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Automatically extracting surfaces of reinforced concrete bridges from 
terrestrial laser scanning point clouds 
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A B S T R A C T   

Three-dimensional (3D) geometric bridge models play an important role in bridge inspection, assessment, and 
management. Laser scanning nowadays offers a cost-efficient method to capture dense, accurate 3D topographic 
data of surfaces of the bridge. However, given the typical complexity of bridges, current workflows using 
commercial software to construct a bridge model still require intensive labour work. This paper presents a new 
approach to automatically extract the point cloud of surfaces of structural components of box and slab-beam 
bridges. The proposed method consists of 3 Parts: (1) point-to-surface, (2) superstructure and (3) substructure 
extraction. The method uses both spatial point clouds and contextual knowledge to extract point cloud subsets 
corresponding to surfaces of individual bridge components in a consecutive order from superstructure to sub-
structure. For each bridge component, two levels of extraction are (1) coarse extraction to separate candidate 
points of the component from the full data set and (2) fine filtering to obtain final 3D points of individual surfaces 
using cell- or voxel-based region growing (CRG or VRG), followed by a connected surface component (CSC) 
method. An experimental test on one box-girder and one slab-beam bridges shows that the proposed method 
successfully extracts all surfaces of bridge components with the lowest F1-score of 0.93 based on a point-based 
evaluation. Moreover, a shape similarity evaluation also shows that discrepancies between extracted surfaces 
and ground truth ones are no larger than 0.82 for the area overlap ratio and 0.59 degrees for the angular de-
viation. The proposed method contributes to the automatic generation of 3D geometric bridge models and to give 
point clouds of individual surface for damage identification.   

1. Introduction 

Most bridges around the world were built shortly after the second 
world war and are now in the second half of their service life. These 
bridges are subjected to deterioration due to excessive usage, over-
loading, aging, and environmental impact. A recent survey on bridges 
from 6 European nations [1] showed that most bridges were built in the 
period 1945–1965 and undergo deterioration, while the American So-
ciety of Civil Engineers reported that about 7.5% of 617,000 national 
bridges suffer from deficiencies while 42% of the bridges is more than 
50-year-old [2]. Similar trends were also found in the UK [3] and Japan 
[4]. Bridge deficiencies have negative impact on daily operation and are 
costly. To prevent catastrophic collapse, changes in the bridge structures 

must be monitored, predicted, and reported timely, which can be ach-
ieved through bridge inspection and assessment. In those activities, an 
as-service three-dimensional (3D) bridge model plays an important role 
because it can be used, for example, to identify structural deficiencies (e. 
g., deformation or cracks), to track damage propagation, to assess bridge 
behavior through structural analysis, and to integrate bridge informa-
tion for bridge management. However, as-service 3D bridge models are 
rarely available. Such model can be produced from surveying mea-
surements of locations and dimensions of structural elements. A classical 
surveying campaign using tapes and/or a total station to measure pri-
mary dimensions of structural elements is time-consuming and expen-
sive because of the large scale, complex bridge structure. Moreover, as 
details of surfaces of the structural components are not captured 
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sufficiently by classical single point-based surveying instruments, status 
of structural components cannot be fully assessed, which leads to limited 
applicability of bridge models based on classical surveying. 

Recent development of laser scanning and photogrammetry provides 
alternative approaches to replace or complement classical surveying 
methods in capturing bridge geometry, in which laser scanning from a 
tripod or unmanned aerial vehicle (UAV) are often used [5]. Such 
mapping systems provide highly detailed and accurate point clouds of 
component surfaces, particularly in case of terrestrial laser scanning 
(TLS). Additionally, UAV-based image acquisition is relatively cheap 
and quick, and a survey of a medium bridge can be completed in hours. 
However, it requires considerable time to generate a 3D point cloud 
from overlapping images using structure from motion techniques. 
Moreover, the quality of photogrammetric point clouds depends on 
image quality, which is subjected to camera quality, flight planning and 
environmental conditions. Notably, point cloud-based images have 
relatively low accuracy with an error budget in the order of centimetres 
[6], and have a large amount of noise [7]. As a consequence, pre- 
processing requires a crucial step to remove this noise to make point 
cloud-based images usable for bridge engineering applications [8]. As 
such, point cloud-based images are not preferable to use to create an as- 
service bridge model. 

In a current practical pipeline, standalone commercial products, and 
computer aided drawing (CAD) plug-ins (e.g., Leica Cloudworx, Trimble 
RealWork and Revit) assist users to process raw point clouds. The point 
cloud of each member is segmented using built-in tools to separate and 
fit geometric primitives (e.g., planes, cylinders, and spheres or even 
irregular shapes) for 3D shape representation. However, these programs 
target building and facilities sections. For example, ClearEdge3D [9] is 
specialized to process point clouds of buildings and industrial plants. 
The software provides tools allowing users to select and extract point 
clouds of columns or beams by picking 2 end points of the element and 
then 3D models are fitted. Additionally, Lu and Brilakis [10] reported a 
processing time for 10 bridges of about 0.59 h per million points when 
Autodesk Revit was used to create an as-is bridge model. Similarly, 
Barazzetti [11] addressed large time consumption and costs using the 
current practice pipeline. Moreover, for large and complex projects like 
bridges, only experienced practitioners have the ability to handle and 
process massive point clouds efficiently. This shows that an automatic 
method should be developed to improve the current work-flow. 

Recently, the research community has attempted to develop methods 
to process point clouds for bridge engineering applications including 
surface-based damage identification and bridge modelling. For example, 
Rivero et al. [12] and Truong-Hong and Lindenbergh [13] estimated 
vertical clearance of a bridge from a point cloud, and Truong-Hong et al. 
[14] identified surface damage of a bridge deck. Teza et al. [15] esti-
mated the crust of bridge members, Truong-Hong and Laefer [16] esti-
mated surface loss of steel members and Kim et al. [17] and Balado et al. 
[18] estimated volume loss of masonry bridges. Additionally, in a work 
on point cloud processing for bridge modelling, Rivero et al. [8] com-
bined a heuristic method with image processing to segment masonry 
arch bridges. Lu et al. [19] relied on heavy engineering parameters 
derived from design specifications, and geometric bridge information to 
extract concrete bridge components (e.g., slab, girders, and piers). 
Truong-Hong and Lindenbergh [20] preliminarily used spatial infor-
mation of a point cloud and contextual knowledge to extract compo-
nents of box bridges, while Yan and Hajjar [21] extracted structural 
members of steel bridges from a classified point cloud using clustering 
techniques (e.g., Euclidean and Mean-shift clustering) and RANSAC- 
based line segmentation. 

A common problem of these existing methods is that they are unable 
to automatically extract point cloud of individual surfaces of each bridge 
component directly from a point cloud of a complete bridge. This is to be 
a barrier to automatic point cloud analysis for surface-based damage 
identification and bridge modelling. Indeed, when point clouds of sur-
face is available, surface damage can be identified directly, while the 

complexity of the 3D modelling process is reduced significantly because 
it can be done at component level. Moreover, although some segmen-
tation methods (e.g., [22,23]) can extract point clouds of individual 
surfaces from single bridge components, it is a non-trivial task to 
parameterize these methods to obtain desired results [23], particularly 
most bridge structures are composed of different types, shapes and sizes 
of components. 

To overcome this problem, this paper proposes a new method 
exploring both spatial point clouds and contextual knowledge to extract 
point clouds of surfaces of individual bridge components, which can be 
subsequently used in surface damage identification and 3D geometric 
modelling. The method consists of 3 Parts: Part 1: point-to-surface, Part 2: 
superstructure extraction and Part 3: substructure extraction. Moreover, for 
each bridge component, surfaces are extracted in two levels: (1) coarse 
extraction to obtain candidate points of the component and (2) fine 
filtering to determine final points for the surface. As such, as only subsets 
are processed to obtain surfaces of each bridge component, data 
complexity and intensive computations are reduced significantly, which 
makes the proposed method feasible to process a massive point cloud of 
the bridge, which is typically acquired to the point clouds of the bridge. 

2. Related work 

Given the complexity of bridge structures, recognizing point clouds 
of surfaces of individual structural components is a key step toward 
automatically inspecting surface deficiencies and generating a 3D geo-
metric bridge model. Many methods based on region growing [6], 
Hough transform [24], and RANSAC [25] have been developed to 
extract subsets of a point cloud corresponding to the surface of an object. 
Dimitrov and Golparvar-Fard [26] used region growing based on surface 
roughness to extract building objects, where the surface roughness of 
each point was computed from multi-scale neighbourhood points. The 
method still had some drawbacks, for example over-segmentation and 
intensive computations. To reduce exhausted computations, Vo et al. 
[23] introduced octree-based region growing to extract planar surfaces 
in an urban scene, in which an adaptive octree was used to generate 
voxels representing objects, while salient features (e.g., normal vectors 
and residuals) estimated from the points occupied by the voxels were 
used in a region growing process. Ochmann et al. [27] and Thomson and 
Boehm [28] adopted a RANSAC framework developed by Schnabel et al. 
[29] to extract planar surfaces (e.g., walls and floors) for indoor building 
reconstruction. These methods are efficient to extract building struc-
tures but may not directly apply to bridge structures with their complex 
geometry in terms of shape, dimension, and orientation. As such, this 
section is restricted to methods aiming at extracting bridge components 
from a point cloud, while extensive surveys on segmentation and geo-
metric modelling can be found in [30–32]. 

To investigate the application of point clouds for structural analysis, 
Stull and Earls [33] used the software Geomagic to create a parasolid 
model of a three-span, continuous steel I-girder bridge from a terrestrial 
laser scanning (TLS) point cloud for finite element analysis (FEA). 
Moreover, in attempting to generate a finite element model of a historic 
metal bridge, Gyetvai et al. [34] introduced non-parametric regression 
kernel density estimation (KDE) to determine overall dimensions 
including width, length and height of a historic metal bridge as well as 
the distance between lateral beams and struts. However, cross-sections 
of members were manually created within AutoCAD with support of a 
plug-in of Leica Cloudworx [35] because of the high complexity of the 
cross-sections, and limited quality and quantity of the point cloud. Yan 
et al. [36] employed a voxel grid to subdivide a point cloud into uniform 
voxels, and the real boundary of the structure was then modified using a 
grid-based mesh generation method proposed by Schneiders [37]. 
Moreover, nodes, edges and faces between adjacent elements were 
adjusted to ensure a continuous mesh. 

On extracting structural components of historic bridges, a highlight 
is the work of Riveiro et al. [8], which used the normal vector of each 
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point to separate a point cloud into vertical and non-vertical elements. 
Separation was done by analysing the histogram of elevation angles of 
the normal vectors in a spherical coordinate system. Subsequently, a 
voxelization model was employed to cluster points of spandrel walls 
using voxel connectivity, and to extract non-vertical elements like 
arches, pathway and parapets based on minimum/maximum elevations 
of the voxels in each row and column. In this work, the voxelization 
model was also used to filter noisy points and subsequently to cluster 
points of piers based on voxel connectivity. Although the method 
showed efficiency to extract masonry bridge components, the result 
heavily depended on the voxel size. Pan et al. [38] proposed a super-
voxel structure and global graph optimization to segment a point cloud 
derived from UAV images of historic bridges. Rule-based classification 
based on dimensions and orientations of segments, was used to label the 
segments as the components of the bridge. The proposed method could 
recognize decks, fences, and bases with an accuracy of 0.83 in terms of 
the number of segments, and the authors addressed those results of the 
surface extraction rely on the density of the point cloud. However, the 
results are generally insufficient to fully describe 3D bridge information. 

To create a 3D model of a pier cap, Walsh et al. [39] used a region- 
growing technique to extract point clouds of individual surfaces, and a 
complete 3D model was obtained by modifying fitting planes to their 
intersections. However, this work cannot detect edges or small surfaces, 
and the data points of the pier cap were manually extracted from one of 
the bridges considered. Based on the principles of region growing seg-
mentation, Truong-Hong et al. [14] introduced cell-based region 
growing (CRG) segmentation to extract bridge decks (or a road surface 
on the bridge) to identify surface damage. In this work, the point cloud 
of the bridge was decomposed into 2D horizontal cells and kernel den-
sity estimation based on the z-coordinates of the data points in each cell 
was used to extract points of local planes of bridge components. The 
point clouds of the road surface and sidewalks were then obtained 
through CRG. Although this work reported high accuracy in extracting 
the components in an efficient way, it was limited to extracting bridge 
deck and footpaths. Zhang et al. [40] detected planar patches of struc-
tural elements of a bridge involving three main steps: (1) determining 
linear dependency between points, (2) clustering points based on their 
linear subspace and (3) extracting planar points through singular value 
decomposition. This method is computationally intensive because fea-
tures of all points were required to compute. The resulting accuracy of 
planar extraction accuracy is about 78% (31 planes extracted from a 
total of 40 planes) with normal deviations of 0.11 ± 0.11 degree, which 
is still on the low side for application in practice. 

Recently, Lu et al. [19] sliced a point cloud of a bridge in longitudinal 
direction and classified the slices into deck and pier assemblies based on 
slice height. For the pier assembly, it was sliced in transverse direction to 
detect pier areas and deck assembly, and subsequently the surfaces of 
the pier cap or the bottom of the deck were extracted based on normal 
vectors having a near vertical orientation. These surfaces were used to 
filter points of the deck and pier. For the desk points, a histogram was 
applied to extract girder points after aligning a bounding box such that it 
edges were parallel to the axes of the coordinate system. Although a high 
accuracy of component extraction was reported, the method relied on a 
wide range of input parameters including bridge engineering parameters 
and bridge design rules. The method may give false detection results 
when irrelevant objects (e.g., trees) around the bridge cause incorrect 
slice classification. The proposed method was suitable for a straight 
bridge, but it is required that the input data set is oriented such that it is 
parallel to the direction of one of the global coordinate system axes. For 
bridge with the vertical curve, the accuracy of point classification was 
reduced by about 10%. Similarly, Yan and Hajjar [21] proposed a 
heuristic method to extract point clouds of components of steel girder 
bridge. In this method, the point clouds were classified as points above 
the bridge and the ground, in which the position of the scan stations 
were priority known. The data points of the bridge deck and side bar-
riers/parapets were extracted from the data points above the bridge. 

Subsequently, RANSAC-based line segmentation was used to cluster 
girder points and a mean-shift algorithm was used to split cross-frames. 
Connected component-based clustering were clustered the substructure 
assembly (e.g., abutments and piers) from the remaining points after 
removing data points of the superstructures. Although points of the 
bridge components were extracted with an accuracy of 93.3%, the 
proposed method required that known scanning station positions was 
cooperated to the point cloud for the point cloud classification task, and 
the input data points must be down-sampled with even distribution. 

