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Summary

Planning safe motions for multi-robot systems is crucial for deploying them in real-world
applications such as target tracking, environmental monitoring, and multi-view cinematog-
raphy. Traditional approaches mainly solve the multi-robot motion planning problem in
a deterministic manner, where the robot states and system models are perfectly known.
Practically, however, many sources of uncertainty exist in real-world environments, such
as noisy sensor measurements, motion disturbances, and uncertain behaviors of other
decision-making agents. Reasoning about these uncertainties is of utmost importance for
robust and safe navigation of multi-robot systems. To this end, this thesis aims to develop
probabilistic methods for multi-robot motion planning under uncertainty.

The �rst main contribution of this thesis is a Chance-Constrained Nonlinear Model
Predictive Control (CCNMPC) method for probabilistic multi-robot motion planning. Tak-
ing into account uncertainties in robot localization, sensing, and motion disturbances,
the method explicitly considers the collision probability between each robot and obsta-
cle and formulates a model predictive control problem with chance constraints. A tight
upper bound of the collision probability is developed which makes the CCNMPC formu-
lation tractable and solvable in real time. In addition, the CCNMPC is incorporated into
multi-robot motion planning using three coordination strategies: a) centralized sequential
planning, b) distributed planning in which robots communicate their future planned tra-
jectories, and c) decentralized planning in which robots predict other robots’ trajectories
using the constant velocity model (CVM). Performances of the three strategies are analyzed
and compared.

The CCNMPC method requires robots to know the future trajectories of other robots,
either via communication or motion prediction using CVM. However, communication is not
always available, and the CVM based motion prediction can lead to collisions among robots,
especially in crowded environments. To achieve decentralized and communication-free
multi-robot collision avoidance under uncertainty, this thesis then presents a method that
relies on the introduced Bu�ered Uncertainty-Aware Voronoi Cell (B-UAVC). The B-UAVC
de�nes a local safe region for each robot among other robots and obstacles, such that
the collision probability between robots and obstacles is below a speci�ed threshold if
each robot’s motion is constrained to be within its corresponding B-UAVC. An approach
to constructing the B-UAVC is proposed, which leverages the techniques of computing a
separating hyperplane between two Gaussian distributions and adding bu�ers for proba-
bilistic collision avoidance. Based on B-UAVC, a set of reactive controllers are designed
for single-integrator, double-integrator, and di�erential-drive robots, respectively; and a
receding horizon planner is proposed for general nonlinear dynamical systems.

Instead of directly generating a control action for each robot to move towards its way-
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point goal as in the CCNMPC and B-UAVC methods, this thesis further presents a method
that can compute a safe control input by minimally modifying a given nominal controller,
which may come from a high-level task-oriented planner. The method is decentralized and
relies on the Chance-Constrained Safety Barrier Certi�cates (CC-SBC), which de�nes a
probabilistic safe control space for each robot in a multi-robot system considering robot
localization and sensing uncertainties. The CC-SBC chance constraints are reformulated
into a set of deterministic quadratic constraints, based on which a quadratically constrained
quadratic program (QCQP) can be formulated. By solving the QCQP, the robot can obtain
a safe control action thanks to that the CC-SBC guarantees forward invariance of the
robot’s safety set in a probabilistic manner. Hence, the CC-SBC method can be used as a
probabilistic safety �lter for multi-robot systems.

While both the B-UAVC and CC-SBC methods are decentralized and communication-
free, they typically lead to more conservative robot motions than the CCNMPC method
with robots communicating their planner trajectories. The CCNMPC method can also be
communication-free by letting each robot predict the other robots’ trajectories using the
constant velocity model, but it is unsafe in crowded environments. To address the issue,
this thesis �nally presents a novel trajectory prediction model based on Recurrent Neural
Networks (RNN) that can learn multi-robot motion behaviors from demonstrated trajecto-
ries generated using a centralized motion planner. By incorporating the learned RNN-based
trajectory prediction model within the MPC framework, e�cient and communication-free
multi-robot motion planning is achieved.

The motion planning methods developed in the thesis have been extensively evaluated
and validated in simulations and real-world experiments with a team of quadrotors, showing
safe navigation of robots under uncertainty.
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Samenvatting

Het plannen van veilige bewegingen voor systemen met meerdere robots is cruciaal om ze
in te zetten in real-world toepassingen zoals het volgen van doelen, omgevingsmonitoring
en multi-view cinematogra�e. Traditionele benaderingen lossen het probleem van bewe-
gingsplanning met meerdere robots voornameldie gebruik maakt van de technieken van
het berekenen van een scheidend vlak tussen twee Gaussische-verdelingenijk op een deter-
ministische manier op, waarbij de robottoestanden en systeemmodellen perfect bekend
zijn. In de praktijk bestaan er echter veel bronnen van onzekerheid, zoals sensormetingen
met ruis, bewegingsstoringen en onzeker gedrag van andere besluitvormers. Redeneren
over deze onzekerheden is van het grootste belang voor een robuuste en veilige navigatie
van multi-robotsystemen. Hiertoe heeft dit proefschrift tot doel probabilistische methoden
te ontwikkelen voor multi-robot bewegingsplanning onder onzekerheid.

De eerste belangrijke bijdrage van dit proefschrift is een Chance-Constrained Nonlinear
Model Predictive Control (CCNMPC) methode voor probabilistische bewegingsplanning
van meerdere robots. Rekening houdend met onzekerheden in robotlokalisatie, detectie
en bewegingsverstoringen, houdt de methode expliciet rekening met de botsingskans
tussen elke robot en obstakel en formuleert een model voorspellend besturingsprobleem
met kansbeperkingen. Er wordt een strakke bovengrens van de botsingskans ontwikkeld,
waardoor de CCNMPC-formulering in realtime handelbaar en oplosbaar is. Bovendien is
de CCNMPC opgenomen in de bewegingsplanning van meerdere robots met behulp van
drie coördinatiestrategieën: a) gecentraliseerde sequentiële planning, b) gedistribueerde
planning waarin robots hun toekomstige geplande trajecten communiceren, en c) gedecen-
traliseerde planning waarin robots de trajecten van andere robots voorspellen met behulp
van het constante snelheidsmodel (CVM). De prestaties van de drie strategieën worden
geanalyseerd en vergeleken.

De CCNMPC-methode vereist dat robots de toekomstige trajecten van andere robots
kennen, hetzij via communicatie of bewegingsvoorspelling met behulp van CVM. Communi-
catie is echter niet altijd beschikbaar en de op CVM gebaseerde bewegingsvoorspelling kan
leiden tot botsingen tussen robots, vooral in drukke omgevingen. Om gedecentraliseerde
en communicatievrije multi-robot botsingsvermijding onder onzekerheid te bereiken, pre-
senteert dit proefschrift vervolgens een methode die vertrouwt op de geïntroduceerde
Bu�ered Uncertainty-Aware Voronoi Cell (B-UAVC). De B-UAVC de�nieert een lokaal veilig
gebied voor elke robot tussen andere robots en obstakels, zodat de kans op botsingen tussen
robots en obstakels onder een gespeci�ceerde drempel ligt als de beweging van elke robot
wordt beperkt om binnen de overeenkomstige B-UAVC te blijven. Er wordt een benadering
voorgesteld voor het construeren van de B-UAVC, die gebruik maakt van de technieken
van het berekenen van een scheidend vlak tussen twee Gaussische-verdelingen en het
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toevoegen van bu�ers voor het vermijden van probabilistische botsingen. Op basis van
B-UAVC is een set reactieve controllers ontworpen voor respectievelijk single-integrator,
double-integrator en di�erentieel aangedreven robots; en een receding horizon planner
wordt voorgesteld voor algemene niet-lineaire dynamische systemen.

In plaats van direct een regelactie te genereren voor elke robot om naar zijn waypoint-
doel te gaan, zoals in de CCNMPC- en B-UAVC-methoden, presenteert dit proefschrift
verder een methode die een veilige besturingsinvoer kan berekenen door een bepaalde
nominale controller minimaal te wijzigen, wat kan komen van een taakgerichte planner
op een hirarchisch hoger niveau. De methode is gedecentraliseerd en is gebaseerd op de
Chance-Constrained Safety Barrier Certi�cates (CC-SBC), die een probabilistische veilige
controleruimte de�nieert voor elke robot in een systeem met meerdere robots, rekening
houdend met robotlokalisatie en detectie van onzekerheden. De CC-SBC kansbeperkingen
worden geherformuleerd in een set deterministische kwadratische beperkingen, op basis
waarvan een kwadratisch beperkt kwadratisch programma (QCQP) kan worden geformu-
leerd. Door de QCQP op te lossen, kan de robot een veilige besturingsactie verkrijgen
dankzij het feit dat de CC-SBC op een probabilistische manier voorwaartse invariantie
van de veiligheidsset van de robot garandeert. Daarom kan de CC-SBC-methode worden
gebruikt als een probabilistisch veiligheids�lter voor systemen met meerdere robots.

Hoewel zowel de B-UAVC- als de CC-SBC-methode gedecentraliseerd en communica-
tievrij zijn, leiden ze doorgaans tot conservatievere robotbewegingen dan de CCNMPC-
methode, waarbij robots hun plannertrajecten communiceren. De CCNMPC-methode
kan ook communicatievrij zijn door elke robot de banen van de andere robots te laten
voorspellen met behulp van het constante snelheidsmodel, maar het is onveilig in drukke
omgevingen. Om dit probleem aan te pakken, presenteert dit proefschrift als laatst een
nieuw trajectvoorspellingsmodel gebaseerd op Recurrent Neural Networks (RNN) dat bewe-
gingsgedrag van meerdere robots kan leren van aangetoonde trajecten die zijn gegenereerd
met behulp van een gecentraliseerde bewegingsplanner. Door het op RNN gebaseerde
model voor trajectvoorspelling op te nemen in het MPC-paradigma, wordt een e�ciënte
en communicatievrije bewegingsplanning met meerdere robots bereikt.

De bewegingsplanningsmethoden die in het proefschrift zijn ontwikkeld, zijn uitgebreid
geëvalueerd en gevalideerd in simulaties en praktijkexperimenten met een team van
quadrotoren, die veilige navigatie van robots onder onzekerheid laten zien.
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1.1 Motivation
Historically, deployments of multi-robot systems have been mainly restricted to static
known environments due to their high costs and limited onboard capabilities, such as order
picking in a warehouse [1]. Recently, with advances in onboard sensing and computing, the
use of multiple robots in dynamic unknown environments is drawing signi�cant attention
from research communities and industries. Examples include teams of drones for search
and rescue [2], aerial delivery [3], and multi-view cinematography [4], as shown in Fig. 1.1.

Motion planning, which plans collision-free trajectories and movements for robots to
transit from their initial poses to the goal ones, is a fundamental building block in those
scenarios [5]. Traditional approaches typically solve the motion planning problem in a
deterministic manner where robots are assumed to have perfect knowledge of the system.
Practically, however, various sources of uncertainty exist in real-world settings, especially
in dynamic unknown environments. Sensor noise, for instance, is a typical source of
uncertainty. Many robots now rely on cameras or LiDARs for localization and sensing [6],
leading to uncertainty in robot state estimation and obstacle detection due to noisy sensory
measurements. Unmodeled dynamics of the robot and disturbances are another source
which results in uncertainty of the robot’s motion. Moreover, in dynamic environments
with other decision-making agents (e.g. humans), their uncertain behaviors are also a
source of uncertainty. Taking into account these uncertainties is of great importance
for robust and safe robot navigation, which makes the motion planning problem more
challenging than deterministic scenarios. To overcome the challenge, this thesis studies
motion planning for multi-robot systems under uncertainty.

Due to its complexity, robot motion planning is typically divided into two stages [7]: a)
global motion planning that computes a full trajectory for the robot from its initial pose to
the goal one; and b) local motion planning that computes a feasible local trajectory for a
short duration of time. While global motion planning is mostly performed o�ine or at a
low frequency online [8, 9], local motion planning algorithms are required to run in real
time at a high frequency to deal with fast environment changes (e.g. humans). Aiming at
enabling safe multi-robot systems in dynamic environments, this thesis focuses on local

(a) (b)

Figure 1.1: Illustrative examples of a team of drones deployed in real-world applications. (a)
Indoor drone �ying show. (b) Multi-drone automated cinematography in dynamic scenes
(courtesy of [4]).
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motion planning under uncertainty.

Overall, the research goal of the thesis is to develop e�cient online motion planning
algorithms for multi-robot systems taking into account a variety of uncertainties potentially
arising from robot localization, obstacle detection, and motion disturbances.

1.2 Approach
The multi-robot motion planning problem addressed in this thesis can be in general for-
mulated as follows: given current states of a team of robots and their goal locations, as
well as the environment information (e.g. static and moving obstacles), the objective is to
plan a local trajectory and the control input for each robot. The plan has to respect the
robot’s dynamics constraints, make progress towards the goal while avoiding obstacles
and other robots. In deterministic scenarios, the collision avoidance constraints are usually
formulated as enforcing the distance between robots and obstacles to be larger than a safe
distance. However, when considering robot localization, sensing, and motion uncertainties,
the states of robots and obstacles are typically described by random variables, e.g. Gaussian
distributions which have in�nite support. Thus, their distances are also random variables.
To achieve safety in this case, this thesis formulates the collision avoidance constraints in
a probabilistic way. In particular, the collision probability between each robot and other
robot and obstacle is constrained to be smaller than a speci�ed risk threshold. The resulting
constraints are called chance constraints, and hence our general approach to dealing with
uncertainty in this thesis is to develop planning algorithms that can achieve probabilistic
safety by satisfying the chance constraints.

From a high-level perspective, the algorithms developed in this thesis mainly rely on
the following two pillars as the foundation to solve the problem of multi-robot motion
planning under uncertainty.

1. Model predictive control. The methods presented in this thesis are mostly linked
to the model predictive control (MPC) framework [10]. MPC, also called receding horizon
control (RHC), is a method that is used to control a dynamical system while minimizing
some costs and satisfying a set of constraints. The key idea of MPC is to compute a sequence
of control inputs by optimizing with a �nite time horizon with multiple time steps. Within
the time horizon, the system states are predicted using a known dynamical model. Only
the �rst time-step control input in the sequence is implemented and then the optimization
is performed again with an updated system state. The process is repeated online until the
system reaches the desired state. The main strength of MPC is that it can anticipate future
events of the system via prediction and take actions accordingly. Moreover, it can handle
complex costs and constraints as well as nonlinear systems.

2. Chance-constrained optimization. Many problems considered in this thesis
are formulated as an optimization problem with collision avoidance chance constraints,
namely chance-constrained optimization (CCO) [11]. CCO is a natural approach to solve
optimization problems under uncertainty. It is a formulation of an optimization problem
that requires the probability of violating a certain constraint is below some prede�ned
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risk level. Generally, CCO is very di�cult to solve since the probability of violating a
constraint is hard to compute. In the next chapter, we will provide a detailed overview of
chance-constrained optimization in the context of robot motion planning.

1.3 Contributions and outline
To reach the overall research goal established in Section 1.1, this thesis presents the
following scienti�c contributions in multi-robot motion planning under uncertainty:

(1) AChance-ConstrainedNonlinearModel PredictiveControl (CCNMPC)method
for multi-robot motion planning. The method allows for teams of robots to nav-
igate in dynamic environments taking into account robot localization, sensing, and
motion uncertainties. By reformulating the collision chance constraints into deter-
ministic constraints on the mean and covariance of the robot states, the CCNMPC
becomes tractable and solvable in real-time.

(2) A method, named B-UAVC (Bu�ered Uncertainty-Aware Voronoi Cell), to
compute a probabilistic safe region for each robot to navigate among other
robots and obstacles. While the previously presented CCNMPC method requires
robots to know future trajectories of their neighbors, typically via communication,
to ensure safety, the B-UAVC method is fully decentralized, communication-free and
only needs each robot to have an estimation of other robots’ current positions. The
method can also be applied to non-holonomic robots and heterogeneous robot teams.

(3) Amethod, namedCC-SBC (Chance-Constrained Safety Barrier Certi�cates),
to compute a probabilistic safe control space for each robot navigating in a
multi-robot system. Di�erent from the previously proposed CCNMPC and B-
UAVC methods which directly compute a control input for each robot, the CC-SBC
method allows the robot to modify a nominal controller in a minimally invasive way
while guaranteeing probabilistic safety. Hence, it can be regarded as a probabilistic
safety �lter.

(4) An interaction-aware model to predict robot future trajectories in multi-
robot scenarios. While both the B-UAVC and CC-SBC methods are decentralized
and communication-free, they typically lead to conservative robot motions. The
CCNMPC method is more e�cient but it requires each robot to know the future
trajectories of other robots. Hence, a novel prediction model is developed to provide
reliable trajectory predictions, which is incorporated with the MPC framework to
achieve decentralized, e�cient, and safe multi-robot navigation.

Fig. 1.2 shows an overview of the structure of the thesis. Chapter 2 reviews the
state of the art in chance-constrained motion planning and multi-robot motion planning.
Chapter 3 presents the chance-constrained nonlinear model predictive control (CCNMCP)
method for collision avoidance of teams of robots in dynamic environments. Chapter 4
introduces the concept of bu�ered uncertainty-aware Voronoi cell (B-UAVC) and its usage
in probabilistic multi-robot collision avoidance. Chapter 5 presents the CC-SBC method
to compute chance-constrained safety barrier certi�cates for multi-robot systems under



1.4 General notations

1

5

Chapter 1

Introduction

Chapter 2

Literature review


Chapter 4

Buffered uncertainty-

aware Voronoi cells 


Chapter 3

Chance-constrained 


model predictive control 

Chapter 5

Chance-constrained safety 


barrier certificates  

Chapter 6

Interaction-aware 


trajectory prediction 

Chapter 7

Conclusion and

future works


Figure 1.2: Structure of this thesis.

uncertainty which guarantee probabilistic safety among robots. Chapter 6 describes the
proposed interaction-aware trajectory prediction model and applies it to decentralized
multi-robot local motion planning. Finally, Chapter 7 concludes the thesis and provides
recommendations for future researches.

1.4 General notations
In this section, we describe some basic notations used throughout the thesis, while notations
speci�c to each chapter are de�ned within chapters. A complete list appears in Glossary of
the thesis.

Scalars are denoted by italic lowercase letters, e.g. x , vectors by bold lowercase, e.g.
x, matrices by plain uppercase, e.g. M , and sets by calligraphic uppercase, e.g.  . A
superscript xT or MT denotes the transpose of a vector x or a matrix M . ‖x‖ =

√
xTx,

‖x‖2 = xTx, and ‖x‖2Q = xTQx denote the Euclidean norm, squared Euclidean norm, and
weighted squared Euclidean norm of x respectively. ẋ denotes the derivative of x with
respect to time t . For a random variable x, denote by x̂ its mean with a hat ⋅̂. The function
Pr(⋅) indicates the probability of an event and p(⋅) indicates the probability density function
(PDF).
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In this chapter, we summarize related works of the two main research �elds connected
to the topic of this thesis. We start with reviewing the state of the art of chance-constrained
motion planning, followed by a discussion on multi-robot local motion planning.

2.1 Chance-constrained motion planning
Motion planning for autonomous robots often entails planning under uncertainty, which
may arise from modeling errors of the robots, sensing noise of the environment, and uncer-
tain behaviors of other decision-making agents. Taking into account these uncertainties
makes the motion planning problem harder to be solved than the deterministic counterpart
in which the robot has perfect knowledge of the system [12].

Typically, there are two main ways to solve the robot motion planning problem under
uncertainty. One way is in a robust manner [13, 14], e.g. through robust optimization
[15], in which a solution is found such that it is feasible under all possible cases of the
uncertain elements in the problem, namely assuming the worst case. While being able
to provide safety guarantees, the approach cannot handle unbounded uncertainties with
in�nite support, e.g. Gaussian uncertainties. Moreover, even in scenarios with bounded
uncertainties, the approach typically leads to an overly conservative solution or may be
infeasible [16].

An alternative way is in a probabilistic or stochastic manner, e.g. via probabilistic
collision checking or chance-constrained optimization, in which a solution is found such
that the probability of it being feasible (safe) is above some con�dence level. In other
words, the probability of the solution being unsafe is below some risk level (chance con-
straints). However, probabilistic motion planning typically requires evaluating the robot
collision probability and handling chance constraints, which are computationally di�cult
in practice. In the following, the state of the art in probabilistic collision checking and
chance-constrained optimization is reviewed.

2.1.1 Probabilistic collision checking

Probabilistic collision checking involves computing the collision probability of a robot with
its surrounding environment, given representations of the robot and environment and
their associated uncertainties. It can be incorporated within both sampling-based methods
[17, 18] and optimization-based methods [19, 20] to plan safe motions for the robot under
uncertainty.

Trajectory and waypoint collision probability

Denote by Ck the event (collision condition) that the robot is in a collision con�guration
(state) where the superscript ⋅k indicates time step k. Then the collision probability of the
robot at that time can be denoted by CPk = Pr(Ck ), which is called the (instantaneous)
waypoint collision probability. Denote by  a local motion plan, typically represented
as a trajectory, of the robot in the future N time steps. One may want to evaluate the
overall collision probability of the robot executing this motion plan CP , which is called
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the trajectory collision probability.

One way to compute CP is to determine the swapping area of the robot following
the trajectory in the time interval and then computing the probability of obstacles lying
within the area [21]. However, such methods are not suitable to compute the robot collision
probability with moving obstacles. Another way is to represent the trajectory as a sequence
of con�gurations and to compute CP by reasoning about the individual waypoint collision
probability of each time step CP1,… ,CPN , which are computed in advance. Depending on
di�erent assumptions on the relationships of these waypoint collision probabilities, there
are three approaches to compute CP :

• Additive approach [20, 22]. Using Boole’s inequality, an upper bound of the trajec-
tory collision probability can be obtained by summing up the individual waypoint
collision probability as

CP ≈ Pr(
N
⋃
k=1

Ck ) ≤
N
∑
k=1

Pr(Ck ) =
N
∑
k=1

CPk . (2.1)

While providing an upper bound, the approach typically leads to an overly conser-
vative result, particularly when the number of time steps is large. Moreover, the
approximated probability may be larger than one, which is unrealistic.

• Independent multiplicative approach [23, 24]. The approach assumes that the
waypoint collision events are mutually independent. In this case, the trajectory
collision probability can be approximated as follow:

CP ≈ 1−Pr(⋂C̄k) = 1−
N
∏
k=1

Pr(C̄k )

= 1−
N
∏
k=1

(1−CPk ),
(2.2)

where C̄k is the complement of the event Ck , in other words, the event that the robot
is collision-free at time step k. In most cases, the multiplicative approach can obtain
more accurate results than the additive approach. However, the approximation is
still usually conservative.

• Conditional multiplicative approach [17, 25]. To obtain a more accurate approx-
imation, one can replace the individual waypoint collision probability CPk with
the probability of collision of the waypoint conditional on previous waypoints be-
ing collision-free. Formally, instead of using CPk = Pr(Ck ), the improved waypoint
collision probability is

CPk = Pr(Ck | C̄1 ∩⋯∩ C̄N ). (2.3)
While the conditional approach is less conservative than the independent one, the
computation of conditional probability is typically more complex.

Next, we will discuss di�erent methods to compute the waypoint collision probability
in detail, i.e. how to compute CPk = Pr(Ck ).
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Sampling-based methods

Computation of the collision probability CPk = Pr(Ck ) typically involves handling the form
of Ck and distributions of the uncertain elements in it. Sampling-based methods can deal
with an arbitrary form of Ck and uncertainty distributions since they only need to draw
many samples of the random variables and then evaluate the corresponding values of Ck .
In computing robot collision probability, some recent works include simple Monte Carlo
sampling [26], weighted importance sampling [27], adaptive importance sampling [28],
and quadrature-based sampling [20]. While sampling-based methods can give a relatively
accurate estimation of the true collision probability, they may require a large number of
samples, thus are computationally ine�cient. Moreover, they do not provide an upper
bound of the collision probability. Nevertheless, the result via simple Monte Carlo sampling
with a large number of samples is often used as the ground truth collision probability for
comparison with results of other methods.

Analytic and semi-analytic approximation

Instead of numerically sampling, analytic and semi-analytic approximations of the collision
probability are computationally more e�cient and have been widely used in robot motion
planning. Denote by xk ∈ ℝnx the uncertain variable in the collision condition Ck , which
is generally the state of the robot, following a known distribution k . Denote by k B
{xk ∈ ℝnx | Ck} the set of collision states of the robot at time step k. Formally, the collision
probability can be de�ned as

Pr(Ck ) = ∫
k
p(xk )dxk , (2.4)

in which p(xk ) is the probability density function of the distribution k . Hence the collision
probability is the integral of the probability density function p(xk ) over the collision state
set k . Intuitively, in case k is a closed set, one can assume that the probability density
p(xk ) is constant over the set and then the collision probability can be computed as the
following product,

Pr(Ck ) = p ⋅A(k ), (2.5)

where p is the assumed constant density and A(k ) is the area of the set. [29] considers
k is a spherical set and uses the probability density of its center as the constant p, thus
computing the collision probability. While [19] also considers a spherical collision set, the
authors �rst compute the maximal probability density within k and then use it as the
constant p, thus providing an upper bound of the collision probability.

Depending on the form of Ck and the uncertain distribution k , there are di�erent
analytic approximation methods. In the following we �rst describe methods for di�erent
forms of Ck in the case where k is a Gaussian distribution with mean �k ∈ ℝnx and
covariance Σk ∈ ℝnx×nx , i.e., xk ∼ (�k ,Σk ).

• Linear form. The collision condition of a robot with a wall can be described as the
following linear form:

Ck ∶ aTxk ≤ b, (2.6)
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in which a ∈ ℝnx and b ∈ ℝ are constants. In the case where xk is a Gaussian, there
is [30]

Pr(Ck ) = Pr(aTxk ≤ b) = 1
2
+
1
2

erf( b −a
T �k√

2aTΣka
), (2.7)

where erf(⋅) = 2√
� ∫ z0 e

−t2dt is the standard error function.

• Convex form. Collision avoidance with a convex polytope obstacle represented by
on intercepting hyperplanes can lead to a convex form of the collision condition:

Ck ∶
on
⋂
l=1

aTl x
k ≤ bl , (2.8)

where al ∈ ℝnx and bl ∈ ℝ, l = 1,…,on are constants. Then the collision probability
can be upper bounded as follows

Pr(Ck ) = Pr(
on
⋂
l=1

aTl x
k ≤ bl )

≤ min
l∈{1,…,on}

Pr(aTl x
k ≤ bl ).

