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Abstract This paper aims at investigating the exis-
tence of localized stationary waves in the shallow sub-
surface whose constitutive behavior is governed by
the hyperbolic model, implying non-polynomial non-
linearity and strain-dependent shear modulus. To this
end, we derive a novel equation of motion for a nonlin-
ear gradient elasticity model, where the higher-order
gradient terms capture the effect of small-scale soil
heterogeneity/micro-structure. We also present a novel
finite-difference scheme to solve the nonlinear equation
of motion in space and time. Simulations of the propa-
gation of arbitrary initial pulses clearly reveal the influ-
ence of the nonlinearity: strain-dependent speed in gen-
eral and, as a result, sharpening of the pulses. Station-
ary solutions of the equation of motion are obtained by
introducing the moving reference frame together with
the stationarity assumption. Periodic (with and with-
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out a descending trend) as well as localized stationary
waves are found by analyzing the obtained ordinary dif-
ferential equation in the phase portrait and integrating
it along the different trajectories. The localized station-
ary wave is in fact a kink wave and is obtained by inte-
gration along a homoclinic orbit. In general, the closer
the trajectory lies to a homoclinic orbit, the sharper the
edges of the corresponding periodic stationary wave
and the larger its period. Finally, we find that the kink
wave is in fact not a true soliton as the original shapes of
two colliding kink waves are not recovered after inter-
action. However, it may have high amplitude and reach
the surface depending on the damping mechanisms
(which have not been considered). Therefore, seismic
site response analyses should not a priori exclude the
presence of such localized stationary waves.

Keywords Nonlinear gradient elasticity model ·
Stationary waves · Localized kink wave · Homoclinic
orbit · Wave interaction

1 Introduction

For the prediction of the so-called seismic site response
—the response of the top soil layers of the earth—
induced by seismic waves, typically 1-D models are
employed [1]. The so-called equivalent linear scheme
is used very often, in which the soil stiffness and damp-
ing are modeled assuming constant shear modulus and
material damping ratio, respectively [2]. The actual val-
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ues of the shear modulus and damping ratio of a spe-
cific layer in the soil profile are based on the maximum
level of strain observed inside that layer; this requires
iteration as it is not possible to determine the maxi-
mum strain level a priori. For high maximum strain
levels in the soil layers, such equivalent shear modu-
lus and damping ratio cannot accurately represent the
behavior over the entire duration of a seismic event, as
the strains vary significantly. In such cases, a nonlinear
time domain solution is typically used to account for
the variation of the shear modulus and damping ratio
during shaking (e.g., [1]).

Contemporary research into nonlinear time-domain
models for seismic site response analysis is mostly
focused on the development of advanced constitu-
tive models so as to capture important features of
the soil behavior such as anisotropy, pore water pres-
sure generation and dilation [3]. However, limited
research has been devoted to the fundamental non-
linear dynamics aspects of the seismic site response.
Employing the commonly used hyperbolic constitutive
model [4,5], softening behavior and super-harmonic
resonances were recently demonstrated for a superfi-
cial soil layer under uniform harmonic excitation at
the lower boundary [6]. However, the possibility for
localized stationary waves such as solitons to propa-
gate through the soil column and reach the surface has
not been widely recognized in the seismological litera-
ture and neither in the geo-technical literature, although
a number of publications hint at the possibility of Love-
type surface solitary waves, solitary waves along faults,
and the importance of nonlinearity in general [7–14].

In this paper, we therefore investigate the existence
of localized stationary waves in the shallow subsur-
face with the constitutive behavior governed by the
hyperbolic model, implying that the shear modulus
is strain dependent (i.e., non-polynomial nonlinear-
ity). As the classical wave equation with this partic-
ular nonlinearity has non-physical discontinuous solu-
tions, we employ a nonlinear gradient elasticity model,
which sometimes is also called a higher-order gradi-
ent continuum or a micro-structured solid; the equa-
tion of motion is of the Boussinesq type. Compared
to the classical continuum, the stress–strain relation
has higher-order gradient terms to capture the effect
of small-scale soil heterogeneity/ micro-structure (yet
keeping the description of the material homogeneous),
which introduces dispersive effects particularly for
the shorter waves [15–23]. Such higher-order gra-

dient terms are naturally obtained using asymptotic
homogenization techniques for periodically inhomo-
geneous media [15,24–27]. Dispersive effects signif-
icantly influence the behavior of localized stationary
waves, as such waves exist exactly because of the bal-
ance between dispersive and nonlinear effects, allow-
ing their propagation without distortion. The disper-
sion prohibits the formation of jumps, which leads to
physically realizable solutions. So-called higher-order
dispersion correction and higher-order dispersive non-
linearity has been discussed in the context of the well-
known Korteweg–de Vries equation [28]. For higher-
order gradient elasticity continua, the existence and
properties of localized stationary waves have been stud-
ied for polynomial nonlinearity in both the macro-scale
and the micro-scale terms (i.e., in the higher-order
derivative terms) [13,29–35]. However, such waves
have never been studied in the context of higher-order
gradient elasticity continua that are dictated by hyper-
bolic nonlinearity, which is done in this paper.