Recently, the use of a deep learning framework was investigated to 
extract and reconstruct bridge models. Narazaki et al. [41] used a 
multiscale convolutional neural network (CNN) architecture to recog-
nize bridge components including columns, beams and slabs from im-
ages. However, the detection accuracy was still low, for example, the 
precision of column extraction was about 65%, and results were limited 
to recognize only parts of the bridge. Additionally, Hu et al. [42] pro-
posed a deep learning framework to construct a 3D model of a cable 
bridge from a photogrammetric point cloud extracted from multiview 
UAV images and photogrammetric point clouds. Although the method 
was successful in generating a bridge model, the distance from mesh to 
cloud up to 1.78 m implies the model may not be suitable for engi-
neering purposes. To leverage UAV-based images for bridge inspection, 
Perry et al. [43] used a Gaussian Mixture Model and Agglomerative 
Clustering to cluster and segment photogrammetric point clouds of 
bridges based on normal vectors of the point clouds, while defects of the 
bridge surfaces were identified from images using a Black Hat Transform 
and Canny Edge Detector. Kim et al. [44] divided a point cloud of a 
bridge into multiple overlapping subsets as input for a PointNet frame-
work for extracting bridge deck and pier. The authors reported that the 
classification performance of the framework can achieve an accuracy of 
95%. Similarly, to extract decks, piers, and abutments of concrete 
bridges from TLS data, Lee et al. [45] modified an existing dynamic 
graph CNN approach [46] by using the absolute distance and mean 
EdgeConv operator to tune the impact of neighbourhood selection. 
Although bridge decks were well recognized with a precision of 0.98, 
performance of other parts were still relatively low with a precision of 
0.82 and 0.90 for abutments and piers, respectively. Interestingly, 
Saovana et al. [47] classified 3D point clouds generated from images by 
using 3D masks back-projected from 2D mask images using exterior 
camera orientation, in which the images were classified by deep CNN. 
Although the images were classified with a F1-score of 0.96, the highest 
F1-score for point cloud classification was 0.82 for the abutment 
component while the lowest F1-score was only 0.672 for cross-girders. 
Generally, methods based on machine learning, particularly deep 
learning, have one or more downsides: high computation time for 
labelling and training data, required user input to assign segments to 
components (e.g., a bridge deck or a pier), inconsistent or relatively low 
accuracy in object detection, and imbalanced learning. Importantly, the 
above methods all extracted only parts of bridges instead of surfaces for 
each single structural element, or individual components of the bridge. 

In summary, in converting raw point clouds of a bridge into mean-
ingful information for bridge assessment application, point clouds of 
individual surfaces of each bridge component play a crucial role in both 
surface-based damage identification and 3D geometric modelling [21]. 
However, no existing method is able to directly and automatically 
extract the data points of all structural surfaces from an entire point 
cloud of a modern bridge. Although existing studies have been working 
on developing methods to automatically extract single surface infor-
mation from a point cloud of an entire bridge, these methods have still 
several downsides: (1) applicability for limited number of bridge types 
[19,21], (2) the requirement of even distribution and orientation of data 
points [21], (3) the requirement of prior knowledge on the input point 
cloud and heavy engineering parameters for individual bridges [19,21], 
(4) extraction of only a limited number of parts or components 
[19,21,45], (5) inconsistent or low accuracy results in the extraction of 
bridge components [40,45,47], and (6) computational efforts 
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[19,40,44,45]. Thus, in an effort to resolve those problems, this paper 
proposes an efficient and robust method to automatically extracting 
individual surfaces of structural components of a bridge. The proposed 
method applies to point clouds of slab, slab-beam, or beam-box bridges 
without requiring any knowledge on the point cloud and data pre- 
processing. 

3. Scope of work 

According to the US National Bridge Inventory [48], slab and box 
beam or girder bridges account for 23.5% of the total bridge population, 
and is the second largest bridge type on the road network. However, this 
bridge type accounts for about 17.6% of the total bridge deficiencies 
slightly more than 13.2% for stringer, multi-beam or girder bridges, 
which is the largest bridge type. Moreover, in the UK, 43% of the 
highway bridges are slab bridges and 86% of future bridges will be 
either a slab or slab-beam bridge [49]. Therefore, as the slab, slab-beam 
or beam-box bridges are prominent, this study focuses on extracting 
components of this bridge type from laser scanning point clouds. 

Components of a bridge can be classified as superstructure and 
substructure (Fig. 1). The superstructure consists of components (e.g., 
girders, slabs, parapets) above the bearings, while the substructure is 
components (e.g., piers and abutments) below the bearings. The su-
perstructure elements are often distributed in a horizontal plane along 
the longitudinal direction of the bridge, while the substructure compo-
nents are distributed in lateral and vertical direction. When using a laser 
scanning to acquire bridge geometry, only visible exterior surfaces of the 
bridge components can be captured. Interior surfaces can be collected by 
internal scanning, but this is out of a scope of this study. In order to 
extract the point cloud of surfaces of the bridge components, the 
following main contextual knowledge is used in this study. 

Property 1. A bridge cross-section often consists of a roadway, sidewalk, 
and railing. A superstructure is bounded: (i) top surfaces of the superstructure 
(Ssupstr.top), (ii) bottom surfaces of the superstructure (Ssupstr.bot), and (iii) 
intermediate surfaces (Ssupstr.int), as shown in Fig. 2. Ssupstr.top consist of 
surfaces of a roadway (Srw), road curbs (Src) and sidewalk (Ssw). The 
roadway, Srw, is the largest surface in terms of area (or size), while Ssw are 
smaller surfaces along the road. The elevation of Ssw is often either equal or 
higher than that of Srw. 

Property 2. The superstructure connects to the substructure indirectly 
via bearings or directly as in integral bridges. In the former case, bearing 
stones are often small and cannot be captured due to obstruction of the 
beams/girders and abutments or piers, but a void space in the vertical 
direction between the superstructure and substructure is available. In 
the latter case, the bottom surfaces of the beams/girders directly connect 
to the vertical surface of the abutments and piers. That implies the Ssupstr. 

bot can be used to distinguish the superstructure and substructure 
because its orientation completely differs from adjacent surfaces of the 
substructure. 

Property 3. Bridge railings may consist of traffic (Ptr) and pedestrian (Ppr) 

railings. The railings are distributed along edges of Srw and Ssw, and above Ssw 
(Fig. 1). The distance from the railings to the central line of the bridge is a 
constant because of constant widths of traffic lanes, sidewalk, and other el-
ements along the bridge. Heights of railings are no lower than 810 mm for Ptr 
and 1000 mm for Ppr [50]. Notably, although the railings are extracted in 
this study, details of the railing components are not a main objective of 
this study. The railings may still contain irrelevant points from adjacent 
objects, for example a traffic sign. 

Property 4. A bridge substructure includes piers and abutments, and these 
elements are distributed in transverse and vertical directions (Fig. 2). The pier 
often consists of a pile cap (Pplcap), pier column (Pprcol), and pier cap (Pprcap) 
(Fig. 2a). However, Pplcap is often below a ground or water level, and the point 
cloud of this component may not be available. Moreover, Pprcap may not 
explicitly appear in some types of piers (Fig. 2a). Pprcap is mainly oriented in 
the transverse direction while Pprcol is oriented in the vertical direction. In the 
abutment, both ballast and breast walls (Abaw and Abrw) are vertical surfaces 
and their lengths (Abaw.L and Abaw.L) are often equal to the bridge width (Bbr. 
W) (Fig. 2b). Moreover, wing walls (Aww) are usually perpendicular to Abaw 
and Abrw. In general, relative relationships between the abutments and 
pier and the bridge can be expressed in Eq. (1). 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pprcol.L ≤ Pprcap.L ≤ Bbr.W
Pprcol.L ≤ Pplcap.L

Pprcol.W ≤ Pprcap.W
Pprcap.H ≤ Pprcol.H

Abaw.L,Abrw.L ≤ Bbr.W

(1)  

where suffixes “.L,.W, and .H" are respectively the length, width and 
height of the components. For the abutment and pier, their dimensions 
(length, width, and height) are dimensions along a transverse, longitu-
dinal direction of the bridge, and a vertical direction. 

Property 5. Minimum geometric parameters of bridge components as 
shown inTable 1are used in filtering real components of the bridge. Beside 
several values are obtained directly from a design specification and practices, 
the remain values are selected as following reasons. For example, although 
different minimum heights of railings, the smallest value as 0.81 m was 
selected to use in this study. In a bridge design, the minimum vertical clear-
ance is 0.6 m for passing a waterway and 4.3 m for passing a structure [51]. 
Moreover, to protect the bearing, the breast wall must be 0.5 m higher than 
the top of a slope of an embankment ground. As such, Hsubstr,min = 0.6 m is 
selected to extract the candidate points of the substructure. A minimum 
component thickness (Scs.T0) is selected based on the minimum slab thickness 
of 0.178 m [52] plus a pavement thickness. Finally, as a roadway lateral 
slope (grw) often varies 1.5% - 2.0% [53], and the sidewalk slope (gsw) is 
often 1.0% [53]. To overcome critical circumstance, the lateral slopes of 
both is set of 2.0%. 

4. Proposed method 

The proposed method for extracting point clouds corresponding to 
surfaces of bridge components has 3 main parts (Fig. 3). Goal of the 

Fig. 1. Typical cross-section of slab-beam or box bridges.  
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point-to-surface (Part 1) is to group raw point clouds to clusters repre-
senting surfaces of bridge components, which include two steps: (i) 
coarse and (ii) fine extraction for each type of structures. Coarse 
extraction is to extract candidate points of structures using point cloud- 
based features and contextual knowledge, while in the fine extraction, 
segmentation methods are implemented to obtain final points of indi-
vidual surfaces of structural components. Subsequently, in Part 2 and 3, 
superstructure and substructure extraction aim to assign labels to cor-
responding surfaces. In this method, spatial point clouds and contextual 
knowledge of bridge components are used to identify surfaces of the 
bridge component in a sequential order from the superstructure to 
substructure. Details of the proposed method are presented below. 

4.1. Part 1: Point-to-surface 

Goal of this part is to extract subsets representing surfaces of indi-
vidual bridge component from a massive x-, y- and z- point clouds of a 
bridge. A bridge structure is highly complex regarding the variation in 
sizes and orientations of the different bridge components. In addition, 

bridge point cloud is typically massive. Therefore, point-based methods 
are both time consuming and challenging, given the difficulty in tuning 
parameters that need to satisfy both local and global geometric varia-
tions. Moreover, point clouds of the road surface, sidewalks, bottom 
surfaces of a superstructure, and of the ground occupy a large portion of 
the entire data set, and these surfaces are all nearly horizontal. As such, 
methods based on 2D cells in the xy plane are given priority to process, 
because the corresponding 2D processing is much simple than 3D voxel- 
based methods. The process starts with coarse extraction of candidate 
points by decomposing the point cloud of the bridge into two dimen-
sional (2D) cells in the xy plane and analysing distribution of data points 
within the cells in a vertical direction. Subsequently, in fine filtering 
step, cell- and voxel-based region growing segmentation (CRG and VRG) 
methods are used to obtain the final point cloud for each surface, while 
connected surface component (CSC) method is implemented to elimi-
nate unreal surfaces of the structures. Details of these methods are 
presented below. 

4.1.1. Quadtree representation 
As mentioned in Property 1, a superstructure of a box/slab-beam 

bridge is often bounded by a set of surfaces including top (Ssupstr.top), 
bottom (Ssupstr.bot) and intermediate (Ssupstr.inter) surfaces (Fig. 2). Ssupstr.top 
and Ssupstr.bot, are nearly horizontal planes, while Ssupstr.inter are mostly 
inclined or vertical planes. Moreover, surfaces of substructure (abut-
ments and piers) mostly vertical surfaces. To reduce complexity of the 
entire point cloud of a bridge, particularly for extracting surfaces of a 
superstructure, a quadtree is employed to recursively subdivide an 
initial 2D bounding box enclosing the bridge data points (Pbr = {pi = (xi, 
yi, zi) ∈ R3, i = [1, Nbr]}) into smaller 2D cells (C = {ci}, i = [1, Nbr]) in 
the horizontal plane (or the xy plane of the global coordinate system) 
until a termination criterion is reached (Fig. 4). In this study, as a certain 
required level of details of structural components is the objective, cell 
size (ce0) is considered as the terminated criterion, which translates to 

Fig. 2. Surface components of a superstructure.  

Table 1 
Minimum dimensions of bridge components.  

Name Notation Values References 

Minimum span length (m) Lsp.Lmin 9.0 [54] 
Minimum sidewalk width (m) Ssw.Wmin 1.5 [50] 
Minimum railing height (m) Prl.Hmin 0.81 [50] 
Minimum road curb height (m) Src.Hmin 0.157 [50] 
Minimum substructure height (m) Hsubstr,min 0.6 [51] 
Minimum cross-section size(m) Scs.D0 0.4 Design 

practice 
Minimum component thickness (m) Scs.T0 0.2 [52] 
A slope of a cross-section of a roadway/ 

sidewalk (%) 
grw/gsw 2.0%/ 

1.0 
[53]  

Fig. 3. A workflow of the proposed method.  
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lengths of cells’ edges on leaf nodes of the quadtree no smaller than the 
cell size ce0. Additionally, each cell gets the property as “empty”, if the 
cell contains the number of the points less than a predefined threshold 
(cmin_ptc); otherwise, it is classified as “full”. Only full cells are considered 
in next steps of the data processing. Each full cell ci on the leaf node can 
be described as a tuple including two opposite corners (xbl, ybl, xtr, ytr), 
and a list of point indices (ci = {pi}, i = [1, Np]) where Np is the number of 
the points within the ci. 

4.1.2. Local surface extraction 
As the 3D data points of the bridge are decomposed into 2D cells (C 

= {ci}, i = [1, Nbr]) in the xy plane, points in a cell (pi ∈ ci where pi = (x, y, 
z), i = [1, Np]) may belong to multiple local surfaces or patches in the 
vertical direction (Fig. 5a). Moreover, as surfaces Ssupstr.top and Ssupstr.bot 
are nearly horizontal, pi ∈ ci are expected to be distributed in different 
groups in a vertical direction (or along a z axis). Similar to Armeni et al. 
[55] who used a density histogram signal to distinguish indoor building 
components based on void space between surfaces, kernel density esti-
mation is used to identify approximate locations of surfaces, which 
correspond to local maxima of al probability density shape (PDS), 
compare also Fig. 5a [56]. In this study, PDS of KDE is accumulated the 
density at predefined points, in which a so-called Epanechnikov kernel 
[57] is employed to estimate the density based on the z-coordinates of 
each point pi ∈ ci, and a bandwidth (bw). Given a PDS of KDE, points 
potentially belonging to a local surface are extracted based on a valley- 
peak-valley pattern (Eq. (2)), in which the valleys and peaks of the PDS 
are determined through a second derivative of the PDS (Fig. 5b). By 
using this simple assumption, a patch ψ ij may possess points of adjacent 

surfaces, for example, the patches in Fig. 5c still occupy the points of 
vertical surfaces. Subsequently, indices of the patch are ordered ac-
cording to the patch elevation (Fig. 5c). 

ψij =
(
pij | PDS.zvaley,k ≤ pij.z ≤ PDS.zvaley,k+1

)
where pij⫅pi ∈ ci (2)  

where PDS.zvaley,k and PDS.zvaley k+1 are coordinates of two consecutive 
valleys of the PDS. 

