Phytochemistry and Diverse Pharmacology of Genus *Mimosa*: A Review

Komal Rizwan 1,* Ismat Majeed 2, Muhammad Bilal 3, Tahir Rasheed 4, Ahmad Shakeel 5, * and Shahid Iqbal 6

1 Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
2 Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan; ismatmajeed123@gmail.com
3 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; bilaluaf@hyit.edu.cn
4 Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; masil@sjtu.edu.cn
5 Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
6 Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan; shahidiqbal.chem@sns.nust.edu.pk
* Correspondence: komal.rizwan45@yahoo.com (K.R.); a.shakeel@tudelft.nl (A.S.)

Abstract: The genus *Mimosa* belongs to the Fabaceae family and comprises almost 400 species of herbs, shrubs and ornamental trees. The genus *Mimosa* is found all over the tropics and subtropics of Asia, Africa, South America, North America and Australia. Traditionally, this genus has been popular for the treatment of jaundice, diarrhea, fever, toothache, wound healing, asthma, leprosy, vaginal and urinary complaints, skin diseases, piles, gastrointestinal disorders, small pox, hepatitis, tumor, HIV, ulcers and ringworm. The review covered literature available from 1959 to 2020 collected from books, scientific journals and electronic searches, such as Science Direct, Web of Science and Google scholar. Various keywords, such as *Mimosa*, secondary metabolites, medicines, phytochemicals and pharmacological values, were used for the data search. The *Mimosa* species are acknowledged to be an essential source of secondary metabolites with a wide-ranging biological functions, and up until now, 145 compounds have been isolated from this genus. Pharmacological studies showed that isolated compounds possess significant potential, such as antiprotozoal, antimicrobial, antiviral, antioxidants, and antiproliferative as well as cytotoxic activities. Alkaloids, chalcones, flavonoids, indoles, terpenes, terpenoids, saponins, steroids, amino acids, glycosides, flavonols, phenols, lignoids, polysaccharides, lignins, salts and fatty esters have been isolated from this genus. This review focused on the medicinal aspects of the *Mimosa* species and may provide a comprehensive understanding of the prospective of this genus as a foundation of medicine, supplement and nourishment. The plants of this genus could be a potential source of medicines in the near future.

Keywords: genus; *Mimosa*; plant; phytochemicals; biological molecules; pharmacological activities

1. Introduction

on 12 December 2018; www.theplantlist.org accessed on 12 December 2018). These species are found in Brazil [2], Africa (Mauritius, Nigeria and Reunion), numerous Pacific Islands, North America, Papua New Guinea [3], Australia [4], Mexico, Venezuela [5], Thailand and the Philippines [6]. However, they are mainly found in Asia, such as Pakistan [7,8], Japan, Indonesia, India, Bangladesh, Malaysia [9], India [10], China, Sri Lanka, Taiwan and Cambodia, while certain species are commonly distributed from Cuba to Texas, northern Central America, Paraguay, Uruguay and Argentina, [11]. The species of Mimosa grow in diverse habitats, such as the savannas, lowland tropical rainforests, dry forests and thorn scrubs of tropical and subtropical areas, midelevations of subtropical deserts, forests, wetlands and grasslands [12]. The leaves of the Mimosa species may be binate or pinnate. Some species such as M. pudica and M. pigra show response to touch by folding their leaves. Flowers may be white, globular pink and in the form of clusters. The fruits are brittle, and a wall of the fruit is compacted in the middle of the seeds. The root bark contains large amounts of starch and calcium oxalate crystals [13,14].

The plants of this genus especially are employed for ornamental purposes and also serve as a sleeping shelter for animals [15]. Various species of the Mimosa genus are socially and economically important, such as M. scabrella (timber production), M. caesalpinifolia (reforestation) and M. tenuiflora (source of firewood). These plants are also used for flooring and furniture [16,17]. The leaves of the plants are used for chicken diet [18], as colorants in the textile industry and also play a role as additives in the food industry [19,20]. The trash of the poultry industry enhances the growth of the Mimosa tree [21,22]. The Mimosa genus has significant economic status in the cosmetic industry [23]. Phytochemical studies of this genus revealed the presence of flavonoids, steroids, saponins, alkaloids, coumarins, tannins [24,25] and terpenoids [26]. The genus Mimosa showed several pharmacological activities, such as antiseptic, antimicrobial [27,28], antidiabetic [29,30], anti-inflammatory [41–43], antinociceptive [44,45], antiulcer [43], antifertility [46], antimalarial [47], antiparasitic [48], wound healing [49], anticancer [50,51], antidepresant [52], antidiarrheal [53,54], hypolipidemic [55,56], hepatoprotective [57], antiviral [59] and aphrodisiac [60]. Previously our group efficiently documented the indigenous flora of Pakistan and also a few exotic species [61–75]. This review covered the several review articles as well in the discussion regarding this genus [76–80]. Recently, our group reported the ethotraditional uses and pharmacological potential of the crude extracts of different species of the genus Mimosa [81]. In this review, we comprehensively reported the secondary metabolites isolated from the genus Mimosa and their pharmacological potential along with future perspectives.

2. Materials and Methods

A detailed bibliographic study that included papers published from 1959 to 2020 was conducted. A number of databanks (Web of Science, Science Direct, SciFinder, Francis & Taylor, Scopus, SciELO, Google Scholar, Springer, PubMed, Wiley, Google and The Plant-Database) were surveyed for assembling statistics, data and figures for this genus. A number of related books, complete text documents and summaries were checked. The genus name, synonyms and scientific names of the genus Mimosa species were castoff as the keywords. The scientific name of all the plants of genus Mimosa and its substitutes were corroborated by consuming a standard databank (http://mpns.kew.org/MPNS.kew.org accessed on 12 December 2018; www.theplantlist.org accessed on 12 December 2018).

3. Chemical Profiling of Genus Mimosa

3.1. Qualitative and Quantitative Analysis of Phytochemicals in Genus Mimosa

Haddad et al. determined condensed tannins of M. tenuiflora whose active ingredients were procyanidin and prodelphinidins [82]. Oliveira et al. determined the total phenols (TP; 99.29 and 65.37), total tannins (TT; 65.57 and 54.93) and condensed tannins (CT; 34.56 and 30.98) from the leaves and stems of M. tenuiflora, respectively [83]. Racadio reported the
existence of phytochemicals in the EtOH extract of *M. pudica* leaves. Phytochemicals, such as alkaloids, flavonoids, saponins and triterpenes, were present, while sterols and tannins were found to be absent [84]. Ahuchaogu et al. screened the phytochemicals of the EtOH extract of the whole *M. pudica* plant. The ethanol extract consisted of alkaloids (9.05%), flavonoids (8.32%), steroids (2.49%), saponins (8.15%), phenols (1.02%), tannins (0.083%), cyanogenic glycosides (0.122%) and anthocyanins (1.913%) [85]. Durgadevi and Karthika reported the phytochemicals of the aq. extract of *M. pudica* leaves. A qualitative analysis indicated the presence of flavonoids, alkaloids, proteins, steroids, tannins, saponins and terpenoids, while phlobatannins, phenols and reducing sugars were found to be absent. The quantitative phytochemical investigation of saponins, flavonoids, tannins and terpenoids were 0.48 mg/mL, 0.99 mg/mL, 0.80 mg/mL, 0.39 mg/mL and 0.39 mg/mL of the aq. extract recorded, respectively [24]. Sheeba et al. screened the phytochemicals of the MeOH extracts of *M. pudica* leaves. The plant showed the presence of flavonoids, phenols and tannins, while alkaloids, glycosides, terpenoids, amino acids and carbohydrates were found to be absent [86]. Tunga et al. reported the presence of phytochemicals in *M. pudica* aerial parts. Alkaloids, saponins, flavonoids, terpenoids and coumarins were found to be present, while carotenoids and anthraquinone were found to be absent [29]. Parmar et al. measured the phytochemicals of the EtOH extract of *M. pudica* roots. Extracts showed the presence of tannins, alkaloids, terpenoids, flavonoids, sterols, phenolic compounds and proteins [34]. Mahadevan et al. measured the phytochemicals of aq. extract of the whole *M. pudica* plant. A Phytochemical analysis exhibited the existence of alkaloids, flavonoids and tannins [87]. Ramesh et al. investigated phytochemicals of various extracts (EtOH, MeOH, PE and ACE) of *M. pudica* leaves and roots. The results showed the presences of flavonoids, alkaloids, terpenoids, carbohydrates, saponins, amino acids, phenols, tannins, proteins and steroids, while glycosides, fats, oils, resins, reducing sugars, phytosterols and phlobatannins were found to be absent [88]. Chinnathambi and Sathasivam measured the phytochemicals of the ACE, EtOH and aq. extracts of *M. pudica* leaves. The investigation proved the existence of tannins, terpenoids, phlobatannins, sterols, saponins and glycoside, while flavonoids were absent [89]. Mathew et al. measured the phytochemicals of the MeOH extracts of the *M. pudica* plant. The results showed the existence of compounds, such as flavonoids alkaloids, saponins, terpenoids, phenols, glycosides, tannins and coumarins [26]. Nagarajan et al. determined the phytochemicals of aq. extract of *M. pudica* leaves and stems by using the Harborne methods [90,91]. The phytochemicals, such as saponins, alkaloids, flavonoids, tannins and phenols were present.

