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Abstract 

The Sun-Earth L5 point is growing in interest as an outpost for a space weather observatory. It allows observations of 

solar regions that are about to rotate towards Earth, enabling advanced warnings for Earth-approaching solar storms. 

While missions to L5 using chemical or ion propulsion have been (and still are) under investigation, this paper proves 

solar-sail technology as a viable propulsion method to reach the L5 region. By hybridizing several techniques (genetic 

algorithm, multiple shooting differential correction, and continuation), locally time-optimal transfers are obtained in 

the circular restricted three-body problem. To increase the viability of these transfers, the performance of solar-sail 

technology for small satellites currently under development at NASA Langley Research Center is assumed. Two mis-

sion scenarios will be considered where the spacecraft is either launched from Earth as a secondary payload on a 

primary mission to L1 or on a dedicated launch. Furthermore, both classical and solar-sail displaced planar Lyapunov 

orbits around the L5 point will be targeted. For a conservative lightness number of 0.02, the ride-share option enables 

a transfer time of 658 days to a classical planar Lyapunov orbit, which can be reduced to 571 days for the dedicated 

launch scenario. For a larger lightness number of 0.025, the transfer times for all cases considered reduce, on average, 

by 11%. Finally, the fastest transfers are obtained for targeting the family of classical planar Lyapunov orbits. Targeting 

their solar-sail counterparts increases the transfer time by, on average, 18%. The proposed hybridization of techniques 

appeared to be a robust and versatile approach to finding solar-sail pathways to the L5 point that can be easily adapted 

to any future updates to the mission scenarios considered in this paper. 
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1. Introduction 

The forecasting of, and warning for, space weather 

events has become a high priority for governments 

around the world to ensure the availability of vital ser-

vices (e.g., satellite positioning systems, power genera-

tion, and communication). Such monitoring either oc-

curs from satellites in low-Earth orbit or satellites in or-

bit around the Sun-Earth L1 point (e.g., SOHO 

(ESA/NASA, 1996), ACE (NASA, 1997), WIND 

(NASA, 2004), and DSCOVR (NOAA/NASA, 2015)), 

where the latter enable warning times for incoming solar 

storms of approximately half an hour. To further im-

prove the forecasting and warning capabilities, pro-

posals are underway for positioning a spacecraft at the 
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Sun-Earth L5 point, e.g., ESA’s proposed Lagrange mis-

sion2. Since the L5 point is stationary 60 degrees behind 

Earth, it provides observational access to regions of the 

Sun that are inaccessible from Earth or the L1 region. 

Furthermore, due to the rotation of the Sun, solar storms 

sweep through the Solar System along the arms of an 

Archimedean spiral [1] and therefore pass by the L5 

point first before impacting on Earth. As such, the L5 

point provides the possibility to extend the warning time 

for solar storms to days [2].  

From a mission operations perspective, the L5 point 

exhibits further advantages as orbits around L5 are stable 

and therefore require no (or only little) station keeping. 

However, the drawback is that the L5 point is hard to 

reach. For example, studies have shown the feasibility 

http://m.esa.int/Our_Activities/Space_Safety/Lagrange_mission
http://m.esa.int/Our_Activities/Space_Safety/Lagrange_mission
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of transfers departing from 200 km altitude parking or-

bits around Earth to specific periodic orbits around the 

L5 point that require a V  in the order of 4 km/s [3,4]. 

To reduce the propellant mass required to produce such 

high values of V , studies for ESA’s Lagrange mission 

are investigating whether (part of) the V can be pro-

vided by solar electric propulsion [5]. To fully remove 

the need for propellant, transfer trajectories to L5 have 

also been investigated for the use of solar-sail propul-

sion [6,7], showing that the vicinity of the L5 point can 

be reached in reasonable amounts of time from either a 

parking orbit around Earth [6], escape conditions [8], or 

from the L1 region [7]. As an alternative to going to the 

L5 point, solar sailing has also been investigated to reach 

locations trailing Earth in its orbit around the Sun by up 

to 15 deg for similar space weather purposes [9]. This 

paper builds on these initial solar-sail studies by present-

ing a versatile approach that allows obtaining solar-sail 

transfers from realistic launch conditions to families of 

classical and solar-sail planar Lyapunov orbits around 

L5. In addition, the analyses will, for the first time, be 

conducted with small satellite solar-sail technology in 

mind. In particular, the performance of the “solar-sail 

system for interplanetary small satellite missions” cur-

rently under development at NASA Langley Research 

Center (NASA LaRC) [10] will be adopted and the In-

terstellar Mapping and Acceleration Probe (IMAP) mis-

sion will be used as a realistic ride-share option.  