4.1.3. Cell-based region growing (CRG) 
Goal of CRG is to extract point clouds corresponding to surfaces 

Ssupstr.top and Ssupstr.bot from patches within cells in Section 4.1.1 and 4.1.2. 
The method consists of 5 steps (Fig. 6): fit a plane to a patch (Step 1), cell- 
patch region growing segmentation (CpRG) (Step 2), patch filtering (Step 
3), patch-point region growing (Step 4) and merging-planar region 
growing (Step 5). Steps 3 and 4 are to avoid that the patches possess 
points of adjacent surfaces, while goal of Step 5 is to resolve under- 
segmentation due to missing or sparse or noisy data. 

Step 1: Plane fitting. 
As each patch ψ ij ∈ ci is assumed to represent a planar surface, a plane 

is fitted to points pij ∈ ψ ij using principal component analysis (PCA) 
based on a covariance matrix covψ ij (Eqs. (3) and (4)) [58], in which the 
normal vector nij of the fitting plane (sij) is the eigenvector corre-
sponding to the smallest eigenvalue of matrix covψ ij. 

covψij =
∑N

i=1

(
pij − pij,0

)(
pij − pij,0

)T (3)  

pij,0 =
1

⃒
⃒pij

⃒
⃒

∑
pij (4)  

where pij,0 = (xij,0, y ij,0, z ij,0) is the centroid of the points pij ∈ ψ ij, and | | 
is the cardinality of a set, which denotes the number of points pij. 

Moreover, a residual value (crij) defined as the root mean square 
distances dij of the points pij to the fitting plane, (sij = (pij,0, nij) given in 
Eqs. (5) and (6) is computed, which is considered as a salient feature of 
the patch. Finally, a patch is described by the tuple ψ ij = (pij, sij, crij). 

dij =

(
x − xij,0

)
nij.x +

(
y − yij,0

)
nij.y +

(
z − zij,0

)
nij.z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2

ij.x + n2
ij.y + n2

ij.z
√ (5)  

Fig. 4. Quadtree subdivision.  

Fig. 5. Extracting data points of patches within a 2D cell.  
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crij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
⃒
⃒dij

⃒
⃒

∑N

i=1
d2

ij

√
√
√
√ (6) 

Step 2: Cell-patch -based region growing segmentation (CpRG). 
CpRG is similar to the region growing segmentation proposed by 

Rabbani et al. [22], but this implementation uses features of the patch ψ ij 
instead of single points. The segmentation process starts with an initial 
seeding patch ψ ij ∈ ci (ψ ij → a region Ri) having the smallest residual 
value (crij → min). Next, adjacent cells ck(k=1÷ 4) of ci are retrieved based 
on a 4-neighbouring cell searching (4-NCS), where the neighbouring 
cells ck share an edge with the cell ci. In this work, only patches ψkj ∈ ck 
the same index order to ψ ij ∈ ci are retrieved, where indices of patches 
within the cell can refer to Fig. 5c. A patch ψkj is added to a region Ri if 
deviations between the features of ψ ij and ψkj satisfy Eq. (7). Moreover, 
the patch ψkj is only considered as a seeding patch for a next iteration if 
its residual crkj is no larger than a predefined residual threshold (cr0). 
The region Ri is incrementally growing until no more patch can be 

added. The segmentation process iteratively groups patches into the 
same region until all input patches are examined. A result of the seg-
mentation is a set of regions R = (Ri, i = [1, NR]) where Ri = (ψ ij ∈ ci). 
Notably, although a cell ci can occupy multiple patches ψ ij, only one 
patch of each cell is segmented at this step. 
{

nij, nkj ≤ αc0
d
(
pkj,0, sij

)
≤ dc0

(7)  

where ∠nij, nkj is the angle between the normal vectors of sij and skj, d(pkj, 

0, sij) is the Euclidean distance from pkj,0 ∈ skj to sij, and αc0 and dc0 are 
respectively a predefined angle and distance threshold. 

Step 3: Patch filtering. 
As the 2D cells represent the point cloud of a bridge, data points 

within the cell or patch may belong to multiple adjoined surfaces. That 
can cause over- or under-segmentation in results from CpRG (Fig. 7a and 
b), in which patches on a region boundary occupy points of adjacent 
surfaces (Fig. 7c). To solve this, patch filtering starts with patches on the 

Fig. 6. A workflow of CRG.  

Fig. 7. Illustration of the patch filtering algorithm.  
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boundary of a specific region and data points of each patch are then re- 
assigned to any region connected to the patch, if the distances from the 
points to the region are no larger than the distance threshold dc0 [14]. If 
multiple regions get connected to the patch, the assignment ordered in 
priority from large to small regions in term of the number of patches in a 
region. The distance threshold dc0 dominates the quality of patch 
filtering. 

First, a patch ψ ij ∈ Ri is classified as an interior (ψ ij,int) and exterior 
(ψ ij,ext) patch, in which ψ ij,int has all neighbouring patches derived based 
on 4-NCS (Step 2) belonging to the region Ri. Second, for the exterior 
patch ψ ij,ext, the neighbouring patches ψkj are subsequently divided into 
groups: (i) ψkj,int ∈ Ri, and (ii) ψkj,ext ∈ Ri and/or Rj, in which Rj is an 
adjoined region of Ri (Fig. 7c). Third, if ψkj.ext ∈ Rj exist, 4-NCS (Step 2) is 
used to retrieve neighbour interior patches ψ lj,int ∈ Rj. Next, local sur-
faces sk and sl of the regions Ri and Rj are respectively estimated from the 
points pkj ∈ ψkj,int and plj ∈ ψ lj,int using Eqs. (3)–(4). Finally, the points pij 
∈ ψ ij,ext are classified into two sub-groups: pij,i ∈ Ri and pij,j ∈ Rj by two 
consecutive conditions in Eq. (8). Once the points within ψ ij,ext are 
completely classified, the fitting plane of ψ ij,ext is updated. Notably, if ψkj. 

ext ∈ Rj are not available, there is no need to assign points to the region 
Rj. 
⎧
⎨

⎩

pij→pij,i ϵ Ri if d
(
pij, sk

)
≤ dc0

p′

ij = pij\pij,i→pij,j ϵ Rj if d
(

p′

ij, sl

)
≤ dc0

(8)  

where pij, i and pij, j are points of the regions Ri and Rj after filtering, d(pij, 
sk) and d(pij

′, sl) denote Euclidean distances from the points pij to sk, and 
the points p’ij to sl, and dc0 is the distance threshold. 

Step 4: Patch-point-based region growing. 
In Steps 2 and 3, the processing is done based on a specific patch ψ ij ∈

ci where j is a constant. However, in practice, because of the complexity 
of the structure and occlusions, a surface of a structure element may 
consist of different patches ψ ik ∈ ci with different values of k. Therefore, a 
region Ri may still miss points pik ∈ψ ik(k∕=j) that have not been examined 
in Step 2. To overcome this issue, the cell ci occupied the ψ ij,ext ∈ Ri search 
its neighbouring cells ck(k=1÷4) by using 4-NCS, in which all patches of 
the cells ck are not assigned to regions R. Next, a subset of points p’ki ⫅ pki 
∈ ψki is assigned to Ri if distances d(p’ki, si) satisfy the first condition in 
Eq. (8). Moreover, ψki is considered as a new exterior patch of the region 
Ri if the area of the 2D convexhull of the points p’ki projected on its 
fitting plane is more than 75% of the cell area (ce0 x ce0). This threshold 
is empirically selected. For each cell ck, the process is iteratively 
checking all ψki ∈ ck but is terminated if any ψ jk is added to the region 
because no co-planar surface is available in the cell. Finally, patch-point- 
based region growing is iteratively searching new points of Ri until all 
ψ ij,ext ∈ Ri are checked. 

Step 5: Co-planar region merging. 
In practice, due to missing data and/or noisy data, and/or surface 

defects, a surface of a structural element can be segmented into multiple 
regions, which need to be merged to obtain a complete surface. In re-
ality, the surface of a component is continuous and homogeneous, which 
implies two adjacent regions are considered in a merging process, if an 
adjoined area of two regions has deviations of points to a fitting plane 
similar to ones of the adjoined regions. Co-planar region merging starts 
with a region Ri and checks if an adjacent region Rj can be merged 
(Figs. 8a and 9a). The algorithm retrieves boundary patches ψ ij,ext ∈ Ri 
and ψkl,ext ∈ Rj, and neighbouring patches ψkl ∈ Rj for ψ ij,ext ∈ Ri and ψ ij ∈

Ri for ψkl,ext ∈ Rj are respectively extracted using a window search (sw), 
where distances between centers of cells containing these patches in x 
and y directions are no larger than sw (Figs. 8b and 9b). In this imple-
mentation, sw = 3ce0 (ce0 is a cell size) is used, which allows the gap 
between Ri and Rj to be up to 2ce0. Notably, this value can be adjusted 
based on quality and quantity of the data. Next, the local planes sij, skl 
and sik are respectively fitted to the points pij ∈ψ ij,ext and pkl ∈ψkl,ext, and 
pij ∪ pkl using PCA (Eqs. (3) and (4)). The regions Ri and Rj are considered 
as parts of the surface of the same bridge component, if distributions of 
distances d(pij, sij) and d(pij, sik), and d(pkl, skl) and d(pkl, sik) are similar. 
In this implementation, correlation between pairs of distances is used to 
measure similarity. The regions Ri and Rj are merged if their similarity is 
larger than a predefined similarity threshold (ρ0) of 0.9. This value was 
empirically selected in this study, compare also Figs. 8c and d, and 9c 
and d. 

4.1.4. Voxel-based region growing segmentation (VRG) 
In fact, orientations of surfaces of bridge components are arbitrary in 

3D space, and a simple technique, for example KDE, is only efficiently to 
extract candidate points of local surfaces, where these surfaces are 
nearly parallel to the xy, yz or xz plane. To handle the complexity of such 
data sets, voxel-based region growing segmentation (VRG) is introduced 
to extract surfaces of bridge components based on 3D voxels, in which 
the hypothesis of VRG is similar to that of CRG. VRG uses an octree to 
decompose an initial bounding box enclosing a point cloud into smaller 
voxels, similar to octree-region growing segmentation as proposed by Vo 
et al. [23]. However, differing from Vo et al. [23] who used an adaptive 
octree to decompose a point cloud, this method uses a pure octree [59], 
where voxels on leaf nodes are all the same size, and have edges’ length 
equal to a predefined voxel size threshold (ve0). A voxel is classifed as 
“full” if it contains at least a predified number of points (vmin_ptc); 
otherwise, a voxel is “empty”. Only “full” voxels are used in the further 
process. 

The points within a full voxel on a leaf node are assumed to represent 
to a plane. This plane si is fitted using PCA (Eqs. (3) and (4)) and a re-
sidual vri is computed according to Eqs. (3)–(6). This allows to describe 

Fig. 8. Two adjacent regions has high correlation between residuals of fitting planes.  
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each full voxel by a tuple: vi = (pi, si, vri), where pi = (x, y, z) ∈ R3 with i 
= [1, Npi] are points within a voxel vi, and si = (pi,0, ni) is the fitting plane 
defined by pi,0 = (x0,i, y0,0, z0,i) and the normal vector ni. 

Once salient features vi = (pi, si, vri) of voxels are computed, a region- 
growing mechanism is employed to incrementally group adjacent voxels 
having deviations of the salient features satisfying certain thresholds 
expressed by Eq. (7). The growing process is similar to Step 3.2 in the 
CRG method, in which the voxel with the smallest residual value (vri → 
min) is an initial seeding voxel. The resulting segmentation clusters input 
data P = (pi ∈ R3) into a set of regions R = (Ri | i = [1, NR]). A region Ri 
can be either a planar or curved surface. Similar to Vo et al. [23] or CRG, 
the voxels on a region boundary may contain points of adjacent regions. 
To solve this problem, in this implementation, a process similar to the 
patch filtering (Step 3) and patch-point-based region growing (Step 4) of 
CRG method presented in Section 4.1.2 is adopted, in which voxels are 
used instead of cells in CRG. Finally, a merging process is also intro-
duced to group adjoined, co-planar regions as shown in Step 5 of CRG. 

4.1.5. Connected surface component (CSC) 
CRG and VRG respectively segment points within patches or voxels 

into a set of regions R = (Ri| i = [1, NR]) representing surfaces. However, 
unreal surfaces, which are not surfaces of bridge components, possibly 
exist in a set of regions R. A CSC method, based on a region growing 
principles, is introduced to group regions that are part of the structural 
component. CSC is based on the hypothesis that individual surfaces of a 
structural component are connected through an intersection edge. CSC 
starts with an initial reference region Ri known as a region representing a 
surface of the component and search for an adjacent region Rj that sat-
isfies connection conditions. If the searching is successful, the region Rj 
is added to the cluster of the structural component. Subsequently, the 
region Rj is set as a reference surface for a next iteration. The process 
iteratively checks each pair of regions Ri and Rj to incrementally grow 

the cluster until no more region to be added. Notably, CSC does not need 
to check all regions Ri ∈ R and the initial reference is selected based on 
features of the component. The connection condition between a pair of 
regions Ri and Rj is determined as follows. 

Starting with boundary patches ψ ij,ext ∈ Ri and ψkl,ext ∈ Rj for the 
regions Ri and Rj from CRG (or neighbour voxels vi,ext ∈ Ri and vj,ext ∈ Rj 
for the regions Ri and Rj from VRG), neighbour patches ψ’kl,ext ⫅ ψkl,ext 
and ψ’ij,ext ⫅ ψ ij,ext (or neighbour voxels v’j,ext ⫅ vj,ext and v’i,ext ⫅ vi,ext) are 
extracted(Fig. 10a). Subsequently, three consecutive conditions are 
applied to check if Ri is adjoined to Rj. The first condition checks if an 
adjoined area is available (Eq. (9)). 
{

ψ′

ij,ext ∕= ∅

ψ′

kl,ext ∕= ∅
or

{
v′

i ∕= ∅
v′

j ∕= ∅
(9) 

The second condition checks if Ri intersects with Rj (Eq. (10)), which 
is done based on fitted planes si ∈ Ri and sj ∈ Rj determined from pij ∈ ψ’ij, 
ext and pkl ∈ ψ’kl,ext, or pi ∈ v’i,ext and pj ∈ v’j,ext (Eqs. (2) and (3)). 
Additionally, the third condition checks if two adjoined regions share 
sufficient boundary (Eq. (11)). 

∠ni, nj ≥ α0 (10)  

where ni and nj are normal vectors of the planes si and sj, and α0 is the 
angle threshold. 
⎧
⎨

⎩

Li ≥ L0
Lj ≥ L0

Lij ≥ 0.5min
(
Li,Lj

) (11)  

where Li = |Pi1 Pi2| and Lj = |Pj1 Pj2| are lengths of the line segment 
fitting though the projected points pi ∈ ψ’ij,ext and pk ∈ ψ’kl,ext (or pi ∈ v’i, 
ext and pj ∈ v’j,ext) onto the intersection line Lij, is the overlap length 
between Li and Lj, and L0 is a predefined length threshold (Fig. 10b). As 

Fig. 9. Two adjacent regions has low correlation between residuals of fitting planes.  