Nagarajan et al. determined the quantitative assessment of the mineral contents of the aq. extracts of *M. pudica* leaves and stems by using wet digestion extraction methods. The mineral contents, such as magnesium, phosphorus, calcium, nitrogen and potassium, were observed [91]. Lee et al. reported the presence of neoxanthin (9.86 µg g⁻¹ FW), viola xanthin (6.57 µg g⁻¹ FW), lutein (7.75 µg g⁻¹ FW), lycopene (0.62 µg g⁻¹ FW), carotene (α = 0.19, β = 0.25 vit.E⁻¹ g), tocopherol (α = 0.25 vit.E⁻¹ g), total Carotenoids (25.24 µg g⁻¹ FW) and total vitamins (0.25 µg g⁻¹ FW) in leaves of *M. pudica* [92]. Ittiyavirah and Pullochal determined the phytochemicals of the EtOH extract of the whole *M. pudica* plant. The preliminary phytochemical analysis of *M. pudica* revealed the existence of alkaloids, flavonoids, tannins, phenolics and steroids [93]. Ao et al. and Olusayo et al. screened the preliminary phytochemicals of the EtOH extract of *M. pigra* roots. The tannins, phlobatannins, flavonoids, triterpenes and saponins were found to be present, while alkaloids, anthraquinones and phenolics were found to be absent [94,95]. Rosado-Vallado et al. screened the phytochemicals of the MeOH and aq. extracts of *M. pigra* leaves. The result showed the existence of flavonoids, quinones, saponins, sterols and tannins [96]. Saxena et al. measured the phytochemicals of the EtOH and MeOH extracts of the whole *M. hamata* plant. The preliminary phytochemical analysis indicated the existence of flavonoids, alkaloids, phytosterols, glycosides, tannins, phenolic compounds, saponins and carbohydrates, while proteins and amino acids, fixed oils and fats were found to be absent [97]. Manosroi et al. reported the presence of various phytochemicals, such as flavones, glycosides, saponins alkaloids and
tannins, in the aq. extract of M. invisa leaves, while anthraquinones and xanthones were found to be absent [98]. Jiménez et al. determined the total phenolic contents of the aq. extract of the whole M. albida plant by the Folin–Ciocalteu method. The plant showed a high phenolic content (323 mg GAE/g) [99]. Seraglio et al. measured the phytochemicals of M. scabrella bentham honeys. Coumarins, flavonoids, lignin-derived aldehydes and phenolic acids were found to be present [100]. Nandipati et al. reported on the flavonoids, tannins, triterpenes and carbohydrates in the MeOH extract of the M. rubicaulis stem [101].

Table 1 presents various phytochemicals present in different species of the genus Mimosa. Phytochemicals are widely known for their medicinal activities. Primary metabolites, such as proteins, lipids and amino acids, are responsible for biochemical reactions in plants, while secondary metabolites, such as saponins, flavonoids, alkaloids, tannins, phenols and glycosides, protect plants against damage and also play a role in the improvement of flavor, color and fragrance. [102]. Phytochemicals in plants are very present in leaves, roots and stems, and their percentage varies because of environmental conditions, plant genus, etc. The Mimosa genus is rich in these primary and secondary metabolites, so the plants of this genus are well known for their pharmacological potential.

Table 1. Phytochemical screening of different species of genus Mimosa.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Plant Part/Extract</th>
<th>Phytochemicals</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. tenuiflora</td>
<td>Leaves, stem</td>
<td>condensed tannins, procyanidin, prodelphinidins</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>leaves</td>
<td>total phenols, total tannins and condensed tannins</td>
<td>[83]</td>
</tr>
<tr>
<td>M. pudica</td>
<td>Leaves/EtOH extract</td>
<td>alkaloids, flavonoids, saponins and triterpenes</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>Whole plant/EtOH extract</td>
<td>flavonoids, steroids, saponins, phenols, cyanogenic glycosides and anthocyanins</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>Leaves/aq. extract</td>
<td>flavonoids, alkaloids, proteins, steroids, tannins, saponins and terpenoids</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>Leaves/MeOH extract</td>
<td>alkaloids, glycosides, terpenoids and amino acids</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td>Aerial parts</td>
<td>alkaloids, saponins, flavonoids, terpenoids and coumarins</td>
<td>[29]</td>
</tr>
<tr>
<td></td>
<td>Roots/EtOH extract</td>
<td>proteins, sterols, tannins, terpenoids, alkaloids, flavonoids and phenolic compounds</td>
<td>[34]</td>
</tr>
<tr>
<td>M. pigra</td>
<td>Whole plant/aq. extract</td>
<td>flavonoids, saponins and tannins</td>
<td>[87]</td>
</tr>
<tr>
<td></td>
<td>Leaves/MeOH and PE and ACE extracts</td>
<td>flavonoids, alkaloids, terpenoids, carbohydrates, saponins, amino acids, phenols, tannins, proteins and steroids</td>
<td>[88]</td>
</tr>
<tr>
<td></td>
<td>Leaves/ACE, EtOH and aq. extracts</td>
<td>flavonoids, alkaloids, phlobatannins, steroids, saponin and glycoside</td>
<td>[89]</td>
</tr>
<tr>
<td></td>
<td>Whole plant/MeOH extract</td>
<td>flavonoids, alkaloids, saponins, phenols, glycosides, tannins, and coumarins</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>Leaves and stem/aq. extract</td>
<td>saponins, alkaloids, flavonoids, tannins and phenols</td>
<td>[90,91]</td>
</tr>
<tr>
<td></td>
<td>Leaves and stem/aq. extract</td>
<td>magnesium, phosphorus, calcium, nitrogen and potassium neoxanthin, viola xanthin, lutein, lycopene, carotenes, tocopherol, total carotenoids and total vitamins</td>
<td>[92]</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>alkaloids, flavonoids, tannins, phenolics and steroids</td>
<td>[93]</td>
</tr>
<tr>
<td>M. hamata</td>
<td>Whole plant/EtOH and MeOH extracts</td>
<td>flavonoids, alkaloids, phytoestrols, glycosides, tannins, phenolic compounds, saponins and carbohydrates,</td>
<td>[97]</td>
</tr>
<tr>
<td>M. invisa</td>
<td>Leaves/aq. extract</td>
<td>flavones, glycosides, saponins and tannins</td>
<td>[98]</td>
</tr>
<tr>
<td>M. albida</td>
<td>Whole plant/aq. extract</td>
<td>total phenolic contents</td>
<td>[99]</td>
</tr>
<tr>
<td>M. scabrella bentham</td>
<td>Honeydew honeys</td>
<td>lignin-derived aldehydes, coumarins, phenolic acids and flavonoids</td>
<td>[100]</td>
</tr>
<tr>
<td>M. rubicaulis</td>
<td>Stem/MeOH extract</td>
<td>flavonoids, tannins, triterpenes and carbohydrates</td>
<td>[101]</td>
</tr>
</tbody>
</table>