Sticking to the 1-D assumption, we derive the equa-
tion of motion for the nonlinear gradient elasticity
model based on Newton’s second law and Eringen’s
general stress–strain relation [36], which allows intro-
ducing the higher-order derivatives in an unambigu-
ous manner (Sect. 2). An ordinary differential equa-
tion from which stationary solutions for the nonlinear
gradient elasticity model can be obtained is derived in
Sect. 3. Periodic (with and without a descending trend)
as well as localized stationary waves are found (Sect.
5.2); the latter is in fact a kink wave and is obtained
by integrating along a homoclinic orbit in the phase
portrait [18], like for example, it can be done for the
well-known sine-Gordon equation. Section 4 presents
a novel numerical scheme to solve the nonlinear equa-
tion of motion in space and time. It exploits the structure
of the partial differential equation in order to simplify
the computation of the spatial finite-difference approxi-
mations. The pseudospectral scheme presented in [29]
cannot be directly applied for the hyperbolic nonlin-
earity, since the roots of a polynomial with non-integer
exponents would have to be determined; this cannot be
done analytically and is therefore numerically expen-
sive. For that reason, the introduced numerical scheme
directly considers the hyperbolic nonlinearity. Another
advantage of the numerical scheme is that, because it
employs the finite-difference method, we are not lim-
ited to periodic boundary conditions. The scheme is
used to study the propagation of arbitrary initial pulses
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(Sect. 5.1) as well as to check the stationarity of the
stationary waves identified (Sect. 5.2). In addition, it
allows to demonstrate that the kink wave is in fact not a
true soliton. This is done by means of a numerical colli-
sion experiment in which two kink waves propagate in
opposite direction and pass each other (Sect. 5.3); after
interaction, their original shapes are not recovered.

Even though not being a true soliton, the kink
wave, which may have high amplitude, can propagate
through the soil column and potentially reach the sur-
face depending on the strength of the material and geo-
metrical damping mechanisms (which have not been
considered). Therefore, seismic site response analyses
should not a priori exclude the presence of such local-
ized stationary waves.

2 Model

2.1 General framework

The starting point to derive the equation of motion of
the gradient elasticity model is Newton’s second law.
For transverse waves propagating in the vertical direc-
tion z and considering the one-dimensional situation,
it reads [37]

�
�2u
�t2 = ��zx

�z
. (1)

Here, � denotes the material density, u(z, t) the hor-
izontal displacement in the x direction, t is time, and
�zx is the shear stress. In a nonlinear system, the stress–
strain relation can generally be written as follows [36]:

�zx (z, t) =
� ∞

−∞

� ∞

−∞
g (z − �, t − �, � (�, � ))

�zx (�, � )d�d�. (2)

This relation expresses that the stress �zx at location
z and time t generally depends on the strain �zx at all
points of the medium, and on the entire strain history
(note that � and � denote auxiliary space and time vari-
ables, respectively); the specific nonlocality and his-
tory dependence is contained in the kernel function
g(z, t, � ). The strain depends on the displacement in
the following way [37]:

�zx = 1

2

�u
�z

. (3)

The nonlinearity comes into play through the � depen-
dence of the kernel function, which expresses that the

elasticity operators, i.e., the elastic coefficients, are
strain dependent. In this work, we relate � to the devi-
atoric component of the so-called octahedral strain,
which for the one-dimensional case leads to [6,38]

� = √
3|�zx | =

√
3

2

����
�u
�z

���� . (4)

2.2 Equation of motion for nonlinear gradient
elasticity model

If the distribution of the kernel function g(z, t, � ) in z
and t is arbitrary, the equation of motion, as obtained by
substituting Eq. 2) into Eq. (1), will be of the integro-
differential type. However, as our aim is to derive the
equation of motion for a gradient elasticity model,
which is a partial differential equation, we restrict our-
selves to Dirac delta functions. Apart from the conven-
tional term, we include terms with double space and
double time derivatives:
g(z − �, t − �, � )

= 2
�
G(� )	(z − � )	(t − �) − L2G(L)(� )

	,� � (z − � )	(t − �)

+ T 2G(T )(� )	(z − � )	,�� (t − �)
�
,

(5)

where 	(...) denotes Dirac’s delta function, and (...),� �
and (...),�� denote double partial differentiation with
respect to � and � , respectively (this notation is used
throughout the paper, when useful, to denote par-
tial derivatives); G(� ) is the strain-dependent (secant)
shear modulus, G(L)(� ) and G(T )(� ) are additional
strain-dependent elastic moduli (related to higher-order
derivative terms, as shown below), and � = � (�, � ).
The semi-local operators with derivatives of the Dirac
function come with the time (T ) and length (L) scales
that characterize the specific history dependence and
nonlocality of the medium, respectively; it is well
known that particular nonlocal and history effects can
indeed be captured by using higher-order derivative
terms in the equation of motion (e.g., [39]). The ker-
nel function with the two additional terms (with double
space and double time derivatives) and corresponding
signs is chosen in accordance with the linear model (see
Eq. (14) below), for which it ensures unconditional sta-
bility as well as realistic lower and upper bounds for
the speed of energy transfer of the propagating wave
[15].