The rest of this paper is structured as follows. First, 

in Section 2, NASA LaRC’s solar-sail technology, 

which is assumed for the analyses in this paper, will be 

described. Subsequently, the dynamical model adopted 

in this work will be defined in Section 3. The versatile 

trajectory design approach to obtain the sought-for 

transfers will subsequently be detailed in Section 4. This 

approach consists of two different steps (one step using 

a genetic algorithm and a second step using multiple 

shooting differential correction). The methodology for 

each of these steps and the results they produce will be 

detailed in Sections 5 and 6. Finally, the conclusions of 

the work are presented in Section 7. 

2. Reference small satellite solar-sail technology 

The solar-sail system under development at NASA 

LaRC is based on new deployable composite boom 
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technology that is currently being developed by LaRC 

in collaboration with the German Aerospace Center 

(DLR) [10]. This technology is specifically being de-

signed for small satellites.3 In 2016, NASA LaRC built 

and ground-tested a 9.2 x 9.2 m2 composites-based en-

gineering development unit (EDU). This EDU solar-sail 

system stowed within a 20 x 10 x 15 cm3 volume inside 

a 6U CubeSat chassis. This system was initially con-

ceived as a risk-reducing alternative to NASA’s Near 

Earth Asteroid Scout solar-sail baseline design, which 

used open cross-section metallic triangular rollable and 

collapsible (TRAC) booms [11,12]. TRAC booms have 

been used on smaller solar-sail demonstration flights, 

most notably on NASA’s NanoSail D2 mission and the 

Planetary Society’s LightSail 1 and 2 missions [13]. 

However, TRAC booms have been problematic for 

larger solar sails due to their high coefficient of thermal 

expansion (CTE), very low torsional stiffness, and low 

deployed precision [14,15]. An improved 12U version 

of the composites-based EDU solar sail – the Advanced 

Composites-Based Solar Sail System (ACS3) – is now 

under development by NASA LaRC and NASA Ames 

Research Center [16]. The 12U ACS3 is intended as a 

technology development pathfinder for future, larger 

composites-based small satellite solar-sail systems suit-

able for 12U – 27U CubeSat class spacecraft. ACS3 ob-

jectives will include deployment of an approximately 

80 m2 sail test article, characterization of the sail shape 

via photogrammetry, and a potential orbit raising and 

orbit lowering demonstration. A dawn-dusk sun-syn-

chronous orbit will be used to simplify low-Earth orbit 

(LEO) operations with the deployed sail. ACS3 launch 

is anticipated for the 2021 timeframe. For future 12U – 

27U CubeSat-class, mission-capable ACS3-based tech-

nology solar sails, a lightness number4 range of 0.02 to 

0.025 is assumed, which will be adopted throughout this 

study. 

3. Dynamical system 

The transfer trajectories to the L5 point will be de-

signed in the solar-sail augmented Sun-Earth circular re-

stricted three-body problem in which the motion of the 

spacecraft is assumed to be affected only by the gravita-

tional attraction of the Sun and Earth and the solar radi-

ation pressure acceleration generated by the solar sail. 

4 The lightness number is a performance metric of solar-sail technol-

ogy and is defined as the ratio of the solar radiation pressure acceler-

ation generated by the sail and the solar gravitational acceleration.  

https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/
https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/
https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/
https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/
https://gameon.nasa.gov/projects/deployable-composite-booms-dcb/
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Further assumptions include the fact that the spacecraft 

itself exerts no gravitational acceleration on the Sun or 

Earth and that the Sun and Earth are assumed to move 

in circular orbits around their barycentre. Furthermore, 

canonical units are used, where the Sun-Earth system 

mass and distance are taken as unity, while the unit of 

time is chosen such that the orbital period of the system 

is 2 . Through the definition of the mass unit, the mass 

ratio,  , can be obtained, which is defined as the ratio 

of the Earth’s mass and the total system mass. Values 

for   as well as the other units can be found in Table 1.  