(2.9)

However, there is no closed form to compute the probability. Several approximation
approaches have been presented recently. [31] computes an upper bound of the
probability by exploiting the separability of Gaussian distributions to decompose
the position uncertainty distribution into the product of 1-D Gaussian distributions.
To achieve that, a linear coordination transformation technique [32] is utilized to
normalize the uncertainty covariance. Considering convex polyhedron obstacles
represented by triangle meshes, [33] provides an upper bound of the collision proba-
bility by applying the divergence theorem, which has also been extended to general
non-convex obstacles and non-Gaussian distributions [34].

• Quadratic form. Collision avoidance with a spherical (ellipsoidal) obstacle can lead
to a quadratic form of the collision condition:

Ck ∶ (xk )TRxk ≤ 1, (2.10)

where R ∈ ℝnx×nx is a positive de�nite matrix. Let Q(xk ) = (xk )TRxk . When xk
is a Gaussian random variable, Q(xk ) becomes a quadratic form in a multivariate
Gaussian (QFMVG) [35, 36]. Hence, the collision probability Pr(Ck ) = Pr(Q(xk ) ≤ 1)
is actually the cumulative probability function (cdf ) of the QFMVG Q(xk ). How-
ever, there does not exist a closed solution for the cdf of a QFMVG. Several fast
approximation methods with bounded errors have been developed in the statistics
and communication community, including the Imhof [37] method, Series approx-
imation [38, 39], the Liu-Tang-Zhang [40] method, and Fourier transform [41]. A
disadvantage of these approaches is that they do not provide an upper bound of the
probability. Some other methods have given an upper bound yet potentially very
conservative approximation, such as [19, 29, 42, 43]. Recently, Wang [44] proposes a
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method to compute an upper bound for the probability using Chebyshev’s Inequality
and sum of squares (SOS) Programming [45].

• Polynomial form. Let the obstacle be described in terms of a polynomial

(!) ∶= {x ∈ ℝnx ∶ (x,!) ≤ 0}, (2.11)

where ! is an uncertain variable with known distribution. The collision probability
Pr(Ck ) = Pr(xk ∈(!)) can be approximated with upper and lower bound using sum
of squares (SOS) Programming [46–48].

Comparison of di�erent methods

Table 2.1 gives a brief comparison of di�erent robot collision probability computation
methods. The computation time statistics are obtained by performing simulations in
a standard laptop with Intel i7 CPU@2.6GHz. Practically, sampling-based approaches
can be used to obtain (approximated) ground truth values of the collision probability, or
incorporated with o�ine motion planning. Semi-analytic approaches may be incorporated
with sampling-based planners to perform e�cient probabilistic collision checking. Analytic
approaches can be incorporated with optimization-based planners to plan probabilistic safe
(chance-constrained) robot trajectories in real time. In the next section, we will discuss
state-of-the-art works in chance-constrained optimization.
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2.1.2 Chance-constrained optimization

Chance-constrained optimization (CCO) is a formulation of an optimization problem that
requires that the probability of satisfying a certain constraint is above some prede�ned
con�dence level. Formally, it can be formulated as follows:

Problem 2.1 (Chance-constrained optimization (CCO)).

min
x∈

J (x) (2.12a)

s.t. Pr(g(x, � ) ≤ 0) ≥ 1−�. (2.12b)

where x ∈ ℝnx is the decision variable with dimension nx ,  ⊆ ℝnx the admissible space
of x, J (x) ∈ ℝ the cost function to be minimized, � ∈ ℝn� a random vector indicating
the source of uncertainty in which n� is the dimension of the random vector, g(x, � ) =
(g1(x, � ),… ,gm(x, � ))T the constraint vector, and � the constraint violation probability
threshold.

Joint and individual chance constraint

Recall the chance constraint in Eq. (2.12b):

Pr(g(x, � ) ≤ 0) = Pr(g1(x, � ) ≤ 0,…,gm(x, � ) ≤ 0) ≥ 1−�, (2.13)

which is called a joint chance constraint since it requires the probability of satisfying
multiple constraints larger than a speci�ed threshold. Alternatively, each of the following
constraint is called an individual chance constraint:

Pr(gk (x, � ) ≤ 0) ≥ 1−�k , k = 1,…,m, (2.14)

where �k is the individual probability threshold. Joint chance constants are typically more
complex and harder to deal with comparing to individual chance constraints [51]. Note
that Pr(g1(x, � ) ≤ 0,…,gm(x, � ) ≤ 0) ≥ 1 − � ⇒ Pr(⋁m

k=1 g
k (x, � ) ≥ 0) ≤ � , and Pr(gk (x, � ) ≤

0) ≥ 1−�k ⇒ Pr(gk (x, � ) ≥ 0) ≤ �k . A popular way to decompose a joint chance constraint
to individual chance constraints is to use Boole’s inequality

Pr(
m
⋁
k=1

gk (x, � ) ≥ 0) ≤
m
∑
k=1

Pr(gk (x, � ) ≥ 0) ≤ �. (2.15)

Thus, if ∑m
k=1 �

k ≤ � and the individual chance constraints in Eq. (2.14) hold, then the
joint chance constraint in Eq. (2.13) also holds. However, �nding those �1,… ,�m is usually
di�cult. A naive approach is to simply let �k = 1

m �, k = 1,…,m. But it typically leads to
overly conservative solutions and may make the optimization infeasible. Another approach
is to obtain a set of �1,… ,�m via optimization, which is called risk allocation [20, 52, 53].

Chance constraint reformulation

Instead of computing the probability of constraint violation, e.g. the collision probability
in Section 2.1.1 directly, one can solve the CCO problem by reformulating the chance
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constraint to a deterministic tractable one, thus avoiding computing probability. In the
following, we discuss state-of-the-art methods in chance constraint reformulation.

Consider an individual chance constraint Pr(g(x, � ) ≤ 0) ≥ 1 − � . Here we omit the
superscript ⋅k for simplicity. Typically, there are two popular categories of approaches to
reformulate it into a deterministic constraint, usually with the uncertain variable distri-
bution’s statistic moments (e.g. mean, covariance) as parameters. One category is built
upon the linear inequality of Gaussian distributions. Consider a simple linear constraint
g(x, � ) = �Tx−b where x ∈ ℝnx , b ∈ ℝ, � ∈ ℝn� , n� = nx , and � ∼ (�,Σ) is a multivariate
Gaussian random vector with mean � ∈ ℝn� and covariance Σ ∈ ℝn� ×n� . Then, there is

Pr(�Tx ≤ b) = Φ(
b −�Tx√
xTΣx)

, (2.16)

where Φ(⋅) is the cumulative distribution function (CDF) of a standard normal distribution.
Let Φ−1(⋅) be the inverse of Φ(⋅), then the chance constraint Pr(�Tx ≤ b) ≥ 1 − � can be
reformulated to

b −�Tx ≥ Φ−1(1− �)
√
xTΣx. (2.17)

Furthermore, assuming � a multivariate Gaussian, [54] considers the following linear
chance constraint

Pr(aTx+bT � + �TDx ≤ e) ≥ 1−�, (2.18)
where a ∈ ℝnx , b ∈ ℝnx i ,D ∈ ℝn� ×nx and e ∈ ℝ are constants, and reformulates it to

e −bT � − (a+DT �)Tx ≥ Φ−1(1− �)
√
(b+Dx)TΣ(b+Dx). (2.19)

It can be observed that the constraints in Eqs. (2.17) and (2.19) are second-order cone
constraints for � ≤ 0.5 (thus Φ−1(1 − �) ≥ 0) of x with the mean and covariance of � as
parameters. Built on this observation, many recent works to solve chance-constrained
optimization �rst linearize their constraints into linear forms and then reformulate the
chance constraints using the above the approach, as in [49, 55–57].

Another category of approaches is built upon concentration inequalities [58], which
provide bounds on how a random variable deviates from some value (typically, its expected
value). A popular way to handle the individual chance constraint Pr(g(x, � ) ≤ 0) ≥ 1−� is
by applying the Cantelli’s inequality, also known as the one-tailed Chebyshev inequality
as follows,

Pr(g(x, � ))

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

≤
�2g

�2g+�2g
, �g > 0

≥ 1−
�2g

�2g+�2g
, �g ≤ 0

(2.20)

where �g and �2g are the mean and variance of the random variable g(x, � ) (since � is a
random vector). Hence, the chance constraint Pr(g(x, � ) ≤ 0) ≥ 1−� can be reformulated to

�g ≤ 0, (2.21a)

1−
�2g

�2g +�2g
≥ 1−�. (2.21b)
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Besides the Chebyshev inequality, other concentration inequalities such as the Vysochan-
skij–Petunin (VP) and Gauss inequalities can also be applied to obtain a tighter bound of the
probability Pr(g(x, � ) ≤ 0). An advantage of using concentration inequalities to reformulate
chance constraints is that it can deal with arbitrary distributions of the uncertain variable
� , e.g. non-Gaussian distributions [59]. However, the reformulation is typically overly
conservative and the transformed deterministic optimization problem may be infeasible.
Moreover, giving known distributions of � , the statistic moments (mean and covariance) of
g(x, � ) are generally very di�cult to be computed.

Scenario approach

The scenario approach uses a di�erent way to reformulate chance constraints. It utilizes a
set of s scenarios {�}si=1 to approximate the CCO (2.12) and obtains the following scenario
program (SP):

min
x∈

J (x) (2.22a)

s.t. g(x, �i) ≤ 0, i = 1,…, s, (2.22b)

where the scenarios {�}si=1 are random samples of � . De�ne v(x) = Pr(g(x, � ) ≥ 0) as the
violation probability of a candidate solution x. Denote by x∗s the solution of the scenario
program 2.22. In case J (x) is linear, g(x, � ) is convex and assuming that the optimal solution
x∗s exists and is unique, there is [60, 61]

Pr(v(x∗s) > �) ≤
nx−1
∑
i=0 (

s
i)� i(1− �)s−i . (2.23)

Eq. (2.23) connects the violation probability of the optimal solution x∗s and the number
of scenarios/samples s of the SP. According to Eq. (2.23), given a con�dence level � , one
can determine a minimum required number of samples s by making the right side of the
equation larger than � , which leads to

s ≥
2
� (nx −1+ ln(

1
� )). (2.24)

The scenario approach was introduced in [62] with early focus on convex problems [60,
61] and recently has been extended to non-convex problems [63, 64]. The most attractive
advantage of the scenario approach is that it does not require knowing the underlying
distribution of � . Besides, if J (x) and g(x, � ) are convex functions, the corresponding
scenario program is convex, which can be solved e�ciently. However, one drawback of
the approach is observed in practice: the number of required samples s might be very
large, particularly for non-convex problems [65], which hinders its application to online
optimization. E�orts have been put to reduce the number of samples while keeping
probabilistic guarantees by techniques such as �nding support samples [62] and developing
discarding algorithms [66], which has been shown e�ective in online motion planning
under uncertainty [65].
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Other approaches

Besides analytic chance constraint reformulation and the scenarios approach, some other
methods in chance-constrained optimization have also been applied to robot motion plan-
ning under uncertainty. These include the distributionally robust approach [67], obstacle
shadow based approach [68, 69], sampling approximation [70], and sum of squares (SOS)
optimization-based approach [48, 71]. For a more detailed review on other approaches to
chance-constrained optimization, the readers can refer to [51].

2.2 Multi-robot motion planning
This thesis focuses on the multi-robot local motion planning problem, which is also often
referred as multi-robot collision avoidance. Given goal positions for a group of robots,
which may come from a global motion planner or are speci�ed by a user, the objective of
multi-robot motion planning is to compute a local motion (trajectory/control action) for
each robot that respects its kinematic and dynamical constraints, makes progress towards
its goal location, and is collision-free with other robots and obstacles in the environment.

There are two ways to formulate a multi-robot motion planning problem: coupled and
decoupled. Coupled methods regard multiple robots as a single robot with high-dimensional
con�guration space and compute motions for the group by solving one formulated problem.
Albeit being able to provide theoretic guarantees on completeness and optimality, the
methods do not scale with the number of robots and are computationally heavy. In contrast,
decoupled methods formulate a motion planning problem for each robot individually and
rely on techniques to resolve collision con�icts. Typically, algorithms for multi-robot local
motion planning must be e�cient to run in real-time. Hence, decoupled methods are
generally preferred and more feasible in practice.

Despite formulating the problem in a coupled or decoupled way, another widely-used
taxonomy is to categorize methods to solve the problem into two main groups: centralized
and distributed/decentralized. Centralized methods plan trajectories for all robots on a
central computer, which are then sent to the robots to execute via communication. In
contrast, in distributed/decentralized methods each robot computes its own trajectory on-
board and there might be communication among robots. Combining the two taxonomies,
it can be observed that coupled methods can only solve the problem in a centralized way,
while the decoupled can be either centralized or distributed. In the following, we focus
on distributed methods for multi-robot motion planning. We �rst describe deterministic
methods and then their extensions to probabilistic scenarios under uncertainty.

2.2.1 Deterministic multi-robot motion planning

The problem of multi-robot local motion planning in deterministic scenarios has been
actively studied, where the robots’ states and dynamics are precisely known. Three main
bodies of research for the problem have been developed over the past years.
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Reactive methods

Reactive methods compute the next action that each robot needs to take without considering
robots’ future actions. Early reactive methods include these arti�cial potential �eld (APF)
based [72–74] which are extensions of the work for a single robot [75]. The most popular
category of reactive methods are these based on the velocity obstacle (VO) paradigm. The
concept of VO was �rst introduced for single robot collision avoidance [76], which is
de�ned as a set of velocities of the robot that would lead to a collision with obstacles
assuming they are static or moving at a constant speed. Built upon VO, the reciprocal
velocity obstacle (RVO) method [77] is developed, which models robot interaction pairwise
in a distributed manner and estimates future collisions as a function of their relative velocity.
Based on the basic framework, RVO has been extended towards several improvements:
the optimal reciprocal collision-avoidance (ORCA) method [23] casting the problem into a
linear programming formulation which can be solved e�ciently, the NH-ORCA method
[78] considering non-holonomic constraints, the generalized RVO method [79] applying for
heterogeneous teams of robots, and the "-cooperative collision avoidance ("CCA) method
[80] accounting for the cooperation of robots. Other recent reactive methods include the
bu�ered Voronoi cell (BVC) [81] approach and control barrier functions (CBF) [82]. While
these methods are computationally e�cient, the robot dynamics are not fully modeled and
the planning is limited by only looking one time step ahead. Hence, the resulting robot
motions are typically ine�cient and robots are easy to be trapped into deadlocks.

Trajectory optimization-based methods

In contrast to reactive methods that only plan one time step ahead, trajectory optimization-
based methods plan a local trajectory for each robot within a short time horizon in the
future. Most of these methods are built upon the model predictive control (MPC) framework,
in which at each time step, each robot plans a local trajectory and corresponding control
actions for a planning horizon by solving a constrained optimization problem. But the robot
only executes the �rst planned control action. Then with time going on and at the next
time step, the robot replans its trajectory with updated states and environment information.
The process is repeated until the robot reaches its goal location. MPC is a very �exible and
general framework. Collision avoidance is achieved by imposing inequality constraints
and the robot dynamics model can be taken into account by imposing equality constraints
in the formulated constrained optimization problem.

In the context of multi-robot motion planning, research focus based on the MPC frame-
work has been given to resolving inter-robot collisions through multi-robot coordination.
Early work [83] presents a decentralized MPC approach in which each robot plans its
own trajectory assuming other robots are moving at a constant velocity, thus their future
trajectories can be predicted and avoided. This naive coordination strategy has also been
employed by many recent works [84, 85]. However, while communication among robots
is not required, the planned robot trajectory is not guaranteed to be safe, in particular
when the robots are moving at a high speed [49]. Another strategy is to let each robot
communicate its planned trajectory with other robots in the team. Hence, each robot can
update its own trajectory to be collision-free with other robots’ trajectory plans, e.g. as in
these sequential MPC [4, 86] and distributed MPC [87] works. Techniques in distributed
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optimization have also been applied to MPC-based motion planning, the most popular one
of which is the alternating direction method of multipliers (ADMM) algorithm [88]. Recent
distributed MPC works for multi-robot motion planning based on ADMM include [89–92].

Besides the above coordination strategies, recently game theory has attracted increasing
attention in coordinating robots in the context of trajectory optimization-based multi-robot
motion planning. Game-theoretic methods typically model each robot and its neighbors
with a di�erential game, formulating multi-robot motion planning as a problem of solving
for the Nash equilibrium of the game [93–95]. These methods can be fully decentralized
and communication-free while interactions among robots are considered and modeled.
However, exactly solving a di�erential game is generally di�cult and computationally
heavy, which motivates developments of e�cient approximation algorithms [96].

Learning-based methods

Recently, there have emerged new learning-based methods for multi-robot motion planning,
such as deep imitation learning [97–99] and those that are reinforcement learning (RL) based
[100–103]. These imitation learning (IL) based methods typically employ a supervised end-
to-end learning framework, in which a designed neural network is trained to approximate
and replace an expert planner that may be computationally expensive or requires global
system information. [97] leverages the ORCA algorithm to generate a large training dataset,
which is then used to train a deep neural network (DNN). In [98] the expert dataset is
generated by running the con�ict-based search (CBS) algorithm [104] and the designed
architecture is composed of a convolutional neural network (CNN) and a graph neural
network (GNN). In [99] the authors rely on a centralized global motion planner [105] to
generate a demonstration dataset and then use it to learn a decentralized collision avoidance
policy that can run e�ciently online. Thanks to centralized features in the dataset, the
learned policy is shown able to e�ectively avoid deadlocks in dense scenarios. Di�erent
from imitation learning, the RL-based methods formulate multi-robot motion planning
as an observable Markov decision process (POMDP) and solve it using RL approaches.
The most popular RL-based methods are those that are based on the deep RL framework
[100–103], which can learn policies that have a long-term cumulative reward for the robots
and thus are considered to be non-myopic.

Albeit being e�cient, these learning-based methods are generally not able to handle
hard state constraints to guarantee safety, such as hard collision avoidance constraints. To
this end, many recent research e�orts have been devoted to providing safety guarantees to
learning-based methods by combining them with formal control-based and optimization-
based methods [106]. Existing methods include synthesizing the learned policy with a
safety controller [99], computing safe reachability sets [107], introducing a control barrier
function (CBF) based module in the learning framework, and combining RL with MPC
[108].

2.2.2 Multi-robot motion planning under uncertainty

Some of the above deterministic multi-robot motion planning approaches have been ex-
tended to probabilistic scenarios where uncertainties arising from robot localization, sens-
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ing, and motion are considered. Taking into account bounded robot localization uncertainty,
[109, 110] present a method called convex outline collision avoidance under localization
uncertainty (COCALU) built upon the RVO paradigm. In the method, given a collision
risk threshold � , the authors �rst compute a convex hull in which the probability of the
robot being located is greater than 1−� . Next, they calculate the Minkowski sum of the
robot’s footprint and the convex hull, which is then used in the RVO paradigm for col-
lision avoidance. Such a technique to deal with uncertainty is often categorized as the
bounding volume approach, in which the key idea is to replace the robot’s footprint with
an enlarged one that is computed based on the uncertainty information. Works employing
the bounding volume approach include [111] for planar robots in which a rectangular
region is computed for each robot and inter-robot collision avoidance is transformed to
avoiding overlaps of those regions. Similarly, [84] presents a decentralized MPC where
robot motion uncertainty is taken into account by enlarging the robots with their 3-�
con�dence ellipsoids. Generally, the bounding volume approach to deal with uncertainty
tends to lead to overly conservative results and may make the collision avoidance problem
infeasible, particularly in dynamic dense environments [49].

Another widely-used strategy to deal with uncertainty in multi-robot motion planning
is to formulate collision chance constraints and solve the problem via chance-constrained
optimization. Taking into account both robot state and actuation uncertainties, [112]
presents probabilistic RVO (PRVO), which de�nes the velocity space of the robot that
ensures the probability of satisfying RVO constraints is greater than a speci�ed con�-
dence level. The PRVO is then approximated with a set of surrogate constraints in a
closed form via chance constraints reformulation techniques. While the method is shown
to outperform the bounding volume approach, it is limited to single-integrator robots.
Trajectory-optimization based multi-robot motion planning has also been extended to
probabilistic scenarios by formulating collision chance constraints. [49] proposes a dis-
tributed chance-constrained nonlinear MPC (CCNMPC) method to ensure the probability
of inter-robot collision is below a speci�ed threshold, in which the chance constraints are
reformulated into deterministic constraints using a local linearization technique. While
the method only considers uncertainties modeled as Gaussian distributions, [113] extends
it to non-Gaussian cases by using a Gaussian mixture model (GMM).

Some other deterministic multi-robot motion planning methods have also been ex-
tended to probabilistic scenarios to incorporate uncertainty. Taking into account the
robot measurement uncertainty of other robots, [114] introduces the probabilistic bu�ered
Voronoi cell (PBVC) which de�nes a probabilistic safe region for each robot to navigate
within. Since the PBVC of each robot does not have an analytic solution, they employ a
sampling-based approach to approximate it. Built upon the control barrier functions (CBF)
[82] theory, [115] proposes probabilistic safety barrier certi�cates (PrSBC) for multi-robot
systems which de�nes the space of admissible control actions that are probabilistic safe.
However, the method is only designed for single-integrator robots.
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• H. Zhu, and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in dynamic environments,”
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• J. Lin, H. Zhu, and J. Alonso-Mora, “Robust vision-based obstacle avoidance for micro aerial vehicles in
dynamic environments,” in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), May 2020.



3

22 3 Chance-constrained collision avoidance for MAVs in dynamic environments

3.1 Introduction
Online generation of collision-free trajectories is of utmost importance for safe navigation
among other robots and in human-populated environments. In these crowded and dynamic
scenarios, reasoning about the uncertainties in self-localization, in estimation of the motion
of other agents, and in motion execution becomes increasingly relevant. Furthermore, tight
coordination between the robots becomes essential.

In this chapter, we present a probabilistic collision avoidance method for teams of
robots that accounts for robot localization and sensing uncertainties, as well as motion
disturbances. We focus on micro aerial vehicles (MAVs), but the method also works for
other multi-robot systems since we consider a general nonlinear dynamic model of robots.
The method leverages chance-constrained nonlinear model predictive control (CCNMPC)
to plan a local trajectory, which ensures that the collision probability between each robot
and obstacle is below a speci�ed threshold. We consider spherical robots and ellipsoidal
dynamic obstacles and assume that the uncertainties are Gaussian distributed. By using
a local linearization technique, we transform the chance constraints into deterministic
constraints on the robots’ states mean and covariance. Such a linearization technique was
used for deterministic collision avoidance [86]. We mathematically formalize its use in the
context of probability-based stochastic collision avoidance. Thus, a tractable constrained
optimization problem is obtained and solved in a receding horizon fashion and online.

Furthermore, we discuss and compare three strategies for planning among other robots,
a distributed approach where only the sensed velocity and position of neighboring robots
are used, a distributed approach where previous plans of other robots are communicated,
and a centralized approach for multi-robot coordination where a sequential planning
scheme is employed.

The main contributions of this chapter are:

• An online collision avoidance method for navigation in three dimensional dynamic
environments, which utilizes stochastic nonlinear model predictive control to plan
safe trajectories with a speci�ed probability of collision.

• A tighter upper bound of the collision probability with ellipsoidal obstacles, which
accounts for robot localization, sensing uncertainties and disturbances.

• Incorporation of collision avoidance chance constraints into three frameworks for
multi-robot motion planning (sequential, distributed with/without communication).

We evaluate our proposed method in experiments with a team of quadrotors. Fig. 3.1
shows an example of our experiments with two quadrotors avoiding two walking humans.

This chapter is structured as follows. Section 3.2 introduces preliminaries with system
models. Section 3.3 describes the collision chance constraints formulation and our method
to transform them into tractable deterministic constraints. Section 3.4 presents the planning
approach for multi-robot coordination and gives a theoretic discussion of our method.
Finally, in Section 3.5 we present and discuss experimental results of the method, followed
by concluding remarks in Section 3.6.



3.2 Preliminaries

3

23

0

2

0.5

1

1

0 3

1.5

2
1-1

0

2

-1-2 -2
-3

Human 1

Predicted
Uncertainty
Elliposids

Quad 2

Planned
Trajectory

Quad 1

Moving Goal

Human 2

Figure 3.1: Probabilistic collision avoidance among moving obstacles. (a) A snapshot from the
experiment. (b) Schematic of quadrotors, humans, trajectory plans and uncertainties.

3.2 Preliminaries

3.2.1 Robot model

Consider a multi-robot system with n ∈ ℕ robots moving in a shared workspace  ⊆ ℝ3.
Let  = {1,⋯,n} ⊂ ℕ denote the index set of all robots in the system. We model each robot
i ∈  as an enclosing rigid sphere with radius ri . The dynamics of robot i are described by
the following stochastic nonlinear discrete-time model:

xk+1i = fi(xki ,u
k
i ) +!

k
i , x0i ∼ (x̂0i , Γ

0
i ), (3.1)

where xki = [pki ,vki ,�ki , �ki , ki ]T ∈ i ⊂ ℝnx denotes the state of the robot and uki ∈i ⊂ ℝnu
the control inputs at time step k. pki ∈ ℝ3 and vki ∈ ℝ

3 are the robot position and velocity,
and �ki , �ki , ki are the robot roll, pitch and yaw angles respectively. i is the state space
and nx is the state vector dimension. i is the control space and nu is the control input
vector dimension. The initial state x0i of the robot is considered as a Gaussian random
variable with mean x̂0i and covariance Γ0i , which are typically given by a state estimator
(we employ an Unscented Kalman Filter (UKF)). fi denotes the nonlinear dynamics. We
consider uncorrelated process noise !k

i ∼ (0,Qki ) with diagonal covariance matrix Qki .
The Parrot Bebop2 quadrotor is employed to evaluate our method. See Appendix A for the
dynamics model details.

3.2.2 Obstacle model

We also consider a number of no ∈ ℕ0 obstacles populated in the environment. Let o =
{1,⋯,no} ⊂ ℕ0 denote the index set of all obstacles. For each obstacle o ∈ o at position
po ∈ℝ3, we model it as a non-rotating enclosing ellipsoid with semi-principal axes (ao , bo , co)
and a rotation matrix Ro . Denote by vo the velocity of the the obstacle. Static obstacle
positions are assumed to be available for planning. For dynamic obstacles, as in [116], we
assume they are continuously tracked in the environment and employ a constant velocity
model (CVM) with Gaussian noise !o(t) ∼ (0,Qo(t)) in acceleration, i.e. p̈o(t) = !o(t) for
trajectory prediction. Speci�cally, given measured obstacle’s position data, we estimate
and predict their future positions and uncertainties with a linear Kalman Filter. Fig. 3.2
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Figure 3.2: A human obstacle modeled as an enclosing ellipsoid with position po and velocity
vo .

shows an illustration of modelling a human obstacle as an enclosing ellipsoid.