Now, inserting Eq. (5) into the Eq. (2), we obtain the
stress–strain relation of the nonlinear gradient elasticity
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model:

�zx (z, t) =2

�
G(� )�zx (z, t)

− L2 �2

�z2

�
G(L)(� )�zx (z, t)

�

+ T 2 �2

�t2

�
G(T )(� )�zx (z, t)

�	
.

(6)

Substituting Eqs. (3) and (6) into Eq. (1) yields the
corresponding equation of motion:

�
�2u
�t2 = �

�z

�
G(� )

�u
�z

− L2 �2

�z2

�
G(L)(� )

�u
�z

	

+T 2 �2

�t2

�
G(T )(� )

�u
�z

		
. (7)

For simplicity, we now relate the strain-dependent
additional elastic moduli to the conventional strain-
dependent shear modulus G(� ) using dimensionless
constants B1 and B2:

G(L)(� ) = B1G(� ),

G(T )(� ) = B2G(� ).
(8)

Without loss of generality, we interrelate the character-
istic length and time scales:

T 2 = L2

c2
0

. (9)

Here, c2
0 = G0/�, with G0 being the well-known

small-strain shear modulus from linear elasticity; c0

is the corresponding shear-wave speed. Throughout
the paper, the subscript “0” indicates that the quantity
relates to small-strain/linear behavior. Using Eqs. (8)
and (9), Eq. (7) can be written as

�
�2u
�t2 = �

�z

�
G(� )

�u
�z

− B1L2 �2

�z2

�
G(� )

�u
�z

	

+B2
�L2

G0

�2

�t2

�
G(� )

�u
�z

		
, (10)

which is the final form of the equation of motion of the
nonlinear gradient elasticity model.

In this work, we use the hyperbolic soil model typi-
cally employed for seismic site response analyses, with
the following expression for the strain-dependent shear
modulus [4]:

G(� ) = G0

1 + (� /�ref)

. (11)

Here, �ref denotes a reference shear strain, and 
 is a
dimensionless constant (0 < 
 < 1).

2.3 Limit case

For completeness, we here consider the limit case of
� /�ref → 1, which reduces the model to a linear gra-
dient elasticity model. In that case (cf. Eq. (8))

G(L) = G(L)
0 = B1G0,

G(T ) = G(T )
0 = B2G0.

(12)

Using the same definition for T (Eq. (9)), the stress–
strain relation Eq. (6) reduces to (the z, t dependence
is omitted for brevity)

�zx =2

�
G0�zx − B1G0L2 �2�zx

�z2 + B2�L2 �2�zx

�t2

	
.

(13)

The corresponding equation of motion reads as follows:

�
�2u
�t2 = G0

�2u
�z2 − B1G0L2 �4u

�z4 + B2�L2 �4u
�z2�t2 .

(14)

This linear equation was derived before by Metrikine
and Askes [40] from a discrete model using a contin-
ualization procedure. A similar equation was used by
Georgiadis et al. [41] to investigate the existence of
horizontally polarized surface waves.

3 Stationary wave solutions

It is possible to determine stationary solutions of the
equation of motion Eq. (10) that do not change their
shape while propagating in the nonlinear medium. This
means that, starting at an initial condition, the stationary
solution does not change with respect to the coordinate
� = z − ct , which moves with the velocity c ∈ R.
Thereby, c can be arbitrarily chosen and leads to a
specific solution. In order to find possible stationary
solutions, we apply the transformation � = z − ct and
assume stationarity, which yields

u,t t = u,�� c2, u,ztt = u,��� c2, u,zt = −u,�� c,
�
�z

= �
��

. (15)

Here, we recall that these particular subscripts (time or
space variable(s) preceded by a comma) denote par-
tial derivative operators. Substituting expressions of
Eq. (15) into Eq. (10), we get an ordinary differential
equation for the determination of stationary solutions
to Eq. (10):
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� c2 u,�� = �
��

�
G(� )u,� +

�
B2 c2 �L2

G0
− B1L2

	

�2

��2

�
G(� )u,�

�	
. (16)

In order to evaluate �2

��2

�
G(� )u,�

�
in Eq. (16) for the

hyperbolic soil model from Eq. (11), it has to be noted
that the absolute value function g(x) = |x | is not differ-
entiable for x = 0. However, it is weakly differentiable
with sgn(x), which denotes the sign function, as weak
derivative. Using this, we specifically obtain

�c2u,�� = �
��



u,�

G0

1 +
�√

3|u,� |
2�ref

	


+
�

B2 c2 �L2 − G0 B1L2
�

�
u,���



1

1 +
�√

3|u,� |
2�ref

	


−


�√
3|u,� |
2�ref



�

�1 +
�√

3|u,� |
2�ref



�

�
−2 �

+
√

3 sgn(u,� )
2�ref

u2
,��

�
2
2

�√
3|u,� |
2�ref

2
−1

�

�1 +
�√

3|u,� |
2�ref



�

�
−3

−(
 + 
2)

�√
3|u,� |
2�ref


−1

�

�1 +
�√

3|u,� |
2�ref



�

�
−2 	��

. (17)

Integration of Eq. (17) with respect to � , grouping terms
related to u,��� , and setting y := u,� , (̇) := �

�� yield

ÿ = 1

1 − 

�√

3|y|
2�ref

�

�

1 +
�√

3|y|
2�ref

�

	−1

�
���

���

�c2
�

1 +
�√

3|y|
2�ref

�

	

− G0

B2c2�L2 − G0 B1L2 y

−
√

3 sgn(y)
2�ref



2
2

�√
3|y|

2�ref

2
−1

�

�1 +
�√

3|y|
2�ref



�

�
−2

−(
 + 
2)

�√
3|y|

2�ref


−1

�

�1 +
�√

3|y|
2�ref



�

�
−1 �

ẏ2

�
��

��
. (18)

This is a nonlinear second-order ordinary differential
equation, which can be solved for stationary wave solu-
tions of Eq. (10). Specific stationary solutions are deter-
mined in Sect. 5.