 

Table 1 Details of the Sun-Earth CRTBP parameters. 

Mass ratio,  
  

Unit of  

distance, km 

Unit  

of time, s 

3.0034806e-6 1.4959802e8 5.0226432e6 

 

To describe the spacecraft dynamics in the solar-sail 

augmented CRTBP, a Sun-Earth synodic reference 

frame, ( )ˆ ˆ ˆ, ,A x y z , centered at the system’s barycentre is 

adopted where the basis vector x̂  points along the Sun-

Earth line towards the Earth, the ẑ -vector points along 

the orbital angular momentum vector and the ŷ -vector 

completes the right-handed reference frame, see Figure 

1a. In this reference frame, the motion of the solar-sail 

spacecraft is defined as [17]: 

 2 s U+  = −r ω r a   (1) 

with  
T

x y z=r  the spacecraft’s (dimensionless) 

position vector,  ˆ 0 0 1
T

= =ω z  the (dimension-

less) rotation rate of the reference frame, sa  the solar-

sail induced acceleration vector, and U  the so-called 

effective potential. The effective potential combines the 

gravitational and centrifugal potentials as: 

 ( )  ( )2 21

2
1 / /S EU x y r r = − + − − +   (2) 

In Eq. (2), Sr  and Er  are the Sun-sail and Earth-sail 

distances, respectively, see Figure 1, which are defined 

as:  

  
T

S Sr x y z= = +r   (3) 

 ( )1
T

E Er x y z= = − −  r   (4) 

a) 

 

b) 

 

Figure 1 a) Definition of synodic reference frame A, b) defini-

tion of reference frame B and solar-sail control angles, adapted 

from Reference [18].  

 

The solar-sail induced acceleration (from here on, in 

short referred to as the sail acceleration) in Eq. (1) can 

be defined as: 

 

2 2

2

1
ˆ

2

N T
s

P

f f

PA PAr

 −    
= +   

  
a m   (5) 

In Eq. (5), m̂  is the direction of the sail acceleration 

and   is the solar-sail lightness number (see footnote 

4). As mentioned in Section 2, a range of 0.02 – 0.025 

will be assumed for this lightness number. Furthermore, 

in Eq. (5), P  is the solar radiation pressure, A  the sail 

area, and Nf  and Tf  the magnitude of the solar radia-

tion pressure forces acting normal and tangential to the 

sail, respectively. The latter are defined as: 

 

( ) ( )

( )

21 cos 1 cos

   1 cos

N f

f f b b

f b

f PA rs B s r

B B
r

 

 


 

= + + −

−
+ − 

+ 

  (6) 

 ( )1 cos sinTf PA rs  = −   (7) 

In Eqs. (6) and (7), r , s , iB , and i  are the reflec-

tance properties of the sail, with ,i f b=  to refer to the 
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front and back of the solar sail. They are: the total re-

flectivity constant, the specular reflectivity fraction co-

efficient, the non-Lambertian coefficient, and the emis-

sivity coefficient, respectively. In this work, an ideal sail 

reflectance model will be assumed, for which 1r =  and 

1s = . It then follows from Eqs. (6) and (7) that 

22 cosNf PA =  and 0Tf = . The latter thus implies 

that, for the case of an ideal sail reflectance model, the 

sail acceleration acts along the sail normal vector, i.e., 

ˆ ˆ=m n . Finally, in Eqs. (6) and (7),  2, 2   −  is 

the cone angle of the sail, which is defined as the angle 

between the sail normal vector, n̂ , and the direction of 

sunlight, ˆ
Sr , see Figure 1b.  

In order to uniquely define n̂ , a sailcraft centered ref-

erence frame ( )ˆˆ ˆ, ,SB r θ φ  is employed where 

( )ˆ ˆ ˆˆ ˆ/S S=  θ z r z r  and ˆ ˆˆ ˆ ˆ/S S=  φ r θ r θ , see Figure 

1b. Within frame B  and using the cone and clock an-

gles,   and  0,   (see, again, Figure 1b), the nor-

mal vector can be defined as: 

 
( )  ˆ cos sin sin sin cos

TB
    =n   (8) 

where the superscript ( )B  indicates that n̂  is defined 

in frame B . A straightforward transformation in the 

form of: 

 
( ) ( ) ( )ˆˆ ˆ ˆ ˆ ˆA A B

S
 = =
 

m n r θ φ n   (9) 

then provides the sail acceleration direction in the cor-

rect format for use in Eqs. (1) and (5). 