Fig. 10. Example of determining a connection between two adjacent regions based on cells for Ri and Rj derived from CRG.  
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shown in Fig. 10b, Li = |Pi1 Pi2|, Lj = |Pj1 Pj2|, and Lij = |Pj1 Pi2|. Notably, 
L0 is selected based on dimensions of the structure of interest. 

4.2. Part 2: Superstructure extraction 

As mentioned in Property 1, the superstructure of a box/slab-beam 
bridge is bounded by top (Ssupstr.top), bottom (Ssupstr.bot) and intermedi-
ate (Ssupstr.inter) surfaces (Fig. 2). Ssupstr.top and Ssupstr.bot, are nearly hori-
zontal planes, while Ssupstr.inter are mostly inclined or vertical planes. 
Additionally, Ssupstr.top involves surfaces of a roadway, road curbs and 
sidewalks. As such in Part 2, these surfaces are extracted in a sequential 
order Ssupstr.top, Ssupstr.bot and Ssupstr.inter (Fig. 3), in which Ssupstr.top and 
Ssupstr.bot are obtained using CRG segmentation of patches within 2D 
cells, while VRG segmentation is applied to points between Ssupstr.top and 
Ssupstr.bot to obtain data points of Ssupstr.inter. 

4.2.1. Top surfaces of the superstructure 

4.2.1.1. Roadway and sidewalk. Based on Property 1 and when 
observing the patch distribution within a cell, point clouds of the 
roadway and sidewalk are mostly located within first patches ψ ij(j=1) ∈

ci, and these patches are used as input for Step 2 and 3 of CRG instead of 
all patches. Moreover, the remaining patches ψ ij(j>1) ∈ ci are used as 
input in Step 4 of CRG. After merging co-planar regions in Step 5 of CRG, 
the resulting segmentation consists of a set of regions (R = (Ri) | i = [1, 
NR]) as shown in Fig. 11a and b. 

Additionally, to assign semantic labels to the regions and eliminate 
regions representing terrains or non-bridge structures, primary features 
of a region Ri are computed from points pi ∈ Ri, which include (1) a 
fitting plane, Si = (pi,0, ni), determined by Eqs. (3) and (4), and (2) di-
mensions (width – Ri.W, length – Ri.L, and area – Ri.A) based on a 2D 
mBB derived from projected points of pi onto Si. Based on Feature 1, the 
roadway Srw is recognized as the largest region (Eq. (11)), and subse-
quently a bridge central line (LbCL) is estimated. For a horizontal straight 
bridge, a parametric line LbCL(P0, ttr) is determined, where the point P0 is 
a centroid of the 2D mBB and the directional vector ttr is the vector of the 
longest edge of the 2D mBB because the bridge width is generally shorter 
than its length. However, for a horizontal curved bridge, the method 
proposed by Soilan et al. [60] can be used to determine LbCL, represented 
by multi-line segments LbCL = (Li | i = [1,NL]) where Li is a line segment 
connecting two consecutive points of the bridge center. 

Ri→Rrw ≡ Srw if Ri.A→max (12) 

Remaining regions (Rj = R \ Ri) are assigned to the sidewalk (Ssw) if 
Rj satisfies Eq. (12) (Fig. 11c). Although the goal of these conditions is to 
recognize a region similar to a real sidewalk, these factors are empiri-
cally selected to compensate the data quality problems. However, a 
factor of 0.75 in the second condition is lower than others because the 
length of the sidewalk Srw often includes an approach road, which is 
larger than the bridge length. 

Rj = (R\Ri)→Ssw if

⎧
⎨

⎩

0.9Ssw.Wmin ≤ Rj.W
0.75Srw.L ≤ Rj.L
0.9Srw.z ≤ Rj.z

(13)  

where Ssw.Wmin is the minimum width of the sidewalk, which is no less 
than 1.5 m (Table 1) [50], Rj.L is the length of the region Rj joined to Rrw 
≡ Srw, Srw.z and Rj.z are respectively the z-coordinates of the sij ≅ ψ ij ∈

Rrw and skl ≅ ψkl ∈ Rj, where the ψ ij and ψkl are neighbouring patches 
derived from 4-NCS (Step 2 of CRG). 

4.2.1.2. Road curb. A road curb (Src) is available when the elevation of 
the sidewalk Ssw is higher than one of the roadway Srw. In this case, the 
road curb Src consists of both horizontal and vertical surfaces (Src.hor and 
Src.vert). However, point clouds of the horizontal surfaces Src.hor are on the 
same elevation of the sidewalk Ssw and the roadway Src, and include in 
segments of these surfaces (Section 4.2.1.1). In this step, only points of 
the vertical surface Src.vert ∈ Src are extracted. 

As the road curb vertical surface Src.vert locates between the sidewalk 
Ssw and the roadway Srw, a candidate cell ci containing points of a road 
curb can be: (1) ci contains ψ ij ∈ Srw and ψ ik ∈ Ssw (for example Fig. 12a), 
(2) ci contains ψ ij ∈ Srw and has a neighbour cell cj possessing ψ jk ∈ Ssw, 
and (3) ci occupies ψ ij ∈ Ssw and has a neighbour cell cj possessing ψ jk ∈

Src. Notably, neighbouring cells cj of ci are extracted using 4-NCS. After 
extracting the candidate cell ci, point-patch distance is used to extract 
candidate points prc,i ∈ ci (Eq. (14)) (Fig. 12b). 

ci→(pi)→prc,i if

⎧
⎨

⎩

sign
(
d
(
prc,i, srw

) )
sign

(
d
(
prc,i, ssw

) )
. < 0

where cos(nrw, nsw). > 0
prc,i ∕∈ (ψrw

⋃
ψsw)

(14)  

where sign() denotes signed distances from pi to local planes srw ∈ Srw and 
ssw ∈ Ssw, and nrw and nsw are normal vectors of srw and ssw. The local 
planes srw and ssw determine points of patches ψ rw and ψ sw respectively 
possessed points of the roadway and sidewalk. The patches ψ rw and ψ sw 
are selected as follows: Case 1: ψrw = ψ ij and ψsw = ψ ik, Case 2: ψrw = ψ ij 
and ψ sw = ψkl, and Case 3: ψrw = ψkl and ψ sw = ψ ij. Notably, only active 
points within ci are considered. 

However, due to noise in the data or surface damage, prc.i may 
include outlier points that are un-segmented points of Srw and/or Ssw 
(Fig. 12a). To eliminate these points, robust PCA [56] is employed to 
remove points having distances to the fitting surface larger than the 
predefined threshold ds. The final points of the road curb in the cell are 
shown in Fig. 12c. 

4.2.2. Railing extraction 
Based on Property 3 considering locations of parapets, the algorithm 

starts to extract cells (ci) on edges between the roadway (Srw) and 
sidewalk (Ssw), and above Ssw (Fig. 13a). Candidate points, prl,j ∈ ci of 
railings above Ssw, are extracted according to Eq. (15) (Fig. 13b). 

Fig. 11. Illustration of extracting top surfaces of a superstructure.  
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ci = (pi)→prl,i if

⎧
⎨

⎩

0 < d
(
prl,i, sij

)
where 0 < cos

(
nij, nz

)

Prl.Hmin ≤ max
(
prl,i.z

)
− pij,0.z

min ptc ≤
⃒
⃒prl,i

⃒
⃒

(15)  

where sij(pij,0, nij) is the fitting plane of ψ ij ∈ ci ∈ Ssw, nz is a unit vector of 
the z axis, Prl.Hmin denotes a minimum height of the railings derived 
from a design specification (Table 1), pij,0.z is the elevation of sij or the 
sidewalk, and min_ptc = 10 is empirically selected to define if the cell ci 
contains the railing points. The first condition extracts points within the 
cell ci above Ssw, while the second condition ensures that ci contains 
railing points. Notably, if ci does not possess any patch assigned as the 
sidewalk, the fitting plane skl of ψkl ∈ ck ∈ Ssw is used, in which ck is the 

closest neighbour cell of ci. 
However, cells ci may not contain points of real parapets, which are 

subsequently eliminated using clustering based on distances between a 
cell ci and the bridge central line (LbCL). For each cell ci, the centroid of 
the cell in the xy plane is computed from ppar,j (Eq. (16)). 

ci =
(
prl,i

)
→ci.center = 0.5([xmin, ymin] + [xmax, ymax] ) (16)  

where [xmin, ymin] and [xmax, ymax] are respectively minimum and 
maximum coordinates of the points, prl,i. 

Subsequently, signed distances d(ci, LbCL,2D) from ci.center to a pro-
jection of LrbCL onto the xy plane are computed (Fig. 13c). Additionally, 
KDE generated from the signed distances d(ci, LbCL,2D) is employed to 

Fig. 12. Extracting data points representing the road curb.  

Fig. 13. Extracting point clouds of railings.  
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group ci into the cluster Crl,i = (ci) by using a valley-peak-valley pattern 
(Eq. (2)), in which a bandwidth equal to 1/4Ssw.Wmin is used. Subse-
quently, a length-based filtering of the cluster is applied to eliminate 
unrealistic railing clusters due to humans or obstacles in the scene 
during data acquisition. The cluster length, Crl,j.L is the distance between 
the outmost projection of cj.center onto Lbrcent2D. Finally, the cluster Crl,j 
is considered as the railing if Crl,j.L is no shorter than 0.75Srw.L 
(Fig. 13d). 

After points are assigned to labels as the roadway Srw, sidewalk Ssw, 
railings Ppr and Ptr, which belong to top surfaces of the superstructure 
Ssupstr.top = Srw U Ssw U Ppr U Ptr, these points are immediately deacti-
vated. Moreover, points pi ∈ ci above Ssupstr.top are also deactivated 
because these points do not represent any part of the bridge components 
(Eq. (17)). 

ci = (pi)→pdeact,i if 0 < d
(
pdeact,i, sij

)
where 0 < cosin

(
nij, nz

)
(17)  

where sij is the plane fitted to points of a patch ψ ij ∈ Srw or Ssw. 

4.2.3. Bottom surfaces of a superstructure (Ssupstr.bot) 
Similarly, CRG is used to extract points of Ssupstr.bot, in which only the 

second patches ψ ij (j=2) ∈ ci are initially used in Steps 2 and 3 of CRG 
while other patches ψ ij(j>2) ∈ ci are used in Step 4 of CRG. CRG groups 
patches ψ ij into a set of regions R = (Ri)| i = [1, NR] (Fig. 14a). However, 
these regions may include surfaces of other structural elements, for 
example, the top surface of a pier cap because the bottom surface of the 
superstructure above the pier cap is not available due to obstruction. 
CSC (Section 4.1.4) is subsequently employed to group regions that 
represent bottom surfaces of a superstructure. In this method, an initial 
reference surface is a key in recognizing the superstructure’s regions 
successfully, which is selected as follow. 

In the bridge structure, particularly for short and medium spans, 
heights of cross-sections of the box- or slab-beams are constant. This 
implies the distance between the bottom surfaces of the beams Sbeam,bot 
to the roadway Srw is a nearly constant while distances from other sur-
faces to the roadway Srw is abruptly change. Based on this feature, Sbeam, 

bot is determined from a set of regions R = (Ri) as follow. First, the patch 
to patch distance d(sij ≅ ψ ij, sik ≅ ψ ik) [13] is employed to compute the 
distance between a region Ri to the roadway Srw through fitting planes sij 
of ψ ij ∈ Srw, sik of ψ ik ∈ Ri, where both ψ ij and ψ ik are occupied by ci. 
However, if the patch ψ ik ∈ ci ∈ Ri does not have a corresponding patch 
ψ ij ∈ ci ∈ Srw, a fitting plane skl of the patchψkl ∈ ck ∈ Srw is used to replace 
sij in computing d(sij, sik), in which ck is the closest cell of the cell ci 
determined based on the Euclidean distance between centres of the cells. 
Subsequently, KDE generated from d(sij, sik) is used to extract the peak 
containing the patches of Sbeam,bot, where the bandwidth given in Eq. 
(18) is used (Fig. 14b). 

bw = 0.5Srw.W*gcr (18)  

where 0.5Srw. W is half of the roadway width because the highest 
elevation of Srw is at the centre, while gcr is the transverse slope of Srw, 
which often equals to 2% for drains (Table 1) [50,53]. 

Additionally, as the area of Sbeam.bot is larger than those of other 
surfaces, the patches of Sbeam.bot are dominated by the largest peak of 
KDE (Eq. (2)). A region Ri is classified as Sbeam.bot, if more than 90% of the 
patches of the region Ri have the distances d(sij, sik) dropped the largest 
peak (Fig. 14b). The value of 90% is empirically selected to compensate 
for data quality or any defects of the structures. Finally, CSC is used to 
group surfaces of Ssupstr.bot as shown in Fig. 14c. 

4.2.4. Intermediate surfaces 
As Ssupstr,inter is located between Ssupstr,top and Ssupstr,bot, point-patch 

distance is used to extract the point cloud psupstr.inter ∈ Ssupstr,inter. The 
process starts with cells ci containing patches ψ ij belonging to either 
Ssupstr.top or Ssupstr.bot. Candidate points of Ssupstr.inter within ci are extracted 
using Eq. (14), similarly to the procedure for extracting candidate points 
of road curbs in Section 4.2.1.2. In addition, VRG method is employed to 
extract regions R = (Ri) | i = [1, Ninter] from the candidate points. 
Finally, a region Ri is considered as part of Ssupstr.inter, if its length Ri.L in 
the a bridge longitudinal direction is at least than 0.75Lsp.Lmin, in which 
Ri.L is determined based on a 2D mBB generated from projected points of 
pi ∈ Ri onto the fitting plane of Ri. 

4.3. Part 3: Substructure extraction 

The substructure consists of abutments and piers, and point clouds of 
these structures are distributed in vertical and transverse directions but 
have different geometric shapes (Fig. 1). Substructure extraction con-
sists of two main steps: (1) coarse extraction of candidate points of the 
abutments and piers through cell-based filtering, and (2) fine filtering of 
final points of surfaces using VRG and CSC (Fig. 3). 

4.3.1. Extracting candidate points of abutments and piers 
As point clouds (Psubstr) of the substructure are continuously 

distributed in a vertical direction, 1D segmentation is implemented to 
determine cells occupying Psubstr. For each ci, 1D segmentation (Algo-
rithm 1) is applied to cluster points, in which the distance between two 
consecutive points in the cluster is no larger than a predefined threshold 
(Z0). Notably, only active points, which are not classified as bridge 
components, are considered. In this study, Z0 is emperically selected to 
be equal to 0.5Hsubstr,min, which is the minimum height of the substruc-
ture (e.g., the breast wall or a pier cap) (Table 1).   