4 Numerical scheme

In order to solve Eq. (10) in space and time, we use a
newly developed fully implicit scheme for the numeri-
cal solution of partial differential equations of the form

�
�2u
�t2 = �

�z

�
G

�
�u
�z

	
�u
�z

− B1L2 �2

�z2

�
G

�
�u
�z

	
�u
�z

	

+ B2
�L2

G0

�2

�t2

�
G

�
�u
�z

	
�u
�z

	 	
,

(19)

where G
�

�u
�z

�
denotes that G can depend on �u/�z

in an arbitrary manner. It is assumed that the solution
u(z, t) of Eq. (10) exists in time t ∈ [0, T] and space
z ∈ [Z�, Zh]. Therefore, a grid in time

0 = t0 < t1 < · · · < tN = T,

tn = nt for n = 0, . . . , N , t = T
N

, (20)

and a grid in space

Z� = z0 < z1 < · · · < zM = Zh,

zi = iz for i = 0, . . . , M, z = Z� − Zh

M
,

(21)

are introduced. Using

h(u,z) := G(u,z) u,z, (22)

Eq. (19) can be written as

� u,t t = h,z − B1L2h,zzz + B2
�L2

G0
h,t t z . (23)
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By using Eqs. (22) and (23), the structure of the consid-
ered partial differential equation is exploited. This will
simplify the computation of the spatial finite difference
approximations, as can be seen in the further course of
this section. Assuming that the solution is known at the
timepoints tn−1 and tn and replacing the time derivative
by a finite-difference approximation, Eq. (23) results in
the nonlinear equation

f(un+1) = 0, (24)

with

un+1 :=
�
un+1

0 , un+1
1 , . . . , un+1

M

�T
, (25)

and

fi (un+1)

:= �
un+1

i − 2un
i + un−1

i
t2

−h,z(un+1
i,z ) + 2h,z(un

i,z) + h,z(un−1
i,z )

4

+B1L2
h,zzz(un+1

i,z ) + 2h,zzz(un
i,z) + h,zzz(un−1

i,z )
4

−B2
�L2

G0

h,z(un+1
i,z ) − 2h,z(un

i,z) + h,z(un−1
i,z )

t2 ,

(26)

where fi is the i-th component of f , un
i is a grid function

approximating the solution at time tn and space zi , i.e.,
un

i ≈ u(zi , tn), and un
i,z approximates u,z(zi , tn). Equa-

tions (24) and (26) approximate Eq. (23) (evaluated at
t = tn) up to an accuracy of O(t2), whereby O(·)
represents the big O notation. Next, the space deriva-
tives are discretized. For this, standard finite-difference
approximations are used again. In order to simplify the
notation, the time index n is omitted in the following,
such that un is written as u or un

i is written as ui . This
leads to the approximations, which have all an accuracy
of O(z2):

ui,z = ui+1 − ui−1

2z
+O(z2), (27)

h,z(ui,z) = h(ui+1,z) − h(ui−1,z)
2z

+O(z2)

= 1

2z

�
��

��

G0

1 +
� √

3
2

|ui+2−ui |
2z�ref

�

ui+2 − ui

2z

− G0

1 +
� √

3
2

|ui −ui−2|
2z�ref

�

ui − ui−2

2z

�
��

��

+ O(z2), (28)

h,zzz(ui,z) = h(ui+2,z) − 2h(ui+1,z) + 2h(ui−1,z) − h(ui−2,z)
2z3

+ O(z2)

= 1

2z3

�
��

��

G0

1 +
� √

3
2

|ui+3−ui+1|
2z�ref

�

ui+3 − ui+1

2z

−2
G0

1 +
� √

3
2

|ui+2−ui |
2z�ref

�

ui+2 − ui

2z

+2
G0

1 +
� √

3
2

|ui −ui−2|
2z�ref

�

ui − ui−2

2z

− G0

1 +
� √

3
2

|ui−1−ui−3|
2z�ref

�

ui−1 − ui−3

2z

�
��

��
+O(z2).

(29)

Now, the advantage of the exploitation of the struc-
ture of Eq. (19) and the introduction of the function
h(u,z) can be seen. In Eq. (19) the third-order deriva-
tive of G(u,z) with respect to z appears. However, if the
hyperbolic soil model G(� ) from Eq. (11) is used for
G(u,z) in Eq. (19), then G(u,z) = G(� ) contains the
absolute value function, which is only one time weakly
differentiable. A direct finite difference approximation
of the third-order derivative of G(u,z) must be able to
deal with this problem. By using Eq. (28) and (29), the
missing differentiability in the case G(u,z) = G(� ) is
circumvented.