4. Trajectory design process 

With the dynamical framework defined in the previ-

ous section, this section will describe the problem to be 

solved in Section 4.1 and an outline of the proposed so-

lution method in Section 4.2. 

4.1. Problem definition 

The objective is to find time-optimal, solar-sail pro-

pelled transfers from Earth’s vicinity to periodic orbits 

around the L5 point using the solar-sail technology de-

fined in Section 2. A schematic of this problem appears 

in Figure 2. 

4.1.1. Launch conditions at Earth 

The starting conditions of the transfers (see the red 

cross in Figure 2) will comply with either of the follow-

ing two launch scenarios: 

1. A ride-share on a suitable primary mission. Here, 

NASA’s proposed IMAP mission is chosen, 

which is expected to be launched towards the L1 

region on 1 October 2024 [19]. A representative 

launch vehicle release point for this mission can 

be found in Reference [19].  

2. A dedicated launch, which is modelled as a par-

abolic escape trajectory from Earth, which is 

only constrained by a perigee altitude of 250 km. 

The idea in this scenario is that the spacecraft is 

launched along the best possible escape trajec-

tory to find the absolute fastest transfer to the L5 

region. Since the targeted orbit around L5 is as-

sumed to be contained in the ecliptic plane, see 

Section 4.1.3, the parabolic escape trajectory is 

also assumed to be contained in the ecliptic 

plane. However, its orientation around Earth is 

free, i.e., its argument of perigee, p , which is 

measured from the vernal equinox, is free. For 

consistency with the ride-share launch scenario, 

also here a launch date of 1 October 2024 is as-

sumed. 

 

 
Figure 2 Schematic of trajectory design approach (not to 

scale). Red cross: initial condition; red arc: unpropelled two-

body dynamics arc; blue arc: propelled multi-body dynamics 

arc. 

4.1.2. Transfer phases 

In either launch scenario, the first phase of the mis-

sion, from launch conditions up to geostationary orbit 

(GEO) altitude (see the red arc in Figure 2) is modelled 

as an unpropelled arc in the two-body problem. At GEO 

altitude, a switch from the two-body problem to the 

Orbit at L5 

Geostationary 
distance 
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three-body problem occurs. The phase from GEO alti-

tude up to the orbit around L5 (see the blue arc in Figure 

2) is thus modelled in the solar-sail augmented CR3BP 

of Section 3. 

For the ride-share launch scenario, the idea is that the 

solar-sail spacecraft will travel together with the IMAP 

mission for some time, IMAPt , before deploying its sail 

and diverting away from IMAP’s trajectory. Instead, for 

the dedicated launch scenario, the sail will deploy at 

GEO altitude, which is again assumed in order to find 

the absolute fastest transfer to the L5 region.  

4.1.3. Target conditions at L5 

The periodic orbits targeted at the L5 point (see the 

black orbit in Figure 2) are those belonging to the fami-

lies of classical (no-solar sail) or solar-sail planar Lya-

punov orbits. Note that, from initial results it was con-

cluded that targeting such families of planar Lyapunov 

orbits resulted in faster transfers than when targeting, for 

example, families of vertical Lyapunov orbits. Further-

more, from an observational perspective, no significant 

additional benefit is expected from any out-of-plane mo-

tion at the L5 point. Therefore, this paper chooses the 

families of planar Lyapunov orbits as target at the end 

of the transfer. The constraint at the end of the transfers 

can be expressed by first writing the dynamics in Eq. (1) 

as a system of first order differential equations: 

 ( ), ,f  =x x   (10) 

with  
T

=x r r . Furthermore, the flow induced by f  

is defined as ( ), ,t  x . For 0 =  (i.e., a Sun-facing 

attitude of the sail) or 2 =   (i.e., no sail accelera-

tion), the system is Hamiltonian and periodic orbits 

around the Lagrange points of the CR3BP (for 

2 =  ) and the solar-sail augmented CR3BP (for 

0 = ) exist and these periodic orbits appear in contin-

uous families [20]. A very general approach to enforcing 

periodic motion is then given by the definition of the 

map 
7 6:G →  as [21]: 

 ( ) ( ), , ,TG T   = −x x x   (11) 

In order to find periodic orbits, we search for 

( ), 0G T =x  in which case x  belongs to a periodic orbit 

with period T .  