3.2.3 Collision chance constraints

The collision condition of robot i with respect to another robot j at time step k is de�ned as

kij B {xki | ‖pki −p
k
j ‖ ≤ ri + rj}. (3.2)

Collision checking between a robot i and an obstacle o requires calculating the minimum
distance between a sphere and an ellipsoid, which can not be performed in closed form
[117]. To this end, we approximate the obstacle with an enlarged ellipsoid and check if the
robot’s position is inside it. The collision condition is

kio B {xki | ‖pki −p
k
o ‖Ωio ≤ 1}, (3.3)

where Ωio = RTo diag(1/(ao + ri)2, 1/(bo + ri)2, 1/(co + ri)2)Ro .

Note that the positions of the robots and obstacles are random variables described by
unbounded probability distributions. Hence, the collision avoidance constraints can only
be satis�ed in a probabilistic manner, which are formulated as chance constraints for robot
i:

Pr(xki ∉ kij ) ≥ 1−�r , ∀j ∈ , j ≠ i (3.4)

Pr(xki ∉ kio) ≥ 1−�o , ∀o ∈ o (3.5)

where �r , �o are the probability thresholds for inter-robot and robot-obstacle collision
respectively.

3.2.4 Problem formulation

A distributed collision avoidance problem is formulated. For each robot i ∈ , we formulate
a discrete time chance-constrained optimization problem with N time steps and planning
horizon � = NΔt , where Δt is the time step.

Problem 3.1 (Probabilistic collision avoidance with chance constraints). For robot i, given
the position distributions p0∶Nj of other robots j ∈ , j ≠ i and position distributions p0∶No of
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obstacles o ∈ o , the initial state x̂0i with uncertainty covariance Γ0i , the goal position pig ,
and the collision probability thresholds �r , �o , the objective is to compute optimal trajectories
and control inputs for the robot to progress from its initial state to its goal while the collision
probability with each obstacle and robot is below given thresholds. The resulting optimization
problem is

min
x̂1∶Ni ,u0∶N−1i

N−1
∑
k=0

J ki (x̂
k
i ,u

k
i ) + J

N
i (x̂

N
i ) (3.6a)

s.t. x0i = x̂i(0), (3.6b)
x̂ki = fi(x̂

k−1
i ,uk−1i ), (3.6c)

Pr(xki ∉ kij ) ≥ 1−�r , ∀j ∈ , j ≠ i (3.6d)

Pr(xki ∉ kio) ≥ 1−�o , ∀o ∈ o (3.6e)
uk−1i ∈i , x̂ki ∈ i , (3.6f)
∀k ∈ {1,…,N}.

where J ki denotes the cost term of the robot at time k and JNi denotes the terminal cost.

Remark 3.1. The positions of other robots and obstacles p0∶Nj , p0∶No are assumed to follow
Gaussian distributions.

Remark 3.2. In Section 3.4, we describe several assumptions to obtain the predicted positions
p0∶Nj of other robots.

3.2.5 Approximate uncertainty propagation

Evaluating the chance constraints (3.6d) and (3.6e) requires calculating the uncertainty
covariance at each time step, i.e. uncertainty propagation. There are many methods
for uncertainty propagation for nonlinear systems, for example the polynomial chaos
expansions based methods [118] and the di�erential algebra techniques [119, 120]. The
readers can refer to [121] to get a comprehensive review. However, these methods are
mostly computationally intensive and only outperform linearization methods when the
propagation time is very long. In our case where the planning horizon is short, to achieve
real time performance, we propagate uncertainties using a EKF-type update,

Γki = F
k
i Γ

k−1
i (Fki )

T +Qki , (3.7)

where Γk−1i is the state uncertainty covariance at time k −1, Qki is the process noise and

Fki =
)fi
)xi

||||x̂k−1i ,uki
(3.8)

is the state transition matrix of the robot. We further denote by Σki the 3x3 covariance
matrix of the position pki , extracted from Γki .
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Remark 3.3. The covariance dynamics are dependent on the robot state and control inputs.
Hence, it requires N

2 (n
2
x +nx ) additional variables in the optimization Problem 3.1, which can

increase the computation time greatly. In this chapter, to avoid the need of additional variables,
and similar to [43], we propagate the robot uncertainties based on its last-loop trajectory and
control inputs.

Remark 3.4. If the initial state uncertainty is Gaussian, the predicted state uncertainties are
Gaussian distributed when propagated using the linearized update with Fki computed from
the last-loop trajectory and control inputs.

3.3 Chance constraints formulation
We now present the method to address the chance constraints of Eqs. (3.6d) and (3.6e). The
basic idea is to �rst linearize the collision conditions of Eqs. (3.2) and (3.3) to get linear
chance constraints and then reformulate them into deterministic constraints on the mean
and covariance of the robot states.

3.3.1 Linear chance constraints

Consider a linear chance constraint in the form Pr(aTx ≤ b) ≤ � , where x ∈ ℝnx is a ran-
dom variable, a ∈ ℝnx , b ∈ ℝ are constants and � is the probability threshold. Assuming
that x follows a Gaussian distribution, the chance constraint can be transformed into a
deterministic constraint.

Lemma 3.1. ([30]) Given a multivariate random variable x ∼ (x̂,Σ), then

Pr(aTx ≤ b) = 1
2
+
1
2

erf(
b−aT x̂√
2aTΣa)

,

where erf(⋅) is the standard error function de�ned as erf(x) = 2√
� ∫ x0 e−t

2
dt .

Lemma 3.2. ([30]) Given a multivariate random variable x ∼ (x̂,Σ) and a probability
threshold � ∈ (0,0.5), then

Pr(aTx ≤ b) ≤ � ⟺ aT x̂ − b ≥ c,

where c = erf−1(1−2�)
√
2aTΣa, and erf−1(⋅) is the inverse of erf(⋅).

Given the probability threshold � , the corresponding error function and its inverse can
be obtained by table look-up or using series approximation techniques.

3.3.2 Inter-robot collision avoidance chance constraints

We now consider the inter-robot collision avoidance constraints, Eq. (3.6d). For simplicity,
we omit the superscript ⋅k in this section. Given positions and uncertainty covariances
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of the two robots pi ∼ (p̂i ,Σi), pj ∼ (p̂j ,Σj ), the instantaneous collision probability of
robot i with robot j is

Pr(xi ∈ ij ) = ∫
ℝ3
IC (pi ,pj )p(pi)p(pj )dpidpj , (3.9)

where IC is the indicator function

IC (pi ,pj ) =

{
1, if ‖pi −pj ‖ ≤ ri + rj ;
0, otherwise.

We assume that pi and pj are independent Gaussian distributions, then pi −pj is also
a Gaussian distribution, i.e. pi −pj ∼ (p̂i − p̂j ,Σi +Σj ). Hence, the collision probability
de�ned by Eq. (3.9) can be written as

Pr(xi ∈ ij ) = ∫
‖pi−pj ‖≤ri+rj

p(pi −pj )d(pi −pj ),

which is an integral of a multivariate Gaussian probability density function over a sphere,
as illustrated in Fig. 3.3a.

However, there is no closed form to calculate the collision probability. But we can
obtain an approximated upper bound by linearizing the collision condition. As shown in
Fig. 3.3b, we enlarge the spherical collision region ij into a half space ̃ij , which is de�ned
as

̃ij B {x | aTij (pi −pj ) ≤ bij},

where aij = (p̂i − p̂j )/‖p̂i − p̂j ‖ and bij = ri + rj .

It is apparent that ij ⊂ C̃ij , thus Pr(xi ∈ ij ) ≤ Pr(xi ∈ ̃ij ). Hence, following Lemma 3.1,
we can obtain an upper bound of the collision probability between two robots:

Pr(xi ∈ ij ) ≤
1
2
+
1
2

erf
⎛
⎜
⎜
⎝

bij −aTij (p̂i − p̂j )√
2aTij (Σi +Σj )aij

⎞
⎟
⎟
⎠
. (3.10)

Following Lemma 3.2, the collision chance constraint of Eq. (3.6d) can be transformed into
a deterministic constraint,

aTij (p̂i − p̂j ) − bij ≥ erf−1(1−2�r )
√
2aTij (Σi +Σj )aij . (3.11)

3.3.3 Robot-obstacle collision avoidance chance constraints

For the collision avoidance constraints of Eq. (3.6e), by assuming that the positions of the
robot and obstacle are independent random variables, the collision probability is

Pr(xi ∈ io) = ∫
‖pi−po ‖Ωio≤1

p(pi −po)d(pi −po), (3.12)
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distribution of 

(a) Spherical region

distribution of 

(b) Linearization of (a)

distribution of 

(c) Ellipsoidal region

distribution of 

(d) Linearization of (c)

Figure 3.3: Chance constraints linearization. Red: collision region. Blue: con�dence ellipsoid
representation of the Gaussian distributed robot-robot/obstacle relative position. (a) Collision
constraint with a sphere region; (b) Linearization with a half space; (c) Collision constraint
with an ellipsoid region; (d) Transformation into a unit sphere region and linearization.

where the collision region io described by Ωio is an ellipsoid instead of a sphere, as shown
in Fig. 3.3c.

To linearize the collision condition, we �rst perform the a�ne coordinate transformation

W = Ω
1
2
io . (3.13)

Then the collision region is transformed into a unit sphere CWio , as illustrated in Fig.
3.3d. The robot and obstacle positions are transformed to new Gaussian distributions, i.e.
pWi ∼ (p̂Wi ,ΣWi ), pWo ∼ (p̂Wo ,ΣWo ), where

p̂Wi = Ω
1
2
io p̂i , ΣWi = Ω

1
2T
io ΣiΩ

1
2
io ,

p̂Wo = Ω
1
2
io p̂o , ΣWo = Ω

1
2T
io ΣoΩ

1
2
io .

(3.14)

Here we use the super-script ⋅W to indicate variables in the transformed coordinate frame.
In the new coordinate framework, let

Pr(xWi ∈ CWio ) = ∫
‖pWi −pWo ‖≤1

p(pWi −pWo )d(p
W
i −pWo ),
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then we have Pr(xi ∈ io) = Pr(xWi ∈ CWio ).

Now, we can use the same linearization technique as for the sphere region with aio =
(p̂Wi − p̂Wo )/‖p̂Wi − p̂Wo ‖ and bio = 1. The collision chance constraint of Eq. (3.6e) can thus be
transformed into the following deterministic constraint:

aTioΩ
1
2
io(p̂i − p̂o) − bio ≥ erf−1(1−2�o) ⋅

√

2aTioΩ
1
2
io(Σi +Σo)Ω

1
2T
io aio . (3.15)

3.3.4 Comparison to other methods

We compare our method with several state-of-the-art collision probability approximation
algorithms using a robot-obstacle proximity example. A point robot at position mean
(0.7,0.7,0.8) m with covariance diag(0.04,0.04,0.01) m2 is close to an ellipsoid obstacle at
origin with semi-principle axes (0.6,0.6,2.2) m. See Table 3.1 for the collision probability
computation results. The numerical integration result is the exact collision probability
and gives a collision probability of 0.011. If we de�ne the collision probability threshold to
be � = 0.03 (thus con�dence level 0.97), which corresponds to the 3� con�dence ellipsoid,
then this con�guration is feasible. However, when employing the enlarged bounding
volume method [122], or the cube approximation [31], the con�guration would be deemed
infeasible. The center point PDF approximation approach [29] can give feasible checking
results, but the resulting collision probability is signi�cantly smaller than the real value,
which may lead to unsafe trajectory planning. Our method thus provides a tighter bound.

Table 3.1: Comparison of collision probability algorithms.

Algorithms Collision proba. Comput. time (ms) Feasible?

Numerical integral 0.011 258.665 Yes
Bounding volume [123] 1 0.011 No

Center point [29] 3.6E-18 0.016 Yes
Cube approx. [31] 0.100 0.044 No

Our method 0.017 0.011 Yes

3.4 Online local planning
We now present a tractable MPC formulation for each robot, followed by three approaches
to obtain future position information of other robots and a theoretical discussion.

3.4.1 Deterministic MPC formulation

We �rst describe the components of the cost function presented in Eq. (3.6a), which are
listed in the following.
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Cost function

• Goal navigation. Let pig be the goal position of robot i, we minimize the displacement
between its terminal position at the planning horizon and its goal. To this end, we
de�ne the terminal cost term,

JNi (x̂
N
i ) = li,g ‖pig − p̂

N
i ‖/‖pig − p̂0i ‖, (3.16)

where li,g is the weight coe�cient.
• Control inputs cost. The second cost term is to minimize the MAV control inputs,

designed as a stage cost,

J ki,u(u
k
i ) = li,u‖u

k
i ‖, k = {0,1,…,N −1}, (3.17)

where li,u is the weight coe�cient.
• Collision potential cost. To improve �ight safety, we also introduce an obstacle

potential �eld cost. Denote by dij = ‖p̂i − p̂j ‖Ωij the distance between robot i and
robot/obstacle j. Two di�erent forms of collision potential cost between i and j are
tested. The �rst form is

J ki,j,c (x̂
k ) =

{
li,c (dsafe

ij −dij ), if dij ≤ dsafe
ij ;

0, otherwise,
(3.18)

where li,c is the weight coe�cient and dsafe
ij is the safe potential �eld distance between

robot i and robot/obstacle j. The other form is based on the logistic function

J ki,j,c (x̂
k ) =

li,c
1+exp

(�i,c (dij −dijsafe)), (3.19)

where �i,c is a parameter de�ning the smoothness of the cost function. Thus, the
collision potential cost for robot i at time step k is

J ki,c (x̂
k
i ) = ∑

j∈∪o ,j≠i
J ki,j,c (x̂

k
i ). (3.20)

Optimization problem

By transforming the chance constraints into the deterministic constraints presented in
Section 3.3 and utilizing the above cost terms, the following tractable deterministic MPC
formulation for Problem 3.1 can be derived:

min
x̂1∶Ni ,u0∶N−1i

JNi (x̂
N
i ) +

N−1
∑
k=0

J ki,u(u
k
i ) +

N
∑
k=1

J ki,c (x̂
k
i )

s.t. x0i = x̂i(0),

x̂ki = fi(x̂
k−1
i ,uk−1i ),

gkij (x̂
k
i , p̂

k
j ,Σ

k
i ,Σ

k
j , �r ) ≤ 0,

gkio(x̂
k
i , p̂

k
o ,Σ

k
i ,Σ

k
o , �o) ≤ 0,

uk−1i ∈i , x̂ki ∈ i ,
∀j ≠ i ∈ ; ∀o ∈ o ; ∀k ∈ {1,…,N}.

(3.21)
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where gkij and gkio denote the deterministic constraints of Eq. (3.11) and (3.15) for probabilistic
inter-robot and robot-obstacle collision avoidance respectively, and the position uncertainty
covariances Σki are computed as discussed in Remark 3.3.

3.4.2 Multi-robot planning

In the CCNMPC formulation the position distribution for all other robots j ≠ i, given by
p̂0∶Nj and Σ0∶Nj , is assumed known. Next we discuss three methods to obtain these values,
but the CCNMPC formulation is general and other coordination approaches could be
devised.

Constant velocity model without communication

By regarding all other robots as dynamic obstacles and employing a constant velocity model,
one robot can predict other robots future behaviors based on onboard measurements. Hence,
each robot can plan its own trajectory independently and without communication, which
leads to a distributed planning scheme for multi-robot collision avoidance.

Given the current position and velocity distribution p̂0j , v̂0j and Σ0j,pv of robot j, we
compute

[p̂kj , v̂
k
j ]
T = Fkj [p̂

k−1
j , v̂k−1j ]T ,

Σkj,pv = F
k
j Σ

k−1
j,pvF

k
j
T
+Qkj,pv ,

(3.22)

where the state transition matrix Fkj = [
I3 ΔtI3
O I3 ], Δt is the time step for prediction, Qki,pv

is the additive process noise of the model. The position uncertainty covariance is Σkj =
Σkj,pv(1 ∶ 3,1 ∶ 3).

Sequential planning with communication

If the team of robots is centrally controlled, or a fast communication channel is available,
higher coordination can be achieved by planning trajectories sequentially, i.e., each robot
plans a trajectory that avoids the trajectories of all other robots and then communicates its
trajectory (given by p̂0∶Ni and Σ0∶Ni ).

Denote by  t
i = {p̂

0∶N
i ,Σ0∶Ni }|t the trajectory for robot i planned at time t . At the initial

time t = 0 robot i avoids only the plans  0
j of other robots with j < i, in a priority scheme.

In subsequent time steps, robot i plans a trajectory  t
i that avoids  t

j for all j < i and  t−Δt
j

for all j > i.

Distributed planning with communication

Robots communicate their planned trajectories. At every time step, every robot avoids the
planned trajectories of all other robots in the previous time-step. That is, at time t , robot i
plans a trajectory  t

i that avoids  t−Δt
j for all j ≠ i ∈ .

3.4.3 Theoretical discussion
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Collision avoidance

Our formulation imposes, by construction, that the probability of collision with respect
to each obstacle and at every stage of the plan is less or equal than �o under a constant
velocity assumption for moving obstacles (Section 3.2.2) and a simpli�ed propagation
model (Section 3.2.5). For collision avoidance with other robots in the team, guarantees
vary according to the coordination methods (and the associated assumptions) described in
Section 3.4.2.

Probability of collision with any given obstacle

From Section 3.4.3, the probability of collision of robot i at time step k with respect to any
given obstacle can be bounded by

Pr(xki ∈
no
⋃
o=1

kio) ≤
no
∑
o=1

Pr(xki ∈ kio) = no�o ,

where no is the number of obstacles. By choosing �o = �all/no , one may specify a joint
threshold of collision �all.

Probability of collision for the planned trajectory

From Section 3.4.3, at all stages the probability of collision with any given obstacle is less or
equal than the speci�ed threshold �o . The probability of collision for the whole trajectory
of robot i with respect to each obstacle can be bounded by

Pr(
N
⋁
k=1
(xki ∈ kio)) ≤

N
∑
k=1

Pr(xki ∈ kio).

In our case this bound would be N�o , but it is over conservative in practice. We
argue that, in the context of online receding horizon planning it is bene�cial to impose a
probability of collision of �o for each individual stage - instead of for the whole trajectory -
thanks to the fast re-planning and relatively small displacement between stages.

Furthermore, our formulation is consistent with a stochastic formulation of the MPC
problem where the chance constraint is de�ned as a discounted sum of violation probabili-
ties in the �nite horizon, as proposed for example by. The rationality with this formulation
is also that by penalizing violation probabilities close to the initial time and relaxing the
penalty of violation probabilities in the far future, feasibility of the online optimization is
enabled.

The discounted chance constraint with respect to an obstacles is de�ned as:

N
∑
k=1
(
 )kPr(xki ∈ kio) ≤ �o , (3.23)

where 
 ∈ (0,1) is the discounting factor.
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Lemma 3.3. Our formulation provides an upper bound in the discounted probability of
collision, i.e. Eq. (3.23) is satis�ed, if the discounting factor 
 < 0.5.

Proof. Our formulation guarantees that Pr(xki ∈ kio) ≤ �o , ∀k = 1,⋯,N . Hence, the dis-
counted probability of collision satis�es

N
∑
k=1
(
 )kPr(xki ∈ kio) ≤ �o

N
∑
k=1
(
 )k =


(1−
N )
1−


�o .

Given 
 < 0.5, we have 
(1 − 
N ) − (1 − 
) = 2
 − 1 − 
N+1 < 0. Thus, 
(1−
N )
1−
 < 1. Hence,

∑N
k=1(
 )

kPr(xki ∈ kio) ≤ �o . �

In this proof we also employ the conservative bound on the joint probability of collision.
Future works should look at obtaining tighter bounds on the joint probability of collision
over the whole trajectory.

Feasibility

Due to unmodeled dynamics, disturbances, or deviations from the simplifying assumptions,
the optimization problem may become infeasible. In those rare situations, our approach is
to command the MAVs to decelerate. Typically, the problem becomes feasible again after a
small number of steps (below half a second, see Section 3.5.3).

3.5 Results
In this section we describe our implementation of the proposed method and evaluate it in
experiments and simulations. We �rst show experimental results of applying the proposed
CCNMPC to vision-based obstacle avoidance for a MAV in dynamic environments. Then we
validate collision avoidance for multiple MAVs and compare the performance of our method
with state-of-the-art methods. Finally, we evaluate and compare the three multi-robot
coordination strategies described in Section 3.4.2 in simulations.

3.5.1 Experimental setup

Our experimental platform is the Parrot Bebop 2 quadrotor. Two di�erent setups are tested
in our experiments. In both setups, the collision probability thresholds are set to �r = 0.03
and �o = 0.03.

Fully onboard setup

In this setup, we use the Parrot Bebop 2 quadrotor mounted with an NVIDIA Jetson TX2
Module and an Intel RealSense Depth Camera D435i, as shown in Fig. 3.4. The Parrot
Bebop 2 allows for executing control commands sent via Robot Operating System (ROS).
The D435i camera is dually used for visual-inertial odometry and depth image sensing,
which has a 87◦ × 58◦ FOV and 5 m depth sensing range. The TX2 is used to perform all
onboard computation and is connected with the Bebop 2 via WiFi.
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We use a �ltering-based stereo visual-inertial odometry algorithm, the S-MSCKF [124],
for state estimation of the MAV, which runs at 15 Hz. The camera depth images are
received at 60 Hz. A fast depth image-based algorithm [125] run at frame rate is employed
for obstacle detection and tracking which gives obstacle ellipsoids position, velocity and
size. We rely on the ACADO toolkit [126] to generate a fast C solver for our MPC, in which
a sampling time of 60 ms is used and the prediction horizon is set to 1.5 s. The radius of
the MAV is set as 0.4 m. The two closest detected obstacles are fed to the MPC for collision
avoidance.

Figure 3.4: MAV used in the experiments. It is equipped with an NVIDIA Jetson TX2 Module for
all on-board computation, an Intel RealSense Depth Camera D435i dually for visual-inertial
odometry and depth image sensing.

Motion capture system

In this setup, perception is performed via an external motion capture system (Mocap),
including robot localization and obstacle tracking. Speci�cally, the Mocap (OptiTrack in
this thesis) is used to measure the pose of each object, including all robots and obstacles in
the environment. It gives real-time stamped pose information of the objects in a prede�ned
world frame at a frequency of 120 Hz. We assumed this to be the “real” pose of the objects.

To simulate the uncertainty considered in motion planning, we manually add Gaussian
noise with a zero mean and a speci�ed standard deviation to the obtained original Mocap
pose data. Taking these noisy measurements as inputs, a Kalman �lter is employed to
estimate the state of each object, including its position, velocity and orientation, which
are then described by Gaussian distributions with known means and covariances in the
world frame. These states described by Gaussian distributions are used as inputs of our
developed motion planning methods.

We use an Intel i7 CPU@2.6GHz computer for the planner and use ROS to send
commands to the quadrotors. We rely on the solver Forces Pro [127] to generate optimized
NMPC code. The radius of each quadrotor is set as 0.3 m. The time step used in the NMPC
is Δt = 0.05 s and the total number of steps is N = 20.
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3.5.2 Robust vision-based collision avoidance

We �rst test our method in the fully onboard setup with a single drone avoiding moving
obstacles. The results of two typical scenarios are particularly presented here.

Scenario 1 (Flying in a con�ned lab space)

The MAV is required to navigate from a start point to an end point while avoiding two
walking humans. Fig. 3.5 shows a snapshot of the experiment.

Figure 3.5: Experimental results of vision-based collision avoidance in dynamic environments
with two moving humans. The MAV is equipped with a stereo camera both for visual odometry
and obstacle detection. (a) A snapshot of the experiment. (b) On-board grayscale image. (c)
The depth image. (d) Visualization of detected obstacles (yellow ellipsoids with red arrows
indicating the velocities) and planned collision-free trajectory (green curve).

In this scenario, we performed the experiment �ve times and used OptiTrack to measure
the position of the MAV and human obstacles which are regarded as ground truth data.
Fig. 3.6a shows the measured distance between the MAV and the two moving human
obstacles over time in the �ve experiments. The distance is computed, based on ground
truth measurements, as the closest distance between the MAV’s position and the obstacle
ellipsoid’s surface (with semi-major axis (0.4,0.4,0.9) m). In Fig. 3.6b, we cumulate all the
distance data. It can be observed that in all instances a minimum safe separation of 0.4 m
was achieved and therefore collisions with the humans were avoided. A maximal speed of
around 1.6 m/s of the MAV was observed in this experiment.
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(a) Distance to obstacles over time.

(b) Histogram of distance.

(c) MAV on-board runtime.

Figure 3.6: Quantitative results of the experiment Scenario 1. (a) Distance between the MAV and
the two moving obstacles (magenta and blue) over time during 5 experiments. (b) Histogram
of all the distance data. (c) On-board runtime of the MAV state estimation (VIO), obstacle
detection and tracking, and collision-free trajectory optimization (MPC).



3.5 Results

3

37

The box plots of the on-board runtime in this scenario is shown in Fig. 3.6c. For the
runtime of the obstacle detection and tracking, the 75th percentile is always below 8 ms,
which is fast enough to be run at frame rate (60 Hz). For the runtime of the MPC framework,
the 75th percentile is always below 22 ms, indicating the framework can be run e�ciently
in real time.

Scenario 2 (Flying in a long corridor)

The MAV is �ying in a long narrow corridor where there are both static and moving
obstacles. Fig. 3.7 shows a snapshot taken during the experiment. A maximum speed of
around 2.4 m/s was achieved by the MAV in the experiment.

(a) A snapshot during the experiment.

(b) An on-board grayscale image captured in the
experiment.

(c) visualization of the corresponding obstacle
detection and trajectory planning results.

Figure 3.7: Results of the experiment Scenario 2. The MAV is �ying in a corridor while avoiding
static and moving obstacles.
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3.5.3 Collision avoidance for multiple MAVs

We then test our method with two drones avoiding walking human obstacles in the motion
capture system setup. The added measurements noise is zero mean with covariance
Σ = diag(0.06 m, 0.06 m, 0.06 m, 0.4 deg, 0.4 deg, 0.4 deg)2. Based on our experimental data,
the average resulted state estimation error is ‖p̂ −p‖ = 0.05 m in terms of the quadrotors’
position. Fig. 3.1 shows a snapshot from our experiment. In Fig. 3.8a we cumulate the
distance between the two drones. They maintained a safe distance of 0.6 m over the entire
run. In Fig. 3.8b we cumulate the distance between each drone and each moving human.
The distance is computed as the closest distance between the quadrotor’s position and the
ellipsoid’s surface. In all instances a minimum safe separation of 0.3 m was achieved. Close
distances between robots and obstacles are observed, since they share a quite con�ned
space. In Fig. 3.8c we show the computation time of each NMPC solver and the central
sequential planning framework. The mean computation time of the NMPC solver is 14.3
ms and that of the total framework is 71.3 ms. The framework includes state estimation,
uncertainty propagation, obstacles’ prediction, communication and solving both NMPC
problems. Among all NMPC solutions over the entire run, the percentage of infeasible
solutions was 2.8% and the longest infeasible period was 9 time steps (corresponding to
0.45 s).