Since Eq. (24) is nonlinear, a numerical scheme has
to be used in order to calculate un+1

i iteratively. For this,
Newton’s method is used, for which the computation
of the Jacobian matrix is necessary.

Using |x |,x = sgn(x), sgn(x)x = |x | and defining

k(x, y) :=
1 + (1 − 
)

�√
3

2
|x−y|

2z�ref

�


16z4

�
1 +

�√
3

2
|x−y|

2z�ref

�

	2 , (30)

it follows that
� fi

�ui+3
(u) = B1L2G0k(ui+3, ui+1),

� fi
�ui−3

(u) = B1L2G0k(ui−1, ui−3),

� fi
�ui+2

(u) = −G0

�
z2 + 4B2

�L2z2

G0t2 + 2B1L2
	

k(ui+2, ui ),
� fi

�ui−2
(u) = −G0

�
z2 + 4B2

�L2z2

G0t2 + 2B1L2
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Table 1 Medium parameter values

G0 [Pa] � [kg m−3] 
 [−] �ref [−] B1 [−] B2 [−] L [m]
111.86 · 106 2009.8 0.91 10−3 1 1.78 0.2

k(ui , ui−2),
� fi
�ui

(u) = �
t2 − � fi

�ui+2
(u) − � fi

�ui−2
(u),

� fi
�ui+1

(u) = − � fi
�ui+3

(u),

� fi
�ui−1

(u) = − � fi
�ui−3

(u),

� fi
�u j

(u) = 0 for |i − j | > 3. (31)

This concludes our new numerical scheme for the
computation of solutions to Eq. (19). In order to simu-
late the solution on an open domain, absorbing bound-
ary conditions are used. The numerical solution of the
linear equation of motion (Eq. (14)) can be computed
in a similar manner (using a finite difference scheme).
For details, see “Appendix A”.

5 Numerical results

In this section we show and discuss numerical results
for the nonlinear Eq. (10) with the choice of parameter
values indicated in Table 1. The values of G0, �, 
 and
�ref have been chosen to represent soil, and the values
of the parameters related to the higher-order gradient
terms are similar to the ones used in [15].

5.1 Solutions for a Gaussian pulse

First of all, the temporal evolution of a specific solution
is studied, where as an initial condition a Gaussian pulse
is used, i.e.,

u(z, t = 0) = u0 exp

�
− z2

2� 2

	
. (32)

Here, the amplitude u0 = 0.016 m and standard devi-
ation � = 30 m have been chosen to obtain a rela-
tively high strain level, in accordance with [1]. In order
to compute the numerical solution using the scheme
described in Sect. 4, an initial condition at time point
t−1 (i.e., u−1) has to be chosen. In this study, u−1 = u0

is used, resulting in a solution with zero initial velocity.
The resulting numerical solution can be seen in Fig. 1.
The initial pulse divides into two parts, which prop-
agate in opposite directions. We can also observe that
the nonlinear solution does not have sharp edges, which
would be the case if the higher-order derivative terms
were omitted in Eq. (10); hence, the gradient elasticity
model yields physically admissible behavior.

In order to see the effect of the nonlinear terms in
Eq. (10), the temporal evolution of the corresponding
solution for the linear case (Eq. (14)) is shown in Fig. 2.
There is a clear difference between the linear and non-
linear solutions. It can be seen that, although the general
behavior of the solution stays the same, the nonlinear
solution is much sharper compared to the linear solu-
tion (but still smooth). In order to make this more clear,
Fig. 3 shows both solutions at the end of the simulation
time.

Another effect of the nonlinearity can be observed
in Fig. 4, which shows the solution of the nonlinear
equation of motion Eq. (10) with a Gaussian-cosine
pulse as initial condition, which is given by

u(z, t = 0) = u0 exp

�
− z2

2� 2

	
cos

��
�

z
�

. (33)

Thereby, an amplitude of u0 = 0.016 m and standard
deviation of � = 30 m have been chosen. It can be well
observed that, due to the nonlinearity, different parts of
the pulses having different slopes (i.e., strain levels)
travel with different speed.

In order to study the interaction of two solutions, two
Gaussian pulses starting at z1 = −500 m, z2 = 500 m
with amplitudes u1 = 0.008 m, u2 = 0.016 m, respec-
tively, and the same standard deviation � = 30 m are
considered. The corresponding initial condition has
been calculated by adding both pulses. The obtained
temporal evolution of the corresponding solution is dis-
played in Fig. 5. It is shown that both pulses divide
directly in two parts, propagating in different direc-
tions. Thereby, the interaction of the resulting waves
does not destroy the structure of each wave but does
lead to a very small change in their amplitude, which
can be verified by comparing the waves that did inter-
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Fig. 1 Solution of the
nonlinear Eq. (10) with a
Gaussian pulse as initial
condition with an amplitude
of u0 = 0.016 m

Fig. 2 Solution of the
linear Eq. (14) with a
Gaussian pulse as initial
condition with an amplitude
of u0 = 0.016 m

Fig. 3 Comparison of the
solution of the linear
Eq. (14) and nonlinear
Eq. (10) at the end of the
simulation time. For both
cases, the same initial
condition has been used

act with the ones that did not. It can thus be concluded
that such waves stay localized after collision with each
other. At the same time, these waves are not stationary
and their dispersion can be clearly seen in Fig. 5, so the
waves are in principle not even expected to regain their
shape after interaction. We therefore study results for
stationary solutions in the next sections.