4.2. Solution method 

As mentioned in the introduction, this paper presents 

a versatile approach to solving the problem defined in 

Section 4.1. This approach has been proven successful 

in finding locally time-optimal trajectories in the solar-

sail augmented CR3BP between a range of departure 

conditions in Earth’s vicinity and a range of invariant 

objects in the L5 region (i.e., equilibria, periodic orbits 

and quasi-periodic orbits) [22] and is adapted here to 

abide by the starting and target conditions defined in 

Section 4.1. The approach consists of two steps, where, 

in the first step, a genetic algorithm is used to find near-

feasible trajectories using a strategy based on the search 

for heteroclinic connections in dynamical systems the-

ory [23-25], see Section 5. These near-feasible trajecto-

ries are then used as seeds for a multiple shooting dif-

ferential correction algorithm to find feasible fixed time-

of-flight transfers. In the same step, a continuation on 

this fixed time of flight is executed to find locally time-

optimal transfers, see Section 6. 

5. Genetic algorithm 

5.1. Methodology 

As mentioned, to find near-feasible trajectories, the 

first step of the solution method uses a strategy based on 

the search for heteroclinic connections in dynamical 

systems theory [23-25]. In particular, a linkage between 

two segments is sought for: 

1. An initial segment propagated forwards in time 

from the launch conditions defined in Sec-

tion 4.1.1. 

2. A final segment propagated backwards in time 

from a to-be-determined periodic orbit around 

the L5 point.  

Along each of the segments, the sail can adopt a dif-

ferent, but constant, sail attitude. The problem can then 

be parameterised by a finite set of decision variables, 

which differ for the two launch scenarios: 

1. For the ride-share launch scenario  

 IMAP 0 0 f f f ft d     =  y   (12) 

2. For the dedicated launch scenario 

 0p f f fd    =  y   (13) 

In Eqs. (12) and (13), the subscripts ‘0’ and ‘ f ’ re-

fer to the initial and final segments defined above. The 
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variables  0 0, 2   and  0 ,   −  therefore rep-

resent the attitude of the sail in the initial segment, while 

the variables  0, 2f   and  ,f   −  represent 

the attitude of the sail in the final segment. Note that, for 

the dedicated launch scenario, the transfer is assumed to 

take place in the ecliptic plane only, see Section 4.1.1. 

Therefore, the clock angle is not part of the decision vec-

tor in Eq. (13). The last two variables in Eqs. (12) and 

(13) determine the periodic orbit around L5 and the arri-

val conditions in this orbit. First, ( 0,0.2fd   is the di-

mensionless size of the classical or solar-sail planar 

Lyapunov orbit, where the size is defined as the largest 

distance from the periodic orbit to its associated equilib-

rium point. By including this size as a decision variable, 

this paper allows to find transfers to any periodic orbit 

within a family of planar Lyapunov orbits as opposed to 

works that target one particular orbit, e.g., Refer-

ences [4,6]. The last variable in Eqs. (12) and (13), 

 0,1f  , determines the insertion point along the pe-

riodic orbit. Such a point is obtained from propagating 

the dynamics over a time 
f T , where T  is the periodic 

orbit period, starting from a reference point. Figure 3 

depicts how 
fd and 

f are defined. Note that this figure 

assumes a planar trajectory and therefore 2f = . Fi-

nally, recall from Sections 4.1.1 and 4.1.2 that the vari-

ables  IMAP 0,100 dayst   and  0,2p   are the 

launch scenario specific variables: the time that the 

spacecraft travels together with IMAP along IMAP’s 

launch trajectory and the orientation of the parabolic es-

cape trajectory, respectively.  

To find the optimum values for the decision variables 

in Eqs. (12) and (13), a multi-objective genetic algo-

rithm (implemented in the Matlab function gamulti-

obj.m) is applied5. The quality of the individuals within 

each generation of the genetic algorithm is assessed in 

terms of two objectives: the infeasibility, I , and the 

transfer time, tt . To determine the infeasibility, the two 

segments of the trajectory are propagated for five years 

and the minimum Euclidean norm in dimensionless 

phase space between any two points along those propa-

gated segments is adopted as the infeasibility. Note that, 

for the second to last decision variable in Eqs. (12) and 

                                                           
5 Population size: 20  the length of the vector of decision variables 

in  Eqs. (12) and (13); Number of generations: 60; Number of stall 

generations: 30. 