3.5.4 Trajectory safety and e�ciency comparisons

In this scenario, we compare our method with a bounding volume MPC approach [123]
and a deterministic MPC approach [4]. For all three methods we compute trajectories
sequentially and the only di�erence is the way in which the uncertainties are treated. In
the experiment, two quadrotors, initially at (−1.6,0,1.2) m and (1.6,0,1.2) m, are required
to swap their positions. For each approach, we performed the experiment 50 times under
three levels of measurements noise: 1/4Σ, Σ and 4Σ. The corresponding average state
estimation error for the position, i.e. ‖p̂ −p‖, was 0.03 m, 0.05 m and 0.09 m respectively.
We measured the minimum distance between the two quadrotors as a safety metric and
the total trajectory length and duration as e�ciency metrics.

The results of the three approaches are shown in Table 3.2. Under measurements noise
of Σ, the purely deterministic approach succeeded in 64% of the trials. With the larger noise
level of 4Σ its performance deteriorated to a success rate of only 36%. The two probabilistic
approaches succeeded in all runs. However, thanks to a tighter bound for the collision
probability approximation, our method achieves the same level of safety as [123] but with
more e�cient collision avoidance, i.e., the trajectory length and duration are shorter. This
e�ciency is more apparent when the measurements noise is larger, e.g. with covariance
4Σ.

3.5.5 Comparison of multi-robot planning strategies

We evaluate our method in simulation with multiple quadrotors exchanging their initial
positions, and compare the three multi-robot coordination strategies described in Section
3.4.2, with a noise level of Σ. Figures 3.9a-3.9c show the trajectories of six quadrotors, where
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Figure 3.8: Experimental results of two quadrotors following prede�ned paths while avoiding
two walking humans.

the only di�erence is the coordination strategies. Table 3.3 shows the minimum distance
among quadrotors and statistics of their trajectories. We report the average computation
time and the trajectory length for all six quadrotors (minimum, maximum, mean value and
standard deviation to compare cooperativeness).
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Table 3.2: Trajectory safety and e�ciency comparisons of planning algorithms with di�erent
levels of measurements noise. The values are computed only from successful runs. (dmin:
average minimum distance (m); l: average trajectory length (m); T : average trajectory
duration (s); sr : success rate.)

Noise level Our method Bounding volume[123] Deterministic MPC[4]

1
4Σ

dmin 0.74 0.74 0.63
l 6.77 6.84 6.75
T 2.63 2.91 2.60
sr 100% 100% 68%

Σ

dmin 0.81 0.87 0.64
l 7.08 7.09 6.74
T 2.72 2.95 2.63
sr 100% 100% 64%

4Σ

dmin 0.86 1.10 0.61
l 7.21 8.18 6.88
T 3.06 3.13 2.62
sr 100% 100% 36%

We observe that the minimum distance when using the constant velocity model (0.56
m) is smaller than the safe distance (0.6 m). Thus, collisions happened due to the mismatch
between the predicted trajectories (constant velocity) and the executed trajectories by the
quadrotors. This indicates that the 97% con�dence level is not enough when the constant
velocity model is employed and should be increased. Instead, sequential planning (SP)
and distributed planning with communication (DC) can achieve safe navigation. While SP
showed better performance, it su�ers from a computation burden due to its centralized
scheme (the computational cost grows linearly with the number of robots). The DC
approach performs well at a much lower computational cost.

Since the DC approach is scalable, in Fig. 3.9d we show the trajectories of sixteen
quadrotors exchanging antipodal positions on the circle. We note that the computational
time of solving the CCNMPC for each robot does increase with the number of obstacles
and robots, due to the larger number of constraints. In our experiments, the average
computation time of a CCNMPC planning step was 14.3 ms for two robots, 14.4 ms for four
robots, 16.2 ms for six robots and 24.7 ms for sixteen robots. This indicates that the DC
approach scales well with the number of robots.

Table 3.3: Statistics for coordination strategies with six drones. CVM: constant velocity model;
SP: sequential planning; DC: distributed planning with communication.

Coordination
strategies Min. dist (m) Trajectory length (m) Av.comp.

time (ms)min. max. av. std
CVM 0.56 4.82 7.09 5.72 0.89 15.2

SP 0.70 4.31 4.54 4.43 0.09 115.3
DC 0.70 4.18 4.80 4.51 0.24 16.2
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Figure 3.9: Simulation results of multiple quadrotors exchanging positions. Solid lines represent
the trajectories executed by the quadrotors. The upper and lower plots show the top view (X-Y)
and side view(X-Z) respectively.

3.6 Conclusion
In this chapter, we showed that robust probabilistic collision avoidance among robots and
obstacles can be achieved via chance-constrained nonlinear model predictive control when
the obstacles are modeled as ellipsoids. By assuming that the uncertainties are Gaussian
distributed, we developed a tight bound for approximation of collision probability between
each robot and obstacle. In experiments with two quadrotors, we showed that our method
can generate more e�cient trajectories for the robots while maintaining the same level of
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safety compared with the bounding volume approach. In simulations with six quadrotors,
we showed that the strategies where the planned trajectories are exchanged outperform
the constant velocity model. Furthermore, while distributed planning with communication
is less cooperative than sequential planning, it scales well with the number of robots.
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• H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilistic multi-robot collision avoidance using
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• H. Zhu, and J. Alonso-Mora, “B-uavc: Bu�ered uncertainty-aware voronoi cells for probabilistic multi-
robot collision avoidance,” in Proceedings of the IEEE International Symposium on Multi-Robot and Multi-
Agent Systems (MRS), Aug. 2019.
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4.1 Introduction
In the previous Chapter 3, we have developed a chance-constrained collision avoidance
algorithm for teams of robots via chance-constrained nonlinear model predictive control
(CCNMPC) and multi-robot coordination. In the method, three coordination strategies
are discussed; namely, 1) centralized sequential planning, 2) distributed planning with
communication, and 3) decentralized planning without communication. The �rst two
strategies can guarantee probabilistic collision avoidance by construction. But they require
communication among robots, which is not always available in practice. While the third
decentralized strategy is communication-free, experimental results show that it may lead
to unsafe trajectories, particularly in crowded environments. Hence, it is necessary to
develop an algorithm that is communication-free while being able to achieve probabilistic
collision avoidance for multi-robot systems.

In this chapter, we present a decentralized probabilistic approach for multi-robot
collision avoidance under localization and sensing uncertainty that does not rely on com-
munication. Our approach is built on the bu�ered Voronoi cell (BVC) method developed by
[81]. The BVC method is designed for collision avoidance among multiple single-integrator
robots, where each robot only needs to know the positions of neighboring robots. We
extend the method into probabilistic scenarios considering robot localization and sensing
uncertainties by mathematically formalizing a bu�ered uncertainty-aware Voronoi cell
(B-UAVC). Furthermore, we consider static obstacles with uncertain locations in the envi-
ronment and apply the approach to double-integrator dynamics, di�erential-drive robots,
and general high-order dynamical robots.

The BVC method has also been extended to probabilistic scenarios by [114]. Taking into
account the robot measurement uncertainty of other robots, they present the probabilistic
bu�ered Voronoi cell (PBVC) to assure a safety level given a collision probability threshold.
However, since the PBVC of each robot does not have an analytic solution, they employ
a sampling-based approach to approximate it. In contrast, our proposed B-UAVC has
an explicit and analytical form, which is more e�cient to be computed. Moreover, our
B-UAVC can be incorporated with MPC to handle general nonlinear systems, while the
PBVC method developed by [114] cannot be directly applied within the MPC framework.

Our method constructs a set of local safe regions for the robots, which decompose the
workspace. Spatial decomposition is broadly used in robot motion planning. The authors
of [128] proposed the IRIS (iterative regional in�ation by semi-de�nite programming)
algorithm to compute safe convex regions among obstacles given a set of seed points. The
algorithm is then used for UAV path planning [129] and multi-robot formation control
[125]. A simpler but more e�cient iteratively in�ation algorithm [130] was later presented
to compute a convex polytope around a line segment among obstacles and utilizes it to
construct a safe �ight corridor for UAV navigation [131]. Similar safe �ight corridors
are constructed for trajectory planning of quadrotor swarms [105], by computing a set
of max-margin separating hyperplanes between a line segment and convex polygonal
obstacles. The max-margin separating hyperplanes are also used by [132] to construct a
local robot-centric safe region in convex sphere worlds for sensor-based reactive navigation.
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While those spatial decomposition methods have shown successful application in robot
motion planning, they all assume perfect knowledge on robots and obstacles positions. In
this chapter, we consider both the robot localization and obstacle position uncertainty and
construct a local uncertainty-aware safe region for each robot.

The main contribution of this chapter is a decentralized and communication-free method
for probabilistic multi-robot collision avoidance in cluttered environments. The method
considers robot localization and sensing uncertainties and relies on the computation of
bu�ered uncertainty-aware Voronoi cells (B-UAVC). At each time step, each robot computes
its B-UAVC based on the estimated position and uncertainty covariance of itself, neighboring
robots and obstacles, and plans its motion within the B-UAVC. Probabilistic collision
avoidance is ensured by constraining each robot’s motion to be within its corresponding
B-UAVC, such that the inter-robot and robot-obstacle collision probability is below a
user-speci�ed threshold.

The remaining of this chapter is organized as follows. In Section 4.2 we present the
problem statement and brie�y summarize the concept of BVC. In Section 4.3 we formally
introduce the bu�ered uncertainty-aware Voronoi cell (B-UAVC) and its construction
method. We then describe how the B-UAVC is used for probabilistic multi-robot collision
avoidance in Section 4.4. Simulation and experimental results are presented in Section 4.5
and Section 4.6, respectively. Finally, Section 4.7 concludes the chapter.

4.2 Preliminaries

4.2.1 Problem statement

Consider a group of n robots operating in a d-dimensional space  ⊆ ℝd , where d ∈ {2,3},
populated withm static polygonal obstacles. For each robot i ∈  = {1,…,n}, pi ∈ℝd denotes
its position, vi = ṗi its velocity and ai = v̇i its acceleration. Let  = {g1,… ,gn} denote their
goal locations. A safety radius rs is given for all robots. We consider that the position
of each robot is obtained by a state estimator and is described as a Gaussian distribution
with covariance Σi , i.e. pi ∼ (p̂i ,Σi). We also consider static polytope obstacles with
known shapes but uncertain locations. For each obstacle o ∈ o = {1,…,m}, denote by
̂o ⊂ ℝd its occupied space when located at the expected (mean) position. ̂o is given
by a set of vertices. Hence, the space actually occupied by the obstacle can be written
as o = {x+do | x ∈ ̂o ,do ∼ (0,Σo)} ⊂ ℝd , where do is the uncertain translation of the
obstacle’s position, which has a zero mean and covariance Σo .

A robot i in the group is collision-free with another robot j if their distance is greater
than the sum of their radii, i.e. dis(pi ,pj ) ≥ 2rs and with the obstacle o if the minimum
distance between the robot and the obstacles is larger than its radius, i.e. dis(pi ,o) ≥ rs .
The distance function dis(⋅) between a robot with another robot or an obstacle are de�ned
as dis(pi ,pj ) = ‖‖pi −pj ‖‖, and dis(pi ,o) = minp∈o ‖pi −p‖, respectively. Note that the robots’
and obstacles’ positions are random variables following Gaussian distributions, which
have an in�nite support. Hence, the collision-free condition can only be satis�ed in a
probabilistic manner, which is de�ned as a chance constraint as follows.
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De�nition 4.1 (Probabilistic collision-free). A robot i at position pi ∼ (p̂i ,Σi) is proba-
bilistic collision-free with a robot j at position pj ∼ (p̂j ,Σj ) and an obstacle o at position
po ∼ (p̂o ,Σo) if

Pr(dis(pi ,pj ) ≥ 2rs) ≥ 1−�, ∀j ∈ , j ≠ i, (4.1)
Pr(dis(pi ,o) ≥ rs) ≥ 1−�, ∀o ∈ o , (4.2)

where � is the collision probability threshold for inter-robot and robot-obstacle collisions.

The objective of probabilistic collision avoidance is to compute a local motion plan, ui ,
for each robot in the group, that respects its kinematic and dynamical constraints, makes
progress towards its goal location, and is probabilistic collision-free with other robots as
well as obstacles in the environment. In this chapter, we �rst consider single-integrator
dynamics for the robots,

ṗi = ui , (4.3)

and then extend it to double integrator systems, di�erential-drive robots and robots with
general high-order dynamics.

4.2.2 Bu�ered Voronoi cell

The key idea of our proposed method is to compute an uncertainty-aware collision-free
region for each robot in the system, which is a major extension of the deterministic bu�ered
Voronoi cell (BVC) method [81, 133]. In this section, we brie�y describe the concept of
BVC.

For a set of deterministic points (p1,… ,pn) ∈ ℝd , the standard Voronoi cell (VC) of each
point i ∈  is de�ned as [134]

i = {p ∈ ℝd ∶ ‖p−pi‖ ≤ ‖‖p−pj ‖‖ ,∀j ≠ i}, (4.4)

which can also be written as

i = {p ∈ ℝd ∶ pTijp ≤ pTij
pi +pj
2

,∀j ≠ i}, (4.5)

where pij = pj −pi . It can be observed that i is the intersection of a set of hyperplanes
which separate point i with any other point j in the group, as shown in Fig. 4.1a. Hence,
VC can be obtained by computing the separating hyperplanes between each pair of points.

To consider the footprints of robots, a bu�ered Voronoi cell for each robot i is de�ned
as follows:

b
i = {p ∈ ℝ

d ∶ pTijp ≤ pTij
pi +pj
2

− rs ‖‖pij ‖‖ ,∀j ≠ i}, (4.6)

which is obtained by retracting the edges of the VC with a safety distance (bu�er) rs .

In deterministic scenarios, if the robots are mutually collision-free, then the BVC of
each robot is a non-empty set [81]. It is also trivial to prove that the BVCs are disjoint
and if the robots are within their corresponding BVCs individually, they are collision-free



4.2 Preliminaries

4

47

(a) (b)

(c) (d)

Figure 4.1: Example of bu�ered uncertainty-aware Voronoi cells (B-UAVC). Blue dots are robots;
blue dash-dot ellipses indicate the 3-� con�dence ellipsoid of the position uncertainty. (a)
Deterministic Voronoi cell (VC, the boundary in gray solid line). (b) Uncertainty-aware Voronoi
cell based on the best linear separators (UAVC, the boundary in blue dashed line). (c) UAVC
with robot raidus bu�er (the boundary in green solid line). (d) Final B-UAVC with robot radius
and collision probability bu�er (the boundary in red solid line).

with each other. Using the concept of BVC, [81] proposed a control policy for a group
of single-integrator robots whose control inputs are velocities. Each robot can safely
and continuously navigate in its BVC, given that other robots in the system also follow
the same rule. However, the guarantee does not hold for double-integrator dynamics or
non-holonomic robots such as di�erential-drive robots.

4.2.3 Shadows of uncertain obstacles

To account for uncertain obstacles in the environment, we rely on the concept of obstacle
shadows introduced by [68]. The �-shadow is de�ned as follows:

De�nition 4.2 (�-Shadow). A set o ⊆ ℝd is an �-shadow of an uncertain obstacle o if the
probability Pr(o ⊆ o) ≥ 1− �.

Geometrically, an �-shadow is a region that contains the uncertain obstacle with
probability of at least 1−�, which can be non-unique. For example o = ℝd is an �-shadow
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of any uncertain obstacle. To preclude this trivial case, the maximal �-shadow is de�ned:

De�nition 4.3 (Maximal �-shadow). A set o ⊆ ℝd is a maximal �-shadow of an uncertain
obstacle o if the probability Pr(o ⊆ o) = 1− �.

The above de�nition ensures that if there exists a maximal �-shadow o of the uncer-
tain obstacle o that does not intersect the robot, i.e. dis(pi ,o) ≥ rs , then the collision
probability between the robot and obstacle is below �, i.e. Pr(dis(pi ,o) ≥ rs) ≥ 1− �. Note
that the maximal �-shadow may also be non-unique. In this chapter, we employ the method
proposed by [69] to construct such shadows. Recall that the uncertain obstacle o is related
to the nominal geometry ̂o by o = {x + do | x ∈ ̂o ,do ∼ (0,Σo)}. To construct the
maximal �-shadow, we �rst de�ne the following ellipsoidal set

o = {d ∶ dTΣ−1o d ≤ F−1(1− �)}, (4.7)

where F−1(⋅) is the inverse of the cumulative distribution function (CDF) of the chi-squared
distribution with d degrees of freedom. Next, Let

o = ̂o +o = {x+d | x ∈ ̂o ,d ∈o}, (4.8)

be the Minkowski sum of the nominal obstacle shape ̂o and the ellipsoidal set o . Then,
we have the following lemma [68] and theorem [69]:

Lemma 4.1. Let do ∼ (0,Σo) ∈ ℝd ando = {d ∶ dTΣ−1o d ≤ F−1(1−�)} ⊂ ℝd , then Pr(do ∈
o) = 1− �.

Proof. First we can write the random variable do in an equivalent form do = Σ′od′o , where
d′o ∼ (0, I ) ∈ ℝd and Σ′oΣ′To = Σo . Note that d′To d′o is a chi-squared random variable with
d degrees of freedom. Hence, there is

Pr(d′To d′o ≤ F
−1(1− �)) = 1− �.

Also note that Σ−1o = (Σ′oΣ′To )−1 = Σ′T
−1

o Σ′−1o , thus dTo Σ−1o do = d′To Σ′To Σ′T
−1

o Σ′−1o Σ′od′o = d′To d′o .
Hence, it follows that Pr(dTo Σ−1o do ≤ F−1(1 − �)) = 1 − �. Thus, let o = {d ∶ dTΣ−1o d ≤
F−1(1− �)}, there is Pr(do ∈o) = 1− �. �

Theorem 4.1. o is a maximal �-shadow of o .

Proof. We need to prove that the set o contains the set o with probability 1 − �. It is
equivalent to that for any point in o , the set o contains this point with probability 1−�.
Recall the de�nition of o , every y ∈ o can be written as x+do with some x ∈ ̂o . Also
note the de�nition o = {x+d | x ∈ ̂o ,d ∈o}. Hence the probability that o contains y is
equal to the probability thato contains do . That is, Pr(y ∈o) = Pr(do ∈o) = 1−�,∀y ∈o .
Thus, Pr(o ⊆ o) = 1− �. o is a maximal �-shadow of o . �

4.3 Bu�ered uncertainty-aware Voronoi cells
In this section, we formally introduce the concept of bu�ered uncertainty-aware Voronoi
cells (B-UAVC) and give its construction method.
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4.3.1 De�nition of B-UAVC

Our objective is to obtain a probabilistic safe region for each robot in the workspace given
the robots and obstacles positions, and taking into account their uncertainties.

De�nition 4.4 (Bu�ered uncertainty-aware Voronoi cell). Given a team of robots i ∈
{1,…,n} with positions mean p̂i ∈ ℝd and covariance Σi ∈ ℝd×d , and a set of convex polytope
obstacles o ∈ {1,…,m} with known shapes and locations mean p̂o ∈ ℝd and covariance Σo ∈
ℝd×d , the bu�ered uncertainty-aware Voronoi cell (B-UAVC) of each robot is de�ned as a
convex polytope region:

u,b
i = {p ∈ ℝd ∶ aTijp ≤ bij −�ij , ∀j ≠ i, j ∈ , (4.9)

and aTiop ≤ bio −�io , ∀o ∈ o}, (4.10)

such that the probabilistic collision free constraints in De�nition 4.1 are satis�ed.

In the above B-UAVC de�nition, aij , aio ∈ ℝd and bij , bio ∈ ℝ are parameters of the
hyperplanes that separate the robot from other robots and obstacles, which results in a
decomposition of the workspace. �ij and �io are additional bu�er terms added to retract
the decomposed space for probabilistic collision avoidance. Accordingly, we further de�ne

u
i = {p ∈ ℝ

d ∶ aTijp ≤ bij , ∀j ≠ i, j ∈ , and aTiop ≤ bio , ∀o ∈ o}, (4.11)

that does not include bu�er terms to be the uncertainty-aware Voronoi cell (UAVC) of robot
i.

It can be observed the UAVC and B-UAVC of robot i are the intersection of the following:

1. n −1 half-space hyperplanes separating robot i from robot j for all j ≠ i, j ∈ ;

2. m half-space hyperplanes separating robot i from obstacle o for all o ∈ o .

In the following, we will describe how to calculate the separating hyperplanes with pa-
rameters (aij , bij ) and (aio , bio) that construct the UAVC and then the corresponding bu�er
terms �ij , �io constructing the B-UAVC for probabilistic collision avoidance.

4.3.2 Inter-robot separating hyperplane

In contrast to only separating two deterministic points in Voronoi cells, we separate two
uncertain robots with known positions mean and covariance. To achieve that, we rely on
the concept of the best linear separator between two Gaussian distributions [135].

Given pi ∼ (p̂i ,Σi) and pj ∼ (p̂j ,Σj ), consider a linear separator aTijp = bij where
aij ∈ ℝd and bij ∈ ℝ. The separator classi�es the points p in the space into two clusters:
aTijp ≤ bij to the �rst one while aTijp > bij to the second. The separator parameters aij and
bij can be obtained by minimizing the maximal probability of misclassi�cation.
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The misclassi�cation probability when p is from the �rst distribution is

Pri(aTijp > bij ) = Pri
⎛
⎜
⎜
⎝

aTijp−a
T
ij p̂i√

aTijΣiaij
>
bij −aTij p̂i√
aTijΣiaij

⎞
⎟
⎟
⎠
= 1−Φ((bij −aTij p̂i)/

√
aTijΣiaij ),

where Φ(⋅) denotes the cumulative distribution function (CDF) of the standard normal dis-
tribution. Similarly, the misclassi�cation probability when p is from the second distribution
is

Prj (aTijp ≤ bij ) = Prj
⎛
⎜
⎜
⎝

aTijp−a
T
ij p̂j√

aTijΣjaij
≤
bij −aTij p̂j√
aTijΣjaij

⎞
⎟
⎟
⎠
= 1−Φ((aTij p̂j −bij )/

√
aTijΣjaij ).

The objective is to minimize the maximal value of Pri and Prj , i.e.

(aij , bij ) = arg minmax
aij∈ℝd ,bij∈ℝ

(Pri ,Prj ), (4.12)

which can be solved using a fast minimax procedure. In this chapter, we employ the
procedure developed by [135] to compute the best linear separator parameters aij and bij .
A brief summary of the procedure is presented in Appendix B.

Remark 4.1. The best linear separator coincides with the separating hyperplane of Eq. (4.5)
when Σi = Σj = �2I . In this case, aij = 2

�2 (p̂j − p̂i) and bij =
1
�2 (p̂j − p̂i)

T (p̂i + p̂j ).

Remark 4.2. ∀i ≠ j ∈ , aji = −aij , bji = −bij . This can be obtained according to the de�nition
of the best linear separator.

Remark 4.3. In contrast to deterministic Voronoi cells, the UAVCs constructed from the best
linear separators generally do not constitute a full tessellation of the workspace, i.e. ⋃n

1 u
i ⊆ ,

as shown in Fig. 4.1b.

4.3.3 Robot-obstacle separating hyperplane

Our method to calculate the uncertainty-aware separating hyperplane between a robot and
a convex polytope obstacle with uncertain location is illustrated in Fig. 4.2. Given the mean
position of the robot p̂i and the uncertain obstacle o = {x+do | x ∈ ̂o ,do ∼ (0,Σo)}, we
�rst perform a linear coordinate transformation:

W = (
√
Σo)−1. (4.13)

Under the transformation, the robot mean position and obstacle information become

p̂Wi = W p̂i , (4.14)

̂W
o = W ̂o , (4.15)

dWo = Wdo , (4.16)
ΣWo = WΣoW T = I d×d . (4.17)
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The transformed uncertain obstacle is then W
o = {xW +dWo | xW ∈ ̂W

o ,dWo ∼ (0, I )}.
Here we use the super-script ⋅W to indicate variables in the transformed space. Note that
the obstacle position uncertainty covariance is normalized to an identity matrix under the
transformation, as shown in Fig. 4.2 (Top right). This coordinate transformation technique
to normalize the uncertainty covariance has also been applied to other motion planning
under uncertainty works [31].

Ex
pa
nd

Figure 4.2: Depiction of uncertainty-aware separating hyperplane calculation between a point
and an arbitrary polytope obstacle with uncertain location. (Top left) A point and a polytope
obstacle with uncertain location. (Top right) E�ects of the transformationW to normalize the
error covariance. (Bottom left) �-shadow of the transformed obstacle and the max-margin
separating hyperplane in the transformation space. (Bottom right) Inverse transformation to
obtain the uncertainty-aware separating hyperplane.

Then given the collision probability threshold � , we compute a �-shadow of the trans-
formed uncertain obstacle W

o based on Eqs. (4.7)-(4.8):

W
o = {dW ∶ dWTdW ≤ F−1(1− �)}, (4.18)

W
o = ̂W

o +W
o , (4.19)

where � = 1−
√
1−� , making that Pr(W

o ⊆ W
o ) =

√
1−� .

Note that we assume ̂o is a convex polytope. Hence, the transformed ̂W
o is also a

polytope. In addition, it can be observed the set W
o de�ned in Eq. (4.18) is a circular

(sphere in 3D) set with radius
√
F−1(1− �). Hence, we can compute the �-shadow in Eq.

(4.19) of the transformed uncertain obstacle by dilating its nominal shape by the diameter
of the set W

o , which results in an in�ated convex polytope. Note that the resulted convex
polytope is slightly larger than the exact Minkowski sum W

o which has smaller round
corners. This introduces some conservativeness. For simplicity, we use the same notation
W
o for the resulted in�ated convex polytope and thus there is Pr(W

o ⊆ W
o ) >

√
1−� .

Next, we separate p̂Wi from W
o by �nding a max-margin separating hyperplane be-

tween them. Note that W
o is a bounded convex polytope that can be described by a list of
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vertices ( W1 ,… , Wpo ). Hence, �nding a max-margin hyperplane between p̂Wi and W
o can

be formulated as a support vector machine (SVM) problem [105], which can be e�ciently
solved using a quadratic program:

min aWio
T aWio

s.t. aWio
T p̂Wio −b

W
io ≤ 1,

aWio
T Wk −bWio ≥ 1, ∀ k ∈ 1,…,po .