5.2 Results for stationary wave solutions

In order to obtain the stationary wave solutions, we
solve Eq. (18) numerically for y = u,� . Thereby, the
traveling velocity c can be arbitrarily chosen. An inte-
gration with respect to � yields finally the solution u,
which is used as initial condition for Eq. (10). Since
the scheme described in Sect. 4 needs also an initial
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Fig. 4 Solution of the
nonlinear Eq. (10) with a
Gaussian-cosine pulse as
initial condition with an
amplitude of u0 = 0.016 m

condition at the time point t−1, the corresponding val-
ues at this time have to be computed as well. Because
the stationary solution propagates with the velocity c,
the solution u−1 at time point t−1 can be computed by
shifting the stationary solution in space by c t−1.

From Eq. (18), we obtain the corresponding phase
portrait for u,� and u,�� as shown in Fig. 6 for c = 100
m/s, where P1 and P2 denote the two existing fixed
points and S denotes the saddle point. Starting from
this saddle point, we can find two homoclinic orbits,
which we refer to as left homoclinic orbit and right
homoclinic orbit.

In the following investigation of stationary solu-
tions, we look at four cases:

– Stationary solution, which is located in the phase
portrait “outside homoclinic orbit, close” (in the
following denoted as case 1).

– Stationary solution, which is located in the phase
portrait “outside homoclinic orbit, far” (in the fol-
lowing denoted as case 2).

– Stationary solution, which is located on the left
homoclinic orbit (in the following denoted as case
3).

– Stationary solution, which is located in the phase
portrait “inside homoclinic orbit” (in the following
denoted as case 4).

The four corresponding trajectories in the phase por-
trait are shown in Fig. 7a. Thereby, the blue colored
trajectory corresponds to case 1, the black colored tra-
jectory to case 2, the dashed red colored trajectory to
case 3, and the yellow colored trajectory case 4. Fig. 7b
shows the behavior of the trajectories close to the ori-
gin of the phase portrait. The trajectories of case 1 and
case 3 do not lie on top of each other. In case 1 the
trajectory encircles both homoclinic orbits, whereas in
case 3 it is located on the left homoclinic orbit.

Next, we show the temporal evolution of the four
solutions related to cases 1-4 in detail. The correspond-
ing results are shown in Figs. 8, 9, 10, and 11. In each
figure, the temporal evolution of the solution is shown
and the initial condition is compared to the solution
at the end of the simulation. In each computation, the
velocity of the waves is chosen as c = 100 m/s. For
the computation of each solution, periodic boundary
conditions have been used. In these results, we can
identify two periodic solutions, which correspond to
case 1 and case 2. Clearly, the periodic pattern con-
verges to a more edged pattern as the periodic solution
gets closer to the homoclinic orbits. Starting at one
of the homoclinic orbits, we obtain the so-called kink
solution or kink wave, which also appears on a homo-
clinic orbit for the sine-Gordon equation [42,43], see
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Fig. 5 Interaction of two
Gaussian pulses with
maximal amplitudes
u1 = 0.008 m and
u2 = 0.016 m, starting at
the positions z1 = −10 m
and z2 = 10 m for the
nonlinear Eq. (10). The
solution is shown from a the
side, b the top, and c at the
end of the simulation time

(a)

(b)

(c)

Fig. 6 Phase portrait and
homoclinic orbits for
c = 100 m/s
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(a)

(b)

Fig. 7 a Phase plot of the trajectories of cases 1-4. b Zoomed
phase plot of the trajectories of cases 1–4 close to the origin of
the phase space

“Appendix B”. This solution is not periodic anymore
and stays constant before and after the kink in solu-
tion. Another solution is obtained when starting inside
a homoclinic orbit, like in case 4. Then, we obtain a
descending periodic pattern in the stationary solution if
starting inside the left homoclinic orbit and an ascend-
ing periodic pattern, if starting inside the right homo-
clinic orbit. For case 4, modified periodic boundary
conditions have been used in order to periodically con-
tinue the pattern at the boundaries. For this case, the
derivatives of the solution at the left and right end of
the spatial computation domain are equal and the dif-
ference between the corresponding function values of
the solution are constant in time. Based on this, the dif-
ference at the right end of the spatial domain is added
such that there is a periodic transition from the right to
the left end value of the solution.

The amplitude of the stationary waves u(�) can be
controlled using the parameter c. In addition, the width
of the stationary waves depends on the distance to a

homoclinic orbit. The closer the phase-portrait trajec-
tories (u,� , u,�� ) are to a homoclinic orbit, as shown in
Fig. 6, the wider the stationary waves u(�) are.

As can be seen in all figures, the form of the used ini-
tial condition is maintained in the corresponding tem-
poral evolution. In other words, different parts of the
solution do not interact with each other and stay sta-
tionary, which is to be expected. This implies that such
waves in reality may be able to propagate over large dis-
tances and, when excited by an earthquake, even reach
the surface. This is particularly relevant for the kink
wave, which may be excited due to a sudden perma-
nent local displacement associated with sliding along
a fault.