(13), fd , a look-up table is used containing >1000 or-

bits, where the genetic algorithm selects the orbit with 

size closest to the chosen value for fd . This table also 

returns the period of the orbit, which is used in combi-

nation with the last decision variable in Eqs. (12) and 

(13), f , to determine the insertion point along the pe-

riodic orbit around L5. 

The output of the algorithm is a Pareto front that 

gives a range of potential solutions that vary in infeasi-

bility and time of flight. Ideally, the initial guess se-

lected for the next step of the trajectory design process 

is the guess which is sufficiently feasible and has the 

smallest time of flight, where “sufficiently feasible” im-

plies that the differential correction approach of Section 

6 can converge. 

 

 
Figure 3 Clarification of a subset of the genetic algorithm var-

iables.  

5.2. Results 

The results for each of the cases outlined in Section 4.1 

can be found in Table 2. Results are generated for the 

extremes of the lightness number range defined in Sec-

tion 2, for both a dedicated launch and a ride-share on 

the IMAP mission, and for targeting either an orbit 

within the family of classical (no-solar-sail) or solar-sail 

planar Lyapunov orbits. The infeasibility values pro-

vided in Table 2 vary between 4.5 10-4 – 9.9 10-3, 

which translate into errors on the position and velocity 

between 67,319 – 1.4810 106 km and 13.4 – 295 m/s. 

In terms of time of flight, the genetic algorithm results 

show that, clearly, the larger the lightness number, the 

shorter the time of flight (i.e., comparing cases 1 – 4 and 

5 – 8). The results also suggest that the transfers to the 

family of classical planar Lyapunov orbits (cases with 

odd numbers) take shorter than those to their solar-sail 
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counterparts (cases with even numbers). And finally, the 

dedicated launch strategy enables a further reduction in 

the time of flight over the ride-share launch strategy 

(i.e., comparing cases 1 – 2 with 3 – 4 and cases 5 – 6 

with cases 7 – 8). Note that the times of flight in Table 

2 only include the travel time from GEO altitude up to 

insertion into the orbit around L5, and do not include the 

short, approximately 2-hour, transfer time from launch 

conditions to GEO altitude. 

 
Table 2 Genetic algorithm results for the cases outlined in Sec-

tion 4.1.  

Case  
Launch 

scenario 

Target  

orbit 
I  tt , 

days 

1 

0.02 

Dedicated 
Classical 9.9e-3 573 

2 Solar-sail 1.4e-3 715 

3 Ride-

share 

Classical 2.2e-3 661 

4 Solar-sail 3.5e-3 773 

5 

0.025 

Dedicated 
Classical 4.5e-4 555 

6 Solar-sail 4.4e-3 615 

7 Ride-

share 

Classical 1.3e-3 631 

8 Solar-sail 1.0e-3 713 
 

a) 

 
b) 

 
Figure 4 Case 1: a) Pareto front, b) optimal transfer. 

As an example, details for the first case in Table 2       

(  = 0.02, dedicated launch, and targeting a classical 

planar Lyapunov orbit) are shown in Figure 4. Figure 4a 

provides the Pareto front obtained, including the solu-

tion chosen to initialise the differential corrector in Sec-

tion 6, while Figure 4b shows the actual trajectory. The 

latter clearly shows the error at linkage of the two tra-

jectory segments. This solution is fully determined by 

the optimal values for the decision variables, which are: 

 

0

  254 12.9 28.9 0.13048 0.57803

p f f f

o o o

d    =  

 = − 

y
 (14) 

6. Differential corrector 

6.1. Methodology 

The results from the genetic algorithm approach in 

Table 2 show that none of the transfers are feasible, i.e., 

0I   for all cases. To remove these errors in position 

and velocity at the linkage of the two trajectory seg-

ments and make the trajectories feasible for a fixed time 

of flight, a multiple shooting differential corrector 

(MSDF) is used. These trajectories are sub-optimal from 

a transfer-time perspective. Therefore, after finding a 

feasible trajectory, a continuation on the fixed time of 

flight is initiated to gradually reduce the flight time.  

