ξ) ≤ γ̄] � 1} ≤ γ̄(x). Maybe sur-
prisingly, however, the derivation of (23) provided
here is substantially more challenging.
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Proposition 6 (Continuity of ĉr Revisited). If r ≥ 0, then the
distributionally robust predictor ĉr is continuous on X ×3.

Proposition 6 ensures that ĉr ∈ #. As any continu-
ous predictor induces a quasi-continuous prescriptor,
we may thus conclude that there exists a valid dis-
tributionally robust prescriptor x̂r such that (ĉr, x̂r) ∈ -.
It now only remains to establish that these predictors
and predictor-prescriptor pairs are the unique strong
solutions of the meta-optimization problems (5)
and (6), respectively. In Section 4, this was achieved
by leveraging the weak LDP portrayed in Theo-
rem 1. Luckily, this LDP carries over to the more
general setting considered here—albeit with a sub-
tle difference.

Theorem 9 (Weak LDP Revisited). If the samples {ξt}t∈N
are drawn independently from some P ∈ 3, then for every set
$ ⊆ 3 the sequence of empirical distributions {P̂T}T∈N satisfies

lim sup
T→∞

1
T
logP∞ P̂T ∈ $

( ) ≤ − inf
P′∈cl$

I(P′,P), (24a)

lim inf
T→∞

1
T
logP∞ P̂T ∈ $

( ) ≥ − inf
P′∈int$

I(P′,P). (24b)

Proof. See Csiszár (2006, section 2). □

Formally, Theorem 9 is almost identical to Theorem 1.
However, the weak LDP upper bound (24a) differs
from (7a) in that the minimization over all estimator
realizations P′ on the right-hand side runs over the
closure of $. This subtle difference invalidates the
proof of Theorem 3, and thuswe need a new approach
to show that ĉr is feasible in (5). Moreover, the weak
LDP lower bound (24b) does not rely on any struc-
tural assumptions about P. Note that the condition
P > 0 in Theorem 1was only imposed for convenience
to simplify the proof of (7b) in Online Appendix A.

As in the case of finite state spaces, one can now
show that the distributionally robust predictor ĉr is
the unique strong solution of the meta-optimization
problem (5).

Theorem 10 (Feasibility and Optimality of ĉr Revisited). If
r ≥ 0, then the predictor ĉr is feasible in (5). Moreover, if
r > 0, then ĉr is strongly optimal in (5).

Althoughwe did not manage to prove that (ĉr, x̂r) is
feasible in the meta-optimization problem (6), we still
could show that it is essentially feasible and strongly
optimal in a precise sense.

Theorem 11 (Feasibility and Optimality of (ĉr , x̂r ) Revisited).
If r ≥ 0, then the shifted predictor-prescriptor pair (ĉr + ε, x̂r)
is feasible in (6) for every ε > 0. Moreover, if r > 0, then
(ĉr, x̂r) is preferred to every feasible solution of (6)—even
though it may be infeasible.

Theorem 11 asserts that (ĉr, x̂r) is less conservative
than any predictor-prescriptor pair feasible in the

meta-optimization problem (6) and that (ĉr, x̂r) can be
made feasible in (6) by shifting the distributionally
robust predictor ĉr up by just a tiny amount. For
practical purposes, this means that (ĉr, x̂r) is indeed
essentially optimal. Whether (ĉr, x̂r) itself is feasible
in (6) remains open.
We also emphasize that the strong LDP portrayed

in Theorem 2 has no continuous counterpart, which
implies that the finite sample guarantees of Theorems 5
and 8 cannot be generalized.

Endnote
1Here, the interior of$ is takenwith respect to the subspace topology
on 3. Recall that a set$ ⊆ 3 is open in the subspace topology on 3 if
$ � 3 ∩ 2 for some set 2 ⊆ Rd that is open in the Euclidean topology
on Rd.
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Shapiro A, Dentcheva D, Ruszczyńsk A (2014) Lectures on Stochastic
Programming: Modeling and Theory (SIAM, Philadelphia).

Smith JE, Winkler RL (2006) The optimizer’s curse: Skepticism and
postdecision surprise in decision analysis. Management Sci.
52(3):311–322.

Sun H, Xu H (2016) Convergence analysis for distributionally robust
optimization and equilibrium problems. Math. Oper. Res. 41(2):
377–401.