(4.20)

The solution of the above quadratic program (4.20) formulates a max-margin separating
hyperplane with parameters (aWio , bWio ). We then shift it along its normal vector towards
the obstacle shadow, resulting in a separating hyperplane exactly touching the shadow, as
shown in Fig. 4.2 (Bottom left). Finally we perform an inverse coordinate transformation
W −1 and obtain the uncertainty-aware separating hyperplane between the robot and
obstacle in the original workspace:

aio = W T aWio ,

bio = bWio ,
(4.21)

as shown in Fig. 4.2 (Bottom right), in which the �-shadow in the transformed space W
o

becomes o in the original space.

Remark 4.4. The linear coordinate transformationW and its inverseW −1 preserves relative
geometries of o . That is, Pr(o ⊆ o) = Pr(W

o ⊆ W
o ) >

√
1−� .

4.3.4 Collision avoidance bu�er and B-UAVC

In Section 4.3.2 and 4.3.3 we have described the method to compute the hyperplanes that
construct the UAVC. Now we introduce two bu�er terms to the UAVC, to account for the
robot physical safety radius and the collision probability threshold.

Recall Eq. (4.11) that the UAVC of robot i can be written as the intersection of a set of
separating hyperplanes

u
i = {p ∈ ℝ

d ∶ aTijp ≤ bij , ∀j ≠ i, j ∈ ,

and aTiop ≤ bio , ∀o ∈ o}.

Let l ∈ l = {1,⋯,n,n +1,⋯,n +m}, l ≠ i denote any other robot or obstacle, we can write
the UAVC in the following form

u
i = {p ∈ ℝ

d ∶ aTilp ≤ bil , ∀l ∈ l , l ≠ i}, (4.22)

which combines the notations for inter-robot and robot-obstacle separating hyperplanes.
Next, we will describe the computation method of probabilistic collision avoidance bu�er
to extend the UAVC to B-UAVC.
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Robot safety radius bu�er

We compute the robot safety radius bu�er by shifting the boundary of the UAVC towards
the robot by a distance equal to the robot’s radius. Hence the corresponding bu�er for the
hyperplane (ail , bil ) is

�ri = rs ‖ail ‖ . (4.23)
Figure 4.1c shows the bu�ered UAVC of each robot after taking into account their safety
radius.

Collision probability bu�er

To achieve probabilistic collision avoidance, we further compute a bu�er term ��i , which is
de�ned as

��i =
√
2aTilΣiail ⋅ erf−1(2

√
1−� −1), (4.24)

where erf(⋅) is the Gauss error function [136] de�ned as erf(x) = 2√
� ∫ x0 e−t

2
dt and erf−1(⋅)

is its inverse. In this chapter, we assume the threshold satis�es 0 < � < 0.75, which is
reasonable in practice. Hence, erf−1(2

√
1−� −1) > 0,��i > 0. This bu�er can be obtained by

following the proof of forthcoming Theorem 4.2 and Theorem 4.3.

Finally, the bu�ered uncertainty-aware Voronoi cell (B-UAVC) is obtained by combining
the two bu�ers

u,b
i = {p ∈ ℝd ∶ aTilp ≤ bil −�

r
i −�

�
i , ∀l ∈ l , l ≠ i}. (4.25)

Figure 4.1d shows the �nal B-UAVC of each robot in the team.

4.3.5 Properties of B-UAVC

In this subsection, we justify the design of � in Eq. (4.18) when computing the shadow of
uncertain obstacles, and computation of the collision probability bu�er ��i in Eq. (4.24) by
presenting the following two theorems.

Theorem 4.2 (Inter-robot probabilistic collision free). ∀pi ∼ (p̂i ,Σi) and pj ∼ (p̂j ,Σj ),
where p̂i ∈ u,b

i and p̂j ∈ u,b
j , i ≠ j ∈ , we have

Pr(dis(pi ,pj ) ≥ 2rs) ≥ 1−�,

i.e. the probability of collision between robots i and j is below the threshold � .

Proof. We �rst introduce the following lemma:
Lemma 4.2 (Linear chance constraint [53]). A multivariate random variable x ∼ (x̂,Σ)
satis�es

Pr(aTx ≤ b) = 1
2
+
1
2

erf(
b−aT x̂√
2aTΣa)

. (4.26)

According to Eq. (4.25), if p̂i ∈ u,b
i , there is

aTij p̂i ≤ bij − rs ‖‖aij ‖‖ −
√
2aTijΣiaij ⋅ erf−1(2

√
1−� −1). (4.27)
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Applying Lemma 4.2 and substituting the above equation, we have

Pr(aijpi ≤ bij − rs ‖‖aij ‖‖)

=
1
2
+
1
2

erf
⎛
⎜
⎜
⎝

bij − rs ‖‖aij ‖‖) − a
T
ij p̂i√

2aTijaij

⎞
⎟
⎟
⎠

≥
1
2
+
1
2

erf(erf−1(2
√
1−� −1))

=
1
2
+
1
2
(2

√
1−� −1)

=
√
1−�.

(4.28)

Similarly for robot j, there is

Pr(ajipj ≤ bji − rs ‖‖aji‖‖) ≥
√
1−�. (4.29)

Note that aij = −aji , bij = −bji (Remark 4.2). It is trivial to prove that

aijpi ≤ bij − rs ‖‖aij ‖‖
ajipj ≤ bji − rs ‖‖aji‖‖

}
⟹ ‖‖pi −pj ‖‖ ≥ 2rs . (4.30)

Hence, we have
Pr(dis(pi ,pj ) ≥ 2rs) = Pr(‖‖pi −pj ‖‖ ≥ 2rs)
≥ Pr(aijpi ≤ bij − rs ‖‖aij ‖‖) ⋅Pr(ajipj ≤ bji − rs ‖‖aji‖‖)
≥

√
1−� ⋅

√
1−�

= 1−�.

(4.31)

This completes the proof. �

Theorem 4.3 (Robot-obstacle probabilistic collision free). ∀pi ∼ (p̂i ,Σi), where p̂i ∈ u,b
i ,

we have Pr(dis(pi ,o) ≥ rs) ≥ 1−� , i.e. the probability of collision between robot i and obstacle
o is below the threshold � .

Proof. Similar to Eq. (4.28), we have

Pr(aiopi ≤ bio − rs ‖aio‖) ≥
√
1−�. (4.32)

Based on the computation of aio and bio in Eq. (4.20)-(4.21), it is straightforward to prove
that

aiopi ≤ bio − rs ‖aio‖ ⟹ dis(pi ,o) ≥ rs . (4.33)
Thus,

Pr(dis(pi ,o) ≥ rs) ≥
√
1−�. (4.34)

If o ⊆ o and dis(pi ,o) ≥ rs , there is dis(pi ,o) ≥ rs . Hence, by combining with Remark
4.4, we have

Pr(dis(pi ,o) ≥ rs) ≥ Pr(o ⊆ o) ⋅Pr(dis(pi ,o) ≥ rs)
>

√
1−� ⋅

√
1−�

= 1−�,
(4.35)

which completes the proof. �
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4.4 Collision avoidance using B-UAVC
In this section, we present our decentralized collision avoidance method using the B-
UAVC. We start by describing a reactive feedback controller for single-integrator robots,
followed by its extensions to double-integrator and non-holonomic di�erential-drive robots.
A receding horizon planning formulation is further presented for general high-order
dynamical systems. We also provide a discussion on our proposed method.

4.4.1 Reactive feedback control

Single integrator dynamics

Consider robots with single integrator dynamics ṗi = ui , where ui = vi is the control input.
Similar to [81], a fast reactive feedback one-step controller can be designed to make each
robot move towards its goal location gi , as follows:

ui = vi,max ⋅
g∗i − p̂i
‖‖g∗i − p̂i‖‖

, (4.36)

where vi,max is the robot maximal speed and

g∗i B argmin
p∈u,b

i

‖p−gi‖ , (4.37)

is the closest point in the robot’s B-UAVC to its goal location.

The strategy used in the controller, Eq. (4.36), is also called the “move-to-projected-goal”
strategy [132]. At each time step, each robot in the system �rst constructs its B-UAVC u,b

i ,
then computes the closest point in u,b

i to its goal, i.e. the “projected goal”, and generates
a control input according to Eq. (4.36). Note that the constructed B-UAVC is a convex
polytope represented by the intersection of a set of half-spaces hyperplanes. Hence, �nding
the closest point, Eq. (4.37), can be recast as a linearly constrained least-square problem,
which can be solved e�ciently using quadratic programming in polynomial time [137].

Double integrator dynamics

For single-integrator robots, the reactive controller Eq. (4.36) guarantees the robot to be
always within its corresponding B-UAVC and thus probabilistic collision-free with other
robots and obstacles. However, the controller may drive the robot towards to the boundary
of its B-UAVC. Consider the double integrator robot which has a limited acceleration,
p̈i = ui , where ui = acci is the control input. It might not be able to continue to stay within
its B-UAVC when moving close to the boundary of the B-UAVC. Hence, to enhance safety,
as illustrated in Fig. 4.3 we introduce an additional safety stopping bu�er, which is de�ned
as

�si =
⎧⎪⎪
⎨⎪⎪⎩

‖‖‖a
T
ilvi

‖‖‖
2

2acci,max , if aTilvi > 0;
0, otherwise,

(4.38)

where acci,max is the maximal acceleration of the robot.
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Figure 4.3: Additional bu�er is added to allow robots with double integrator dynamics to have
enough space to decelerate.

This additional stopping bu�er heuristically leaves more space for the robot to decelerate
in advance before touching the boundaries of the original B-UAVC. Hence, the updated
B-UAVC in Eq. (4.25) with an additional safety stopping bu�er now becomes

u,b
i = {p ∈ ℝd ∶ aTilp ≤ bil −�

r
i −�

�
i −�

s
i , ∀l ∈ l , l ≠ i}. (4.39)

Accordingly, the reactive feedback one-step controller for double integrator robots is
as follows,

ui = acci,max ⋅
g∗i − p̂i
‖‖g∗i − p̂i‖‖

. (4.40)

Di�erential-drive robots

Consider di�erential-drive robots moving on a two dimensional space  ⊆ ℝ2, whose
motions are described by

̇̂pi = vi [
cos�i
sin�i ]

,

�̇i = !i ,
(4.41)

where �i ∈ [−�,�) is the orientation of the robot, and ui = (vi ,!i)T ∈ ℝ2 is the vector of
robot control inputs in which vi and !i are the linear and angular velocity, respectively.
We adopt the control strategy developed by [132] and [138] and brie�y describe it in the
following.

As shown in Fig. 4.4, �rstly, two line segments

Lv = u,b
i ∩HN , (4.42)

L! = u,b
i ∩HG , (4.43)

are determined, in which HN is the straight line from the robot position towards its current
orientation and HG is the straight line towards its goal location, respectively. Then the
closest point in the robot’s B-UAVC, g∗i , and in the two lines segments g∗i,v , g∗i,! is computed.
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Finally the control inputs of the robot are given by

vi = −k ⋅ [cos(�) sin�](p̂i −g∗i,v),

!i = k ⋅ atan(
[−sin(�) cos�](p̂i − (g∗i +g

∗
i,!)/2)

[cos(�) sin�](p̂i − (g∗i +g
∗
i,!)/2) ),

(4.44)

where k > 0 is the �xed control gain. It is proved by [132] that if the local safe region is
convex, then the robot will stay within the convex safe region under the control law of Eq.
(4.44).

Figure 4.4: Reactive feedback control for di�erential-drive robots.

4.4.2 Receding horizon planning

Consider general high-order dynamical systems with, potentially nonlinear, dynamics
xki = fi(x

k−1
i ,uk−1i ), where xki ∈ ℝ

nx denotes the robot state at time step k which typically
includes the robot position pki and velocity vki , and uki ∈ ℝ

nu the robot control input. To
plan a local trajectory that respects the robot kinodynamic constraints, we formulate a
constrained optimization problem with N time steps and a planning horizon � = NΔt ,
where Δt is the time step, as follows,

Problem 4.1 (Receding horizon trajectory planning).

min
x̂1∶Ni ,u0∶N−1i

N−1
∑
k=0

uki Ru
k
i + (p̂

N
i −g

N
i )

TQN (p̂Ni −g
N
i )

s.t. x0i = x̂i , (4.45a)
x̂ki = fi(x̂

k−1
i ,uk−1i ), (4.45b)

p̂ki ∈ 
u,b
i , (4.45c)

uk−1i ∈i , (4.45d)
∀i ∈ , ∀k ∈ {1,…,N}. (4.45e)

In Problem 4.1, i ∈ ℝnu is the admissible control space; R ∈ ℝnu×nu , QN ∈ ℝd×d are
positive semi-de�nite symmetric matrices. The constraint (4.45c) restrains the planned
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trajectory to be within the robot’s B-UAVC u,b
i . According to the de�nition of u,b

i in Eq.
(4.39), the constraint can be formulated as a set of linear inequality constraints:

aTil p̂
k
i ≤ bil −�

r
i −�

�
i −�

s
i , ∀l ∈ l , l ≠ i. (4.46)

At each time step, the robot �rst constructs its corresponding B-UAVC u,b
i represented

by a set of linear inequalities and then solves the above receding horizon planning problem.
The problem is in general a nonlinear and non-convex optimization problem due to the
robot’s nonlinear dynamics formulated as equality constraints x̂ki = fi(x̂k−1i ,uk−1i ). While a
solution of the problem including the planned trajectory and control inputs is obtained,
the robot only executes the �rst control input u0i . Then with time going on and at the next
time step, the robot updates its B-UAVC and solves the optimization problem again. The
process is performed until the robot reaches its goal location.

Remark 4.5 (Probability of collision for the planned trajectory). From Theorem 4.2 and
4.3, constraint (4.45c) guarantees that at each stage within the planning horizon, the collision
probability of robot i with any other robot or obstacle is below the speci�ed threshold � . Hence,
the probability of collision for the entire planning trajectory of robot i with respect to each
other robot and obstacle can be bounded by Pr(∪Nk=1p̂

k
i ∉ 

u,b
i ) ≤ ∑N

k=1Pr(p̂ki ∉ 
u,b
i ) = N� .

Nevertheless, this bound is over conservative in practice. The real collision probability of the
planned trajectory is much smaller than N� [28]. Hence, we impose the collision probability
threshold � for each individual stage in the context of receding horizon planning, thanks to
the fast re-planning and relatively small displacement between stages [115].

Algorithm 1 summarizes our proposed method for decentralized probabilistic multi-
robot collision avoidance, in which each robot in the system �rst constructs its B-UAVC,
and then compute control input accordingly to restrain its motion to be within the B-UAVC.

4.4.3 Discussion

Uncertainty estimation

For each robot i in the system, to construct its B-UAVC, the robot needs a) its own position
estimation mean p̂i and uncertainty covariance Σi from onboard measurements via a �lter,
e.g. a Kalman �lter, and b) to know each other robot j’s position mean p̂i and uncertainty
covariance Σj . In case communication is available, such position estimation information
can be communicated among robots. However, in a fully decentralized system where there
is no communication, each robot i will need to estimate other robot j’s position mean and
covariance, denoted by p̃j and Σ̃j , via its own onboard sensor measurements. In this case,
we assume that robot i’s estimation of robot j’s position mean is the same as robot j’s own
estimation, i.e. p̃j = p̂j ; while robot i’s estimation of the uncertainty covariance of robot j is
larger than its own localization uncertainty covariance, i.e. |Σ̃j | ≥ |Σi |. This assumption is
reasonable in practice since the robot generally has more accurate measurements of its own
position than other robots in the environment. Then robot i computes its B-UAVC using
p̂i ,Σi , p̃j , and Σ̃j . According to the properties of the best linear separator, this assumption
leads that each robot i always partitions a smaller space when computing the separating
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Algorithm 1 Collision avoidance using b-uavc for each robot i ∈  in a multi-robot team
—————— Construction of B-UAVC ——————

1: Obtain pi ∼ (p̂i ,Σi) via state estimation
2: for Each other robot j ∈ , j ≠ i do
3: Estimate pj ∼ (p̂j ,Σj )
4: Compute the best linear separator parameters (aij , bij ) via Eq. (4.12)
5: end for
6: for Each static obstacle o ∈ o do
7: Estimate do ∼ (0,Σo) with known ̂o
8: Compute the separating hyperplane parameters (aio , bio) via Eqs. (4.13)-(4.21)
9: end for

10: for Each separating hyperplane l ∈ l , l ≠ i do
11: Compute the safety radius bu�er via Eq. (4.23): �ri = rs ‖ail ‖
12: Compute the collision probability bu�er via Eq. (4.24): ��i =

√
2aTilΣiail ⋅

erf−1(2
√
1−� −1)

13: Construct the B-UAVC via Eq. (4.25)
14: end for

—————— Collision Avoidance Action ——————
15: if i is single-integrator then
16: Compute control input via Eqs. (4.36)-(4.37)
17: else if i is double-integrator then
18: Compute control input via Eqs. (4.38)-(4.40)
19: else if i is di�erential-drive then
20: Compute control input via Eqs. (4.42)-(4.44)
21: else
22: Compute control input by solving Problem 1
23: end if

hyperplane with another robot j, which results in a more conservative B-UAVC to ensure
safety for robot i itself.

Empty B-UAVCs

Taking into account uncertainty, the robots being probabilistic collision-free (De�nition
1), i.e., Pr(‖‖pi −pj ‖‖ ≥ 2rs) ≥ 1− �,∀i, j ∈ {1,…,n}, i ≠ j, does not guarantee that the de�ned
B-UAVC u,b

i is non-empty. Nevertheless, the case u,b
i being empty is rarely observed in

our simulations and experiments. We handle this situation by decelerating the robot if its
B-UAVC is empty.

Deadlock resolution heuristic

Since the proposed collision avoidance method is local and decentralized, deadlocks may
happen. In this chapter, we detect and resolve deadlocks in a heuristic way. Let ‖Δpi‖ be the
position progress between two consecutive time steps of robot i, and Δpmin a prede�ned



4

60 4 Probabilistic multi-robot collision avoidance using bu�ered uncertainty-aware Voronoi cells

minimum allowable progress distance for the robot in ndead time steps. If the robot has not
reached its goal and Σndead ‖Δpi‖ ≤ Δpmin, we consider the robot as in a deadlock situation.
For the one-step controller, each robot must be at the “projected goal” g∗i when the system
is in a deadlock con�guration [81]. In this case, each robot chooses one of the nearby edges
within its B-UAVC to move along. For receding horizon planning of high-order dynamical
systems, the robot may get stuck due to a local minima of the trajectory optimization
problem. In this case, we temporarily change the goal location gi of each robot by clockwise
rotating it along the z axis with 90°, i.e.

gi,temp = RZ (−90°)(gi − p̂i) + p̂i , (4.47)

where RZ denotes the rotation matrix for rotations around z-axis. This temporary rotation
will change the objective of the trajectory optimization problem, thus helping the robot to
recover from a local minima. Once the robot recovers from stuck, its goal is changed back
to gi .

Similar to most heuristic deadlock resolutions, the solutions presented here can not
guarantee that all robots will eventually reach their goals since livelocks (robots contin-
uously repeat a sequence of behaviors that bring them from one deadlock situation to
another one) may still occur.

4.5 Simulation results
We now present simulation results comparing our proposed B-UAVC method with state-of-
the-art baselines as well as a performance analysis of the proposed method in a variety of
scenarios.

4.5.1 Comparison to the BVC method

We �rst compare our proposed B-UAVC method with the BVC approach [81] that we
extend in two-dimensional obstacle-free environments with single integrator robots. Both
the B-UAVC and BVC methods only need robot position information to achieve collision
avoidance, in contrast to the well-known reciprocal velocity obstacle (RVO) method [23]
which also requires robot velocity information to be communicated or sensed. Comparison
between BVC and RVO has been demonstrated by [81] in 2D scenarios, hence in this
chapter we focus on comparing the proposed B-UAVC with BVC.

We deploy the B-UAVC and BVC in a 10 × 10m environment with 2, 4, 8, 16 and 32
robots forming an antipodal circle swapping scenario ([23]). In this scenario, the robots
are initially placed on a circle (equally spaced) and their goals are located at the antipodal
points of the circle. We use a circle with a radius of 4.0 m in simulation. Each robot has a
radius of 0.2 m, a local sensing range of 2.0 m and a maximum allowed speed of 0.4 m/s.
The goal is assumed to be reached for each robot when the distance between its center and
goal location is smaller than 0.1 m. To simulate collision avoidance under uncertainty, two
di�erent levels of noise, Σ1 = diag(0.04m, 0.04m)2 and Σ2 = diag(0.06m, 0.06m)2, are added
to the robot position measurements. Particularly, each robot’s localization uncertainty
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covariance is Σ1 and its estimation of other robots’ position uncertainty covariance is Σ2.
The time step used in simulation is Δt = 0.1 s.

In the basic BVC implementation, an extra 10% or 100% radius bu�er is added to the
robot’s real physical radius to account for measurement uncertainty for comparison [114].
In the B-UAVC implementation, the collision probability threshold is set as � = 0.05. Any
robot will stop moving when it arrives at its goal or is involved in a collision. Both the
B-UAVC and BVC methods use the same deadlock resolution techniques proposed in this
chapter. We set a maximum simulation step K = 800 and the collision-free robots that do
not reach their goals within K steps are regarded to be in deadlocks/livelocks.

For each case (number of robots n) and each method, we run the simulation 10 times.
In each single run, we evaluate the following performance metrics: (a) collision rate, (b)
minimum distance among robots, (c) average travelled distance of robots, and (d) time to
complete a single run. The collision rate is de�ned to be the ratio of robots colliding over
the total number of robots. Time to complete a single run is de�ned to be the time when
the last robot reaches its goal. Note that the metrics (2)(3)(4) are calculated for robots that
successfully reach their goal locations. Finally, statistics of 10 instances under each case
are presented.

The simulation results are presented in Fig. 4.5. In all runs, no deadlocks are observed.
In terms of collision avoidance, both the B-UAVC approach and BVC with additional 100%
robot radius achieve zero collision in all runs. The BVC with only 10% robot radius leads
to collisions when the total number of robots gets larger. In particular, when there are 32
robots an average of 28% robots collide, as shown in Fig. 4.5a. While the BVC with 100%
additional robot radius can also achieve zero collision rate as our proposed B-UAVC, it is
more conservative and less e�cient. In average, the B-UAVC saves 10.1% robot travelled
distance (Fig. 4.5c) and 14.4% time for completing a single run (Fig. 4.5d) comparing to the
BVC with additional 100% robot radius.
Remark 4.6. The “BVC + X%” is a heuristic way to handle uncertainty. The above simulation
results show that if X is too small, then it cannot ensure safety; while if X is too large, the
results will be very conservative and less e�cient. So generally reasoning about individual
uncertainties using the proposed B-UAVC method will perform better than determining an
extra X% bu�er.

Remark 4.7. In some cases we can design such an X that it will have the same results as the
B-UAVC method. Consider the case where Σi = Σj = �2I . According to Remark 4.1, the best
linear separator coincides with the separating hyperplane computed by the BVC method, whose
parameters are denoted by aij and bij . The hyperplane parameters can be further normalized
to make ‖‖aij ‖‖ = 1. In this case, our B-UAVC and the BVC have the same safety radius bu�er
�ri = rs . Given a collision probability threshold � , our B-UAVC further introduces another
bu�er to handle uncertainty

��i =
√
2aTilΣiail ⋅ erf−1(2

√
1−� −1) = �

√
2 ⋅ erf−1(2

√
1−� −1).

If we choose an extra safety bu�er X% such that

X% ⋅ rs = �
√
2 ⋅ erf−1(2

√
1−� −1),
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Figure 4.5: Evaluation of the antipodal circle scenario with varying numbers of single-integrator
robots. The (a) collision rate, (b) minimum distance, (c) travelled distance and (d) complete
time are shown. Lines denote mean values and shaded areas around the lines denote standard
deviations over 10 repetitions for each scenario.

then the results of the “BVC + X%” method are the same as our B-UAVC method. However, our
B-UAVC method can handle general cases where it is hard to design an X% to always achieve
the same level of performance.

4.5.2 Performance analysis

We then study the e�ect of collision probability threshold on the performance of the
proposed B-UAVC method. Similarly, we deploy the B-UAVC in a 10×10m environment
with 2, 4, 8, 16 and 32 robots in obstacle-free and cluttered environments with 10% obstacle
density. In the obstacle-free case for each number of robots n, 10 scenarios are randomly
generated to form a challenging asymmetric swapping scenario [139], indicating that the
environment is split into n sections around the center and each robot is initially randomly
placed in one of them while required to navigate to its opposite section around the center.
In the obstacle-cluttered case, 10 random moving scenarios are simulated for each di�erent
number of robots in which robot initial positions and goal locations are randomly generated.
Fig. 4.6 shows a sample run of the scenario with 8 robots and 10 obstacles. We then run each



4.5 Simulation results

4

63

generated scenario 5 times given a parameter setting (collision probability threshold). The
robots have the same radius and maximal speed as in Section 4.5.1. Localization noise with
zero mean and covariance Σ = diag(0.06m, 0.06m)2 is added. For evaluation of performance,
we focus on the robot collision rate, the robot deadlock rate, and the minimum distance
among successful robots.
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Figure 4.6: A sample simulation run of the random moving scenario with 8 robots and 10%
obstacle density. The robot initial and goal locations are marked in circle disks and solid
squares. Grey boxes are static obstacles. The B-UAVCs are shown in shaded patches with
dashed boundaries.

We evaluate the performance of B-UAVC with di�erent levels of collision probability
threshold: � = 0.05, 0.10, 0.20 and 0.30. The simulation results are presented in Fig. 4.7. In
the top row of the �gure, we consider the collision rate among robots. The result shows
that with a roughly small collision probability threshold � = 0.05,0.10,0.20, no collisions
are observed in both obstacle-free asymmetric swapping and obstacle-cluttered random
moving scenarios, indicating that the B-UAVC method maintains a high level of safety.
However, when � is set to 0.3, the collision rate among robots increase dramatically, in
particular when the number of robots is large. For example, in the asymmetric swapping
scenario with 32 robots, there are 68.75% robots involve in collisions in average. In the
bottom row of the �gure, the minimum distance among robots are compared. The result
shows that with smaller threshold, the minimum distance will be a little bit larger. The
reason is that robots with a smaller threshold will have more conservative behavior and
have smaller B-UAVCs during navigation.
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Figure 4.7: E�ect of the collision probability threshold on the method performance. The (a)-(b)
collision rate, and (c)-(d) minimum distance among robots are shown. The evaluation has
2, 4, 8, 16, and 32 robot cases with 10 instances each. The left column shows results of the
asymmetric swapping scenario and the right column shows results of the random moving
scenario with 10% obstacle density. Lines denote mean values and shaded areas around the
lines denote standard deviations over 50 runs.