For the MSDF, the initial guess trajectories are dis-

cretized into n =  30 nodes. The decision vector, iX , at 

each node, i , (the initial and final nodes excluded) con-

tains a point in phase space, a cone angle, a clock angle 

and the time duration of the segment from node i  to 

1i + :  

     for   2, , 1

i

i

i

i

i

i n

t





 
 
 =  −
 
 
 

x

X   (15) 

At the initial node, the definition of the decision vec-

tor depends on the chosen launch scenario: 

1. For a dedicated launch, the initial node is pre-

scribed as: 

 
1

1

1t

 
=  
 

X   (16) 

In Eq. (16) the initial state, 1x , is omitted, be-

cause it is set equal to the state at GEO altitude 

of the solution provided by the genetic algo-

rithm, GEOx . Furthermore, 1 / 2 =  because 
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the transfer is assumed to take place in the eclip-

tic plane only.   

2. For a ride-share launch, the initial node is pre-

scribed by: 

 

1

1

1 1

1

IMAP

t

t





 
 
 
 =
 
 
 
 

x

X   (17) 

Contrary to Eq. (16), for the ride-share launch 

scenario, the initial state is not fixed to the one 

of the solution provided by the genetic algo-

rithm. Instead, similar to the approach in the 

genetic algorithm, it can be varied and is deter-

mined by the time, IMAPt , that the spacecraft 

travels together with IMAP along IMAP’s 

launch trajectory.  

At the final node, the cone and clock angles do not 

need to be defined as they are prescribed by the attitude 

required to maintain the classical or solar-sail planar 

Lyapunov orbit. Therefore, the decision vector at the fi-

nal node is reduced to  

 
n

n

nt

 
=  
 

x
X   (18) 

where nx  needs to coincide with a periodic orbit around 

L5 with period nt .  

A feasible trajectory for a given time of flight, 0T , 

with constraints 0g  and fg  on the initial and final 

nodes, is obtained as the solution to the following prob-

lem: 

 ( )0 1 0g =X   (19) 

 ( )  1, , 0   for   1,2, 1
it i i i i i n   +− =  −x x   (20) 

 ( ) 0f ng =X   (21) 

 
1

0

1

0
n

i

i

t T
−

=

− =   (22) 

The problem in Eqs. (19) - (22) can be rewritten as 

( ) 0S =X  with 1 2, , ,
T

T T T

n
 =  X X X X . Then, a first 

guess for the vector of decision variables, X̂ , can be 

corrected by solving the following linear system with an 

iteratively least squares method:  

 ( ) ( )ˆ ˆS JS − =X X X   (23) 

where ( )JS X  is the Jacobian of the problem in 

Eqs. (19) - (22), ( )JS =X  

 

( )

( )

0 1

1

2

2

1

0 0 0

0 0 0

0 0 0 0

0 0 0

0 0

0 0

0

n

n

f n

Jg

E

E

E

E

Jg

 

−

−

 
 

 − 
  −
 
 
  −
 

 − 
 
 
  

X

X

  (24) 

with  6 6 6 30E I  = ,  1 80 1 = , and 

( ), , ,i i i i it   =  x  with  1,2, 1i n −  where   is 

a 6 9  extended state transition matrix 

( )( ), , , ,
t

t t t
f

  

 
    

  

  
  =
 x

x . 

The exact constraints imposed on the initial and final 

nodes in Eqs. (19) and (21) need to be defined. At the 

initial node, these constraints again depend on the cho-

sen launch scenario: 

1. For the dedicated launch scenario: 

 ( )0 1 GEO 1g = −X x x   (25) 

2. For the ride-share launch scenario: 

 
( ) ( )

( )
MAP

MAP

0 1 GEO 1

GEO 1

, ,

       = , 2,0

I

I

t

t

g   

 

= −

−

X x x

x x
  (26) 

Instead, for the final node, a single constraint can be 

defined for both launch scenarios, which is based on the 

constraint defined in Eq. (11): 

 ( ) ( ), ,
nf n t n ng   = −X x x   (27) 

where the cone and clock angles correspond to those re-

quired to maintain the classical or solar-sail planar Lya-

punov orbit.  