3.2. Bioactive Constituents of Genus Mimosa

The plants of genus Mimosa are well known for their rich source of bioactive metabolites. Almost 145 active metabolites have been isolated from the genus Mimosa including chalcones, alkaloids, flavonoids, indoles, terpenes, terpenoids, saponins, steroids, amino acids, glycosides, flavanols, phenols, lignoids, polysaccharides, lignins, salts and fatty esters. This part of the paper documents the isolated secondary metabolites of the genus Mimosa in the past decades and their pharmaceutical values (Table 2). The structures of all the isolated compounds are presented in Figure 1.
Table 2. Bioactive metabolites of genus *Mimosa* and their pharmacological potential.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. tenuiflora</td>
<td>DCM-Hex-MeOH</td>
<td>Stem bark</td>
<td>Chalcones</td>
<td>kukulkan A (1), kukulkan B (2)</td>
<td>(IC<sub>50</sub> µg/mL) against E. histolytica and G. lamblia (3) = 72.7 µg/mL and 82.9 µg/mL; (4) = 69.7 µg/mL and 75.3 µg/mL; (5) = 76.4 µg/mL and 84.1 µg/mL; (6) = 41.1 µg/mL and 108.6 µg/mL; (7) = 69.8 µg/mL and 77.1 µg/mL; (8) = 80.7 µg/mL and 91.8 µg/mL; (9) = 71.6 µg/mL and 77.8 µg/mL; (10) = 82.8 µg/mL and 92.8 µg/mL; (11) = 89.9 µg/mL and 100.9 µg/mL; (12) = 78.7 µg/mL and 86.6 µg/mL; positive control; emetine = 2.2 µg/mL and 0.8 µg/mL; Metronidazole = 0.23 µg/mL and 1.22 µg/mL respectively. Overall good activity</td>
<td>[103]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hex, ACE, MeOH</td>
<td>Leaves and flowers</td>
<td>Flavonoids</td>
<td>6-methoxy-4-O-methylnaringenin (3), 6-methoxynaringenin (4), santin (5), 4,5,7-trihydroxy-3,6-dimethoxy flavone (6), 6-methoxykaempferol (7), tenuiflorin A (8), tenuiflorin B (9), tenuiflorin C (10), 6-demethoxycapillarisin (11), 6-demethoxy-4-O-methyl capillarisin (12)</td>
<td>In vitro/AntipROTOzoAL assays/E. histolytica, G. lamblia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MeOH, Crude Alkaloid Extracts</td>
<td>Leaves and seeds</td>
<td>Indole alkaloid</td>
<td>N-methyltryptamine (13), N,N-dimethyltryptamine (14), 2-methyltetrahydro-β-carboline (15)</td>
<td></td>
<td></td>
<td>[106]</td>
</tr>
<tr>
<td></td>
<td>Hex; ACE: MeOH</td>
<td>Trunk bark, root bark</td>
<td>Indole alkaloid</td>
<td>N,N-dimethyltryptamine (14), 5-hydroxy-tryptamine (16)</td>
<td></td>
<td></td>
<td>[107]</td>
</tr>
<tr>
<td>MeOH</td>
<td>Stem bark</td>
<td>Terpenoids</td>
<td>Saponins</td>
<td>mimonoside A (17), mimonoside B (18), mimonoside C (19)</td>
<td>In vitro/AntipROTOzoAL assays/E. histolytica, G. lamblia</td>
<td></td>
<td>[13,108,109]</td>
</tr>
<tr>
<td>MeOH</td>
<td>Stem bark</td>
<td>Steroids</td>
<td>Saponins</td>
<td>stigmasterol-3-O-β-D-glucopyranosyl (20), β-sitosterol 3-O-β-D-glucopyranosyl (21), lupeol (22), campesterol (23), stigmasterol (24), β-sitosterol (25), campesterol-3-O-β-D-glucopyranosyl (26)</td>
<td>In vitro/AntipROTOzoAL assays/E. histolytica, G. lamblia</td>
<td></td>
<td>[108]</td>
</tr>
<tr>
<td>MeOH</td>
<td>Root bark, stem bark</td>
<td>Phytoidole Alkaloid</td>
<td>Yuremamine</td>
<td>yuremamine (27)</td>
<td>In vitro/AntipROTOzoAL assays/E. histolytica, G. lamblia</td>
<td></td>
<td>[110,111]</td>
</tr>
</tbody>
</table>
Table 2. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BuOH</td>
<td>Stem bark</td>
<td>Triterpene glycosides</td>
<td>Z/E-methoxycinnamic (33,34), E-cinnamic acid (35)</td>
<td></td>
<td></td>
<td>[113]</td>
</tr>
<tr>
<td></td>
<td>Hydro-MeOH extract</td>
<td>Leaves</td>
<td>Tryptophan, amino acid and phenols</td>
<td>tryptophan (36), myricitrin (37), quercitrin (38), quercetin 3-O-pentose (39), quercetin 3-O-hexose (40), kaempferol 3-O-desoxyhexose (41)</td>
<td></td>
<td></td>
<td>[114]</td>
</tr>
<tr>
<td>M. caesalpinifolia</td>
<td>EtOH extract</td>
<td>Inflorescence</td>
<td></td>
<td>gallic acid (42), methylgallate (43), 5-hydroxy-4,7-dimethoxy-flavone (44), quercetin (38), quercetin-3-hexose (45), vicenin-2 (46), rutin (47)</td>
<td></td>
<td></td>
<td>[115]</td>
</tr>
<tr>
<td>EtOH extract</td>
<td>leaves</td>
<td>Phenols and flavonoids</td>
<td></td>
<td>catechin (48), 2,3 dihydroquercetagetin (49), procyanidin (50)</td>
<td></td>
<td></td>
<td>[116]</td>
</tr>
<tr>
<td>M. hamata</td>
<td>MeOH extract</td>
<td>Roots</td>
<td>Triterpenoidal Saponins</td>
<td>mimonoside A (17), mimonoside B (18), mimonoside C (19), saponin A; (3-O-L-rhamnopyran osyl -D-glucopyranosylmoric acid) (51), saponin B; (3-O-L-Arabinoxy-L-glucosylmoric acid) (52)</td>
<td>In vitro/Antioxidant activity/DPPH free radical scavenging assay</td>
<td>Compounds exhibited IC$_{50}$: (17) = 0.45 μg/mL; (18) = 0.55 μg/mL; (19) = 0.60 μg/mL; (51) = 0.085 μg/mL; (52) = 0.10 μg/mL; Standard Quercetin = 0.06 μg/mL. Overall good activity</td>
<td>[119]</td>
</tr>
</tbody>
</table>
Table 2. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Flowers, leaves</td>
<td>4-ethylgallic acid (53), gallic acid (42)</td>
<td>diplomeroterpenoid A (54), diplomeroterpenoid B (55), diplomeroterpenoid C (56), diplomeroterpenoid D (57), diplomeroterpenoid E (58), diplomeroterpenoid F (59), diploflavolin A (60), diploflavolin B (61), hydnocarpin (62), 7,4-dihydroxyflavone (63), chrysoeriol (64), apigenin (65), diploflavin B (66), 2-hydroxy-3,7,4',8,5'-pentamethoxyflavone (67), hernancorizin (68), diplotasin D (69), 7-hydroxy-8-methoxychromone (70), (+)-syringaresinol (71), 4-hydroxy-3,5-dimethoxybenzoic acid (72), β-sitosterol (25), β-sitosterol glucoside (73)</td>
<td>Antiproliferative activity against human hepatoblastoma HepG2 cells/SRB assay</td>
<td>Compound 54 showed antiproliferative activity GI<sub>50</sub> = 8.6 μM while Compounds 55–60 ≥ 10 μM. Marginal activity</td>
<td>[7,60]</td>
<td></td>
</tr>
<tr>
<td>CHCl<sub>3</sub></td>
<td>Root</td>
<td>Meroterpenoids, chalcone-lignoids</td>
<td>diplotrin A (74), diplotrin B (66), diplotrin C (75), diplotasin D (69), 5-methoxyhydnocarpin-D (76), 7,3',4',5'-trihydroxy-3,8-dimethoxyflavone (77), 2-hydroxy-3,7,8,3',5'-pentamethoxy flavone (67), hernancorizin (68), 5,3'-di-O-methyluteolene (78), betulinic acid (79), luteolin (80), quercetin (38), quercetin-3-O-xylpyranoside (81), quercetin-3-O-arabino furanoside (83), myricetin-3-O-arabino furanoside (84)</td>
<td>In vitro/Cytotoxic activity/AS49, AGS, HT-29, and PC3 human cancer cell line/SRB assay</td>
<td>Against all cell lines GI<sub>50</sub> = 2.7 μM, 1.7 μM, 7.5 μM, and 20.8 μM, (76) 20.3 μM, 24.8 μM, 4.1 μM, and 2.3 μM, respectively. Excellent activity.</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>Whole plant</td>
<td>5-deoxy flavones, flavonoids, flavonolignans and triterpenoids</td>
<td>2-hydroxy-3,7,8,3',5'-pentamethoxyflavone (67), hernancorizin (68), 5,3'-di-O-methyluteolene (78), betulinic acid (79), luteolin (80), quercetin (38), quercetin-3-O-xylpyranoside (81), quercetin-3-O-arabino furanoside (83), myricetin-3-O-arabino furanoside (84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. xanthocentra</td>
<td>EtOAc, BuOH</td>
<td>Aerial parts flavones</td>
<td>isovitexin-2-O-α-rhamnopyranoside (85), vitexin-2-O-α-L-rhamnopyranoside (86), quercetin-3-O-xylpyranoside (81), quercetin-3-O-arabino furanoside (83)</td>