4.5.3 Simulations with quadrotors in 3D space

We evaluate our receding horizon planning algorithm with quadrotors in 3D space and
compare our method with one of the state-of-the-art quadrotor collision avoidance methods:
the chance-constrained nonlinear MPC (CCNMPC) with sequential planning [49], which
requires communication of future planned trajectories among robots. For both methods,
we adopt the same quadrotor dynamics model for planning. The quadrotor radius is set as
r = 0.3 m and the collision probability threshold is set to � = 0.03. The time step is Δt = 0.05
s and the total number of steps is N = 20 resulting in a planing horizon of one second.

As shown in Fig. 4.8, we simulate with six quadrotors exchanging their initial po-
sitions in an obstacle-free 3D space. Each quadrotor is under localization uncertainty
Σ = diag(0.04 m, 0.04 m, 0.04 m)2. For each method, we run the simulation 10 times and
calculate the minimum distance among robots. Both our B-UAVC method and the CCNMPC
method successfully navigates all robots without collision. An average minimum distance
of 0.72 m is observed in our B-UAVC method, while the one of CCNMPC is 0.62 m, which
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indicates our method is more conservative than the CCNMPC. However, the CCNMPC is
centralized and requires robots to communicate their future planned trajectories with each
other, while the B-UAVC method only needs robot positions to be shared or sensed.
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(a) B-UAVC method.
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(b) CCNMPC method [49].

Figure 4.8: Simulation with six quadrotors exchanging positions in 3D space. Solid lines
represent executed trajectories of the robots. (a) Results of our B-UAVC method. (b) Results of
the CCNMPC method [49].

4.6 Experimental validation
In this section, we describe the experimental results with a team of real robots.

4.6.1 Experimental setup

We test our proposed approach on both ground vehicles and aerial vehicles in an indoor
environment of 8m (L) × 3.4m (W) × 2.5m (H). Our ground vehicle platform is the Clearpath
Jackal robot and our aerial vehicle platform is the Parrot Bebop 2 quadrotor. For ground
vehicles, we apply the controller designed for di�erential-drive robots as shown in Section
4.4.1. For quadrotors, the receding horizon trajectory planner presented in Section 4.4.2 is
employed. The quadrotor dynamics model f in Problem 4.1 is given in Appendix A. For
solving Problem 1 which is a nonlinear programming problem, we rely on the solver Forces
Pro [127] to generate fast C code to solve it. Both types of robots allow executing control
commands sent via ROS. The experiments are conducted in a standard laptop (Quadcore
Intel i7 CPU@2.6 GHz) which connects with the robots via WiFi.

An external motion capture system (OptiTrack) is used to track the pose (position and
orientation) of each robot and obstacle in the environment running in real time at 120 Hz,
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which is regarded as the real (ground-truth) pose. To validate collision avoidance under
uncertainty, we then manually add Gaussian noise to the real pose data to generate noisy
measurements. Taking the noisy measurements as inputs, a standard Kalman �lter running
at 120 Hz is employed to estimate the states of the robots and obstacles. In all experiments,
the added position measurements noise to the robots is zero mean with covariance Σ′i =
diag(0.06 m, 0.06 m, 0.06 m)2, which results in an average estimated position uncertainty
covariance Σi = diag(0.04 m, 0.04 m, 0.04 m)2. The added noise to the obstacles is zero mean
with covariance Σ′o = diag(0.03 m, 0.03 m, 0.03 m)2 and the resulted estimated position
uncertainty covariance is Σo = diag(0.02 m, 0.02 m, 0.02 m)2. The collision probability
threshold is set as �r = 0.03 and �o = 0.03 as in previous works [49, 140].

4.6.2 Experimental results

Experiments with di�erential-drive robots in 2D

We �rst validated our proposed approach with two di�erential-drive robots. In the experi-
ment, two robots are required to swap their positions while avoiding two static obstacles
in the environment. The robot safety radius is set as 0.3 m. We run the experiment four
times. The two robots successfully navigated to their goals while avoiding each other as
well as the obstacles in all runs.

Fig. 4.9 presents the results of one run. The top row of the �gure shows a series
of snapshots during the experiment, while the bottom row shows the robots’ travelled
trajectories and their corresponding B-UAVCs. It can be seen that each robot always keeps
a very safe region (B-UAVC) taking into account its localization and sensing uncertainties.
In Fig. 4.10 we cumulate the distance between the two robots (Fig. 4.10a) and distance
between the robots and obstacles (Fig. 4.10b) during the whole experiments. It can be seen
that a minimum safe inter-robot distance of 0.6 m and a safe robot-obstacle distance of 0.3
m were maintained over all the runs.

Experiments with quadrotors in 3D

We then performed experiments with a team of quadrotors in two scenarios: with and
without static obstacles. The quadrotor safety radius is set as 0.3 m.

Scenario 1 Two quadrotors swap their positions while avoiding two static obstacles
in the environment. We performed the swapping action four times and Fig. 4.11 presents
one run of the results.

Scenario 2 Three quadrotors �y in a con�ned space while navigating to di�erent goal
positions. The goal locations are randomly chosen such that the quadrotors’ directions from
initial positions towards goals are crossing. New goals are generated after all quadrotors
reach their current goals. We run the experiment for a consecutive two minutes within
which the goal of each quadrotor has been changed eight times.

Fig. 4.12 presents a series of snapshots during the experiment. Fig. 4.13 cumulates the
inter-quadrotor distance in the experiments of both scenarios, and the distance between
quadrotors and obstacles in Scenario 1. It can be seen that a minimum safety distance of



4.6 Experimental validation

4

67

-4 -2 0 2 4
x [m]

-1

0

1

(a) t = 2 s.

-4 -2 0 2 4
x [m]

-1

0

1

(b) t = 6 s.

-4 -2 0 2 4
x [m]

-1

0

1

(e) t = 8 s.

-4 -2 0 2 4
x [m]

-1

0

1

(f) t = 15 s.

Figure 4.9: Collision avoidance with two di�erential-drive robots and two static obstacles. The
two robots are required to swap their positions. Top row: Snapshots of the experiment. Bottom
row: Trajectories of the robots. Robot initial and goal positions are marked in circle disks and
solid squares, respectively. Grey boxes are static obstacles. The B-UAVCs are shown in shaded
patches with dashed boundaries.

0.6 m among quadrotors and that of 0.3 m between quadrotors and obstacles were achieved
during the whole experiments.

Experiments with heterogeneous teams of robots

We further tested our approach with one ground di�erential-drive robot and one quadrotor
to show that it can be applied to heterogeneous robot teams. In the experiment, the ground
robot only considers its motion and the obstacles in 2D (the ground plane) while ignoring
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Figure 4.10: Experimental results with two di�erential-drive robots.

the �ying quadrotor. In contrast, the quadrotor considers both itself location and the
ground robot’s location as well as obstacles in 3D, in which it assumes the ground vehicle
has a height of 0.6 m. To this end, the B-UAVC of the ground robot is a 2D convex region
while that of the quadrotor is a 3D one.

Fig. 4.14 shows the results of the experiment. It can be seen that the two robots success-
fully reached their goals while avoiding each other and the static obstacles. Particularly
at t = 4 s, the quadrotor actively �ies upward to avoid the ground robot. In Fig. 4.15
we cumulate the distance between the two robots and the distance between robots and
obstacles, which show that a safe inter-robot clearance of 0.6 m and that of 0.3 m between
robots and obstacles were maintained during the experiment.
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(a) t = 0.1 s. (b) t = 5 s. (c) t = 10.5 s.

Figure 4.11: Collision avoidance with two quadrotors and two static obstacles. The two
quadrotors are required to swap their positions. Top row: Snapshots of the experiment. Bottom
row: Trajectories of the robots. Quadrotor initial and goal positions are marked in circles
and diamonds. Solid lines represent travelled trajectories and dashed lines represent planned
trajectories.

(a) t = 0.1 s. (b) t = 6 s. (c) t = 10 s.

Figure 4.12: Collision avoidance with three quadrotors in a shared workspace. Top row:
Snapshots of the experiment. Bottom row: Trajectories of the robots.
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Figure 4.13: Experimental results with two/three quadrotors with/without obstacles.
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(a) t = 0.1 s. (b) t = 4 s.

(c) t = 6 s. (d) t = 12 s.

Figure 4.14: Collision avoidance with a heterogeneous team of a di�erential-drive robot and a
quadrotor. Top row: Snapshots of the experiment. Bottom row: Trajectories of the robots.
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Figure 4.15: Experimental results with a ground di�erential-drive robot and a quadrotor.
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4.7 Conclusion
In this chapter, we presented a decentralized and communication-free multi-robot collision
avoidance method that accounts for robot localization and sensing uncertainties. By
assuming that the uncertainties are according to Gaussian distributions, we computed
a chance-constrained bu�ered uncertainty-aware Voronoi cell (B-UAVC) for each robot
among other robots and static obstacles. The probability of collision between robots and
obstacles is guaranteed to be below a speci�ed threshold by constraining each robot’s
motion to be within its corresponding B-UAVC. We applied the method to single-integrator,
double-integrator, di�erential-drive, and general high-order dynamical multi-robot systems.
In comparison with the BVC method, we showed that our method achieves robust safe
navigation among a large number of robots with noisy position measurements where the
BVC approach will fail. In simulations with a team of quadrotors, we showed that our
method achieves safer yet more conservative motions compared with the CCNMPC method,
which requires robots to communicate future trajectories. We also validated our method in
extensive experiments with a team of ground vehicles, quadrotors, and heterogeneous robot
teams in both obstacle-free and obstacles-cluttered environments. Through simulations and
experiments, two limitations of the proposed approach are also observed. The approach can
achieve a high level of safety under robot localization and sensing uncertainty, however, it
also leads to conservative behaviors of the robots, particularly for agile vehicles (quadrotors)
in con�ned space. And, since the approach is local and e�cient inter-robot coordination
is not well investigated, deadlocks and livelocks may occur for large numbers of robots
moving in complex environments.
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barrier certi�cates for
multi-robot collision avoidance

under uncertainty

Parts of this chapter appeared in:

• H. Zhu, and J. Alonso-Mora, “Chance-constrained safety barrier certi�cates for multi-robot collision
avoidance under uncertainty,” submitted to 2022 IEEE International Conference on Robotics and Automation
(ICRA), under review.
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5.1 Introduction
Multi-robot systems have been increasingly deployed in real-world environments to accom-
plish some high-level tasks, such as coverage [141], target tracking [142], and formation
maintaining [125]. To achieve autonomous navigation of robots in these scenarios, a typical
solution is to adopt a two-stage planning framework: a high-level task planner that outputs
a sequence of task-orientated waypoints for each robot, and a low-level motion planner
that plans a local motion and control input for the robot to reach these waypoints [143].
In Chapter 3 and Chapter 4, we have presented two local collision-free motion planners,
namely CCNMPC and B-UAVC, which can compute safe control inputs for robots to move
towards their goal waypoints. Alternatively, another two-stage planning framework is to
design a primary nominal controller that outputs a task-orientated control input which may
not consider collision avoidance, and then modi�es this control input to ensure safety if
necessary through a local collision avoidance controller. Based on safety barrier certi�cates
(SBC), [82] designs such a collision avoidance controller that can minimally modify a given
primary nominal controller for multi-robot systems. In this sense, the SBC can be regarded
as a safety �lter of the system.

In this chapter, we extend the SBC method [82] from deterministic scenarios to proba-
bilistic cases considering robot measurement noise which leads to uncertainty of the robot
localization and sensing of other robots. Speci�cally, we introduce chance-constrained
safety barrier certi�cates (CC-SBC), which de�nes a probabilistic safe control space for
each robot in the system. The CC-SBC is reformulated to and approximated with a set
of quadratic constraints. At each time step, each robot formulates its CC-SBC according
to the estimated state and uncertainty of itself and neighboring robots, based on which a
quadratically constrained quadratic program (QCQP) is formulated and solved to �nd a safe
control input that minimally modi�es a given nominal controller. Probabilistic collision
avoidance is guaranteed via the forward-invariance property of the safety set which is
achieved by constraining the robot control input in its CC-SBC.

The remaining of this chapter is organized as follows. Section 5.2 introduces prelimi-
naries of safety barrier certi�cates and moments of probability distributions. Section 5.3
presents the approach of using chance-constrained safety barrier certi�cates for multi-robot
collision avoidance under uncertainty. Section 5.4 shows simulation results to validate the
proposed approach. Finally, Section 5.5 concludes the chapter.

5.2 Preliminaries

5.2.1 Safety barrier certi�cates

Consider a nonlinear control-a�ne system:

ẋ = f(x) +g(x)u, (5.1)

where x ∈  ⊂ ℝnx and u ∈ ⊂ ℝnu are the system state and control input, respectively. 
and  are convex admissable state and control space of the system. f ∶ ℝnx →ℝnx and
g ∶ ℝnx →ℝnx×nu are locally Lipschitz continuous.
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Let  ⊂ ℝnx be a safe set of the system state, de�ned as the superlevel set of a continu-
ously di�erentiable function ℎ ∶ ℝnx →ℝ:

 ∶= {x ∈ ℝnx | ℎ(x) ≥ 0}. (5.2)

The system (5.1) is ensured to be safe with respect to  if  is forward invariant, i.e. for
any x(0) ∈ , x(t) remains in  for all t ≥ 0. Forward invariance of the safe set  can be
achieved using control barrier functions [144]. Formally,

De�nition 5.1. The function ℎ in Eq. (5.2) is a control barrier function (CBF) if there exists
an extended class ∞ function � such that

sup
u∈

CBC(x,u) ≥ 0,

where
CBC(x,u) = Lf ℎ(x)+Lgℎ(x)u+�(ℎ(x)),

is the control barrier condition (CBC).

Theorem 5.1 ([145]). If ℎ is a CBF on , then any Lipschitz continuous controller satisfying
Eq. (5.1) renders the system (5.1) safe with respect to .

The safety barrier certi�cates (SBC) de�ne a safe admissable control space for the
system as follows:

(x) ∶= {u ∈ | CBC(x,u) ≥ 0}. (5.3)

Note that the condition CBC(x,u) ≥ 0 can be written as

−Lgℎ(x)u ≤ Lf ℎ(x)+�(ℎ(x)), (5.4)

which is a�ne in u. That is, (x) can be represented by a set of linear inequality constraints.

To apply the above safety barrier certi�cates for safety-critical control, one can assume
that there is a nominal controller u∗ and formulate a quadratic program (QP) to �nd a
safety-critical minimally invasive controller:

u(x) = argmin
u∈

1
2
‖u−u∗‖2 (SBC-QP)

s.t. CBC(x,u) ≥ 0.
(5.5)

The QP formulation in Eq. (5.5) can be regarded as a safety �lter. In this chapter, we
employ the above idea of safety barrier certi�cates and extend it to probabilistic scenarios
to account for system state uncertainty.

5.2.2 Moments of distributions

In statistics, the moments of a probabilistic distribution are quantitative measures of
the distribution’s shape. For example, the �rst moment is the expected value and the
second central moment is the covariance. Formally, for a multivariate random variable
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x = [x1,… ,xnx ] ∈ ℝnx with probability density function (PDF) p(x), its m-th moment about
zero is denoted by and de�ned as follows:

E[x1x2⋯xm] = ∫
∞
xk1xk2⋯xkmp(x)dx.

Moments of a distribution can also be computed using its characteristic function (CF)
de�ned as Φ(x) = E[eixT x], i =

√
−1, as follows:

E[x1x2⋯xm] = i−m )mΦ(x)
)xk1xk2⋯xkm

||||x=0
.

The up to forth moments about zero of a multivariate Gaussian distribution x ∼ (�,Σ),
where � ∈ ℝnx ,Σ ∈ ℝnx×nx are the mean vector and covariance matrix, are as follows,

E[x i] = �i , (5.6a)
E[x ix j] = �i�j +Σij , (5.6b)
E[x ix jxk] = �i�j�k +�iΣjk +�jΣik +�kΣij , (5.6c)
E[x ix jxkx l ] = �i�j�k�l , (5.6d)
+�i�jΣkl +�i�kΣjl +�i�lΣjk +�j�kΣil +�j�lΣik +�k�lΣij , (5.6e)
+ΣijΣkl +ΣikΣjl +ΣilΣjk , (5.6f)
∀i, j, k, l ∈ {1,…,nx}. (5.6g)

Furthermore, let Δx = x−�, then we have Δx ∼ (0,Σ), and its up to forth moments about
zero are

E[Δx i] = 0, (5.7a)
E[Δx iΔx j] = Σij , (5.7b)
E[Δx iΔx jΔxk] = 0, (5.7c)
E[Δx iΔx jΔxkΔx l ] = ΣijΣkl +ΣikΣjl +ΣilΣjk . (5.7d)

5.2.3 Problem formulation

Similar to Chapter 4, we consider a group of n mobile robots moving in a d-dimensional
space  ⊆ ℝd , where d ∈ {2,3}. The robot dynamics are described in the form of Eq.
(5.1). For each robot i ∈  = {1,…,n}, denote by xi ∈ ℝnx and ui ∈ ℝnu its state and control
input. The state xi typically may contain the robot’s position pi ∈ ℝd and velocity vi ∈ ℝd .
We use the sub-script i to indicate variables corresponding to the robot i. To achieve safe
navigation, all robots in the group are required to keep a safety distance ds from each other,
i.e. ‖‖pi −pj ‖‖ ≥ ds , ∀i ≠ j ∈ .

We consider that the state of each robot is obtained by a state estimator, e.g. a Kalman
�lter, and is described as a Gaussian distribution with covariance Σi , i.e. xi ∼ (x̂i ,Σi).
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Taking the state estimation uncertainty into account, the collision-free condition for each
pair of robots can only be satis�ed in a probabilistic manner, which is de�ned as the
following chance constraint,

Pr(‖‖pi −pj ‖‖ ≥ ds) ≥ 1−�, ∀i, j ∈ , i ≠ j. (5.8)

The objective of probabilistic multi-robot collision avoidance is to �nd a control action ui
for each robot in the group such that the probability of collision among robots is below a
speci�ed threshold, as shown in Eq. (5.8).

5.3 Approach
In this section, we present our probabilistic multi-robot collision avoidance method by
introducing chance-constrained safety barrier certi�cates (CC-SBC).

5.3.1 SBC for multi-robot systems

Let ij be the pairwise safe set between robot i and j de�ned by

ij = {xij ∈ ℝnx | ℎij (xij ) ≥ 0},

where xij = xi −xj is the relative state of the two robots. ℎij (xij ) is the level set function
of the set ij as well as the candidate CBF used to ensure the forward invariance of ij ,
which should lead to

ℎij (xij ) ≥ 0 ⟹ ‖‖pi −pj ‖‖ ≥ ds , (5.9)

for inter-robot collision avoidance. Here we use a general form to denote the function
ℎij (xij ). Detailed formulations of ℎij (xij ) for robots with particular dynamics are discussed
later.

Denote by CBCij (xij ,uij ) the pairwise control barrier condition (CBC) of robot i and j
[82]. Then Eq. (5.4) becomes

−
)ℎ(xij )
)xij

g(xij )uij ≤
)ℎ(xij )
)xij

f(xij ) +�(ℎ(xij )).

Where uij = ui −uj ∈ ℝnu . Let

Aij (xij ) = −
)ℎ(xij )
)xij

g(xij ),

bij (xij ) =
)ℎ(xij )
)xij

f(xij ) +�(ℎ(xij )),
(5.10)

then there is
Aij (xij )uij ≤ bij (xij ).
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The above pairwise safety barrier constraint between robot i and j can be distributed to
each robot as

Aij (xij )ui ≤
1
2
bij (xij ),

−Aij (xij )uj ≤
1
2
bij (xij ).

Hence, for each robot i in the system, its safety barrier certi�cates (SBC) can be de�ned as

i(x1∶n) ∶= {ui ∈ | Aij (xij )ui ≤
1
2
bij (xij ), ∀j ≠ i ∈ }, (5.11)

where x1∶n = [x1,… ,xn] is the joint state of the multi-robot system.

5.3.2 Chance-constrained SBC

According to Theorem 5.1, for any pair of robots i and j which are initially safe, i.e. xij ∈ ij
at current time, by enforcing the control input of each robot to be within its SBC, the
evolved relative state xij is guaranteed to be safe, i.e. we have ui ∈ i(x1∶n),uj ∈ j (x1∶n)⇒
xij ∈ ij . Hence, in probabilistic scenarios where the state x1∶n estimation uncertainty is
considered, it is straightforward to show that Pr(ui ∈ i(x1∶n),uj ∈ j (x1∶n)) ≤ Pr(xij ∈ ij ).
Consequently, also according to Eq. (5.9), we can derive the following probabilistic safe
condition,

Pr(ui ∈ i(x1∶n),uj ∈ j (x1∶n)) ≥ 1−�
⟹ Pr(xij ∈ ij ) ≥ 1−�
⟹ Pr(‖‖pi −pj ‖‖ ≥ ds) ≥ 1−�.

We can further decompose the chance constraint Pr(ui ∈ i(x1∶n),uj ∈ j (x1∶n)) ≥ 1−�
to each robot as Pr(ui ∈ i(x1∶n)) ≥

√
1−� and Pr(uj ∈ j (x1∶n)) ≥

√
1−� , taking into

account that the two robots are controlled independently in a decentralized manner. Recall
that i(x1∶n) in Eq. (5.11) is de�ned by the condition Aij (xij )ui ≤ 1

2bij (xij ), so Pr(ui ∈
i(x1∶n)) = Pr(Aij (xij )ui ≤ 1

2bij (xij )), and we can then formally de�ne the following chance-
constrained safety barrier certi�cates (CC-SBC)

�
i (x1∶n) ∶= {ui ∈ | Pr(Aij (xij )ui ≤

1
2
bij (xij )) ≥

√
1−�, ∀j ≠ i ∈ }, (5.12)

which hence characterizes a probabilistically safe control space for each robot in the
system. Namely, by enforcing ui ∈ �

i (x1∶n), ∀i ∈ , the system is probabilistically safe
corresponding to Eq. (5.8).

Remark 5.1. The set �
i (x1∶n) is in general non-convex.

Remark 5.2. Our de�nition of chance-constrained safety barrier certi�cates (CC-SBC) is
di�erent from the probabilistic safety barrier certi�cates (PrSBC) de�ned by [115], which is
de�ned as a convex set directly and is only designed for single-integrator dynamics, while our
de�nition is for general nonlinear control-a�ne systems.
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5.3.3 Quadratically constrained quadratic program

Similar to Eq. (5.5), we can then formulate a chance-constrained optimization (CCO)
problem to �nd a probabilistic safety-critical controller for each robot i in the system as
follow:

ui(x1∶n) = argmin
ui∈

1
2
‖‖ui −u

∗
i ‖‖
2 (CC-SBC-CCO)

s.t. Pr(Aij (xij )ui ≤
1
2
bij (xij )) ≥

√
1−�, ∀j ≠ i ∈ .

(5.13)

where u∗i is a nominal controller of the robot.

The CCO (5.13) is hard to solve due to the chance constraints Pr(Aij (xij )ui ≤ 1
2bij (xij )) ≥√

1−� . Without loss of generality and for simplicity, we omit the sub-script ⋅ij and xij in
the equations in this sub-section, and let A = Aij (xij ),b = 1

2bij (xij ). Further let � = b −Aui ,
then the chance constraint can be written as

Pr(Aui ≤ b) = Pr(� ≥ 0) ≥
√
1−�. (5.14)

To deal with the above chance constraint, we �rst apply the Cantelli’s inequality, which is
also known as the one-tailed Chebyshev inequality [58]:

Pr(� ≥ 0)

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

≤ �2�
�2�+�

2
�
, if �� < 0

≥ 1− �2�
�2�+�

2
�
, if �� ≥ 0

(5.15)

where �� and �2� are the mean and variance of �(xij ) respectively. Intuitively, we need the
expectation (mean) of �(xij ) to be larger than zero. Hence, the chance constraint Eq. (5.14)
can be reformulated as

�� ≥ 0, (5.16a)
√
1−��2� − (1−

√
1−�)�2� ≤ 0, (5.16b)

which can be proved to be quadratic in the following theorem.

Theorem 5.2. The constraints Eq. (5.16a) and (5.16b) are quadratic with respect to ui .

Proof. Note that � = b −Aui = b −uTi AT . Hence we have

�� = E[b]−E[A]ui ,

�2� = V[b]+u
T
i V[A

T ]ui +2(E[b]E[A]−E[bA])ui .

Then, Eq. (5.16a) and (5.16b) can be written as,

A′ui +b′ ≤ 0,

1
2
uTi Pui +q

Tui + r ≤ 0,
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which are quadratic with respect to ui , where

A′ = E[A], b′ = −E[b],

P = 2
√
1−�V[AT ] − 2(1−

√
1−�)E[A]E[A]T ,

q = 2E[b]E[A]−2
√
1−�E[bA],

r =
√
1−�V[b]− (1−

√
1−�)E[b]2.

(5.17)

This completes the proof. �

The CCO (5.13) can then be reformulated to the following quadratically constrained
quadratic program (QCQP):

ui(x1∶n) = argmin
ui∈

1
2
‖‖ui −u

∗
i ‖‖
2 (CC-SBC-QCQP)

s.t. A′ui +b′ ≤ 0,
1
2
uTi Pui +q

Tui + r ≤ 0.

(5.18)

in which the parameters of the quadratic constraints, as shown in Eq. (5.17), can be com-
puted by evaluating E[A], E[b], V[AT ], V[b] and E[bA], given the uncertainty information
of the relative state xij . In the following, we present a general method to compute these
statistical moments.

Denote by � (x) ∶ ℝnx →ℝn� a function of x, that is, it can be b with n� = 1, or A and
bA with n� = nu . We start with the special case where � (x) is a polynomial function of x.

Lemma 5.1. If � (x) is a polynomial of xwith degree n, then itsm-th moment can be computed
as the weighted sum of up to mn-th moments of x.

Proof. Let x = [x1, x2,… ,xnx ]T and � (x) = [� 1, � 2, … ,�n� ]T . Since � (x) is a polynomial of x
with degree n, for its k-th element � k , there exists a multi-index  = (�1,… ,�nx ) ∈ ℕnx

0
with �1 +⋯+�nx ≤ n, and coe�cients  = {c� ∈ ℝ ∶ � ∈} such that

� k = ∑
�∈

c�x� .