Van Erven T, Harremoës P (2014) Rényi divergence and Kullback-
Leibler divergence. IEEE Trans. Inform. Theory 60(7):3797–3820.

Wang Z, Glynn PW, Ye Y (2016) Likelihood robust optimization for
data-driven newsvendor problems. Comput. Management Sci.
12(2):241–261.

ZeitouniO, Ziv J,MerhavN (1992)When is the generalized likelihood
ratio test optimal? IEEE Trans. Inform. Theory 38(5):1597–1602.

Zhao C, Guan Y (2018) Data-driven risk-averse stochastic optimi-
zation with Wasserstein metric. Oper. Res. Lett. 46(2):262–267.

Van Parys et al.: Distributionally Robust Optimization Is Optimal
Management Science, 2021, vol. 67, no. 6, pp. 3387–3402, © 2020 INFORMS3402


	01-mnsc20203608
	Do High-Frequency Traders Anticipate Buying and Selling Pressure?
	Hypothesis Development
	Data
	Tests of the Anticipatory Trading Hypotheses
	Alternative Explanations
	Relation to Inventory Management
	Conclusion


	02-mnsc20203626
	Shareholder Litigation and Corporate Innovation
	Introduction
	Institutional Background and Empirical Design
	Sample and Variables
	Results
	Conclusion


	03-mnsc20203681
	Assortment Optimization Under Consider-Then-Choose Choice Models
	Introduction
	Problem Formulation and Model Description
	Dynamic Program Under Unique-Ranking Distributions
	Consideration Set Structures
	The General Dynamic Program
	Consider-Then-Choose Models with Ranking Heterogeneity
	Empirical Performance
	Concluding Remarks


	04-mnsc20203678
	From Data to Decisions: Distributionally Robust Optimization Is Optimal
	Introduction
	Data-Driven Stochastic Programming
	Large Deviation Principles
	Distributionally Robust Predictors and Prescriptors Are Optimal
	Extension to Continuous State Spaces


	05-mnsc20203805
	Undisclosed SEC Investigations
	Introduction
	Sample Construction and Descriptive Statistics
	Firm Performance
	Event Study Tests
	Conclusion


	06-mnsc20203625
	Does the Freedom of Information Act Foil the Securities and Exchange Commission’s Intent to Keep Investigations Confidential?
	Introduction
	Data and Research Design
	Empirical Results
	Conclusion


	07-mnsc20203638
	Disclosure Dynamics and Investor Learning
	Introduction
	Model
	Estimation Procedure
	Data and Sample Selection
	Empirical Results
	Conclusion


	08-mnsc20203640
	Learning-Based Robust Optimization: Procedures and Statistical Guarantees
	Introduction
	Basic Framework and Implications
	Constructing Uncertainty Sets
	Numerical Examples


	09-mnsc20203616
	Business Groups and Employment
	Introduction
	Data and Variables
	Main Empirical Results
	Tests of the Internal Labor Markets Explanation for Group Employment Dynamics
	Tests of Other Explanations for Group Employment Dynamics
	Conclusions


	10-mnsc20203669
	Speed Acquisition
	Introduction
	Related Literature
	3. A Model of Speed Acquisition
	Endogenizing Information Acquisition
	Discussion and Robustness
	Conclusion


	11-mnsc20203664
	Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences
	Introduction
	Preliminaries
	Value Approximation
	Dynamic Programming Formulation
	Performance Analysis
	Case Study
	Computational Experiments


	12-mnsc20203660
	The Role of Beliefs in Driving Gender Discrimination
	Introduction
	Design
	Results
	Conclusion


	13-mnsc20203597
	Separating Information About Cash Flows from Information About Risk in Losses
	Introduction
	Theory and Hypothesis
	Research Design
	Main Empirical Results
	Robustness Tests
	Conclusion


	14-mnsc20203601
	Central Counterparty Exposure in Stressed Markets
	Introduction
	Hypotheses
	Approach
	Application
	Results
	Conclusion


	15-mnsc20203587
	Board Networks and Corporate Innovation
	Introduction
	Literature and Predictions
	Data and Sample
	Empirical Analysis and Findings
	Potential Mechanisms
	Further Empirical Analysis
	Robustness Checks on Model Specification, Variable Construction, and Alternative Identification
	Conclusion