Fig. 14. Filtering surfaces of the bottom surfaces of the superstructure Ssupstr,bot from CRG.  
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A cell ci is considered to contain points of the substructure if the 
cluster cbij satisfies Eq. (19). 

ci = (pi)→csubstr,i if max
(
cbij.H

)
≥ 0.9Hsubstr,min (19)  

where cbij. H = max (pi. z) − min (pi. z) cbij.H = max(pi.z) - min(pi.z) is a 
height of the cluster cbij, and the factor of 0.9 is used to compensate for 
either missing data or edge loss in data acquisition [61]. 

However, in 3D space, cells containing points of irrelevant objects (e. 
g., road barries) may also satisfy Eq. (19), but such points are sparsely 
distributed. Cell connectivity clustering, which is similar to connected 
component labelling [62], is used to obtain cell clusters R = (Ri, i = [1, 
Nc]) where Ri = (csubstr,i). Subsequently, for each Ri, width – Ri.W and 
length - Ri.L are respectively lengths of edges of a 2D mBB estimated 
from x- and y- coordinates of all points pi ∈ Ri. Notably, the length of the 
edge along a transverse direction of a bridge is considered as Ri.L. Based 
on Feature 4, the region Ri is considered to represent abutments and piers 
if it satisfies Eq. (20). 

R = (Ri)→Rsubstr,i if Ri.L ≥ 0.5Bbr.W (20)  

where Bbr. W = Srw. W +
∑

Ssw. W is the bridge width. 
Notably, using the condition expressed in Eq. (19), some candidate 

cells of the substructure may be missed. For example, cells contained 
points of top and/or bottom surfaces of the pier cap may not satisfy Eq. 
(19). To overcome this problem, cells located inside the 2DmBB of Rsubstr, 

i are re-added to the region Rsubstr,i. Finally, centroids of the region Rsubstr, 

i are projected on the bridge central line (LbCL) to determine the abut-
ment and pier clusters, where the outmost clusters are the abutments 
(Rsubstr,i → Pabut,i) while the others are the piers (Ppier,i). 

4.3.2. Abutment extraction 
From a set of candidate points Pabut,i = (pi, i = [1, NA]) of an abut-

ment, VRG is employed to segment Pabut,i into a set of regions Rabut,i =

(Ri, i = [1,NAi]). However, as Pabut,i may contain points of other objects 
(e.g., ground and plants), the CSC method (Section 4.1.5) is subse-
quently employed to determine whether extracted regions are parts of 
the abutment. In CSC, a breast wall (Abrw) is considered as the initial 
reference surface (Fig. 2), which is a region Ri satisfying three sequential 
conditions (Eq. (21)) reflecting three main features of Abrw: (i) a length 
approximattely equal to the bridge width, (ii) a vertical surface, and (iii) 
connects to the ground level. 
⎧
⎨

⎩

0.9Bbr .W ≤ Ri.L
∠nRi, noz ≈ π/2

Ri.z⟶min
(21)  

where Ri. L is the length of the region in a transverse bridge direction, nRi 
and noz are respectively the normal vectors of Ri and oz, while Ri.z is the z 
coordinate of the centre of Ri. 

4.3.3. Pier extraction 
A pier often consists of a pile cap (Pplcap), pier columns (Ppcol) and 

pier cap (Pprcap), which are completely different in term of shape, 
dimension, location and orientation (Fig. 2). Pprcap is often located either 
under ground or water level, and a point cloud of Pplcap is not available. 
Pprcap may not explicitly appear in some types of the piers, for example a 
solid wall pier [63], and if the pier cap appears, it is distributed along a 
transverse bridge direction. Ppcol locates between Pplcap and Pprcap, and 
distributes in a vertical direction. Moreover, Pprcap mostly consists of 
planes while Ppcol involves planes or curve surfaces or both [63]. 
Therefore, to reduce the complexity in extracting mixed surface types, 
the proposed method roughly extracts the points of the pier components, 
and subsequently VRG and CSC are applied on each pier component to 
obtain the final points of surfaces. 

First, candidate points Ppier,i of the pier (Fig. 15) are uniformly sliced 
in a vertical direction with a predefined slice thickness (ΔZt), as 
expressed in Eq. (22) (Fig. 15b). 

Ppier,i =
(
pj ∈ sj

)
, j = [1,Ns] where sj =

(
pj
⃒
⃒ zj ≤ pj.z ≤ zj+1

)
(22)  

where zj and zj+1 are the bounds of the layer j. 
Next, for each slice sj, width (sj.W) and length (sj.L) are estimated 

based on a 2D mBB generated from the points pj ∈ sj projected onto the xy 
plane. Subsequently, slice-based region growing segmentation (SRG) is 
implemeted to iteratively group slices sj and sk into the same cluster if 
deviations of width and length are within the threshold values (Eq. 
(23)). In this implementatiom, sj (j ≅ Ns/2) at the middle of the pier is 
an intial seeding slice, and a searching window is used to extract adja-
cent slices sk (k = [j - w, j + w] and k ∕= j, w = 3 – a window size) of sj. SRG 
groups all slices sj ∈ Ppier,i into clusters SC = (sci = (sj | j = [1,K]) and i =
[1, Nsc]) where Nsc is the number of clusters. 
{ ⃒

⃒sj.L − sk.L
⃒
⃒ ≤ ΔD

⃒
⃒sj.W − sk.W

⃒
⃒ ≤ ΔD

(23)  

where ΔD = 1.5ΔZt is the dimensional threshold, which shows an eng-
large of a cross-section in a vertical direction regarding to an inclined 
angle (αstruct) of the pier column. In bridge design, to optimize load 
tranfer from the superstructure to foundation, αstruct is designed no larger 
than 45 degrees. As such, dimensions between two consecutive slices 
differs no larger than ΔZt. Moreover, a factor of 1.5 is empirically 
selected to overcome any problem relating to data qualify (e.g., outlier), 
which may affect to estimate dimensions of the columns. 

Next, the slice cluster sci is sequentially classified to pier components 
(Pplcap, Pprcap and Ppcol) according to Eqs. (24)–(26) (Fig. 15). However, 
due to the slice owns a thickness, outmost slices (sj ∈ sci, where j = 0 or 
K) may include data points of adjacent pier components. For example, 
the outmost slice of Pprcap may possess the data points of Ppcol, and vice 
versa. To overcome this issue, pk ∈ sj (j = 0 or j = K) of sci, are added to 
the cluster scj as input data points for VRG (Fig. 16a and d) 
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Pplcap,i = (pi) ∈ scj if

⎧
⎨

⎩

scj.H ≥ 0.9Hsubstr,min
scj.z0 < Ppier,i.z0

scj.z0 − Ppier,i.zmin→min
(24)  

Pprcap,i = (pi) ∈ scj if

⎧
⎨

⎩

scj.H ≥ 0.9Hsubstr,min
scj.z0 > Ppier,i.z0

Ppier,i.zmax − scj.z0→min
(25)  

Ppcol,i = Ppier,i\
(
P′

plcap,i ∪ P′
prcap,i

)
(26)  

where scj.H = pj.zmax –pj.zmin and scj.z0 = 0.5(pj.zmax + pj.zmin) where pj ∈

scj, Ppier,i.zmin, Ppier,i.z0 and Ppier,i.zmax are respectively the minimum, 
middle and maximum z coordinates of Ppier,i, and P’plcap,i and P’prcap,i are 
the points labeling as the pile cap and pier cap based on results of VRG. 

Next, VRG is employed to extract data points of pier components’ 
surfaces in a sequential order Pprcap, Pplcap, and Ppcol. For example, Fig. 16 
shows results of VRG for Pprcap,i and Ppcol,i based on data points derived 
from Eqs. (25) and (26). VRG segments Pplcap and Ppcol to a set of regions 
R = (Ri, i = [1, Ns] (Fig. 16b and e). Subsequently, the CSC method is 
applied to R to identify final surfaces for each pier components (Fig. 16c 
and f). In this work, for Pprcap and Pplcap, the largest region in terms of 
area is considered as the initial reference surface, while for Ppcol, the 
initial reference surface is selected from the regions satisfying two 
consecutive conditions: (i) the deviation angle between the long edge 
vector of the 3D mBB of the region (Ri) and noz no larger than the αstruct =

45 degrees, and (ii) the largest region in a term of area. 

5. Experiental tests, results and discussions 

The goal of this section is to validate the proposed method in 
extracting point clouds of surfaces of bridge components. To this end, 
two concrete box and slab-beam bridges were scanned using a terrestrial 
laser scanner to obtain point clouds for the experimental test. In addi-
tional, ground truth derived by manual extraction is used to validate the 
performance of the proposed method through different validation stra-
tegies including a level of location and shape similarity. Finally, based 
on the experimental tests, impact of quantity and quality of point clouds 
on surface extraction performance is drawn. 

5.1. Bridge description and data acquisition 

To demonstrate the performance of the proposed method, two 
bridges are considered: Bridge 1: a concrete box bridge on the CO16 
road, Seßlach, Germany, and Bridge 2: a slab-beam bridge in the UK. The 
first bridge is a two span bridge with a span length about 10.5 m, and its 
cross-section consists of 2 traffic lanes 7.0 m wide and 2 sidewalks of 
about 2.0 m wide per each (Fig. 17a). The bridge was scanned by a Leica 
ScanStation P20 with a maximum scanning range at 120 m and an 
angular accuracy of 8 arcseconds in both vertical and horizontal direc-
tion [64]. During data acquisition, a sampling step of 6.3 mm at a range 
of 10 m was used, which translates to an average sampling step of 10 mm 
on the surface for an average scan distance of 15 m from the ground 
level. A total of 5 different scan stations (1 station on the sidewalk) was 
established to maximize data coverage (Fig. 17a). The point clouds of 
scanning stations were registered by the Leica Cyclone software [65] 

Fig. 15. Roughly extraction of pier components.  

Fig. 16. Extracting point clouds of surfaces of the pier.  

Fig. 17. Point clouds of two bridges used in experimental tests.  
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with a registration error about 5 mm. 
The second bridge is a concrete slab-beam bridge on a highway 

around Cambridgeshire, UK, which is bridge 1 in a set of 10 highway 
bridges collected by Lu et al. [66]. This is a 4-span slab-beam bridge with 
a total bridge length of 59.5 m and a cross-section consisting of a traffic 
lane of 6.0 m and 2 × 1.45 m wide footpaths (Fig. 17b). The bridge was 
scanned by a FARO Focus 3D X330 scanner [67] with a sampling step of 
about 7.67 mm at a measurement range of 10 m, with a total 18 scan 
stations. The point clouds from different scan stations were registered 
using FARO Sense software [68]. 

Irrelevant points corresponding to ground surface and vegetation 
outside the bounding box of a bridge, and points on vehicles (or moving 
objects) underneath the bridge were manually removed by using 
CloudCompareV10 [69]. This process took about 2 min for each bridge. 
The goal of this removal is to avoid to process unnecessary data points. 
Notably, the availability of these points does not affect the robustness of 
the method because (1) points on ground surface, vegetation, and road 
facilities (e.g., road safety barriers) are still available in the input data, 
while (2) points on vehicles (or moving objects) are sparse and have low 
point density, and do not represent any object similar to surfaces of 
bridge structures. Finally, the point clouds with x-, y- and z- coordinates 
were exported as input data for proposed method, in which the data sets 
of Bridge 1 and 2 respectively consist of 28.505 million points (an 
average point density of 57,130 points/m2) and 12.670 million points 
(an average point density of 3183 points/m2) 

5.2. Parameter selection 

As the proposed method deploys both spatial point clouds and 
contextual knowledge of a bridge structure derived from bridge design 
specifications and practice, input parameters include two sets relating 
to: (1) minimum dimensions of structural components of the bridge 
(Table 1) and (2) a point cloud supporting to extract and filter data 
points of bridge components’ surfaces (Table 2). Each input parameter 
used to extract point clouds of surfaces includes two parts depending on 
\, first, bridge geometry and, second, data quality. First, minimal di-
mensions and generic geometric information on components of common 
bridges were used to determine the first part of the input parameters, 
that depend on bridge geometry. Second, as data quality varies signifi-
cantly, depending on object surface, laser sensor, data acquisition, 
environment, and registration, the second part was empirically selected 
as a part of the registration error. 

In this study, KDE is used to roughly extract data points of surfaces/ 
objects based on a valley-peak-valley pattern. The bandwidth (bw) is 
selected equal to 1/4 distance between two consecutive surfaces/ob-
jects, which allows at least one valley of PDS between the surfaces/ob-
jects. As such, for extracting local surfaces in cells in Section 4.1.2, bw =
0.05 m is chosen based on the smallest thickness of the structural 
element, in which Scs.T0 = 0.2 m (Table 1) is used. Moreover, for railing 
extraction, bw = 0.375 m corresponding to Ssw.Wmin = 1.5 m is used to 
separate pedestrian and vehicle railings. 

In principle, CRG and VRG requires at least one initial seeding plane 
representing a local surface to ensure that a growing process sucessully 
extract a surface of a structural component. This implies ce0/ve0 must be 
less than 1/3 of the smallest size of the surface. As such, ce0 = 0.5 m and 

ve0 = 0.15 m are selected corresponding to the Ssw.Wmin = 1.5 m and Scs. 
D0 = 0.4 m (Table 1) [50,53]. However, in Bridge 1, as a shape of the box 
girder is more complicated, which include various size of surfaces, ce0 =

0.3 m equals to 1/5 of Ssw.Wmin. Additionally, the thresholds cmin_ptc and 
vmin_ptc are respectively used to classify 2D cells and 3D voxels as either 
“full” or “empty”, depending on the number of points within a cell or 
voxel, respectively. Only full cells or voxels are subsequently used to 
extract points of surfaces of bridge components by using CRG or VRG. In 
these segmentation methods, the full cells and voxels are assumed to 
contain points representing local surfaces of the bridge components. 
This implies that such cell or voxel must contain at least three non-co- 
linear points. However, to add some robustness to the extraction of 
local planes, both cmin_ptc and vmin_ptc are set equal to 10 points. 

CRG is used to extract surfaces of a superstructure, which requires 
the angle (αc0), distance (dc0) and residual (crc0) threshold to segment 
patches within cells. These thresholds are determined as follow. As a 
cross-section of a roadway is often a bi-linear with a transverse slope 
(grw) of 2.0%, and the sidewalk slope (gsw) is often 1.0% (Table 1) [53], 
three critical cases are used to determine the deviation angle between 
normal vectors of adjoined cells, in which the largest deviation angle 
(αmax) is 2.30 (Fig. 18a). The angle threshold αc0 is chosen equal to 5 
degrees to cover uncertainty. Moreover, this angle threshold also sat-
isfies a vertical curve bridge, where the maximum tangent grade of 4% 
used for a highway [53] (Fig. 18b). 

The distance threshold (dc0) in CRG is introduced to prevent to group 
patches belonging to two parallel surfaces, for example, the patches on 
boundaries of a roadway and sidewalk. In this study, dc0 = 10 mm is 
selected to cover unknow geometries of real surfaces of bridge compo-
nents, locations of the cells, and quality of a point cloud. For example, 
for Position 2 of a road surface (Fig. 18a), the distance between two 
adjacent patches equals to ce0sinα2/2 = 10 mm with ce0 = 0.5 m. 
Additionally, a residual in a fitting plane (Eq. (5)) depends on not only 
data quality (e.g., noisy data and a registration error) but also a surface 
roughness. However, as surfaces of the bridge components are mostly 
smooth, the residual threshold resc0 = 10 mm is selected based a sensor 
error plus a registration error about 5 mm for a data set of Bridge 1, for 
example. 