Furthermore, the product of polynomials is also a polynomial. Hence, for the product
of m elements of � (x), that is � k1⋯� km , there exists a corresponding multi-index m =
(�1m ,… ,�

nxm ) ∈ ℕnx
0 with �1m +⋯+�

nxm ≤ mn, and coe�cients m = {c�m ∈ ℝ ∶ �m ∈m}
such that

� k1⋯� km = ∑
�m∈m

c�mx
�m .

By applying the linearity of expectation, we can have the m-th moment of � (x) as follows

E[� k1⋯� km ] = ∑
�m∈m

c�mE[x
�m ]. (5.19)
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Note that E[x�m ] = E[∏nx
k=1(x

k )�
k
m ] which represents the up to mn-th moment of x. Hence,

according to Eq. (5.19) the m-th moment � (x) is a weighted sum of up to mn-th moments
of x. This completes the proof. �

In the case where � (x) is not a polynomial of x, we can �rst �nd a polynomial approxi-
mation of it by applying the Taylor’s theorem. Particularly, we �t a quadratic polynomial
of each k-th element � k (x) at the mean of x, i.e. x̂, as follows:

� k (x) = � k (x̂) + Jk (x̂)Δx+
1
2
ΔxTHk (x̂)Δx,

where Δx = x− x̂, Jk (x̂) is the gradient (Jacobian) of � k at x̂, and Hk (x̂) is the Hessian matrix
at x̂.

Thus, according to Lemma 5.1, the m-th moments of � (x) can be computed as weighted
sums of up to 2m-th moments of Δx. Particularly, the �rst and second moments of � (x) are
as follows,

E[� k] = � k (x̂) +
1
2

nx
∑
l2=1

nx
∑
l1=1

H l1l2
k (x̂)E[Δxl1Δxl2],

E[� k1� k2] = � k1 (x̂)� k2 (x̂) +
nx
∑
l2=1

nx
∑
l1=1

(J l1k1 J
l2
k2 +

1
2
� k1 (x̂)H l1l2

k2 (x̂) +
1
2
� k2 (x̂)H l1l2

k1 (x̂))E[Δxl1Δxl2]

+
1
2

nx
∑
l3=1

nx
∑
l2=1

nx
∑
l1=1

(J l1k1 (x̂)H
l1l2
k2 (x̂) + J l1k2 (x̂)H

l1l2
k1 (x̂))E[Δxl1Δxl2Δxl3]

+
1
4

nx
∑
l4=1

nx
∑
l3=1

nx
∑
l2=1

nx
∑
l1=1

H l1l2
k1 H l3l4

k2 (x̂)E[Δxl1Δxl2Δxl3Δxl4].

(5.20)

5.4 Results
In this section, we evaluate the proposed CC-SBC method in a simulated multi-robot
system, and present the simulation results.

5.4.1 Derivation of quadratic constraints

We consider multi-robot systems with single-integrator dynamics, in which the robot
dynamics are ṗi = ui , ∀i ∈ . Hence, corresponding to Eq. (5.1), we have xi = pi ∈ ℝd ,
ui = vi ∈ ℝd , f = 0d , g = I d×d . The level set function to de�ne safety sets of single-integrator
systems is [115]

ℎ(xij ) = ‖‖pi −pj ‖‖
2 −d2s . (5.21)

Thus corresponding to Eq. (5.10), there are

Aij (xij ) = −2‖‖pi −pj ‖‖
T ,

bij (xij ) = 
 (‖‖pi −pj ‖‖
2 −d2s ).

(5.22)
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Here we adopt the particular function �(ℎ(xij )) = 
ℎ(xij ) with 
 > 0.

Consider the robots’ states (position) are estimated and described by Gaussian distribu-
tions, i.e. pi ∼ (p̂i ,Σi), ∀i ∈ . Then, there is xij = pi −pj ∼ (p̂ij ,Σij ) where p̂ij = p̂i − p̂j
and Σij = Σi +Σj . By applying the approach developed in Section 5.3.3, we can obtain the
parameters of the quadratic constraints for probabilistic safe-critical control of the system,
in an exact closed form as follows:

A′ = −2p̂Tij ,

b′ =
1
2

(p̂Tij p̂ij −d

2
s + tr(Σij )).

(5.23)

where tr(⋅) indicates the trace of a matrix. The k-th row and k′-th column of the P ∈ ℝd×d
is

Pkk
′
= 8[

√
1−�Σkk

′
ij − (1−

√
1−�)p̂kij p̂

k′
ij ]. (5.24)

The k-the element of q ∈ ℝd is

qk =
1
2

[2(

√
1−�p̂TijΣ

k⋅
ij

− (1−
√
1−�)p̂kij (p̂

T
ij p̂ij + tr(Σij ) − d2s )].

(5.25)

And r is given by

r =
1
4

 2[

√
1−�r ′ − (1−

√
1−�)(p̂Tij p̂ij + tr(Σij ) − d2s )2], (5.26)

where
r ′ = 2Σklij (2p̂

k
ij p̂

l
ij +2Σ

kl
ij ),

with the Einstein summation convention employed ∀k, l = 1,…,d .

5.4.2 Simulation results

We test the method with a team of n = 5 planar robots navigating in a shared workspace.
The challenging asymmetric swap scenario [139, 146] is considered, in which the robots
are initially distributed around the perimeter of a circle with some random o�sets to break
symmetry. The goal positions pi,goal are also placed around the same circle with random
o�sets. Each robot can measure the positions of itself and other robots with Gaussian noise,
and uses a Kalman �lter for estimation. The robots have a maximum velocity of 0.1m/s and
uses a simple PD controller u∗i = −k1(pi −pi,goal) as the nominal controller where the gain
k1 = 1.5. The inter-robot safe distance is ds = 0.6 m and the collision probability threshold
is set as � = 0.05. The simulation time step is Δt = 0.05 s, and the simulated measurement
noise is zero mean with covariance diag(0.1 m, 0.1 m)2, which leads to an average state
estimation error of 0.06 m in the simulations.

We run the simulation 100 times and compare our CC-SBC method with the basic SBC
method [82]. Simulation results show that collision happens in all runs with the basic
SBC due to the uncertainty in robot state estimation. Instead, our CC-SBC successfully
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Figure 5.1: A sample simulation run of the asymmetric swap scenario with 5 robots. The robot
initial and goal locations are marked in circle disks and solid squares.
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Figure 5.2: History of minimum inter-robot distance among robots.

navigates the robots without collision in every run. Fig. 5.1 shows a series of snapshots
of one run of the simulations. Fig. 5.2 shows the minimum inter-robot distance during
the run. It can be observed that the minimum distance among robots always stays larger
than the safe distance (0.6 m) using our CC-SBC method, while the SBC method leads to
collisions.

5.5 Conclusion
In this chapter, we presented a decentralized multi-robot collision avoidance method
that accounts for uncertainty in robot state estimation. We formally introduced Chance-
Constrained Safety Barrier Certi�cates (CC-SBC) which de�nes a probabilistic safe control
space for each robot in the system. The CC-SBC chance constraints are reformulated to a set
of quadratic constraints of the robot state estimation mean and covariance, which are then
used to formulate a quadratically constrained quadratic program (QCQP). By solving the
QCQP, the robot can obtain a safe control action that minimally modi�es a given nominal
controller. In simulations with a team of mobile robots, we showed that our method
achieves safe navigation in challenging scenarios under robot state estimation uncertainty,
and the inter-robot collision probability is always below a speci�ed threshold thanks that
the CC-SBC guarantees forward invariance of the robot’s safety set in a probabilistic
manner.
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6
Learning interaction-aware
trajectory predictions for

multi-robot motion planning

Parts of this chapter appeared in:

• H. Zhu, F.M. Claramunt, B. Brito, and J. Alonso-Mora, “Learning interaction-aware trajectory predictions
for decentralized multi-robot motion planning in dynamic environments,” IEEE Robotics and Automation
Letters, 6(2):2256-2263, Apr. 2021.
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6.1 Introduction
In previous chapters, we have shown that while the proposed B-UAVC and CC-SBC methods
(Chapter 4 and Chapter 5) are decentralized and communication-free, they typically lead
to more conservative robot motions than the MPC based method (Chapter 3). Albeit
more e�cient, the MPC-based method requires each robot to know the future motion
predictions of other robots. These motion predictions can be obtained among robots by
sharing their future planned trajectories with each other via communication. However,
such communication may not be available nor reliable in practice. Alternatively, the robot
can employ a constant velocity model to predict other robots’ trajectories. Even though
communication among robots is not required in this case, the planned robot motions may
not be safe, particularly in crowded environments, as shown in Chapter 3.

In this chapter, to achieve e�cient and decentralized multi-robot motion planning, we
propose an interaction- and obstacle-aware trajectory prediction model and combine it
with the model predictive control (MPC) framework. Fig. 6.1 gives an overview of the
proposed method. In particular, we �rst generate a demonstration dataset consisting of
robot trajectories using a multi-robot collision avoidance simulator developed in Chapter
3. It utilizes a centralized sequential MPC for local motion planning in which inter-robot
communication is employed. Next, we formulate the robot trajectory prediction problem
as a sequence modeling task and hence design a model based on recurrent neural networks
(RNN). By training the model using the generated dataset, it learns to imitate the centralized
sequential MPC and thus can predict the planning behaviors of the robots. Finally, by
combining the trajectory prediction model with the MPC framework, multi-robot local
motion planning is achieved in a decentralized manner.

The main contributions of this chapter are:

• A RNN-based interaction- and obstacle-aware model that is able to provide robot
trajectory predictions in a multi-robot scenario.

• Incorporation of the trajectory prediction model with MPC to achieve decentralized
multi-robot local motion planning in dynamic environments.

We show that our designed model can make accurate trajectory predictions, thanks to
which the proposed decentralized multi-robot motion planner can achieve a comparable
level of performance to the centralized planner while being communication-free. We also
validate our approach with a team of quadrotors in real-world experiments.

This chapter is structured as follows. Section 6.2 describes related work in motion
prediction of decision-making agents. Section 6.3 introduces preliminaries with system
models. Section 6.4 presents the approach of robot trajectory prediction and its appli-
cation in decentralized multi-robot motion planning. Section 6.5 shows simulation and
experimental results. Finally, Section 6.6 concludes the chapter.
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Figure 6.1: The proposed decentralized communication-free motion planner that relies on a
RNN-based model for interaction-aware trajectory prediction and a MPC for local motion
planning.

6.2 Related work
Our proposed approach decouples motion prediction and trajectory planning to achieve
decentralized and communication-free collision avoidance. Such a decoupling is also seen
in [147, 148], where the motion prediction of humans are used to plan a safe trajectory for
the ego robot. Motion prediction for decision-making agents has drawn signi�cant research
e�orts over the past years, with most works focusing on human trajectory prediction [149].
Early works on motion prediction are typically model-based such as the renowned social
force-based method [150] which models pedestrian behaviors through the use of attractive
and repulsive potentials. The model is later generalized and adapted to modeling tra�c
car behaviors [151]. While these methods are computationally e�cient, the prediction
accuracy is quite low. There have also been several notable attempts to utilize game
theory to model interacting decision-making agents and predict their future trajectories
[152, 153], in which the agents are assumed to play a non-cooperative game and their
trajectory predictions can be obtained from computing the Nash equilibria of the game. A
more sophisticated approach is presented in [94], where game theory is combined with a
psychology concept called Social Value Orientation (SVO) in order to quantify autonomous
cars’ degree of sel�shness or altruism when predicting their trajectories. While interaction-
aware trajectory predictions can be obtained, these methods are limited to speci�c road
scenarios and cannot be directly applied to general multi-robot systems.

The class of approaches that have achieved state-of-the-art performance in trajectory
prediction problems are the learning-based methods. Some of these include inverse rein-
forcement learning (IRL) [154], recurrent neural networks (RNN) [155, 156], variational



6

90 6 Learning interaction-aware trajectory predictions for multi-robot motion planning

autoencoders [157], generative adversarial networks (GAN) [158] that provide predicted
human trajectories in two-dimensional (2D) environments, Gaussian mixture regression
(GMR) [159] and Gaussian process regression (GPR) [160] that can predict human actions
in three-dimensional (3D) workspaces. Our approach of predicting the trajectories of other
robots is based on previous works on human motion prediction since both can be formu-
lated as a sequence modelling problem. In particular, our prediction model is based on RNN,
inspired by the works in [161] for interaction-aware pedestrian motion prediction in which
static obstacles are considered and represented using a grid map. We adapt the model to
predict robots trajectories in multi-robot scenarios with moving obstacles described by
their positions and velocities, and further apply the model to decentralized multi-robot
motion planning by incorporating it within MPC.

6.3 Preliminaries

6.3.1 Robot and obstacle model

Following [49], we consider a team of n robots moving in a shared workspace  ⊆ ℝ3,
where each robot i ∈  = {1,2,…,n} ⊂ ℕ is modeled as an enclosing sphere with radius r .
The robots follow the same dynamical model that is described by a discrete-time equation
as follows,

xk+1i = f(xki ,u
k
i ), x0i = xi(0), (6.1)

where xki ∈  ⊂ ℝnx denotes the state of the robot, typically including its position pki and
velocity vki , and uki ∈  ⊂ ℝnu the control inputs at time k. Without loss of generality,
k = 0 indicates the current time.  and  are the admissible state space and control space,
respectively. xi(0) is the current state of robot i. In addition, moving obstacles for example
pedestrians in the environment are considered. For each obstacle o ∈ o = {1,2,…,no} ⊂ ℕ
at position po ∈ ℝ3, we model it as an upright non-rotating enclosing ellipsoid centered
at po with semi-principal axes (ao , bo , co). In this chapter, we assume that each robot can
observe the states (positions and velocities) of all other robots and moving obstacles and
keep their history information.

6.3.2 Multi-robot collision avoidance

Multi-robot local motion planning is considered in this chapter, in which the goal is to
achieve real-time collision-free navigation for multiple robots. Each robot has a given
goal location gi , which generally comes from some high-level path planner [105] or is
speci�ed by the user. Any pair of robots i and j from the group are mutually collision-free
if ‖‖‖p

k
i −p

k
j
‖‖‖ ≥ 2r,∀i ≠ j ∈ , k = 0,1,… . Regarding robot-obstacle collision avoidance, we

approximate the obstacle with an enlarged ellipsoid and check if the robot’s position is
inside it. Hence, the robot i is collision-free with the obstacle o at time step k if ‖‖‖p

k
i −p

k
o
‖‖‖Ω ≥ 1,

where Ω = diag(1/(ao + r)2, 1/(bo + r)2, 1/(co + r)2).

The objective is to compute a local motion uki for each robot in the group, that respects
its dynamic constraints, makes progress towards its goal location gi and is collision-free
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with other robots in the group as well as moving obstacles within a planning time horizon.

6.3.3 Model predictive control

The multi-robot collision avoidance problem can be solved using model predictive control
by formulating a receding horizon constrained optimization problem. For each robot i ∈ ,
a discrete-time constrained optimization formulation with N time steps and planning
horizon NΔt , where Δt is the sampling time, is derived as follows,

min
x0∶Ni ,u0∶N−1i ,

s0∶N

N−1
∑
k=0

J ki (x
k
i ,u

k
i , s

k ) + JNi (x
N
i , gi , s

N ) (6.2a)

s.t. x0i = xi(0), (6.2b)
xki = f(x

k−1
i ,uk−1i ), (6.2c)

‖‖‖p
k
i −p

k
j
‖‖‖ ≥ 2r − s

k , (6.2d)
‖‖‖p
k
i −p

k
o
‖‖‖Ω ≥ 1− sk , (6.2e)

sk ≥ 0,uk−1i ∈ ,xki ∈  , (6.2f)
∀j ≠ i ∈ ; ∀o ∈ o ; ∀k ∈ {1,…,N}, (6.2g)

where J ki (xki ,uki , sk ) and JNi (xNi , gi , sN ) are the stage and terminal costs respectively [49],
and s is the slack variable. At each time step, each robot in the team solves online the
constrained optimization problem (6.2) and then executes the �rst step control inputs, in a
receding horizon fashion.

Note that for each robot to solve the optimization problem (6.2), it has to know the future
trajectories of other robots and moving obstacles, as shown in Eq. (6.2d) and Eq. (6.2e).
For moving obstacles (pedestrians), we assume their motions follow a constant velocity
model (CVM) in the short planning horizon and predict their future trajectories accordingly.
This assumption is reasonable since CVM can achieve state-of-the-art performance when
used for pedestrian motion prediction [162]. For robots’ future trajectories, denote by
 0
i = {p1∶Ni } the robot i’s current planned trajectory. Further denote by ̂ 0

i,j = {p
1∶N
j } the

trajectory of robot j ∈ , j ≠ i that robot i assumes and uses in solving the problem (6.2),
where the hat ⋅̂ indicates that it is robot i’s estimation of the other robot’s trajectory.

Typically, there are two ways for robot i to obtain the future trajectory of the other
robot j. The �rst way is via communication: all robots in the team communicate their
planned trajectories to each other at each time step. It can be implemented using a
centralized sequential planning framework as in [49], that is, ̂ 0

i,j =  0
j . Although this

method guarantees collision avoidance by construction, it does not scale well with a large
number of robots. Moreover, communication is not always available and reliable in practice.

The other way is without communication. Hence, robot i has to predict another robot
j’s future trajectory based on its observation of the environment:

̂ 0
i,j = prediction(0

i ), (6.3)
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where 0
i is the information that robot i can acquire until current time from its observation.

Previous works [49, 84] use a constant velocity model to perform the prediction only
based on the other robot’s current state, that is, 0

i = x
0
j . However, such a prediction can

be inaccurate and may lead to unsafe trajectory planning [49]. In this chapter, we will
develop an interaction- and obstacle-aware model for the trajectory prediction taking into
account surrounding environment information of the robot to model the interaction and
environment constraints.

6.4 Approach
In this section, we present our interaction and obstacle-aware trajectory prediction method
and incorporate it with the MPC framework to achieve decentralized multi-robot collision
avoidance in dynamic environments.

6.4.1 Trajectory prediction problem formulation

As shown in Eq. (6.3), robot i ∈  needs to predict the future trajectories of other robots
j ≠ i ∈  to plan its safe motion. Hereafter, we refer to the robot i as the ego robot and
the robot j as the query robot that is indicated by the sub-script ⋅q . In addition, we use the
sub-script ⋅−q to indicate the collection of all the other robots except for the query robot.

We aim to address the problem of �nding a trajectory prediction model for the query
robot q that gives a sequence of its future positions p1∶THq in a multi-robot scenario. Here
TH ≥ N is the prediction horizon that should not be smaller than the local motion planning
horizon. As has been shown in previous trajectory prediction works [156, 161], we will
instead work with sequences of velocities v1∶THq for prediction to avoid over�tting when
based on position sequences, and numerically integrate them afterwards starting from the
query robot’s current position p0q .

Denote by v−TO∶0q the past sequence of velocities of the query robot within an observa-
tion time TO ≥ 1. Denote by p−TO∶0−q,r and v−TO∶0−q,r the past relative positions and velocities of
other robots with respect to the query robot. Further denote by p0o ,r and v0o ,r the current
relative positions and velocities of the moving obstacles o ∈ o with respect to the query
robot. By observing history states of the query robot and its surrounding other robots as
well as moving obstacles, we want to �nd an interaction- and obstacle-aware model h�
with parameters � :

v1∶THq = h� (v
−TO∶0q ,p−TO∶0−q,r ,v−TO∶0−q,r ,p0o ,r ,v

0
o ,r ), (6.4)

that outputs a prediction of the query robot’s future states.

6.4.2 Demonstration data generation

We use a simulation dataset to train our designed network model. The dataset is generated
using demonstrations from a multi-robot collision avoidance simulator [49] which employs
a centralized sequential planner to solve the problem (6.2). This involves each robot solving
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a MPC problem sequentially and communicates its planned trajectory to other robots to
avoid. Note that the planner di�ers from the prioritized planning approach since each
robot has to avoid all other robots and hence it shows cooperation among robots.

Speci�cally, we create a three-dimensional environment in which a team of robots and
moving obstacles are simulated. In the simulation, each robot navigates to a randomly
generated goal position, which is changed dynamically to a new location after being
reached. The generated robots’ goal positions are ensured to be collision-free with each
other and the obstacles. Moving obstacles are simulated in the environment by randomly
specifying an initial position and velocity (with speed between 0.5 m/s and 1.2 m/s) to each
of them and then make them move at a constant velocity. Once any obstacle moves out of
the environment, a new initial position and velocity will be set to it. Moreover, we add
small Gaussian noise to the velocities of the moving obstacles in simulation. We perform
the simulation for Nsim time steps and record the positions and velocities of all robots and
obstacles at each time step. After running the simulation, for each time step k and robot
q, we retrieve its future sequence of velocities and observation of the past states of the
system from the recorded data. Hence, our dataset is as follows

 = {(k
q ,v

k+1∶k+THq ) | ∀q ∈ , ∀k ∈ {1,…,Nsim−TH }}, (6.5)

where the observation information k
q is

k
i = {v

k−TO∶kq ,pk−TO∶k−q,r ,vk−TO∶k−q,r ,pko ,r ,v
k
o ,r}. (6.6)

6.4.3 Interaction- and obstacle-aware model

We now present our recurrent neural network (RNN) model for interaction- and obstacle-
aware trajectory prediction, as shown in Fig. 6.2. The model �rst creates a joint repre-
sentation of three input channels: the query robot’s history state, information of other
interacting robots and moving obstacles, via a query robot state encoder and an environ-
ment encoder module. Then a decoder module is adopted to output a predicted trajectory
of the query robot. The recurrent layers in the model are of the LSTM type [163] that has
been shown able to learn time dependencies over a long period of time. Next, we describe
the three main modules of the model in detail.

Query robot state encoder

It consists of a recurrent layer that produces a �at encoding z0q from the history velocities
of the query robot v−TO∶0q . This layer learns a dynamical model of the query robot, so that
the network can leverage it to obtain better predictions.

Environment encoder module

It includes n − 1 parallel recurrent layers with shared weights to encode the sequences
of past relative positions and velocities of other robots with respect to the query robot
(p−TO∶0−q,r ,v−TO∶0−q,r ) into a set 0−q,r , and no parallel dense layers with shared weights that
encode the current relative positions and velocities of moving obstacles with respect to
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Query robot
state encoder

Recurrent
decoder

LSTM layer Concatenate along
features' dimension

Stack along 
new dimension

Global max
pooling

Fully connected
layer

Other robot
state encoder

Global
max

pooling

Output
layer
Linear

Dense
decoder
tanh

Dynamic
obstacle
encoder
tanh

Decoder module

Environment encoder module

Figure 6.2: Network architecture of the interaction- and obstacle-aware model. Three channels
of information are taken as inputs: the query robot’s past velocities v−TO∶0q , past relative states
of other robots (p−TO∶0−q,r ,v−TO∶0−q,r ) and current relative states of obstacles (p0o ,r ,v

0
o ,r ). A joint

representation of the inputs is created through a query robot encoder and an environment
encoder. A decoder is adopted to output a sequence of velocities v1∶THq predicted for the query
robot’s future trajectory.

the query robot (p0o ,r ,v
0
o ,r ) into a set 0o ,r . The encodings from both of these sets, which

are made to have the same length, are then stacked together and followed by a global max
pooling operation executed along the new data axis. Thus, this module can capture the
interaction of the query robot with a variable number of other robots and obstacles in
the environment and encode it into a single �at vector z0e . This framework also makes it
possible to account for potentially di�erent types of agents and obstacles by training their
own set of encoders and stacking them with the rest of intermediate encodings.

Decoder module

It takes in the concatenation of z0q with z0e and passes it through a recurrent decoder
followed by a dense decoder and an output layer that �nally generates a sequence of
predicted future velocities v1∶THq for the query robot over the prediction horizon.

6.4.4 Model training

Using the generated demonstration data in Section 6.4.2, the designed model is trained
end-to-end using back-propagation through time (BTTP) [164] with a �xed truncation
depth ttrunc. We learn the trajectory prediction model by minimizing the following loss
function,

L(v1∶THq , �) =
1
TH

TH
∑
k=1

‖‖‖v
k
q −v

k
q,true

‖‖‖
2
+� ⋅ l(�), (6.7)

where vkq,true is the ground truth velocity from the demonstration dataset, l(�) represents the
regularization terms and � is the regularization factor. In our model, the L2 regularization
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method is adopted.

6.4.5 Decentralized multi-robot motion planning

Having the trained trajectory prediction model, we can incorporate it with the MPC
framework and solve the problem (6.2) in a decentralized manner. As shown in Fig. 6.1,
in a multi-robot navigation scenario, each robot �rst performs inference with the trained
neutral network to predict the future trajectories of its neighboring robots and then plans
a collision-free trajectory accordingly. Hence, decentralized multi-robot motion planning
in dynamic environments is achieved. To be able to perform the inference, each robot
needs to measure its own state as well as its neighbors’, and keep a history memory of the
information for a time horizon TO . In addition, the robot also needs to measure the current
states of moving obstacles in the environment.

6.5 Results
We now present results of simulation comparing the proposed approach with other methods
and real-world experiments with quadrotors.

6.5.1 Implementation details

To generate the dataset, we use an existing MATLAB multi-robot collision avoidance
simulator1 developed in Chapter 3 and simulate Nsim = 105 time steps in a 10 × 10 × 3 m
environment with 10 robots and 10 moving obstacles. The robot we simulate is the Parrot
Bebop 2 quadrotor with a radius set as 0.4 m. Ellipsoids representing the moving obstacles
have semi-axes (0.4,0.4,0.9) m. The sampling time and MPC planning horizon length
are Δt = 0.05 s and N = 20, respectively. We employ the same dynamics model and cost
functions in the MPC problem (2) of our previous work [49]. The Forces Pro solver [127]
is used to solve the MPC problem. We set TO = 20 and TH = 20 the horizon length for
robot past states observation and trajectory prediction. We further generate another test
dataset by running the simulator in six di�erent scenarios for 2×104 time steps for each
one of them. All computations are performed in a commodity computer with an Intel i7
CPU@2.60GHz and an NVIDIA GTX 1060 GPU.

The designed learning network is implemented in Python using TensorFlow 2. All
layers in the network have 64 neurons except for the recurrent decoder that has 128
neurons and the output layer that has 3 neurons. While the activation function of the
output layer is linear, all other layers in the network use a hyperbolic activation function.
The regularization factor used during model training is � = 0.01.