<td></td>
<td></td>
<td>[121]</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. hostilis</td>
<td>EtOAc</td>
<td>Roots</td>
<td>Indole Alkaloid</td>
<td>quercetina-3-O-raminoside (87), miricetina-3-O-raminoside (88), Euphaline,</td>
<td>Antimicrobial activity/E. coli, E. aerogenes, S. aureus, P. aeruginosa, K. pneumonia, S. typhi, C. albicans/XTT colorimetric assay</td>
<td>Compound (97) and (101) were most active against K. pneumonia MIC = 64 mg/mL. Overall good activity</td>
<td>[122]</td>
</tr>
<tr>
<td>M. artemisiana</td>
<td>n-Hex, MeOH</td>
<td>Leaves and branches</td>
<td>Flavonoids, flavonolignans, glycosylated steroid, triterpene, steroids, indole carboxylate</td>
<td>17-O-triacontanoylheptadecanal (97) and β-sitosterol (25), α-amyrine (98), lupeol (22), 4-O-methylpeninumisoflavone (99), alpinumisoflavone (100), betulinic acid (79), sitosterol 3-O-β-D-glucopyranoside (21) and epirobinetinidol (101)</td>
<td>Antimicrobial activity E. coli, E. aerogenes, S. aureus, P. aeruginosa, K. pneumonia, S. typhi, C. albicans/XTT colorimetric assay</td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td>M. invitasa</td>
<td>DCM/MeOH</td>
<td>Aerial parts</td>
<td>Fatty aldol ester</td>
<td>Antimicrobial activity against Herpes simplex virus 1 (HSV-1)/plaque reduction method</td>
<td></td>
<td>At concentration 20 µg/mL IC₅₀ lesser than 2.5 µg/mL was observed. Marginal activity. Excellent activity.</td>
<td>[28]</td>
</tr>
<tr>
<td>M. scabrella</td>
<td>Polysaccharide</td>
<td>Seeds</td>
<td>Sulfated galactomannan (BRS) (102)</td>
<td></td>
<td></td>
<td>At the concentrations ≥39 µg/mL BRS reduced by 15% the viability of Vero cells (CC₅₀ = 454 µg/mL) At the concentrations 625 µg/mL BRS reduced by 24% the viability of MA-104 cells (CC₅₀ > 625 µg/mL). Marginal activity</td>
<td>[123]</td>
</tr>
<tr>
<td>M. somnian</td>
<td>MeOH</td>
<td>Whole plant</td>
<td>Alkaloid</td>
<td>tryptamine (103), N-methyl tryptamine (13)</td>
<td></td>
<td></td>
<td>[124]</td>
</tr>
</tbody>
</table>
Table 2. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. pudica</td>
<td>EtOAc fraction</td>
<td>Whole plant</td>
<td>Flavonoid</td>
<td>2-(2′,6′-dimethyl-3′-4′,5′-alkyl or hydroxy alkyl substituted phenyl)-3-oxy(alkyl or hydroxy alkyl) 5,7-dihydroxy-chromen-4-one (104–107)</td>
<td>In vitro/Cytotoxic activity/MTT assay/human lung adenocarcinoma cell line (A549) & human erythroleukemic cell line (K562)</td>
<td>(IC<sub>50</sub>) of against A549 = 76.67 µg/mL and K562 = 287.63 µg/mL, while positive control Doxorubicin A549 = 2.76 µg/mL and K562 = 4.72 µg/mL. Marginal activity</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>HyOH extract</td>
<td>Whole plant</td>
<td>Amino acid</td>
<td>L-mimosine (108)</td>
<td>Antioxidant effect/DPPH radical scavenging activity</td>
<td>Compound at 250 µg/mL. (IC<sub>50</sub> = 233.06 µM). Good activity</td>
<td>[34,125]</td>
</tr>
<tr>
<td>CHCl<sub>3</sub> extracts</td>
<td>Whole plant</td>
<td>Triterpenoid glycoside (109)</td>
<td>-</td>
<td>jasmonic acid (110), abscisic acid (111), 5,7,3′,4′-tetrahydroxy-6-C-[β-D-apiose-(1→4)]-β-D-glucopyranosyl flavones (112), 7,8,3′,4′-tetrahydroxy-6-C-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl flavone (113), 5,7,4′-trihydroxy-8-C-β-D-glucopyranosyl flavones (114), mimosinamine (115), mimosinic acid (116), Tyrosin (117)</td>
<td>In vitro/Cytotoxic activity/daudi cell line/MTT assay</td>
<td>Compound 108, (IC<sub>50</sub> = 86.61 µM). Excellent activity</td>
<td>[126]</td>
</tr>
<tr>
<td>CHCl<sub>3</sub> extracts</td>
<td>Whole plant</td>
<td>-</td>
<td>-</td>
<td>jasmonic acid (110), abscisic acid (111), 5,7,3′,4′-tetrahydroxy-6-C-[β-D-apiose-(1→4)]-β-D-glucopyranosyl flavones (112), 7,8,3′,4′-tetrahydroxy-6-C-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl flavone (113), 5,7,4′-trihydroxy-8-C-β-D-glucopyranosyl flavones (114), mimosinamine (115), mimosinic acid (116), Tyrosin (117)</td>
<td>In vitro/Cytotoxic activity/daudi cell line/MTT assay</td>
<td>Compound 108, (IC<sub>50</sub> = 86.61 µM). Excellent activity</td>
<td>[127]</td>
</tr>
<tr>
<td>EtOH</td>
<td>Whole plant</td>
<td>Flavonoids</td>
<td>-</td>
<td>isoquercitrin (119), avicularin (120), apigenin-7-O-D-glucoside (121), cassiaoccidentalin B (122), orientin (123), isoorientin (124)</td>
<td>-</td>
<td>-</td>
<td>[128]</td>
</tr>
<tr>
<td>EtOH</td>
<td>Whole plant</td>
<td>Flavonoids</td>
<td>-</td>
<td>isoquercitrin (119), avicularin (120), apigenin-7-O-D-glucoside (121), cassiaoccidentalin B (122), orientin (123), isoorientin (124)</td>
<td>-</td>
<td>-</td>
<td>[129]</td>
</tr>
<tr>
<td>Arial parts</td>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
<td>isoquercitrin (119), avicularin (120), apigenin-7-O-D-glucoside (121), cassiaoccidentalin B (122), orientin (123), isoorientin (124)</td>
<td>-</td>
<td>-</td>
<td>[130]</td>
</tr>
<tr>
<td>Species</td>
<td>Extract</td>
<td>Parts</td>
<td>Classification</td>
<td>Compounds</td>
<td>Modal/Assay</td>
<td>Responses along with Critical Assessment</td>
<td>Ref.</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>MeOH</td>
<td>Leaves</td>
<td></td>
<td>chlorophyllin</td>
<td>(125)...</td>
<td>Antimicrobial activity / P. aeruginosa, E. coli, S. aureus, K. pneumoniae, C. albicans / well diffusion method</td>
<td>Zone of inhibition at 25 µg/mL conc. P. aeruginosa = 12 mm, E. coli = 8 mm, S. aureus = 14 mm, K. pneumoniae = 13 mm, C. albicans = 9 mm. At 100 µg/mL conc. P. aeruginosa = 18 mm, E. coli = 13 mm, S. aureus = 19 mm, K. pneumoniae = 18 mm, C. albicans = 13 mm. The streptomycin sulphate and nystatin (standred) at 10 µg/mL showed maximum inhibition 18 mm–19 mm. Good activity</td>
<td>[131]</td>
</tr>
<tr>
<td>EtOAc-benzene (1:9)</td>
<td>Leaves</td>
<td>Phenolic ketone</td>
<td>4-(2′-methoxy-2′-methyl-1′-oxo-5′-n-propyl-tetracosanyl)-phenol (126)</td>
<td></td>
<td></td>
<td></td>
<td>[132]</td>
</tr>
<tr>
<td>M. pudica</td>
<td>EtOH</td>
<td>Leaves</td>
<td>Flavonoids</td>
<td>7,3′,4′-triacetoxy-3,8-dimethoxyflavone (127), p-coumaric acid (128), 7,3′,4′-trihydroxy-3,8-dimethoxyflavone (77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeOH</td>
<td>Leaves</td>
<td></td>
<td>mimopudine</td>
<td>(129)...</td>
<td></td>
<td></td>
<td>Responsible for leaves opening</td>
</tr>
<tr>
<td>MeOH</td>
<td>Leaves</td>
<td></td>
<td>potassium 5-O-β-D-glucopyranosylgentisate (130)</td>
<td></td>
<td></td>
<td></td>
<td>Responsible for leaves closing</td>
</tr>
<tr>
<td>MeOH</td>
<td>Leaves</td>
<td>mimopudine (129), potassium 5-O-β-D-glucopyranosylgentisate (130), potassium L-malate (131), magnesium potassium trans-aconitate (132), dimethyl ammoniumsalt (133)</td>
<td></td>
<td></td>
<td></td>
<td>Responsible for rapid sensitive actions, such as heat and touch. Periodic slow actions, such as nyctinastic actions</td>
<td>[136]</td>
</tr>
<tr>
<td>Fresh leaves</td>
<td></td>
<td>tubulin (134)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>Leaves</td>
<td>nor-epinephrine (135), d-pinitol (136), β-sitosterol (25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[138]</td>
</tr>
</tbody>
</table>