	16-mnsc20203635
	The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha
	1.Introduction
	Data and Construction of the BAA Strategy
	CAPM Alpha Before and After the CAPM
	CAPM Alpha, Mutual Funds, and Funding Liquidity Shocks
	Discussion
	Concluding Remarks


	17-mnsc20203658
	Affine Modeling of Credit Risk, Pricing of Credit Events, and Contagion
	Introduction
	A General Affine Positive Credit Risk Modeling Framework
	Defaultable Asset Pricing
	Applications
	Conclusion


	18-mnsc20203643
	Making Marketplaces Safe: Dominant Individual Rationality and Applications to Market Design
	Introduction
	The Model
	Dominant Individual Rationality
	Two-Sided Matching Markets: The Modified Immediate-Acceptance Algorithm
	Stable Matching Mediators in Large Two-Sided Matching Markets
	Ride-Sharing Marketplaces
	Threshold Markets
	Discussion


	19-mnsc20203665
	Delegation to a Group
	Introduction
	Related Literature
	The Model
	Experimental Design and Hypotheses
	Experimental Results
	Discussion and Conclusion


	20-mnsc20203630
	Vertical Contracts in a Supply Chain and the Bullwhip Effect
	Introduction
	The Model
	The Bullwhip Effect and Production Smoothing
	The Price Effect and Expected Profits in a Supply Chain
	Extensions
	Conclusions


	21-mnsc20203656
	Value Loss in Allocation Systems with Provider Guarantees
	Introduction
	Problem Formulation
	Bounding the Value Loss Under Provider Guarantees
	Analysis of Key Loss Drivers
	Numerical Analysis of Real-World and Synthetic Data
	Conclusions, Limitations, and Future Research


	22-mnsc20203663
	Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive
	Introduction
	Model
	Analysis
	Extensions
	Discussions on Other Operational Levers for Performance Improvement
	Concluding Remarks


	23-mnsc20203667
	Demand Modeling in the Presence of Unobserved Lost Sales
	Introduction
	Demand Functions Based on Discrete Choice Models
	Estimation of Censored Data Discrete Choice Models with a Single Unobserved No-Purchase Option
	Computational Experiments with Simulated and Real Data
	Estimating Competitor Parameters: Scenarios with More than One Unobserved Substitutive Choice


	24-mnsc20203672
	Cover-Up of Vehicle Defects: The Role of Regulator Investigation Announcements
	Introduction
	Literature Review
	Model
	The Regulator’s Investigation Decision
	The Manufacturer’s Cover-Up Decision
	Social Welfare
	Extensions
	Policy Recommendations and Conclusion


	25-mnsc20203704
	On the Structure of Bottlenecks in Processes
	Introduction
	Literature Review
	Preliminaries
	Process Capacity: Characterization Using the Collaboration Graph
	Fractional Cliques and Bottleneck Structures
	Properties of Bottleneck Structures
	Extensions: Multiple Copies of Resources and Flexible Resource Sets
	Identification of Bottlenecks: A Summary
	Discussion and Concluding Remarks


	26-mnsc20203654
	When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings
	Introduction
	Background
	Theory and Hypotheses
	Overview of Experiments
	Study 1: Experiments on Restaurant Ratings
	Study 2: Experiments on Movie Ratings
	Study 3: Field Experiment on University Ratings
	General Discussion
	Conclusion


	27-mnsc20203646
	Are Inventors or Firms the Engines of Innovation?
	Introduction
	Data Description
	Contributions of Firms and Inventors to Innovation
	Inventor-Firm Matching
	Potential Estimation Biases
	Theoretical Analysis
	Concluding Thoughts


	28-mnsc20203676
	Asymmetric Returns and the Economic Content of Accruals and Investment
	Introduction
	Background and Hypotheses Development
	Data and Measurement
	Methodology
	Empirical Results
	Conclusions


	29-mnsc20203647
	The Double Trigger for Mortgage Default: Evidence from the Fracking Boom
	Introduction
	Background on Fracking in Pennsylvania
	Econometric Framework
	Data
	Baseline Results
	Robustness
	Causal Mechanisms
	Conclusion


	30-mnsc20193557
	Good Days, Bad Days: Stock Market Fluctuation and Taxi Tipping Decisions
	Introduction
	Background and Measurements
	Sample and Methodology
	The Impact of Stock Market Fluctuations and Investor Mood
	Two Identification Tests
	Additional Analysis
	Conclusions