VRG is used to extract points of immediate surfaces (Ssupstr.int) of a 
superstructure and a substructure, in which those surfaces can be planar 
and/or curve or both. For the case of planes, e.g., surfaces of Ssupstr.int and 
Sabut, thresholds (αv0, dv0 and vrv0) are set equal to these (αc0, dc0 and crc0) 
in CRG because these surfaces have similar characteristics. However, as 
the pier may consist of planar and curve surfaces [6], for example a pier 
column can involve a semi-circular or circular, ve0 associated with αv0, 
dv0 and vrv0 must be adjusted to accommodate for a general case. 
Assuming a local surface of each voxel containing points of a circular 
shown in Fig. 19, a deviation angle - θ and the distance between two 
adjacent voxels - d(pkl,0, sij) are expressed in Eqs. (27) and (28), while the 
residual threshold - vrv is assumed equal to a half of ABs (Fig. 20) (Eq. 
(29)). For example, when R = 0.6 m and ve0 = 0.05 m are used, θ, d(pkl,0, 
sij) and ABs are respectively 6.750, 4.16 mm and 1.04 mm. Therefore, 
ve0 = 0.05 m, αv0 = θ  = 6.750, dv0 = 10 mm and vrv0 = 10 mm are used 
for extracting surfaces of the pier components. Notably, a selection of ve0 
must be adopted to a sampling step, which ensure the voxel possessed 
sufficient points to estimate a fitting plane. 

θ = arcsin
(

ABch

2R

)

+ arcsin
(

BCch

2R

)

(27)  

d
(
pkl,0, sij

)
=

BCch

2
sinθ (28)  

ABs = R −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 −

(
ABs

2

)
2

√

(29)  

where ABch and BCch are lengths of chords, and R is a radius of the semi- 

Table 2 
Input parameters for extracting and filtering the point cloud.  

Name Notation Values 

Cell size (m) ce0 0.25/0.5 
Voxel size (m) ve0 0.15 
Bandwidth (m) bw Vary 
Minimum number of points (points) cmin_ptc/vmin_ptc 10 
Angle threshold (degrees) αc0 = αv0 5 
Distance threshold (mm) dc0 = dv0 10 
Residual threshold (mm) crc0 = crv0 10  
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circular or circular. The upper bound of ABch and BC equal to 
̅̅̅
2

√
ve0. 

5.3. Results 

Using input parameters in Table 2, a quadtree was used to decom-
pose the point clouds of Bridge 1 and 2 into 2D cells in the xy plane 
Fig. 20). Subsequently, points belonging to patches within the 2D cells 
were extracted using a valley-peak-valley pattern of KDE (Fig. 20). For 
each patch, PCA was used to fit a plane through points of the patch and a 
residual was computed to express a deviation between the points and a 

fitting plane (Eqs. (3)–(6)), which are then used as input data for CRG. 
To segment surfaces of Ssupstr.top, the first patches (ψ ij(j=1) ∈ ci) were 

input data for Step 1 of CRG, while other patches ψ ij(j∕=1) ∈ ci were used in 
Steps 2–5 to obtain the final points of the regions, where each region 
represents a surface of Ssupstr.top. Moreover, contextual knowledge about 
the roadway and sidewalks including size, elevation and orientation was 
employed to classify the regions as Srw and Ssw shown in Fig. 23. Sub-
sequently, from the cell-patch occupied the points of Srw and Ssw, data 
points of the road curbs (Scb) and railings were extracted according to 
Sections 4.2.1.2 and 4.2.2. The railings were then classified as traffic 
railings (Ptr) and pedestrian railings (Ppr) based on distances from point- 
cell railings to the bridge central line (LbCL) (Fig. 21). 

Similar to extract the Ssupstr.top, second patches ψ ij(j=2) ∈ ci were initial 
input data for Step 1 of CRG to extract the points of regions, and other 
patches ψ ij(j>2) ∈ ci were used in other steps to obtain the regions R = (Ri) 
describing Ssupstr.bot. Moreover, the CSC method was implemented to 
identify regions of the Ssupstr.bot, where the angle threshold αo = 15 de-
grees was adopted to determine if two regions assuming as planar sur-
faces were intersecting while the length threshold (L0) was chosen equal 
to 0.9Lsp.Lmin = 8.1 m (Lsp.Lmin = 9.0 m – Table 1) in identifying a con-
nectivity between two adjacent regions. The resulting extraction of 
Ssupstr.bot is illustrated in Fig. 22. Additionally, the point-patch distance is 
used to extract candidate of Ssupstr.int, and final points of surfaces of Ssupstr. 

int were obtained using VRG applied to the candidate points, in which the 
input parameters for VRG in Table 2 were used. However, due to missing 
data, surfaces of Ssupstr.int in Bridge 1 appear in two regions (Fig. 22). 

After points of the superstructure were extracted and deactivated, 
cell-based filtering was applied to extract candidate points of abutments 
and piers (Eq. (19)), in which cells containing candidate points of a 

Fig. 18. Identifying the angle threshold αc0.  

Fig. 19. Illustrate voxels occupied the data points of the cross-section as a 
circle(*). 
Note: This illustration inFig. 19is shown a critical scenario. 

Fig. 20. Using KDE to extract patches for Bridges 1 and 2.  

L. Truong-Hong and R. Lindenbergh                                                                                                                                                                                                        



Automation in Construction 135 (2022) 104127

17

Fig. 21. Extract data points of Ssupstr,top (a roadway, sidewalks, and curbs) and railings.  

Fig. 22. Extract the points of Ssupstr.bot and Ssupstr.int of Bridge 1 and 2.  

Fig. 23. Extracting candidate points of the substructure of Bridge 1 and 2.  
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substructure must satisfy Eq. (19). The candidate points of the sub-
structure as the results shown in Fig. 23. 

The abutment and the pier have different shape. Surfaces of the 
abutment are planes, while the pier may involve planes and both planes 
and curves (as parts of a solid model of a pier appears a semi-cylinder or 
cylinder). To extract these surfaces by VRG, the following parameters 
were used ve0 = 0.15 m, αv0 = 5 degrees, dv0 = 10 mm, and vrv0 = 10 mm 
for the abutment, while ve0 = 0.05 m, and αv0 = 6.75 degrees, dv0 = 10 

mm, and vrv0 = 10 mm for the piers, which is based on an assumption 
that the pier has a curve surface with a radius of 0.6 m. However, if the 
pier consists of planar surfaces, the set of parameters for the abutment 
can be used. Moreover, α0 = 15 degrees and a length threshold L0 = Scs. 
D0 = 0.4 m were also used for the CSC method. Results of the extracted 
surfaces of the abutments and piers are shown in Fig. 24. However, 
because there is a gap due to missing data points at bottom parts of the 
pier columns in Bridge 2, points of these regions were not recognized 

Fig. 24. Resulting surfaces of the abutments and piers for Bridge 1 and 2.  

Fig. 25. Resulting decomposition of the bridge components  
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(Fig. 24b). Finally, Fig. 25 shows results of the extracted surfaces of all 
bridge components. 

5.4. Evaluation 

Goal of this study is to extract point clouds of surfaces of bridge 
components. Resulting data points can be used in various applications, 
for example, 3D bridge model reconstruction and surface-based damage 
detection. A complete evaluation must be done based on those appli-
cations because this can give full insight performance of the proposed 
method. However, as these applications are out of a scope of this study, 
resulting extraction of all surfaces of bridge components (Fig. 25) is 
evaluated by assessing location deviations and shape similarity with 
respect to ground truth [70]. In this evaluation, the ground truth was 
manually extracted from the bridge point clouds. 

5.4.1. Location deviation 
For local deviations, object and point levels are used to evaluate the 

component extraction results. At the object level, a bridge component is 
considered to be extracted successfully if the overlap between the 
extracted component and a corresponding one in the ground truth was 
larger than a predefined threshold. However, as the bridge components 
appear either as 2D objects (e.g., surfaces of a superstructure) or 3D 
objects (e.g., piers and abutments), 2D and 3D mBB.s derived from the 
point clouds of the bridge components were used to determine the 
overlap. A threshold-free [71] is used to investigate a stable perfor-
mance of the proposed method (Table 3). Although all components are 
successfully extracted, the success rate was reduced when requiring an 
overlap at least than 0.85. Extraction for road curbs and intermediate 
surfaces are sometimes not successful because they are either small 
objects in terms of size or data coverage. Particularly, overlap ratios of 
0.769 and 0.778 occur for intermediate surfaces A and B of Bridge 2, 
which indicated that the objects were failed to extract for the overlap 
threshold above 0.85. Additionally, road curbs A for both bridges have 
an overlap ratio below 0.90. Interestingly, 3D objects like railings, piers, 
and abutments are successfully extracted respect with an overlap 
threshold of 0.90. 

For point-based evaluation, the following quantitative indicators 
including a true positive (TP), false positive (FP) and false negative (FN) 
were used to identify a difference between data points of bridge com-
ponents extracted from the proposed method and those of the ground 
truth. Evaluation quantities is interpreted through completeness 
(Comp.), correctness (Corr.), and F1-score Definition of these quantities 
and the methodology to compute them can refer to Laefer and Truong- 

Hong [70] and Vu et al. [23]. Based on labels of point clouds, a pair of 
surfaces and/or structural components, which are the same label, were 
retrieved, and TP, FP and FN were subsequently determined (Table 4). 
The evaluation showed the proposed method extracted the point clouds 
of the bridge components with high accuracy. Indeed, Comp., Corr., and 
F1-score were respectively no smaller than 91.3%, 93.7% and 0.954 for 
Bridge 1 and 88.6%, 87.2% and 0.932 for Bridge 2, except for the road 
curbs where the lowest F1-score was 0.878 and 0.662 for Bridge 1 and 2. 
The road curbs had got lower success scores than other components 
because low quantity and quality of the point cloud were acquired at the 
road curb. However, an opposite trend was found that the roadway and 
bottom surfaces of the superstructure were always got the highest F1- 
score. For example, for Bridge 1, F1-score was respectively 0.998 and 
0.986, while it was 0.995 and 0.987 for Bridge 2. Moreover, there was a 
slightly different F1-score between extracting surfaces of the super-
structure and ones of substructure, in which the minimum F1-score was 
respectively 0.954 and 0.993 for Bridge 1 and 0.932 and 0.978 for 
Bridge 2. Interestingly, there was highly consistency of performance of 
the proposed method when applied to Bridge 1 and 2, where the dif-
ference in F1-score for each component is no more than 0.053, except for 
that of the road curb where the difference is 0.078 (Table 4). 

5.4.2. Shape similarity 
In addition, a shape similarity was used to measure difference be-

tween surfaces of bridge components derived from the proposed method 
and the ground truth. This was interpreted through difference of area, 
area overlap rate and deviation of surface normal between a pair of 
surfaces derived from the proposed method and ground truth [70]. This 
evaluation only applied for components represented by planes. As such, 
surfaces of the roadway, road curbs, sidewalks, intermediate and bottom 
surfaces, and abutments were selected to evaluate, while surfaces of 
other components (e.g., railings and piers) excluded because they 
consist of different surface shapes requiring additional modelling tech-
niques to estimate geometric parameters of the surfaces, which is out of 
the scope of this study. 

From point cloud label, the data points describing the same type of 
bridge component were retrieved from both the proposed method (PM) 
and the ground truth (GT). From a pair of surfaces (SPM and SGT) of PM 
and GT, a fitting plane (sGT) of the surface SGT was estimated based on 
Eqs. (3) and (4), and the point clouds pGT ∈ SGT and pPM ∈ SPM were 
projected onto the fitting plane sGT. Next, the alpha shape algorithm [72] 
was employed to extract boundary points (pPM.ext ⫅ pPM and pGT.ext ⫅ pGT) 
from the projected points, in which the radius threshold of 0.1 m was 
empirically selected. For example, Fig. 26 illustrates a procedure to 

Table 3 
Object-based evaluation with various overlap thresholdsa.  

Component Bridge 1: Overlap threshold Bridge 2: Overlap threshold 

≥ 0.75 ≥ 0.80 ≥ 0.85 ≥ 0.90 ≥ 0.75 ≥ 0.80 ≥ 0.85 ≥ 0.90 

Roadway 1 1 1 1 1 1 1 1 
Road curb A 1 1 1 0 1 1 1 0 
Road curb B N/A N/A N/A N/A 1 1 1 1 
Sidewalk A 1 1 1 1 1 1 1 1 
Sidewalk B 1 1 1 1 1 1 1 1 
Intermediate surface A 1 1 1 1 1 0 0 0 
Intermediate surface B 1 1 1 1 1 0 0 0 
Bottom surface 1 1 1 1 1 1 1 1 
Vehicle railing A 1 1 1 1 1 1 1 1 
Vehicle railing B 1 1 1 1 1 1 1 1 
Pedestrian railing A 1 1 1 1 1 1 1 1 
Pedestrian railing B 1 1 1 1 1 1 1 1 
Pier 1 1 1 1 1 1 1 1 1 
Pier 2 N/A N/A N/A N/A 1 1 1 1 
Pier 3 N/A N/A N/A N/A 1 1 1 1 
Abutment 1 1 1 1 1 1 1 1 1 
Abutment 2 1 1 1 1 1 1 1 1  

a Note: A or B indicates components on the Side A or B respect with the longitudinal central line of each bridge in Figs. 21 and 22. 
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Table 4 
Point-based evaluationa.  