Table 2. Cont.
Table 2. Cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Extract</th>
<th>Parts</th>
<th>Classification</th>
<th>Compounds</th>
<th>Modal/Assay</th>
<th>Responses along with Critical Assessment</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH</td>
<td>Leaves</td>
<td></td>
<td></td>
<td>5,7,3',4'-tetrahydroxy-6-C-β-D-apiose-(1→4)-β-D-glycopyranosyl flavone (112), orientin (123), isoorientin (124), vitexin (137), isovitexin (138)</td>
<td>Antifungal activity/dilution agar plate method/P. ultimum, P. capsici, R. solani, B. cinerea, A. panax and S. sclerotiorum</td>
<td>Compound (139) showed good ED50 value against P. capsici = 35.7 µg/mL, S. sclerotiorum = 52.1 µg/mL, P. ultimum = 54.9 µg/mL. Overall good activity</td>
<td>[139]</td>
</tr>
<tr>
<td>Roots</td>
<td>Chroman</td>
<td></td>
<td>2-hydroxymethyl-chroman-4-one (139)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roots</td>
<td>Sterolglucoside</td>
<td></td>
<td>stigmasterol (24), β-sitosterol (25), betulinic acid (79), 4-a,24-dimethylcholest-7-en-3β-ol-3β-D-glucoside (140)</td>
<td></td>
<td></td>
<td></td>
<td>[141]</td>
</tr>
<tr>
<td>MeOH</td>
<td>Roots</td>
<td>Diterpenoids</td>
<td>19-O-trans-feruloyl-labd-8(17)-en-15,19-diol (141), 19-O-{(E)-3',4'-dimethoxy cinnamoyl]-labd-8(17)-en-15,19-diol (142)</td>
<td></td>
<td></td>
<td></td>
<td>[142]</td>
</tr>
<tr>
<td>Seeds</td>
<td>Fatty acids</td>
<td></td>
<td>D-xylose (143), D-glucuronic acid 4-O-(3,5-dihydroxybenzoic acid)-β-D-glucuronide (144)</td>
<td></td>
<td></td>
<td></td>
<td>[143]</td>
</tr>
<tr>
<td>Seeds</td>
<td>Cardiac glycosides</td>
<td></td>
<td>bufadienolide (145)</td>
<td></td>
<td></td>
<td></td>
<td>[144]</td>
</tr>
<tr>
<td>Stem</td>
<td>Amino acids</td>
<td></td>
<td>mimosine (108)</td>
<td></td>
<td></td>
<td></td>
<td>[145]</td>
</tr>
</tbody>
</table>
Figure 1. Cont.
Figure 1. Bioactive constituents isolated from various species of genus *Mimosa.*
3.2.1. *M. tenuiflora*

Dominguez et al. isolated two chalcones called kukan A (2′,4′-di hydroxy-3′,4′-dimethoxy chalcone) (1) and kukan B (2′,4′,4-trihydroxy-3′-methoxychalcone) (2) from *M. tenuiflora* stem bark in the form of yellow crystals [103]. Ten different flavonoids including the chromones named 6-methoxy-4-O-methyl naringenin (3), 6-methoxy naringenin (4), santin (5), 4,5,7-trihydroxy-3,6-dimethoxy flavone (6), 6-methoxykaempferol (7), tenuiflorin A [5,7-dihydroxy-2-(3-hydroxy-4-methoxy phenoxy)-6-methoxychromone] (8), tenuiflorin B [5,7-dihydroxy-2-(4-hydroxy-3-methoxy phenoxy)-6-methoxychromone] (9), tenuiflorin C [5,7-dihydroxy-2-(3-hydroxy-4-methoxy phenoxy)-chromone] (10), 6-demethoxycapillarisin (11) and 6-demethoxy-4-O-methylcapillarisin (12) were isolated from the flowers and leaves of *M. tenuiflora* [104,105]. Gardner et al. reported on the alkaloids N-methyl-tryptamine (13), N,N-dimethyltryptamine (14) and 2-methylethylhydro-β-carboline (15) from the MeOH and crude extracts of leaves and seeds of *M. tenuiflora* [106]. Meckes-Lozoya et al. isolated the alkaloids 5-hydroxy-tryptamine (16) and N,N-dimethyl tryptamine (17) from the Hex:ACE:MeOH extracts of root bark of *M. tenuiflora* [107]. Different terpenoidal saponins called mimonoside A (17), mimonoside B (18) and mimonoside C (19); steroids saponins called stigmasterol-3-β-D-glucopyranosyl (20), β-sitosterol-3-O-β-D-glucopyranosyl (21), lupeol (22), campesterol (23), stigmasterol (24), β-sitosterol (25) and campesterol-3-β-D-glucopyranosyl (26) were isolated from the MeOH extract of the stem bark of *M. tenuiflora* [13,108,109]. The phytoindole alkaloid yuremamine (27) was isolated from the MeOH extract of *M. tenuiflora* leaves [110,111].

3.2.2. *M. pigra*

The novel acylated flavanol glycosides myricetin (2-O-galloyl)-3-O-α-L-rhamnopyranoside (28), quercetin (2-O-galloyl)-3-O-α-L-rhamnopyranoside (29), myricetin (3-O-α-L-rhamnopyranoside (30), quercetin 3-O-α-L-rhamnopyranoside (31) and quercetin 3-O-β-L-arabinopyranoside (32) were isolated from *M. pigra* leaves [112]. Englert et al. isolated two novel triterpene glycosides called Z/E-methoxy cinnamic (33,34) or an E-cinnamic acid (35) from the BuOH extract of *M. pigra* stem bark [113]. Rakotomalala et al. reported on the isolation of tryptophan (36), myricitrin (37), quercitrin (38), quercetin 3-O-hexose (39), quercetin 3-O-pentose (40) and kampferol 3-O-desoxyhexose (41) from the hydro-MeOH extract of *M. pigra* leaves [114].

3.2.3. *M. caesalpiniiifolia*

Santos et al. isolated gallic acid (42), methylgallate (43), 5-hydroxy-4,7-dimethoxy-flavone (44), quercetin (38), quercetin-O-hexoside (45), vicenin-2 (46) and rutin (47) from the EtOH extract of inflorescence of *M. caesalpiniiifolia* [115]. Silva et al. isolated the phenolic compounds called catechin (48), 2,3 dihydroquercetagetin (49) and procyanidin (50) from the EtOH extract of *M. caesalpiniiifolia* leaves [116].

3.2.4. *M. hamata*

The compounds mimonoside A (17), mimonoside B (18), mimonoside C (19), saponin A (51) and saponin B (52) were isolated from the leaves and roots of *M. hamata* [117–119]. Mehta et al. isolated 4-ethylgallic acid (53) from the ACE extract of the flowers of *M. hamata* [60], while gallic acid (42) and 4-ethylgallic acid (53) were found in the leaves of *M. hamata* [7].