5.3 Interaction of kink solutions

The result of interaction of two kink wave solutions
is shown in Fig. 12, for c = 100 m/s. We observe an
interesting nonlinear behavior, which is different from
classical soliton collision experiments where localized
solutions regain their complete shape after collision,
as for example is the case for the Korteweg–de Vries
equation [44, e.g.,]. Compared to the initial condition,
the displacement amplitude at the end of the simulation
has become slightly larger at the left and right sides of
the considered spatial domain; the displacement has
the value of 3.98 mm compared to 3.84 mm for the
initial condition. Moreover, as shown in Fig. 12c, the
plateau at the end of the simulation is slightly bent
downwards compared to the initial condition, which is
flat (i.e., zero) in the spatial interval from z = −9 m
to z = −6 m. This difference compared to the corre-
sponding values of the initial condition (i.e., stationary
waves) has been analyzed for different spatial and tem-
poral discretizations; for each of the considered dis-
cretizations, the difference did not vanish. Therefore,
we can conclude that the kink solutions change their
shape due to interaction. Hence, the kink wave cannot
be referred to as a true soliton.

6 Discussion

In this section, we discuss two aspects regarding the
model adopted in this paper: a potential improvement
to overcome the presence of evanescent waves and a
potential way to obtain closed-form expressions for
the additional elastic moduli in the equation of motion.
Regarding the first point, it can be verified that the lin-
ear version of our model is stable for all possible initial
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Fig. 8 a Temporal
evolution, b end time
simulation results, and c
corresponding evolution of
u(�), u,� (�), and u,�� (�)
for case 1

(a)

(b)

(c)

conditions (i.e., for all wavenumbers) and that the group
velocity associated with the propagating wave is finite
for all wavenumbers. However, the model does allow
the presence of an evanescent wave through which
information can travel at infinite speed. This is a short-
coming of the model as it does not comply with the
so-called strict/Einstein’s causality condition [15]. It is
expected that the nonlinear gradient elasticity model
has this shortcoming too. For the linear problem, it can
be overcome by adding a term with fourth-order time
derivative in the equation of motion so as to include the
effect of micro-scale inertia (thus balancing the high-
est order of spatial and temporal derivatives); then, all
waves appear to have finite propagation speed [15].
Such a term is often included in the equation of motion
of nonlinear gradient elasticity models too [32].

Secondly, we recall that the equation of motion of the
nonlinear gradient elasticity model has been obtained
using an assumed strain dependence of the additional
elastic moduli (Eq. (8)). Generally speaking, the equa-
tion of a higher-order gradient elasticity model can be
derived starting from a periodically layered classical
continuum and applying an asymptotic homogeniza-
tion procedure [24,25]. By applying such a procedure
for a nonlinear periodically layered classical contin-
uum, closed-form expressions may be found for the
additional elastic moduli (of the homogenized medium)
in terms of the strain-dependent shear moduli of the
original layers and their densities. It may also reveal
how the time and length scales should be chosen, and
with that the coefficients B1 and B2. Finally, it may
naturally lead to the inclusion of the fourth-order time-

123



Localized stationary seismic waves... 1119

Fig. 9 a Temporal
evolution, b end time
simulation results, and c
corresponding evolution of
u(�), u,� (�), and u,�� (�)
for case 2

(a)

(b)

(c)

derivative term representing the effect of micro-scale
inertia referred to above.

7 Conclusions

The aim of this paper was to investigate the existence
of localized stationary waves in the shallow subsurface
with constitutive behavior governed by the hyperbolic
model, implying that the shear modulus is strain depen-
dent (i.e., non-polynomial nonlinearity). To this end,
we derived a novel equation of motion for a nonlinear
gradient elasticity model, which is of the Boussinesq-
type. The higher-order gradient terms (compared to
those in the classical wave equation) capture the effect
of small-scale soil heterogeneity/microstructure, which
introduces dispersive effects particularly for the shorter

waves; the dispersion prohibits the formation of jumps,
which leads to physically realizable solutions. In order
to obtain stationary solutions of the equation of motion,
we introduced the moving reference frame together
with the stationarity assumption, which yields an ordi-
nary differential equation. We also presented a novel
numerical scheme to solve the nonlinear equation of
motion in space and time up to an order of accuracy of
O(t2 +z2), which exploits the structure of the par-
tial differential equation in order to simplify the com-
putation of the spatial finite-difference approximations.

Periodic (with and without a descending trend) as
well as localized stationary waves were found by ana-
lyzing the above-mentioned ordinary differential equa-
tion in the phase portrait and integrating it along the dif-
ferent trajectories. The localized stationary wave is in
fact a kink wave and was obtained by integration along
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Fig. 10 a Temporal
evolution, b end time
simulation results, and c
corresponding evolution of
u(�), u,� (�), and u,�� (�)
for case 3

(a)

(b)

(c)

a homoclinic orbit. Generally speaking, the closer the
trajectory lies to a homoclinic orbit, the sharper the
edges of the corresponding periodic stationary wave
and the larger its width (i.e., period). The numerical
scheme was used to verify the stationary character of
the waves. In addition, it was used to study the propaga-
tion of arbitrary initial pulses, which clearly reveals the
influence of the nonlinearity: strain-dependent speed
in general and, as a result, sharpening of the pulses.
Finally, we simulated using the numerical scheme a
collision experiment in which two kink waves prop-
agate in opposite direction and pass each other. We
found that, after interaction, their original shapes are
not recovered. Therefore, we conclude that the kink
wave identified in this work is in fact not a true soliton.