Bridge component TP FP FN Comp. Corr. F1-score 

Bridge 1 

Superstructure 

Roadway 2,140,455 31 6747 99.7% 100.0% 0.998 
Road curb A 30,615 2630 5853 84.0% 92.1% 0.878 
Road curb B N/A N/A N/A N/A N/A N/A 
Sidewalk A 180,024 12,195 3345 98.2% 93.7% 0.959 
Sidewalk B 580,888 16,742 1666 99.7% 97.2% 0.984 
Intermediate surface A 678,604 301 24,060 96.6% 100.0% 0.982 
Intermediate surface B 547,973 217 24,900 95.7% 100.0% 0.978 
Bottom surface 11,394,247 146,543 187,123 98.4% 98.7% 0.986 
Vehicle railing A 239,287 486 8775 96.5% 99.8% 0.981 
Vehicle railing B 328,350 200 31,227 91.3% 99.9% 0.954 
Pedestrian railing A 754,279 3307 4675 99.4% 99.6% 0.995 
Pedestrian railing B 774,733 1024 22,213 97.2% 99.9% 0.985 

Substructure 
Pier 1 2,380,675 7618 15,098 99.4% 99.7% 0.995 
Abutment 1 1666,717 3485 20,918 98.8% 99.8% 0.993 
Abutment 2 1,395,300 5540 13,594 99.0% 99.6% 0.993   

Bridge 2 

Superstructure 

Roadway 1,603,530 4757 11,292 99.3% 99.7% 0.995 
Road curb A 25,979 1384 11,582 69.2% 94.9% 0.800 
Road curb B 12,686 772 11,553 52.3% 94.3% 0.673 
Sidewalk A 285,834 6974 24,626 92.1% 97.6% 0.948 
Sidewalk B 362,412 7700 45,324 88.9% 97.9% 0.932 
Intermediate surface A 348,474 7379 44,877 88.6% 100.0% 0.939 
Intermediate surface B 195,513 5638 20,503 90.5% 100.0% 0.950 
Bottom surface 3,046,501 6135 74,069 97.6% 99.8% 0.987 
Pedestrian railing A 450,142 5413 23,930 95.0% 98.8% 0.959 
Pedestrian railing B 456,929 4992 34,323 93.0% 98.9% 0.964 

Substructure 

Pier 1 412,864 7789 10,566 97.5% 98.1% 0.978 
Pier 2 308,334 5869 19,873 93.9% 98.1% 0.960 
Pier 3 399,372 16,002 11,917 97.1% 96.1% 0.966 
Abutment 1 192,000 628 21,838 89.8% 99.7% 0.945 
Abutment 2 197,848 1623 17,119 92.0% 99.2% 0.955  

a Note: A or B indicates components on the Side A or B respect with the longitudinal central line of each bridge in Figs. 21 and 22. 

Fig. 26. Creating a polygon describing a boundary of the surface.  

Table 5 
Similarity evaluationa.  

Component Bridge 1 Bridge 2 

Surface area (m2) Overlap 
ratio 

Dev. angle 
(degrees) 

Surface area (m2) Overlap 
ratio 

Dev. angle 
(degrees) 

Ground 
truth 

Proposed 
method 

Overlap Ground 
truth 

Proposed 
method 

Overlap 

Roadway 225.1 224.2 224.2 0.996 0.007 398.1 398.3 397.1 0.997 0.003 
Road curb A 2.1 1.9 1.7 0.847 0.237 6.0 5.0 4.8 0.802 0.863 
Road curb B N/A N/A N/A N/A N/A 5.2 3.5 3.3 0.639 2.193 
Sidewalk A 60.5 60.7 58.9 0.973 0.039 96.9 94.6 93.2 0.962 0.169 
Sidewalk B 29.3 31.9 29.1 0.993 0.015 97.5 93.9 92.0 0.944 0.051 
Int. surface 

A 14.0 13.5 13.5 0.969 0.044 52.3 45.2 43.3 0.827 0.201 
Int. surface B 12.4 11.6 11.6 0.938 0.094 54.0 48.5 46.9 0.870 0.373 
Bot. surface 242.1 246.1 239.9 0.991 0.190 514.7 514.5 513.2 0.997 0.002 
Abutment 1 27.9 27.3 27.2 0.973 0.018 25.1 25.8 24.0 0.957 0.593 
Abutment 2 24.9 24.6 24.4 0.978 0.015 25.4 24.0 23.4 0.921 0.517  

a Note: A or B indicates components on the Side A or B respect with the longitudinal central line of a bridge in Figs. 21 and 22. 
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create a boundary of the surfaces by using the alpha shape algorithm. 
The polygon bounded the surfaces SPM and SGT were respectively created 
from the boundary points pPM.ext and pGT.ext. Finally, areas of the surfaces 
SPM and SGT were computed from these polygons, and the overlap area 
between the surfaces SPM and SGT was determined as the area of inter-
section between two polygons. Moreover, the discrepancy of orienta-
tions of the surfaces SPM and SGT was determined as the angle between 
normal vectors of the fitting planes of SPM and SGT (Table 5). 

A shape similarity evaluation showed there were low discrepancy 
between surfaces derived from the proposed method and ground truth. 
The minimum overlap ratio and the maximum angle deviation were 
respectively 0.938 and 0.190 degree for Bridge 1 and 0.827 and 0.593 
degree for Bridge 2, when surfaces of the road curbs were excluded. The 
results showed that the proposed method extracted the road curbs and 
intermediate surfaces with a lower overlap ratio and larger angle devi-
ation compared to surfaces of other components. For example, the 
minimum overlap ratio and maximum angle deviation were 0.973 (for 
Abutment 1) and 0.044 degrees (for intermediate surface A) for Bridge 
1, and 0.921 (for Abutment 2) and 0.593 degrees (for Abutment 1) for 
Bridge 2. Interestingly, the maximum overlap ratio for Bridge 1 and 2 
are 0.996 and 0.997. 

5.5. Computational time 

Results showed that the proposed method extracts surfaces of bridge 
components with high accuracy, but also is able process large data sets 
efficiently with a processing time about 481.85 s for 28.505 million 
points of Bridge 1 and 679.34 s for 12.670 million points of Bridge 2. 
This efficiency was achieved because the proposed method only pro-
cessed sub-sets containing candidate points of a structural component of 
interest. The superstructure extraction takes a large portion of the total 
processing time, which was respectively 407.87 s and 485.16 s for 
Bridge 1 and 2. That running time was based on processing 5308 cells 
with 12,338 patches for Bridge 1 and 2918 cells with 11,477 patches in 
Bridge 2. Moreover, the running time of Bridge 2 is larger than that of 
Bridge 1 because a larger number of patches or voxels on region 
boundaries needed to be analysed in Step 3 and 4 for CRG and VRG. 
Moreover, as Bridge 2 has three piers while it was one pier in Bridge 1, 
executing time for the substructure of Bridge 2 was also larger than that 
of Bridge 1 (194.18 s for Bridge 2 vs. 73.98 s for Bridge 1). Thus, it is 
arguably remarked that the processing time mainly depends not only the 
number of cells (and patches) and voxels on the region boundaries but 
also the number of structural components. The proposed method is over- 
performance comparing to the work of Lu et al. [19] where the bridge 
components for 10 bridges were extracted with an average running time 
of 481.2 ± 181.2 s with less than one million points. Notably, the work 
of Lu et al. [19] was implemented in C# and only extracted data points 
of the bridge components including box-beams and piers instead of 
surfaces of the components as this study. The performance reported 
herein based on an implementation of the proposed method in MATLAB 
2019b [73] and was processed on Dell Precision Workstation with a 
main system configuration as follows: Intel(R) Xeon(R) W-2123 CPU @ 
3.6GHz with 32GB RAM. 

5.6. Discussion 

The proposed method extracts point clouds corresponding to bridge 
components’ surfaces through local surfaces with 2D cells in the xy 
plane and 3D voxels. For each structural element, the process consists of 
two steps: coarse extraction and fine filtering, in which CRG and VRG 
are developed to segment point clouds of the surfaces from candidate 
points derived from the coarse extraction. Although experimental tests 
showed that the proposed method extracts surfaces of the bridge com-
ponents with high accuracy, a success of the proposed method depends 
on suitable input parameters (Table 2), and quantity and quality of the 
point clouds. 

Notably, as cells and voxel sizes were determined, based on the 
minimum dimensions of surfaces of bridge components, as shown in 
Table 1, the proposed method may fail to extract a surface if a small cell 
or voxel was generated in combination with a data set with a large 
sampling step. This could lead to a cell or voxel that classified as “empty”, 
which would consecutively eliminate this cell or voxel from further 
processing, as the points within the cell or voxel would not satisfy the 
thresholds cmin_ptc and vmin_ptc, respectively. 

Both CRG and VRG are often sensitive to input parameters consisting 
of angle, distance, and residual thresholds, which depend on both sur-
face geometries and data quality. Although geometries of popular 
bridges are used to determine a portion of each threshold relating to the 
bridge geometry, the portion depending on the data quality is still 
empirically selected. Moreover, surfaces of the bridge components are 
mostly smooth planes, and the data quality is assumed as homogenous. 
The proposed method with fixed values of these thresholds (Table 2) can 
extract all surfaces with high accuracy. However, for an entire bridge, 
the components’ surfaces can be made from different materials, have 
different roughness and/or are subjected to damage. The fixed thresh-
olds may cause under- or over-segmentation for some cases. For 
example, parts of the roadway of Bridge 2 are missing because of surface 
damage (Fig. 27). As such, adaptive thresholds could be obtained based 
on a set of candidate points at a component level because this subset 
contains large portion of the data points of the component surface, 
which can provide rough features of the surface. For example, a possible 
solution is that a subset of the patches or voxels associated with their 
neighbourhood can be used to estimate the distance and residual 
thresholds through a statistical framework. This work will be parts of 
future work of this study. 

One of the advantages of the proposed method is that a subset 
occupied candidate points of a component of interest is used as input 
data for CRG and VRG, which implies that fitting planes for patches and 
voxels would mostly have similar characteristics. With this strategy, a 
complexity is reduced significantly, which would support to select 
thresholds for CRG and VRG easier than the case of using entire data 
points. For example, Fig. 28 showed resulting surfaces based on the 
proposed method and RANdom Sample Consensus (RANSAC) proposed 
by Schnabel et al. [29] implemented in CloudCompare V2.7.2 [69]. To 
extract surfaces using RANSAC, a normal vector of each data point is 
computed, which is the normal of the fitting plane computed from its 
neighbouring points determined by using a range search with a 
searching radius of 0.1 m (in this study). Additionally, input parameters 
for RANSAC consisting of (i) the maximum distance from the points to 
the model (εmax = 10 mm), (ii) the maximum deviation between points’ 
normal vector and one of the model’s (αRANSAC  = 5 degrees), and (iii) 
the minimum number of points (modelmin_ptc = 1000 points) of the model 
are used to get the best results. The resulting segmentation showed that 
RANSAC extracted surfaces of pier components similar to those from the 
proposed method. Moreover, RANSAC-based surfaces miss points 
around edges (Fig. 28b), which do not occur in the proposed method 
(Fig. 28c). RANSAC can cause over-segmentation, for example, the 
bottom surface of the pier cap appears as 4 segments. RANSAC results 
require an additional post-processing step to eliminate unreal surfaces. 

Although the complexity of data is significantly reduced in this 
proposed method, a high similarity between adjoining surfaces also 
prevents to separate them. For example, in Bridge 2, the superstructure 
consists of multiple slab-beams in a cross-section of the bridge, but 
bottom surfaces of these slab-beams are recognized as the same region. 
That is because the patches representing these surfaces have very small 
deviations of features including a normal vector, distance, and residual 
(Fig. 29). As such, to obtain the bottom surface of each slab-beam, cell 
size and thresholds for CRG must be adjusted. In addition, results of pier 
extraction can also be used to separate the slab-beams of each bridge 
span. 

The point cloud of the bridge is decomposed into 2D cells and 3D 
voxels and only full cells and voxels possessing the number of points 
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larger than predefined thresholds (cmin_ptc and vmin_ptc) are considered in 
further steps. However, due to a locally sparse, some areas of the surface 
were represented by empty cells or voxels, and CRG and VRG failed to 
recognize surfaces of bridge components. For example, intermediate 
surfaces of Bridge 2 have areas with low point density, and VRG seg-
mentation fails to extract surfaces for these areas (Fig. 30). Thus, 
selecting the cell size and voxel size should be considered not only di-
mensions of extracted surfaces or structures’ dimensions but also the 
point density of the input data set. 

As mentioned above, input parameters, particularly angle, distance, 
and residual thresholds in CRG and VRG are dominated by bridge ge-
ometry and data quality. When input data is of insufficient quality, angle 
and/or distance between two incident patches for CRG and voxels for 
VRG may be dominated by data quality. To extract surfaces of bridge 

components successfully, either the effect of data quality must be 
minimized, or the thresholds must be relaxed, or both. For the first 
option, RANSAC can be integrated into the proposed method to estimate 
parameters of a plane fitting to the points in the patch or voxel, which 
implies that the percentage of outlying points can be up to nearly 50%. 
Moreover, observing general bridge geometry shows that angles be-
tween incident surfaces in a bridge are theoretically not smaller than 450 

(most of them are not smaller than 900) because of optimal load transfer 
and aerodynamic shapes, and the distance between two adjacent par-
allel surfaces is no smaller than 0.157 m (Table 1). Once a patch (or 
voxel) possesses mixed points of both adjoined surfaces, the angle and 
distance between this patch (or voxel) and the patch (or voxel) 

Fig. 27. Missing points due to surface damage.  

Fig. 28. Comparison between surface extraction results from the proposed method and RANSAC.  

Fig. 29. Overlaid extracted data points of a superstructure to the point clouds 
of Bridge 2. 

Fig. 30. Missing points due to a low point density.  
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containing purse points of one surface can theoretically be about 22.50 

(a half of the minimum angle, 450), and 0.075 m (a half of the minimum 
distance, 0.157 m), respectively. As such, in the second option, to pre-
vent over- or under segmentation due to low-quality data, these values 
for angle and distance can be used as upper bounds in selecting these 
thresholds. Finally, the use of a residual threshold equal to two times the 
registration error can often determine sufficient seeding patches or 
voxels for CRG and VRG, respectively. 

CRG not only applies to extract planar surfaces of a roadway, side 
walls and bottom surfaces of a superstructure, but can also be extended 
to the extraction of planes of arbitrary orientation. In this case, the data 
set is decomposed into 2D cells in either the xy, yz or xz plane. Next, 
orientation KDE is implemented to roughly extract data points of 
patches within the 2D cell, in which the data points rotating around an 
axis (e.g., ox, oy, or oz) are used to generate a PDS of KDE to find local 
maximum peaks describing a distribution of the points of the patch. As 
such, the proposed method should be easily extendable for other type of 
bridges, but also for other structures. 

6. Conclusions 

Climate change and increasing freight have cause negative impact on 
bridges. That requires that bridges must be managed efficiently, and 
inspected and monitored periodically. However, as digitized bridge 
models are mostly not available, those tasks are not done efficiently. 
This paper presents a new method to automatically extract component 
surfaces of box and slab-beam bridges from a terrestrial laser scanning 
point cloud, which is a key step in generating a 3D geometric model and 
surface damage identification. The proposed method deploys both 
spatial point clouds and basic contextual knowledge of bridge compo-
nents to extract bridge components in order from a superstructure to 
substructure. The proposed method starts to extract point clouds of 
surfaces from sub data sets, and subsequently assigns the surfaces as 
parts of superstructure and substructure. Surfaces of each bridge 
component are obtained through coarse extraction to get candidate 
points and fine filtering to obtain final data points of surfaces using CRV, 
VRG and CSC methods. In the proposed method, contextual knowledge 
relating to location, orientation and minimum dimensions of the bridge 
components are integrated to support coarse extraction and unreal 
structural surface elimination. 

The proposed method was tested on data sets of two box- and slab- 
beam bridges, and results showed that all bridge components were 
successfully extracted at an object level using an overlap threshold of 
0.85. Moreover, a point-based evaluation showed that the proposed 
method extracted the bridge components with the lowest F1-score of 
0.954 and 0.932 for Bridge 1 and 2, except for the road curb. Interest-
ingly, a shape similarity evaluation proved that extracted surfaces 
highly match to those of the ground truth with discrepancies in term of a 
minimum overlap ratio and a maximum angle deviation respectively 
0.938 and 0.190 degree for Bridge 1 and 0.827 and 0.593 degree for 
Bridge 2. Finally, as only subsets need to be processed to extract the 
component’s surfaces, the proposed method is able to handle large 
bridge data sets. This is shown by executing time about 481.85 s for 
28.505 million points of Bridge 1 and 679.34 s for 12.670 million points 
of Bridge 2. 