3.2.5. *M. diplotricha*

Chiou et al. isolated six new meroterpenoids called diplomeroterpenoids A-F (54–59), two new chalcone-lignoids called diplochalconins A and B (60,61) and 13 known compounds called hydnocarpin (62), 7,4-dihydroxy flavone (63), chrysoeriol (64), apigenin (65), diplotrin B (66), 2-hydroxy-3,7,4′,8,5′-pentamethoxy flavone (67), hernicocorizin (68), diplotatin D (69), 7-hydroxy-8-methoxychromone (70), (+)-syringaresinol (71), 4-hydroxy-3,5-dimethoxybenzoic acid (72), β-sitosterol (25), β-sitosterol glucoside (73) from CHCl₃
extract of *M. diplotricha* roots [120]. Lin et al. reported four 5-deoxyflavones called diplopterin A (74), diplopterin B (66), diploptatin C (75), diploptatin D (69), 5-methoxyhydncarpin-D (76), 7,3′,4′-trihydroxy-3,8-dimethoxyflavone (77), 2-hydroxy-3,7,8,4,5-pentamethoxyflavone (67), hernancorizin (68), 5,3′-di-O-methyluteolin (78), betulinic acid (79), luteolin (80), quercetin (38), quercetin-3-O-xylpyranoside (81), myricetin-3-O-xylpyranoside (82), quercetin-3-O-arabino furanoside (83) and myricetin-3-O-arabino furanoside (84) from the EtOH extract of the whole *M. diplotricha* plant [58].

3.2.6. *M. xanthocentra*

Camargo et al. isolated the flavones isovitexin-2-O-α-L-rhamnopyranoside (85), vitexin-2-O-α-L-rhamnopyranoside (86), quercetin-3-O-xylpyranoside (81) and quercetin-3-O-arabino furanoside (83) from the EtOAc and BuOH fractions of *M. xanthocentra* aerial parts [121].

3.2.7. *M. hostilis*

Pachter et al. isolated indole alkaloid and N,N-dimethyltryptamine (14) from the EtOAc extract of *M. hostilis* roots [122].

3.2.8. *M. artemisiana*

do Nascimento et al. isolated quercetina-3-O-raminoside (87), miricetina-3-O-raminoside (88), euphaline, 3,5,4-trihydroxy-6,7-dimethoxy flavone (89), flavanolignana (90–93), sitosterol-3-O-β-D-glycopyranoside (21), lupeol (22), steroids sitostenone (92), stigmasterone (93), campestenone (94), campsterol (23), stigmasterol (24), sitosterol (25), methyl indole-3-carboxilate (95) and indole-3-carboxaldehyde (96) from the *n*-Hex and MeOH extracts of the leaves and branches of *M. artemisiana* [25].

3.2.9. *M. invisa*

Nana et al. isolated new fatty aldon ester called 17-O-trioctanoylheptadecanal (97) and β-sitosterol (25), α-amyrine (98), lupeol (22), 4-O-methyleneumisoflavone (99), alpinumisoflavone (100), betulinic acid (79), sitosterol 3-O-β-D-glucopyranoside (21) and epirobinetinidol (101) from the aerial parts of the *M. invisa* (DCM/MeOH) extracts [28].

3.2.10. *M. scabrella*

Chrestani et al. isolated polysaccharide and sulfated galactomannan (BRS) (102) from the seeds of *M. scabrella* [123].

3.2.11. *M. somniam*

Gupta et al. isolated the alkaloid tryptamine (103) and N-methyltryptamine (13) from the MeOH extract of the whole *M. somniam* plant [124].

3.2.12. *M. pudica*

Whole Plant (Tree) Phytochemicals

Different classes of compounds were isolated from whole *M. pudica* plant (tree). Jose et al. isolated 2,2′,6′-dimethyl-3′,4′,5′-alkyl or hydroxy alkyl substituted phenyl-3-oxo-(alkyl or hydroxy alkyl) 5,7-dihydroxy-chromen-4-one (104–107) from the EtOAc fraction of *M. pudica* [50]. One amino acid called L-mimosine (108) was extracted from the hydroalcoholic extract of *M. pudica* [50] [34,125]. Chukwu et al. isolated triterpenoid glycoside (109) from the crude EtOH extract of the whole *M. pudica* plant [126]. Tsurumi and Asahi isolated jasmonic acid (110) and abscisic acid (111) from *M. pudica* [127]. Yuan et al. isolated two new C-glycosyl flavones called 5,7,3′,4′-tetrahydroxy-6-C-[β-D-apiose-(1→4)]-β-D-glucopyranosyl flavones (112), 7,8,3′,4′-tetrahydroxy-6-C-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl flavones (113), 5,7,4′-trihydroxy-8-C-β-D-glucopyranosyl flavones (114), mimosinamine (115), mimosinicacid (116) and tyrosin (117) from the whole *M. pudica* plant. Compound (112) is a new compound, and compounds (113,114) were isolated
for the first time from this plant [128]. Yuan et al. also isolated two new C-glycosyl flavones called 5,7,3',4'-tetrahydroxy-6-C-[β-D-apiose-(1→4)]-β-D-glucopyranosyl flavones (112) and 6,7,3',4'-tetrahydroxy-8-C-[α-L-rhamno pyranosyl-(1→2)]-β-D-glucopyranosyl flavone (118) from the M. pudica plant [129].

Aerial Part Phytochemicals

Misra and Tewari isolated six compounds (flavonoids) from the aerial parts of M. pudica and identified them as isoquercitrin (119), avicularin (120), apigenin-7-O-D-glucoside (121), cassiaocidentalin B (122), orientin (123) and isoorientin (124) [130].

Leaf Phytochemicals

Rajalakshmi and Banu reported the presence of chlorophyllin (125) in the MeOH extract of fresh M. pudica leaves [131]. Josewin et al. isolated the phenolic ketone called 4-(24'-methoxy-24'-methyl-1'-oxo-5'-n-propyl-tetracosanyl)- phenol (126) from the leaves of M. pudica [132]. Kirk et al. isolated three flavonoids called 7, 3',4',-Triacetoxy-3,8-dimethoxyflavone (127), p-coumaric acid (128) and 7,3',4'-trihydroxy-3,8-dimethoxyflavone (77) from the leaves of M. pudica [133]. Ueda and Yamamura isolated a leaf opening compound called mimopudine (129) and a leaf closing compound called potassium 5-O-β-D-glucopyranosylgentisate (130) from the leaves of M. pudica. This compound mimopudine (129) is responsible for the opening and movements of leaves even at night, while the compound mimopudine (130) is responsible for the closing of the leaves [134,135]. Ueda and Yamamura also isolated different chemical substance such as mimopudine (129), glucupyrano sylgentisate (130), potassium L-malate (131), magnesium potassium trans-aconitate (132) and dimethyl ammonium salt (133) from M. pudica leaves. These compounds are responsible for rapid sensitive actions, such as heat and touch, and episodic slow actions, such as nyctinastic actions [136]. Pal et al. isolated tubulin protein (134) (pulvinar callus cells) from the fresh leaves of M. pudica [137]. Khare isolated three compounds as nor-epinephrine (135), d-pinitol (136) and β-sitosterol (25) from M. pudica leaves [138]. Zhang et al. isolated five flavonoids named as 5,7,3',4'-tetrahydroxy-6-C-[β-D-apiose-(1→4)]-β-D-glucopyranosyl flavone (112), orientin (123), isoorientin (124), vitexin (137) and isovitexin (138) from M. pudica leaves [139].

Root Phytochemicals

Kanga et al. reported a new chroman called 2-hydroxymethyl-chroman-4-one (139) from M. pudica roots [140]. Dinda et al. isolated a new sterolglucoside called 4-a,24-dimethylcholest-7-en-3β-ol-3β-D-glucoside (140) along with three other compounds called stigmasterol (24), β-sitosterol (25) and betulinic acid (79) from the roots of M. pudica [141]. Shu and Ho (2013) isolated two new diterpenoids named 19-O-trans-feruloyl-labd-8(17)-en-15,19-diol (141) and 19-O-[(E)-3',4'-dimethoxy cinnamoyl]-labd-8(17)-en-15,19-diol (142) from the roots of M. pudica [142].

Seed Phytochemicals

Chatterjee and Pakrashi isolated two compounds called D-xylose (143) and D-glucuronic acid 4-O-(3,5-dihydroxybenzoic acid)-β-D-glucuronic acid (144) in the form of mucilage from M. pudica seeds [143]. Yadava and Yadav reported a novel compound bufadienolid (hellebrigenin-3-O-α-L-rhamnopyranosyl-(1→4)-O-β-D-galactopyranoside) (145) from the seeds of M. pudica [144].