Even though not being a true soliton, the kink
wave, which may have high amplitude, can propagate

through the soil column and potentially reach the sur-
face depending on the strength of the material and geo-
metrical damping mechanisms (which have not been
considered). Therefore, seismic site response analyses
should not a priori exclude the presence of such local-
ized stationary waves. Follow-up research should be
devoted to quantifying the influence of the damping
mechanisms on the decay of the waves for specific soil
profiles; here, the Masing model for hysteresis could
serve to include the material damping [45,46].
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Fig. 11 a Temporal
evolution, b end time
simulation results, and c
corresponding evolution of
u(�), u,� (�), and u,�� (�)
for case 4

(a)

(b)

(c)
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A Numerical scheme for the linear equation of
motion waves

In order to solve Eq. (14), which is expressed as

� u,t t = G0u,zz − B1L2G0u,zzzz + B2�L2u,t t zz, (34)

a finite difference scheme is introduced. Applying
explicit finite difference approximations, Eq. (34) can
be written as

�
un+1

i − 2un
i + un−1

i
t2 = G0

un
i+1 − 2un

i + un−1
i−1

z2

− B1L2G0
un

i+2 − 4un
i+1 + 6un

i − 4un−1
i−1 + un

i−2

z4

+ B2�L2 un+1
i+1 − 2un+1

i + un+1
i−1 − 2un

i+1 + 4un
i − 2un

i−1 + un−1
i+1 − 2un−1

i + un−1
i−1

t2z2 .

(35)
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Fig. 12 a Interaction of
two kink wave solutions. b
The corresponding initial
condition as well as the
solution at the end of the
simulation. c Zoomed plot
of the solution at the end of
the simulation. These
results are obtained for
c = 100 m/s

(a)

(b)

(c)

Collecting all unknown values of u at the timepoint
tn+1 at the left-hand side and the rest at the right-hand
side leads to a system of linear algebraic equations,
which has to be solved for each time step. In order
to simulate the solution in an open domain, absorbing
boundary conditions have been used.

B Stationary solution of the sine-Gordon equation

A well-known equation which exhibits the so-called
kink solitons is the sine-Gordon equation [42,43]. In
this appendix, we demonstrate that such a solution can
be obtained by introducing a moving reference frame,
assuming stationarity, and integrating the thus obtained
equation along a homoclinic orbit in the phase portrait.
In this paper, we applied essentially the same procedure
to get localized solutions of the equation describing sta-

tionary waves in the nonlinear gradient elasticity model
(Eq. (18)).

We show in the following relations between kink
solutions of the equation of motion of the nonlinear
gradient elasticity model (Eq. (10)) and kink solutions
of the sine-Gordon equation.

Since it was realized that the sine-Gordon equation
led to kink solitons, the importance of this equation
greatly increased. The sine-Gordon equation has sev-
eral important physical applications [47–50]. It can be
stated as

u,t t − u,zz + sin u = 0, (36)

where z ∈ R denotes the space variable, t ∈ R denotes
time, and u := u(z, t).

Using the same procedure as in Sec. 3, we apply the
transformation � = z − ct in order to determine sta-
tionary solutions of the sine-Gordon Eq. (36). With this
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Fig. 13 Homoclinic orbit � for the ordinary differential equa-
tion (37) with saddle point S and fixed point P

transformation, we obtain from Eq. (36) the following
ordinary differential equation

u,�� + 1

c2 − 1
sin u = 0. (37)

For Eq. (37), the homoclinic orbit on a cylindrical phase
space, which is 2� -periodic with respect to u, is given
by (cf., [51])

�(u, u,� ) =
�
u ∈ [0, 2�), u,� ∈ R, |c| < 1 : u2

,�

2

c2 − 1
cos u = − 2

c2 − 1

�
.

(38)

This homoclinic orbit is shown in Fig. 13.
Starting at the upper or lower part of this homoclinic

orbit close to the saddle point S and solving Eq. (37)
numerically, we obtain the so-called kink or anti-kink
solution, respectively. By solving Eq. (37) one can also
show that the analytical expression for the kink and
anti-kink solutions is given by

uk(�) = 4 arctan

�
± exp

�
� − �0√
1 − c2

		
, (39)

where �0 denotes the center position.
A numerically obtained anti-kink solution of the

sine-Gordon Eq. (37) is shown in Fig. 14 for the case
c = 0.8, and it clearly coincides with the corresponding
analytical solution from Eq. (39).

These kink or anti-kink solutions are localized sta-
tionary solutions of the sine-Gordon Eq. (36). Similarly
as for the equation of motion (Eq. (10)) of the nonlinear
gradient elasticity model, they are located at a homo-
clinic orbit of the corresponding ordinary differential
equation for the transformed coordinate � = z − ct .

Fig. 14 Anti-kink solution for the sine-Gordon equation, where
c = 0.8
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