Once a first feasible trajectory with a time of flight of 

0T  has been found, a continuation of the solutions is in-

itiated to reduce the time of flight. In particular, the 

found solution is used to compute a new solution with 

the MSDC algorithm for a time of flight 0T  with   

1  . This process is iterated until the differential cor-
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rector no longer converges. Then, the factor   is in-

creased, according to 

 0.95,0.98,0.99,0.999,0.9995  , to allow smaller 

steps in the continuation.  

6.2. Results 

The overall results (in terms of locally-optimal times 

of flight) of the MSDC algorithm and continuation 

method appear in Figure 5, which shows transfer times 

ranging from 523 – 773 days. Note that the eight cases 

presented again correspond to the eight cases outlined in 

Table 2. Cases 1 – 4 and 5 – 8 thus only differ in light-

ness number:  = 0.02 for cases 1 – 4 and  = 0.025 

for cases 5 – 8. The results in Figure 5 confirm the con-

clusions drawn from the genetic algorithm results: 1) a 

larger lightness number (cases 5 – 8) results in shorter 

transfer times. On average, a reduction in time of flight 

of 11% can be obtained by increasing the lightness num-

ber from 0.02 to 0.025; 2) transfers to the family of so-

lar-sail planar Lyapunov orbits (cases with even num-

bers) are, on average, 18% slower than transfers to the 

family of classical planar Lyapunov orbits (cases with 

odd numbers); 3) and, finally, from comparing the re-

sults for the dedicated and ride-share launch strategies, 

the dedicated launch strategy provides a reduction in the 

time of flight of, on average, 11%. Note that these times 

of flight again only include the travel time from GEO 

altitude and do not include the short, approximately 2-

hour, transfer time from launch conditions to GEO alti-

tude.  

Further details on the transfers appear in Figure 6 and 

Figure 7. Figure 6 shows the actual trajectories for the 

cases of targeting the family of classical planar Lya-

punov orbits. Visualizations of the transfer to the family 

of solar-sail planar Lyapunov orbits are omitted for con-

ciseness as they are very similar to those targeting the 

classical family. Figure 7 provides information on the 

solar-sail attitude along the trajectories, which clearly 

demonstrates the difference between the two launch sce-

narios: at the start of the transfer, the cone angles are 

rather different for the dedicated and ride-share launch 

scenarios. Furthermore, because the dedicated launch 

scenario uses a fully planar trajectory, the clock angle is 

90 deg along those trajectories, while a significant out-

of-plane component of the sail acceleration exists for the 

trajectories using the ride-share launch scenario. Fi-

nally, the cone angle profiles for all cases remain within 

the expected operable range of 70 ,70o o   −   [26]. 

 

 
Figure 5 Locally-optimal times of flight for the cases defined 

in Table 2. 

 

7. Conclusions 

This paper has demonstrated the capability of solar-

sail technology to transfer a small satellite to the Sun-

Earth L5 region. Locally time-optimal solutions have 

been found that take 523 – 774 days to complete, de-

pending on the sail performance, the launch scenario, 

and the target orbit around L5. In terms of sail perfor-

mance, lightness numbers of 0.02 – 0.025 have been 

considered, where a gain in time of flight of 11% can be 

achieved when the performance is at the upper end of 

this range. In terms of launch scenario, both a ride-share 

on a mission to L1 and a dedicated launch have been 

considered, where the dedicated launch saves 11% in 

terms of transfer time. Finally, it appeared that the trans-

fer can be faster when transferring to an orbit that is part 

of the family of classical planar Lyapunov orbits around 

L5 instead of targeting its solar-sail counterpart (which 

adds, on average, 18% to the transfer time). In all sce-

narios considered, the developed methodology of hy-

bridizing a genetic algorithm, a multiple shooting differ-

ential corrector and a continuation approach, appeared 

to be highly robust and versatile, allowing it to be 

adapted and applied to any future L5 solar-sail mission 

scenario.  
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a)  

 

 
c)  

 

 
Figure 6 Locally time-optimal transfers for the cases defined in Table 2: a) cases 1 and 5, b) cases 3 and 7. 

 
Figure 7 Controls of the locally time-optimal transfers for the cases defined in Table 2: top row is for a lightness number, , of 0.02; 

bottom row is for a lightness number, , of 0.025.
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