Stem Phytochemicals

Zaware et al. also isolated nonprotein amino acid called mimosine; [β-[N-(3-hydroxy-4-oxopyridyl)]-α-aminopropionic acid] (108) from the stem of M. pudica [145].
4. Pharmacological Activities of Genus Mimosa

The potential role of the *Mimosa* genus in traditional medicines encouraged the further biological evaluations of organic extracts and isolated phytoconstituents for potential pharmacological applications. In this section, we summarized the pharmacological activities of genus *Mimosa* (Table 2).

4.1. Antiprotozoal Activity

Antiprotozoals are drugs that are used to treat different infections including babesiosis, microsporidiosis, amebiasis, malaria, leishmaniasis and malaria. These infections are caused by various protozoa. Currently, the treatments of these infections are limited because of toxicity. So, there is a need to find new natural sources to treat these infections with less toxicity. A group of scientists determined the antiprotozoal activity of ten different flavonoids and chromones including 6-methoxy-4-O-methylnaringenin (3), 6-methoxy naringenin (4), santin (5), 4,5,7-trihydroxy-3,6-dimethoxy flavone (6), 6-methoxykaempferol (7), tenuiflorin A (8), tenuiflorin B (9), tenuiflorin C (10), 6-demethoxy capillarisin (11) and 6-demethoxy-4-O-methyl capillarisin (12) isolated from the leaves and flowers of *M. tenuiflora* against *E. histolytica* and *G. lamblia*. The most interesting activity was obtained with (8) (IC\textsubscript{50} = 41.1 µg/mL) against *E. histolytica* and (5) (IC\textsubscript{50} = 75.3 µg/mL) against *G. lamblia* [104,105].

4.2. Antimicrobial Activity

Jain et al. observed the antimicrobial activity of mimonoside A (17), mimonoside B (18), mimonoside C (19), saponin A (51) and saponin B (52) isolated from the leaves and roots of *M. hamata* against different biological strains, such as *E. coli*, *B. subtilis*, *S. aureus*, *P. aeruginosa*, *A. flavus*, *E. aerogenes*, *K. pneumoniae*, *A. niger*, *C. albicans* and *R. bataticola*, using the agar well diffusion method. All compounds showed significant activity against Gram-negative bacteria and fungi, while moderate activity was observed against Gram-positive bacteria compared to standard gentamycin (10 µg/mL) and ketoconazole (100 units/mL). None of the saponins was active against *A. niger*, *A. flavus* and *C. albicans* [119]. Nana et al. measured the antimicrobial activity of new fatty aldol ester called 17-O-triacontanoylheptadecanal (97) and β-sitosterol (25), α-amyrine (98), lupeol (22), 4-O-methyllepinumisoflavone (99), alpinumisoflavone (100), betulinic acid (79), sitosterol 3-O-β-D-glucopyranoside (21) and epirobinetindiol (101) from the aerial parts of *M. invisa* against *E. coli*, *E. aerogenes*, *S. aureus*, *P. aeruginosa*, *K. pneumoniae*, *S. typhi* and *C. albicans* using the XTT colorimetric assay. Compound (97) displayed antimicrobial activity with MIC values ranging from 64 µg/mL to 256 µg/mL. Both compounds showed pronounced activity against *K. pneumoniae* (MIC = 64 µg/mL). The antimicrobial activity of chlorophyllin (125) extracted from the fresh leaves of *M. pudica* against *P. aeruginosa*, *E. coli*, *S. aureus*, *K. pneumoniae*, *C. albicans* was determined by using the agar well diffusion method [131]. The compound (125) at a concentration of 25 µg/mL showed a significant zone of inhibition against *P. aeruginosa* = 12 mm, *E. coli* = 8 mm, *S. aureus* = 14 mm, *K. pneumoniae* = 13 mm and *C. albicans* = 9 mm, while at a concentration of 100 µg/mL, *P. aeruginosa*, *E. coli*, *S. aureus*, *K. pneumoniae* and *C. albicans* = 18 mm, 13 mm, 19 mm and 18 mm inhibition was observed, respectively. The streptomycin sulphate and nystatin (standard) at 10 µg/mL showed a maximum inhibition of 18 mm–19 mm [28]. The antifungal activity of 2-hydroxymethylchroman-4-one (139) isolated from *M. pudica* roots was checked against various strains, such as *P. ultimum*, *P. capsici*, *R. solani*, *B. cinerea*, *A. panax* and *S. sclerotiorum*, by using the dilution agar plate method. Compound (139) showed a significant ED\textsubscript{50} value against *P. capsici*, *S. sclerotiorum* and *P. ultimum* = 5.7 µg/mL, 52.1 µg/mL and 54.9 µg/mL, respectively [140].

4.3. Antiviral Activity

Chrestani et al. measured the antiviral activity of the polysaccharide sulfated galactomannan (BRS) (102) isolated from the seeds of *M. scabrella* to counter the *Herpes simplex* virus 1 (HSV-1) at a concentration range of 2 µg/mL–2.5 µg/mL. The (102) exhibited IC\textsubscript{50}
value was less than 2.5 µg/mL. Even at a very low concentration (2.5 µg/mL), viral activity was inhibited [123].

4.4. Antioxidant Activity

The reactive oxygen species are the cause of many diseases in human beings including cardiovascular and neurological disorders [146]. There is a constant need to counteract the effect of reactive oxidative species to delay the progression on these diseases. Reactive oxygen species and free radicals are scavenged by antioxidants through the termination of a chain reaction, which otherwise can cause damage to cells [147]. Plants are a source of antioxidants and can help to lessen the diseases caused by reactive oxidative species. Natural antioxidants are more potent and less toxic, so there is a need to find more natural sources for well-being. Various species of Mimosa have been screened for antioxidant activity by the application of different assays (Table 2). Jain et al. measured the antioxidant activity of mimonoside A (17), mimonoside B (18), mimonoside C (19), saponin A (51) and saponin B (52) isolated from the leaves and roots of M. hamata using the DPPH free radical scavenging assay. Compounds revealed significant IC₅₀ values; (17) = 0.45 µg/mL; (18) = 0.55 µg/mL; (19) = 0.60 µg/mL; (51) = 0.085 µg/mL and (52) = 0.10 µg/mL, while quercetin (Standard) showed an IC₅₀ value of 0.06 µg/mL [119]. The amino acid L-mimosine (108) was extracted from the hydroalcoholic extract of M. pudica, and the antioxidant activity was determined by the DPPH radical scavenging assay. The compound (108) at a concentration of 250 µM showed significant activity (IC₅₀ = 233.06 µM) [34,125].

4.5. Antiproliferative Activity

Chiou et al. investigated the antiproliferative activity of isolated compounds called diplome terpenoids A–F (54–59), two new chalcone-lignoids called diplochalconins A and B (60,61) and 13 known compounds called hydnocarpin (62), 7,4-di hydroxyflavone (63), chrysoeriol (64), apigenin (65), diplotrin B (66), 2-hydroxy-3,7,4′,8,5′-pentamethoxyflavone (67), hernacolorizin (68), diplosatin D (69), 7-hydroxy-8-methoxycromone (70), (+)-syringaresinol (71), 4-hydroxy-3,5-dimethoxybenzoic acid (72), β-sitosterol (25) and β-sitosterol glucoside (73) isolated from M. diplotricha roots against human hepatoblastoma HepG2 cells by the Sulforhodamine B assay (SRB). Compound 54 displayed growth inhibition activity with GI₅₀ = 8.6 µM, although the GI₅₀ values of the compounds (55–60) were greater than 10 Mm [120].