6.5.2 Trajectory prediction evaluation

We �rst evaluate our trajectory prediction model on a test dataset that has not been used for
training nor validation. The dataset includes di�erent test scenarios: an open environment
with 4, 10, and 20 quadrotors, and with 10 moving obstacles. We compare our interaction-
1Code: https://github.com/tud-amr/mrca-mav

https://github.com/tud-amr/mrca-mav
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aware RNN-based model to three alternative methods: a) the constant velocity model
(CVM) that is widely used in decentralized multi-robot motion planning; b) a simple RNN
model that only considers the query robot’s past states for trajectory prediction while
ignoring its surrounding environment (this allows us to highlight the interaction awareness
of our designed model); and c) an open-loop MPC planner assuming that the goal, robot
model and constraints are known.

In Fig. 6.3 we present quantitative results of the prediction error with respect to
ground truth in the test dataset. Recall that ground truths are the recorded robot traveled
trajectories computed with the centralized sequential MPC (closed-loop). As expected, the
prediction error of the open-loop MPC has the smallest prediction error among the methods
since it was used for data generation and has perfect knowledge about the goal locations
of all robots, which are not available for prediction in our proposed RNN-based model.
Our proposed model can still achieve accurate trajectory predictions and signi�cantly
outperforms the CVM method across all scenarios. Moreover, compared to the simple
RNN model, our interaction-aware approach achieves more accurate trajectory predictions,
particularly in cluttered scenarios where interactions among robots are more frequent, as
shown in Fig. (6.3b)-(6.3f). Furthermore, to evaluate the generalization capability of the
learned network, we perform simulations in the scenarios (e) and (f) with 20 quadrotors
which are beyond our training dataset. The results show that the proposed model still
performs well on trajectory prediction in the two scenarios. Corresponding to the six
scenarios in the �gure, the average computation times to perform motion prediction using
our RNN-based model for all other robots are (a) 28 ms, (b) 28 ms, (c) 28 ms, (d) 30 ms,
(e) 30 ms, and (f) 32 ms, respectively. This shows that the computation time for motion
prediction does not increase much with a larger number of robots.

6.5.3 Decentralized motion planning

We then evaluate performance of the proposed decentralized planner that incorporates the
learned trajectory prediction model.

Comparisons to other methods

We compare our method to the centralized sequential planning method [49] with full
communication among robots and the decentralized planning method [84] that uses the
constant velocity model (CVM) for trajectory prediction to analyze whether more accurate
trajectory forecasts of our RNN-based model lead to better planning performance. Besides,
another decentralized method, the bu�ered Voronoi cell (BVC) [81], which guarantees
collision avoidance is also implemented for comparison.

Six quadrotors �ying in four types of scenarios that represents di�erent levels of
di�culty [139] are considered. Moreover, in order to avoid potential bias results, each
scenario includes 50 instances where the robots have di�erent starting and goal locations.
The four scenarios are: 1) symmetric swap, in which the robots initially located at the
vertices of a virtual horizontal regular hexagon are required to exchange their positions;
2) asymmetric swap, which di�ers from the previous scenario in that the hexagons are
irregular, thus leading to more challenging collision-avoidance problems; 3) pair-wise swap,
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Figure 6.3: Performance results of our proposed interaction-aware RNN model for trajectory
prediction compared to the baselines. The solid lines represent the average errors along the
prediction horizon and the �lled patches around them are 30% of the standard deviation. The
sampling period is 50 ms and the prediction horizon has 20 timesteps.

in which the robots are placed at random starting positions and assigned to three pairs
within which the two robots need to swap their positions; and 4) random moving, in which
each robot moves from a random starting position to a random goal in the environment.

Qualitatively, Fig. 6.4 shows the sample trajectory trails of the six quadrotors for
one instance from the asymmetric swap scenario. It can be seen that our RNN-based
decentralized planner achieves results that are closer to the centralized sequential planner
than the CVM-based planner. To quantitatively evaluate the performance of di�erent
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motion planners, we consider a wide range of metrics: the number of instances that lead to
collisions within the entire 50 runs, the average trajectory length and trajectory duration of
the team of robots, and the overall robot average speed during the whole simulation. The
last three metrics are only computed for those successful runs. Table 6.1 summaries the
simulation results. It can be seen that our RNN-based planner signi�cantly outperforms
the planner using the CVM for trajectory prediction in terms of safety, in particular
in the challenging asymmetric swap scenario. In addition, our planner also achieves
consistently smaller trajectory lengths and durations compared to the CVM-based planner
in all scenarios. Compared to the BVC method, our proposed approach achieves signi�cantly
shorter trajectory durations, particularly in the (a)symmetric swapping scenarios, which
shows superiority of the MPC framework over the reactive BVC method. Finally, compared
to the centralized sequential planner with full communication, our planner can achieve
a comparable level of performance in terms of safety and trajectory e�ciency while
being decentralized and communication-free. However, three instances out of 50 in the
challenging asymmetric swap scenario is still observed with collisions using the RNN-based
method, indicating that in few rare cases, highly-accurate trajectory predictions of other
robots, for example obtained via communication, are necessary to ensure safety. In the
simulation, on average the computation time of the proposed decentralized MPC planner
with the learned predictor is 36.3 ms, which is smaller than that of the centralized sequential
planner which plans trajectories for all six robots (43.9 ms). Besides, our decentralized
approach is communication-free.
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Figure 6.4: Simulation results of six quadrotors exchanging positions in the asymmetric swap
scenario. Solid lines represent the trajectories. The upper and lower plots show the top view
(X-Y) and side view(X-Z), respectively.
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E�ect of non-MPC robots on performance

Our proposed decentralized approach assumes that all robots interact and adopt the same
motion planning strategy, namely MPC-based trajectory optimization with the learned
motion prediction model. We now evaluate the performance of our approach in a mixture
scenario where some robots employ the BVC method [81] for collision avoidance. We
simulate 50 instances with six quadrotors in the symmetric swap scenario of Section V-C-1.
Table 6.2 presents the simulation results. When there is only one BVC robot, no collisions
are observed. However, when more BVC robots are in the team, particularly when half of
the robots (3) are BVC-based, collisions will happen due to incorrect motion predictions
of them by other MPC robots. This indicates that the assumption that the robots interact
with the same planning strategy is necessary to ensure safety.

Table 6.2: Simulation results of six quadrotors in the symmetric swap scenario where a varying
number of BVC-based robots are in the team. 50 running instances are simulated.

Num. of BVC robots 0 1 2 3 4
Num. of coll. instan. 0 0 2 4 1
Ave. traj. time (s) 5.59 6.82 8.517 9.63 10.27

6.5.4 Experimental validation

Setup

We validate our proposed approach with a team of Parrot Bebop 2 quadrotors �ying in a
shared space with walking human obstacles. The pose of each quadrotor and obstacle (hu-
man) is obtained using an external motion capture system (OptiTrack) and their velocities
obtained via a standard Kalman �lter running at a high rate. Control commands are sent to
the quadrotor via ROS. During the experiment, the humans walked at a speed with mean
0.8 m/s and the maximum 1.2 m/s. They could change their speeds and make small turns
in the workspace.

Results

Experiments in two representative scenarios are conducted: with and without obstacles. In
the �rst scenario, three quadrotors, initially distributed in a virtual horizontal circle, are
required to swap their positions multiple times. Then in the second scenario, two moving
obstacles (walking humans) join the space while the three quadrotors keeps changing
their positions while avoiding the humans at the same time. Fig. 6.5a presents a snapshot
from the experiment. Fig. 6.5c shows distance between each pair of the three quadrotors
over time during the experiment. It can be seen that they maintained a safe distance of
0.8 m over the entire run even after the two walking humans joined the space which
makes it more con�ned. In Fig. 6.5d we cumulate the distance between each quadrotor
and human obstacle that is computed as the closest distance from the quadrotor center
to the obstacle ellipsoid’s surface. The results show that a minimum safe separation of
0.4 m to the obstacles is achieved. In sum, the demonstration shows that our proposed
approach works well for multi-robot motion planning in dynamic environments which is
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decentralized and communication-free.
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Figure 6.5: Experimental results with three quadrotors �ying in a shared space with two
walking humans. (a) A snapshot of the experiment. (b) Schematic of quadrotors, humans, and
planned trajectories. (c) Distance between the quadrotors over time. The shaded grey area
indicates the two walking humans join the space. (d) Histogram of the quadrotor-obstacle
distance during the experiments.

6.6 Conclusion
In this chapter, we presented a decentralized multi-robot MPC-based motion planning ap-
proach that accounts for the robot’s interactions with obstacles and other robots through the
use of a RNN-based trajectory prediction model. We showed that our proposed interaction-
aware RNN model generalizes well with di�erent numbers of robots and obstacles, and is
able to provide more accurate trajectory predictions than the constant velocity model in a
variety of scenarios. In simulations with six quadrotors, we showed that our decentralized
planner outperforms the planner using a constant velocity model for trajectory prediction
and can achieve a comparable level of performance to the centralized sequential planner
while being communication-free. We also validated our approach in real-world experiments
with three quadrotors �ying in a shared space with walking humans.
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7.1 Conclusions
This thesis investigated the problem of multi-robot motion planning under uncertainty.
In real-world settings, various uncertainties exist in multi-robot systems, such as robot
localization and sensing uncertainties, motion disturbances, and uncertain behaviors of
other decision-making agents. We showed that these uncertainties can be accounted for in
multi-robot motion planning by formulating collision chance constraints, i.e., the collision
probability between robots and obstacles to be below a speci�ed risk threshold. In particular,
several local motion planning methods that can achieve probabilistic collision avoidance
have been developed, which are summarized in the following.

In Chapter 3, a Chance-Constrained Nonlinear Model Predictive Control (CCNMPC)
method was presented. The method explicitly formulated chance constraints on the
robot collision probability taking into account robot localization, sensing, and motion
uncertainties. We showed that the chance constraints can be reformulated into deterministic
constraints using a local linearization technique, thus making the MPC tractable and
solvable in real time. We adopted the method in an autonomous MAV with onboard vision-
based localization and obstacle detection, which was shown to be able to avoid walking
humans at a maximum speed of 2.4 m/s. In addition, we incorporated the CCNMPC into
three multi-robot planning strategies and compared their performance. It was shown
that the sequential and distributed planning strategies in which the robots communicate
their future planned trajectories outperform the decentralized strategy in terms of safety
where the robots predict their neighbors’ trajectories based on the constant velocity model,
especially in crowded environments.

Chapter 4 presented a decentralized communication-free algorithm for multi-robot
collision avoidance under uncertainty, which relies on the concept of Bu�ered Uncertainty-
Aware Voronoi Cell (B-UAVC). The B-UAVC was de�ned as a local safe region (position
space) for each robot among other robots and obstacles. We showed that the collision
probability between robots and obstacles is below a speci�ed threshold if each robot is
constrained to navigate within its corresponding B-UAVC. The algorithm was applied to
systems with a large number of robots and heterogeneous robot teams, showing robust
collision avoidance under uncertainty in robot localization and sensing. Comparing to
the CCNMPC method with robots communicating trajectories, the B-UAVC method is
communication-free, but it results in more conservative motions of robots and deadlocks
of the system.

Chapter 5 presented a method to compute a probabilistic safe control space for each
robot in a multi-robot system by formulating Chance-Constrained Safety Barrier Certi�-
cates (CC-SBC). The CC-SBC is de�ned via a set of chance constraints on the robot’s control
input. We showed that by enforcing the control input of each robot to be within its CC-
SBC, the collision probability between robots is guaranteed to be smaller than a speci�ed
threshold. In addition, we showed that the CC-SBC constraints can be reformulated into
deterministic quadratic constraints, based on which a quadratically constrained quadratic
program (QCQP) was formulated. By solving the QCQP, the robot can obtain a safe control
action that minimally modi�es a given nominal controller. Hence, the CC-SBC method can
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be used as a probabilistic safety �lter for multi-robot systems.

In Chapter 6, a novel trajectory prediction model based on Recurrent Neural Networks
(RNN) that can learn multi-robot motion behaviors from demonstrated trajectories was
developed. The model was shown able to run e�ciently online and provide more accurate
trajectory predictions than the constant velocity model in a variety of scenarios. The model
was then incorporated with the MPC framework for decentralized multi-robot motion
planning, which was shown to achieve a comparable level of performance to the centralized
sequential planner developed in Chapter 3 while being communication-free.

7.2 Future work
Although this thesis has provided a step forward towards probabilistic motion planning for
multi-robot systems under uncertainty, many challenges and avenues for future research
remain. In the following, we recommend several research avenues in motion planning
under uncertainty, in multi-robot coordination, and in extending this work to perceptive
motion planning.

Motion planning under uncertainty

Planning under non-Gaussian uncertainty. The work in this thesis assumes that
uncertainties are Gaussian-distributed, which have unbounded support. However, this
assumption is not always realistic and reasonable since many uncertainties in real-world
scenarios are non-Gaussian distributions. For example, autonomous navigation among
humans typically requires the prediction of human motions, which may be multi-modal
trajectories represented by Gaussian mixture models (GMM) [156]. Hence, motion planning
for the robot will need to develop algorithms that can handle non-Gaussian uncertainties.

Risk assessment and risk-aware planning. This thesis addresses the problem of motion
planning under uncertainty in a probabilistic manner, in which the key idea is to formulate
and approximate collision chance constraints, such that the robot collision probability is
below a speci�ed threshold. In fact, chance constraint is closely related to the concept of
Value at Risk (VaR), which is one of the commonly used risk metrics. Using the VaR metric
or chance constraint may lead to unsafe robot behaviors since it does not capture risk in
the tail of cost distributions [165]. Some recent works propose to use the Conditional Value
at Risk (CVaR) as a risk metric and have developed CVaR-constrained motion planning
algorithms [166]. However, the algorithms are computationally intractable for real-time
motion planning. Developing reasonable and e�cient risk assessment methods and risk-
aware algorithms for online motion planning are still open.

Multi-robot coordination

When, to whom, and what to communicate. The multi-robot coordination strategies
employed in this thesis either require the robots to communicate with each other or do not
need the robots to communicate at all. The former fully-communication strategy typically
has better performance than the communication-free strategy. However, communication
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is not always available nor reliable in bandwidth-limited environments. Hence, a potential
research avenue is to develop e�cient communication strategies for multi-robot coordina-
tion, which may include when, to whom, and what to communicate in a multi-robot system.
Some recent works have been exploring the topic [139, 167–169] using deep learning or
reinforcement learning techniques. But the methods are limited in homogeneous robot
teams and in deterministic scenarios. Future research focus can be given to developing
communication strategies for coordination among heterogeneous multi-robot systems and
taking into account uncertainty.

Integration of global knowledge. The motion planning methods presented in this thesis
are local and distributed/decentralized. Hence, deadlocks may happen, particularly in
crowded situations. Future research shall explore avoiding deadlocks as well as congestions
in multi-robot systems. A promising solution is to integrate global knowledge of the
environment and system to guide local motion planning. For example, [99] presents a
method to synthesize a local collision avoidance controller with a policy that is learned from
a global motion planner, thus improving its performance of avoiding deadlocks. But the
method is limited to single and double integrator robots. Developing methods to integrate
global knowledge into local motion planning for multi-robot systems is still challenging
and open.

Perceptive motion planning

This thesis focuses on multi-robot local motion planning and collision avoidance under
uncertainty, in which the objective for the robots is to reach given goal locations while
being probabilistically collision-free. Future research shall explore motion planning for
higher-level tasks, particularly perception-driven motion planning and information gather-
ing motion planning. Potential research questions include informative multi-robot motion
planning under uncertainty and task-oriented multi-robot coordination. The methods pre-
sented in this work can be used as local safety controllers and contributing to the study of
the mentioned research topics.
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A
Quadrotor dynamics model

We use the Parrot Bebop 2 quadrotor in our experiments. The state of the quadrotor is

x = [pT ,vT ,�,�, ]T ∈ ℝ9,

where p = [px , py , pz]T ∈ ℝ3 is the position, v = [vx ,vy ,vz]T ∈ ℝ3 the velocity, and �,�, 
the roll, pitch and yaw angles of the quadrotor. The control inputs to the quadrotor are

u = [�c , �c ,vzc ,  ̇c]
T ∈ ℝ4,

where �c and �c are commanded roll and pitch angles, vzc the commanded velocity in
vertical z direction, and  ̇c the commanded yaw rate.

The dynamics of the quadrotor position and velocity are

ṗ = v,

[
v̇x
v̇y]

= RZ ( )[
tan�
−tan�]g −[

kDxvx
kDyvy]

,

v̇z =
1
�vz

(kvzvzc −vz),

where g = 9.81 m/s2 is the Earth’s gravity, RZ ( ) = [
cos −sin 
sin cos ] is the rotation matrix

along the z-body axis, kDx and kDy the drag coe�cient, kvz and �vz the gain and time
constant of vertical velocity control.

The attitude dynamics of the quadrotor are

�̇ =
1
��
(k��c −�),

�̇ =
1
��
(k��c −�),

 ̇ =  ̇c ,
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where k� , k� and �� , �� are the gains and time constants of roll and pitch angles control
respectively.
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B
Procedure to compute the best

linear separator

The procedure to compute the best linear separator between two gaussian distributions
[135] is summarized in the following.

The objective is to solve the following minimax problem:

(aij , bij ) = arg minmax
aij∈ℝd ,bij∈ℝ

(Pri ,Prj ),

where
Pri(aTijp > bij ) = 1−Φ((bij −aTij p̂i)/

√
aTijΣiaij ),

Prj (aTijp ≤ bij ) = 1−Φ((aTij p̂j −bij )/
√
aTijΣjaij ).

Let u1 =
bij−aTij p̂i√
aTijΣiaij

, u2 =
aTij p̂j−bij√
aTijΣjaij

. As the function Φ(⋅) is monotonic, the original minimax

problem is equivalent to

(aij , bij ) = arg maxmin
aij∈ℝd ,bij∈ℝ

(u1,u2).

We can write u1 in the following form for a given u2,

u1 =
aTij p̂ij −u2

√
aTijΣjaij√

aTijΣiaij
,

where p̂ij = p̂j −p̂i . For each given u2, u1 needs to be maximized. Hence, we can di�erentiate
the above equation with respect to aij and set the derivative to equal to zero, which leads to

aij = [tΣi + (1− t)Σj]−1p̂ij , (B.1)
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where t ∈ (0,1) is a scaler. Thus according to de�nition of u1 and u2, we have

bij = aTij p̂i + ta
T
ijΣiaij = a

T
ij p̂j − (1− t)a

T
ijΣjaij . (B.2)

It is proved that u1 = u2 must be hold for the solution of the minimax problem [135], which
leads to

aTij [t
2Σi − (1− t)2Σj]aij = 0. (B.3)

Thus, one can �rst solve for t by combining Eqs. (B.1) and (B.3) via numerical iteration
e�ciently. Then aij and bij can be computed using Eqs. (B.1) and (B.2).
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C
Towards online active

information gathering motion
planning

Facilitating Unmanned Aerial Vehicles (UAVs) path planning for autonomous structural
surface inspection [170–174] has drawn signi�cant attention from the research community
[175, 176]. While most existing works focus on planning a global path that can provide full
coverage of the surface, two main disadvantages are observed: a) the methods inherently
assume that the surface information is uniformly distributed, hence ignoring potential
spatial correlations of the information �eld (e.g. temperature distribution); b) the path is
planned o�ine, so it cannot actively integrate measurements obtained during execution
into the planning to improve the performance. To overcome the two issues, Zhu et al.
[177] propose an online informative path planning (IPP) approach for active information
gathering of a 3D surface, which can enhance data acquisition e�ciency by taking account
of spatial correlations of the information �eld and planning the path online in a receding
horizon manner.

Related work

In path planning for inspection of a given surface, most existing works formulate it as an
o�ine coverage planning problem which tries to �nd a path that can provide full coverage
of the surface [178]. Early works including [179, 180] divide non-planar surfaces into
regions using exact cellular decompositions that are then covered in a spiral sweeping
pattern. Alternatively, [181] presents a two-step process for inspection path planning which
�rst constructs a set of viewpoints and then �nds a short path connecting them by solving
a traveling salesman problem (TSP). By employing an iterative strategy with re-meshing
techniques, [182] proposes a path planning framework that provides uniform coverage
of 3D structures. Besides those optimization-based approaches, several sampling-based
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coverage planning methods [176, 183, 184] are presented by exploring the con�guration
space with a random tree. In contrast to these o�ine path planning works, there are also
several online planning approaches for surface inspection. [185] adapts the next-best-view
(NBV) planner [186] to automated surface acquisition by enforcing the surface portions
scanning and overlap constraints. Recently [187] presents a receding horizon NBV planner
for inspection of a given surface.

While the aforementioned path planning approaches can generate o�ine coverage
paths or online NBV paths, they all inherently assume that the information on the surface is
uniformly distributed, hence ignoring potential spatial correlations of the information �eld.
To model such information spatial correlations, Gaussian processes (GPs) [188] have been
used as a popular mapping method and successfully applied in terrain mapping [189], target
search [190] and environmental monitoring [191]. However, the normal GP formulation is
limited to 2D terrains or 3D Euclidean space. To facilitate mapping 3D surfaces, Gaussian
process implicit surfaces (GPISs) [192] have been used for surface reconstruction [193–195],
object shape estimation [196], and pipeline thickness mapping [197]. The key idea is to
represent the surface using a function that speci�es whether a point in space is on the
surface, outside the surface, or inside the surface. However, GPISs are limited to modeling
surface geometry and cannot be directly applied to general surface information �elds (e.g.
temperature distribution over a surface). Recently, manifold Gaussian processes (mGPs)
[198] have been developed to map information �elds to complex domains and surfaces
with heat kernels [199], generalized Matérn kernels [200], and geodesic Gaussian kernels
[201, 202]. We use manifold Gaussian processes with geodesic kernel functions to map the
surface information �elds and plan informative paths based on the map.

Contribution

An online informative path planning (IPP) approach for active information gathering
on 3D surfaces is proposed. The approach builds upon previous works [189, 191] in
which an informative path planning framework is presented for 2D terrain mapping and
environmental monitoring. We adopt a similar framework and adapt it for 3D surface active
information gathering. In particular, we use manifold Gaussian processes (mGPs) with
geodesic kernel functions to map the surface information �elds which encode their spatial
correlations. For data measurement and map update, a probabilistic sensor (camera) model
with limited �eld-of-view (FoV) is considered. Based on the map, a continuous trajectory is
optimized by maximizing an information acquisition metric in a receding horizon fashion.
The planned trajectory is collision-free and respects the UAV dynamics.

We showed in simulations that the proposed IPP approach could achieve faster map
uncertainty and error reduction than the coverage path planner and a random inspection
strategy. It was also shown that taking spatial correlations into planning using mGP
for mapping could signi�cantly improve the information gathering e�ciency. We also
validated the approach in a simulated airplane surface temperature inspection mission, as
shown in Fig. C.1.
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Glossary

Notation
Throughout this thesis, scalers are denoted by plain lowercase letters, e.g. x , vectors by bold
lowercase, e.g. x, matrices by plain uppercase, e.g. M , and sets by calligraphic uppercase,
e.g.  .

Speci�c sets

ℝ real numbers.
ℝn real n-vectors.
ℝm×n real m×n matrices.
ℝ+,ℝ++ nonnegative, positive real numbers.
ℤ integers.
ℤ+ nonnegative integers.
ℕ natural numbers.
Sn symmetric n ×n matrices.
Sn+, Sn++ symmetric positive semi-de�nite, positive de�nite, n ×n matrices.

Vectors and matrices

xk the k-th element of vector. x
M ij the i-th row and j-th column element of M .
xT ,MT transpose of a vector x, or matrix M .
diag(x) diagonal matrix with diagonal entries x.
tr(M) trace of matrix M .
0 vector with all components zeros.
1 vector with all components one.

Norms and distances

‖x‖ Euclidean norm of vector x.
‖x‖2 squared Euclidean norm of vector x.
‖x‖2Q weighted squared norm of vector x with weights matrix Q.
‖x‖∞ in�nity norm of vector x.
dist(,) distance between sets (or points)  and .
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Functions and derivatives

f ∶→  f is a function mapping the set  into the set .
∇f gradient of function f .
∇2f Hessian of function f .
ẋ, dxdt , or )x

)t derivative of x w.r.t time t .
Lf ℎ(x) Lie derivative, Lf ℎ(x) = f (x) )ℎ(x))t .

Probability theory

p(⋅) probability density function.
Pr(⋅) probability of an event.
E(⋅) expectation of a random variable.
V(⋅) Variance of a random variable.
x̂ mean of random variable x .
� probability threshold.
 (�,Σ) Gaussian distribution with mean � and variance Σ.

Model predictive control

N number of time steps in receding horizon planning.
Δt time step.
� planning horizon length, � = NΔt .
⋅k the super index k indicates value of the variable at stage k.
J k (⋅) the k-th stage cost.
JN (⋅) the terminal stage cost.

Multi-robot system

d dimension of the workspace, d ∈ {2,3}.
 workspace of the multi-robot system,  ⊆ ℝd .
n number of robots in the multi-robot system, n ∈ ℕ.
 the set of robots,  = {1,…,n} ⊂ ℕ.
i, j the i-th, j-th robot, i, j ∈ .
xi ,i robot i’s state and state space, xi ∈ i ⊂ ℝnx .
ui ,i robot i’s control and control space, ui ∈i ⊂ ℝnu .
fi the function to model robot i’s dynamics.
pi ,vi , ai robot i’s position, velocity and acceleration, pi ,vi ,ui ∈ ℝd .
no number of obstacles in the workspace, no ∈ ℕ.
o the set of obstacles, o = {1,…,no} ⊂ ℕ.
o the o-th obstacle, o ∈ o .
po ,vo obstacle o’s position and velocity, po ,vo ∈ ℝd .
 0
i robot i’s current planned trajectory,  0

i = {x1∶Ni }.
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List of abbreviations

MAV micro aerial vehicle
MPC model predictive control
NMPC nonlinear model predictive control
DMPC distributed model predictive control
CCNMPC chance-constrained nonlinear model control
CCO chance-constrained optimization
CVM constant velocity model
KF Kalman �lter
EKF extended Kalman �lter
UKF unscented Kalman �lter
MVG multivariate Gaussian distribution
GMM Gaussian mixture model
PDF probability density function
CDF cumulative density function
VC Voronoi cell
BVC bu�ered Voronoi cell
UAVC uncertainty-aware Voronoi cell
B-UAVC bu�ered uncertainty-aware Voronoi cell
VO velocity obstacle
RVO reciprocal velocity obstacle
ORCA optimal reciprocal collision avoidance
CBF control barrier function
SBC safety barrier certi�cates
CC-SBC chance-constrained safety barrier certi�cates
MDP Markov decision process
POMDP Partially observable Markov decision process
RL reinforcement learning
NN neural network
DNN deep neural network
CNN convolutional neural network
RNN recurrent neural network
ROS robot operating system
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