4.6. Cytotoxic Activity

Cancer is an uncontrolled and abnormal symmetric growth of body cells [148]. Different cancers were observed in humans, such as in the liver, stomach, lung, breast, prostate, thyroid and cervix. Bioactive compounds isolated from plants are used in curing cancer because they are inexpensive, nontoxic and easily available as compared to synthetic compounds. The bioactive compounds in plants induced apoptosis in infective cancer cells and also helped to restore chemotherapy sensitivity [149]. Lin et al. reported the cytotoxic activity of four 5-deoxyflavones called diplotrin A (74), diplotrin B (66), diplotrin C (75), diplosatin D (69), 5-methoxyhydnocarpin-D (76), 7,3′,4′-tri hydroxy-3,8-dimethoxyflavone (77), 2-hydroxy-3,7,8,4,5 pentamethoxy flavone (67), hernacolorizin (68), 5,3′-di-O-methyluteolin (78), betulinic acid (79), luteolin (80), quercetin (38), quercetin-3-O-xylopyranoside (81), myricetin-3-O-xylopyranoside (82), quercetin-3-O-arabino furanoside (83) and myricetin-3-O-arabino furanoside (84) isolated from the whole M. diplotricha plant against the A549, HT-29, AGS and PC3 human cancer cell lines using the SRB assay. Compounds (66) and (76) presented the powerful antiproliferative activity with GI₅₀ values of (66) = 2.7 µM, 1.7 µM, 7.5 µM, and 20.8 µM, respectively and (76) = 20.3 µM, 24.8 µM, 4.1 µM, and 2.3 µM, respectively toward the four human cancer cell lines, while all the other compounds were found >10 Mm [58]. Chrestani et al. measured the cytotoxic potential of sulfated galactomannan (BRS) (102) isolated from the seeds of M. scabrell against the Vero and MA-104 human cell lines by the MTT assay. At a concentration of ≥39 µg/mL, BRS reduced by 15% the viability of Vero cells (CC₅₀ = 454 µg/mL), while
at a concentration of 625 μg/mL, BRS reduced by 24% the viability of MA-104 [123]. Scientists screened the cytotoxicity of the isolated (2’-(6’-dimethyl-3’-A,5’-alkyl or hydroxy alkyl substituted phenyl)-3-oxo-(alkyl or hydroxy alkyl) 5,7-dihydroxy-chromen-4-one) (104–107) from M. pudica using the MTT assay against human lung adenocarcinoma (A549) and the erythroleukemic cell line (K562). The compound showed significant IC_{50} against A549 = 76.67 μg/mL and K562 = 287.63 μg/mL, while the positive control Doxorubicin showed an IC_{50} value of 2.76 μg/mL and K562 = 4.72 μg/mL against A549 [50]. The cytotoxic potential of the amino acid L-Mimosine (108) extracted from M. pudica by the MTT assay against the daudi cell line was reported. After 72 h, the compound (108) showed an IC_{50} value of 86.61 μM. Compound (108) act as powerful inhibitors of cell proliferation and showed remarkable cytotoxic activity [34,125].

5. Marker Compounds of Genus Mimosa

Some of the identified compounds from genus Mimosa are specific marker components of this genus. Two chalcones called kukulkan A (1) and kukulkan B (2) [103] and different terpenoidal saponins called mimonoside A (17), mimonoside B (18) and mimonoside C (19) [13,108,109] are specifically identified in M. tenuiflora. Six new meroterpenoids called diplomer terpenoids A-F (54–59), two new chalcone-lignoids called diplochalcolins A and B (60,61) have been identified in M. diplotricha roots [120]. Similarly, four 5-deoxyflavones called diplotrin A (74), diplotrin B (66), diplotrin C (75) and diplotasin D (69) were specifically found in the whole M. diplotricha plant [58]. One amino acid called L-mimosine (108) was extracted from the hydroalcoholic extract of M. pudica [50]. Novel C-glycosyl flavones called 5,7,3’,4’-tetrahydroxy-6-C{[β-D-apiose-(1→4)]-β-D-glucopyranosyl} flavones (112), 7,8,3’,4’-tetrahydroyxyl-6-C{[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl} flavones (113), 5,7,3’,4’-trihydroxy-8-C-β-D-glucopyranosyl flavones (114), mimosinamine (115) and mosinica acid (116) were isolated from the whole M. pudica plant [128]. A leaf opening compound called mimopudine (129) and a leaf closing compound called potassium 5-O-β-D-glucopyranosylgentisate (130) were isolated from the leaves of M. pudica. This compound called mimopudine (129) is responsible for the opening and movements of leaves even at night, while the compound mimopudine (130) is responsible for the closing of leaves [134,135]. Similarly, potassium L-malate (131), magnesium potassium trans-aconitate (132) and dimethylammonium salt (133) from M. pudica leaves were isolated, and these compounds were responsible for rapid sensitive actions, such as heat and touch, and episodic slow actions, such as nyctinastic actions [136]. A new chroman called 2-hydroxymethyl-chroman-4-one (139) [140] and a new stergolglucoside 4-a,24-dimethylcholest-7-en-3β-ol-3β-D-glucose (140) were specifically identified from the roots of M. pudica [141]. Two new diterpenoids named 19-O-trans-feruloyl-labdb-8(17)-en-15,19-diol (141) and 19-O-[{(E)-3’,4’-dimethoxy cinnamoyl]-labd-8(17)-en-15,19-diol (142) were isolated from the roots of M. pudica [142]. A novel compound called bufadienolide (hellebrigenin-3-O-α-L-rhamnopyranosyl-(1→4)-O-β-D-galactopyranoside) (145) was specifically isolated from the seeds of M. pudica [144].

6. Conclusions and Future Perspectives

This review summarized the isolated phytochemical and pharmacological characteristics of the Mimosa genus. Out of 400 species only 25 have been chemically studied, while compounds belonging to different chemical classes have been isolated in the Mimosa species, such as alkaloids, chalcones, flavonoids, indoles, terpenes, terpenoids, saponins, steroids, amino acids, glycosides, flavanols, phenols, lignoids, polysaccharides, lignins and fatty esters. Significant bioactivities, such as antimicrobial, cytotoxic, antioxidant, antiprotocoal, antiviral and antiproliferative, were discussed in this review. In this review, M. pudica was the most studied specie. This review also covered the qualitative and quantitative analysis of phytochemicals, such as flavonoids, steroids, saponins, alkaloids, coumarins, tannins and terpenoids, in the genus Mimosa. This review focused on the medicinal aspects of the Mimosa species and may provide a comprehensive understanding of the prospective of this
Biomolecules 2022, 12, 83

 genotype as a foundation of medicine, supplement and nourishment. Several studies were performed to establish the pharmacological potential by identifying the bioactive secondary metabolites associated with the respective activities. Many studies have been carried out that show this genus possesses huge potential for new drug sources, but there are still gaps, which are noteworthy. Few species of this genus have been explored, so there is need to explore all species of this genus to find their potential medicinal values for well-being. Secondly, there is a need to provide detailed mechanistic studies on the pharmacology to provide a good understanding of the application of the Mimosa species as a source of potential medicines. Thirdly, further studies are required to explore safety aspects of the diverse range of the Mimosa species, including chronic toxicity with a determination of the molecular pathways of the health-promoting features of this genus, and attempts are required to isolate more bioactive compounds of this genus.

Funding: The APC was funded by TU Delft, The Netherlands.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding authors.

Conflicts of Interest: All the authors declare no conflict of interest.

Abbreviations

Butanol = BuOH, Hexane = Hex, Acetone = ACE, Methanol = MeOH, Ethylacetate = EtOAc, Ethanolic = EtOH, Diethyl ether = DEE, Hydroalcohol = HyOH, Aqueous = Aq., Pet. ether = PE, Chloroform = CF, Dicholomethane = DCM, Acetic acid = AA.

References

23. Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Sacchi, F.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. *Ind. Crops Prod.* 2018, 122, 498–505. [CrossRef]

54. Molina, M.; Contreras, C.; Tellez-Alcantara, P. Mimosa pudica may possess antidepressant activities in the rat. Phytotherapy Research 1999, 6, 319–323. [CrossRef]

59. Mehta, B.K.; Savita Sharma, K.; Dubey, A. 4-Ethylgallic acid from two Mimosa species. Phytochemistry 1988, 27, 3004–3005. [CrossRef]

60. Mehta, B.K.; Savita Sharma, K.; Dubey, A. 4-Ethylgallic acid from two Mimosa species. Phytochemistry 1988, 27, 3004–3005. [CrossRef]
Biomolecules 2022, 9, 91.

Zia-Ul-Haq, M.; Stanković, M.S.; Rizwan, K.; Fee, V.D. Grewia asiatica L., a food plant with multiple uses. *Molecules* 2013, 18, 2663–2682. [CrossRef]

Mahadevan, M.V.; Ramaswamy, R.S.; Banumathi, V. *Mimosa pudica* exerts neuroprotection against mpp+ induced neurotoxicity in *shsbyy* cells line-as in vitro model of anti-parkinssonism. *Int. J. Pharm. Pharm. Sci.* 2016, 9, 21.

Mahadevan, M.V.; Ramaswamy, R.S.; Banumathi, V. *Mimosa pudica* exerts neuroprotection against mpp+ induced neurotoxicity in *shsbyy* cells line-as in vitro model of anti-parkinssonism. *Int. J. Pharm. Pharm. Sci.* 2016, 9, 21.

111. Calvert, M.B.; Sperry, J. Bioinspired total synthesis and structural revision of yuremamine, an alkaloid from the entheogenic plant Mimosa tenuiflora. Chem. Commun. 2015, 51, 6202–6205. [CrossRef]