Data points of surfaces of bridge elements extracted from the pro-
posed method provide fundamental elements for further processing to 
obtain results for bridge engineering applications. One of which is to 
generate a 3D model of the bridge, which can be potentially used for 
bridge management, bridge assessment and inspection, and bridge in-
formation modelling and digital twins. Another application is to identify 
damage-based surface geometry, for example deformation, scaling or 
spalling. Finally, although the proposed method aims to apply for slab- 
beam and box-girder bridges, the method can extent to other common 
types of the bridges. Those works would be parts of future works. 
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[31] H. Son, F. Bosché, C. Kim, As-built data acquisition and its use in production 
monitoring and automated layout of civil infrastructure: A survey, Adv. Eng. 
Inform. 29 (2) (2015) 172–183, https://doi.org/10.1016/j.aei.2015.01.009. 

[32] L. Truong-Hong, D.F. Laefer, Application of terrestrial laser scanner in bridge 
inspection: review and an opportunity, in: 37th IABSE Symposium: Engineering for 
Progress, Nature and People, Madrid, Spain, Sept. 3–5, 2014, International 
Association for Bridge and Structural Engineering (IABSE), 2014, https://doi.org/ 
10.2749/222137814814070190. 

[33] C.J. Stull, C.J. Earls, A rapid assessment methodology for bridges damaged by truck 
strikes, Steel Compos. Struct. 9 (3) (2009) 223–238, https://doi.org/10.12989/ 
scs.2009.9.3.223. 

[34] G. Nora, L. Truong-Hong, D.F. Laefer, Laser scan-based structural assessment of 
wrought iron bridges: Guinness Bridge, Ireland, Proceed. Inst. Civil Eng. 171 (2) 
(2018) 76–89, https://doi.org/10.1680/jenhh.17.00018. 

[35] Leica Geosystems. Leica CloudWorx for AutoCAD, Leica, 2018. https://leica-geos 
ystems.com/products/laser-scanners/software/leica-cloudworx/leica-cloudwor 
x-autocad. 

[36] Y. Yan, B. Guldur, F. Hajjar Jerome, Automated Structural Modelling of Bridges 
from Laser Scanning, Structures Congress 2017, ASCE, Denver, Colorado, USA, 
2017, pp. 457–468, https://doi.org/10.1061/9780784480403.039. Apr. 6–8. 

[37] R. Schneiders, A grid-based algorithm for the generation of hexahedral element 
meshes, Eng. Comput. 12 (3–4) (1996) 168–177, https://doi.org/10.1007/ 
BF01198732. 

[38] Y. Pan, Y. Dong, D. Wang, A. Chen, Z. Ye, Three-dimensional reconstruction of 
structural surface model of heritage bridges using UAV-based photogrammetric 
point clouds, Remote Sens. 11 (10) (2019) 1204, https://doi.org/10.3390/ 
rs11101204. 

[39] S.B. Walsh, D.J. Borello, B. Guldur, J.F. Hajjar, Data processing of point clouds for 
object detection for structural engineering applications, Comput. Aided Civil 
Infrastruct. Eng. 28 (7) (2013) 495–508, https://doi.org/10.1111/mice.12016. 

[40] G. Zhang, P.A. Vela, P. Karasev, I. Brilakis, A sparsity-inducing optimization-based 
algorithm for planar patches extraction from noisy point-cloud data, Comput. 
Aided Civil Infrastruct. Eng. 30 (2) (2015) 85–102, https://doi.org/10.1111/ 
mice.12063. 

[41] Y. Narazaki, V. Hoskere, T.A. Hoang, Y. Fujino, A. Sakurai, B.F. Spencer Jr., Vision- 
based automated bridge component recognition with high-level scene consistency, 
Comput. Aided Civil Infrastruct. Eng. 35 (5) (2020) 465–482, https://doi.org/ 
10.1111/mice.12505. 

[42] F. Hu, J. Zhao, Y. Huang, H. Li, Structure-aware 3D reconstruction for cable-stayed 
bridges: a learning-based method, Comput. Aided Civil Infrastruct. Eng. 36 (2020) 
89–108, https://doi.org/10.1111/mice.12568. 

[43] B.J. Perry, Y. Guo, R. Atadero, J.W. van de Lindt, Streamlined bridge inspection 
system utilizing Unmanned Aerial Vehicles (UAVs) and machine learning, 
Measurement 164 (2020), 108048, https://doi.org/10.1016/j. 
measurement.2020.108048. 

[44] H. Kim, J. Yoon, S.-H. Sim, Automated bridge component recognition from point 
clouds using deep learning, Struct. Control. Health Monit. 27 (e2591) (2020) 13, 
https://doi.org/10.1002/stc.2591. 

[45] J.S. Lee, J. Park, Y.-M. Ryu, Semantic segmentation of bridge components based on 
hierarchical point cloud model, Autom. Constr. 130 (2021), 103847, https://doi. 
org/10.1016/j.autcon.2021.103847. 

[46] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph 
CNN for learning on point clouds, ACM Trans. Graph. 38 (5) (2019), https://doi. 
org/10.1145/3326362. Article 146. 

[47] N. Saovana, N. Yabuki, T. Fukuda, Automated point cloud classification using an 
image-based instance segmentation for structure from motion, Autom. Constr. 129 
(2021), 103804, https://doi.org/10.1016/j.autcon.2021.103804. 

[48] D.N. Farhey, Structural performances of bridge types in the U.S. National Bridge 
Inventory, Infrastructures 3 (1) (2018) 6, https://doi.org/10.3390/ 
infrastructures3010006. 

[49] M.-K. Kim, S. McGovern, M. Belsky, C. Middleton, I. Brilakis, A suitability analysis 
of precast components for standardized bridge construction in the United Kingdom, 
Procedia Eng. 164 (2016) 188–195, https://doi.org/10.1016/j. 
proeng.2016.11.609. 

[50] AASHTO, AASHTO LRFD Bridge Design Specifications, 8th edition, American 
Association of State Highway and Transportation Officials (AASHTO), AASHTO, 
2017 (978-1-56051-654-5). 

[51] New York State Department of Transportation (Ed.), NYS Bridge Manual, 2019 ed., 
New York State Department of Transportation, New York, USA, 2019. 
https://www.dot.ny.gov/divisions/engineering/structures/repository/man 
uals/brman-usc/NYSDOT_bridge_manual_US_5-2019.pdf. 

[52] W. Lin, T. Yoda, Chapter Five - Bridge deck systems, in: W. Lin, T. Yoda (Eds.), 
Bridge Engineering, Butterworth-Heinemann, 2017 (pp. 85-96, 978-0-12-804432- 
2). 

[53] AASHTO, A Policy on Geometric Design of Higways and Streets, AASHTO, 
Washington, DC, 2018 (p. 1048, 978-1-56051-676-7). 

[54] W.-F. Chen, L. Duan, Bridge Engineering Handbook 1st Edition ed, 1, CRC Press, 
2019, p. 2045 (0429277040). 

[55] I. Armeni, O. Sener, A.R. Zamir, H. Jiang, I. Brilakis, M. Fischer, S. Savarese, 3D 
Semantic Parsing of Large-Scale Indoor Spaces, 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), Jun. 27-30, 2016, IEEE, 2016, 
pp. 1534–1543, https://doi.org/10.1109/CVPR.2016.170. 

[56] D.F. Laefer, L. Truong-Hong, Toward automatic generation of 3D steel structures 
for building information modelling, Autom. Constr. 74 (2017) 66–77, https://doi. 
org/10.1016/j.autcon.2016.11.011. 

[57] V.A. Epanechnikov, Non-parametric estimation of a multivariate probability 
density, Theory Probab. Appl. 14 (1) (1969) 153–158, https://doi.org/10.1137/ 
1114019. 

[58] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface 
Reconstruction from Unorganized Points, ACM SIGGRAPH 1992, Chicago, USA, Jul 
26-31, 1992, pp. 71–78, https://doi.org/10.1145/142920.134011. 

[59] D. Meagher, Geometric modeling using octree encoding, Comp. Graph. Image 
Process. 19 (2) (1982) 129–147, https://doi.org/10.1016/0146-664X(82)90104-6. 

[60] M. Soilán, L. Truong-Hong, B. Riveiro, D. Laefer, Automatic extraction of road 
features in urban environments using dense ALS data, Int. J. Appl. Earth Obs. 
Geoinf. 64 (2018) 226–236, https://doi.org/10.1016/j.jag.2017.09.010. 

[61] P. Tang, B. Akinci, D. Huber, Quantification of edge loss of laser scanned data at 
spatial discontinuities, Autom. Constr. 18 (8) (2009) 1070–1083, https://doi.org/ 
10.1016/j.autcon.2009.07.001. 

[62] R.M. Haralick, L.G. Shapiro, Computer and Robot Vision, Addison-wesley Reading 
0201108771, 1992, p. 97802. 

[63] W.-F. Chen, L. Duan, Bridge Engineering Handbook: Substructure Design, 2nd ed, 
CRC Press, Boca Raton, 2014, p. 386 (9781439852194). 

[64] Leica Geosystems, Leica ScanStation P20, Available at, https://w3.leica-geosyst 
ems.com/downloads123/hds/hds/scanstation_p20/brochures-datasheet/leica_sca 
nstation_p20_dat_en.pdf, 2020 (Accessed by: Jan. 15, 2020). 

[65] Leica Geosystems, Leica Cyclone, Available at, https://leica-geosystems. 
com/products/laser-scanners/software/leica-cyclone, 2020 (Accessed by: 15 Dec, 
2020). 

[66] R. Lu, I. Brilakis, C.R. Middleton, Detection of Structural Components in Point 
Clouds of Existing RC Bridges, Available at, 2020, https://doi.org/10.5281/ 
zenodo.1240534 (Accessed by: Jan. 15, 2020). 

[67] FARO, Faro Focuss 350/350, Available at, https://www.faro.com/en-gb/produc 
ts/construction-bim-cim/faro-focus/features/ (Accessed by: Dec. 15, 2020). 

[68] FARO, PointSense Pro and Basic, Available at, https://knowledge.faro.com/Soft 
ware/Legacy-Software/Legacy-PointSense_and_CAD_Plugins/PointSense/PointSe 
nse_Pro_And_Basic/Overview_PointSense_Pro_and_Basic (Accessed by: Dec. 15, 
2020). 

[69] CloudCompare, CloudCompare, 2020. 
[70] L. Truong-Hong, D.F. Laefer, Quantitative evaluation strategies for urban 3D model 

generation from remote sensing data, Comput. Graph. 49 (2015) 82–91, https:// 
doi.org/10.1016/j.cag.2015.03.001. 

[71] M. Awrangjeb, G. Lu, Automatic Building Footprint Extraction and Regularisation 
from LIDAR Point Cloud Data, 2014 International Conference on Digital Image 
Computing: Techniques and Applications (DICTA), Nov. 25-27, IEEE, 2014, 
pp. 1–8, https://doi.org/10.1109/DICTA.2014.7008096. 

[72] H. Edelsbrunner, D. Kirkpatrick, R. Seidel, On the shape of a set of points in the 
plane, IEEE Trans. Inf. Theory 29 (4) (1983) 551–559, https://doi.org/10.1109/ 
TIT.1983.1056714. 

[73] MathWorks, MATLAB Function Reference, MatLab, 2019. https://nl.mathworks.co 
m/help/pdf_doc/matlab/index.html. 

L. Truong-Hong and R. Lindenbergh                                                                                                                                                                                                        

https://doi.org/10.1007/978-3-030-51295-8_50
https://doi.org/10.1007/978-3-030-51295-8_50
https://doi.org/10.1016/j.autcon.2021.103582
https://doi.org/10.1016/j.autcon.2021.103582
http://www.isprs.org/proceedings/XXXVI/part5/paper/RABB_639.pdf
http://www.isprs.org/proceedings/XXXVI/part5/paper/RABB_639.pdf
https://doi.org/10.1016/j.isprsjprs.2015.01.011
https://inspirehep.net/files/53d80b0393096ba4afe34f5b65152090
https://inspirehep.net/files/53d80b0393096ba4afe34f5b65152090
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1016/j.autcon.2014.12.015
https://doi.org/10.1016/j.cag.2015.07.008
https://doi.org/10.3390/rs70911753
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1016/j.autcon.2018.07.001
https://doi.org/10.1016/j.autcon.2018.07.001
https://doi.org/10.1016/j.aei.2015.01.009
https://doi.org/10.2749/222137814814070190
https://doi.org/10.2749/222137814814070190
https://doi.org/10.12989/scs.2009.9.3.223
https://doi.org/10.12989/scs.2009.9.3.223
https://doi.org/10.1680/jenhh.17.00018
https://leica-geosystems.com/products/laser-scanners/software/leica-cloudworx/leica-cloudworx-autocad
https://leica-geosystems.com/products/laser-scanners/software/leica-cloudworx/leica-cloudworx-autocad
https://leica-geosystems.com/products/laser-scanners/software/leica-cloudworx/leica-cloudworx-autocad
https://doi.org/10.1061/9780784480403.039
https://doi.org/10.1007/BF01198732
https://doi.org/10.1007/BF01198732
https://doi.org/10.3390/rs11101204
https://doi.org/10.3390/rs11101204
https://doi.org/10.1111/mice.12016
https://doi.org/10.1111/mice.12063
https://doi.org/10.1111/mice.12063
https://doi.org/10.1111/mice.12505
https://doi.org/10.1111/mice.12505
https://doi.org/10.1111/mice.12568
https://doi.org/10.1016/j.measurement.2020.108048
https://doi.org/10.1016/j.measurement.2020.108048
https://doi.org/10.1002/stc.2591
https://doi.org/10.1016/j.autcon.2021.103847
https://doi.org/10.1016/j.autcon.2021.103847
https://doi.org/10.1145/3326362
https://doi.org/10.1145/3326362
https://doi.org/10.1016/j.autcon.2021.103804
https://doi.org/10.3390/infrastructures3010006
https://doi.org/10.3390/infrastructures3010006
https://doi.org/10.1016/j.proeng.2016.11.609
https://doi.org/10.1016/j.proeng.2016.11.609
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0250
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0250
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0250
https://www.dot.ny.gov/divisions/engineering/structures/repository/manuals/brman-usc/NYSDOT_bridge_manual_US_5-2019.pdf
https://www.dot.ny.gov/divisions/engineering/structures/repository/manuals/brman-usc/NYSDOT_bridge_manual_US_5-2019.pdf
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0260
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0260
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0260
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0265
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0265
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0270
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0270
https://doi.org/10.1109/CVPR.2016.170
https://doi.org/10.1016/j.autcon.2016.11.011
https://doi.org/10.1016/j.autcon.2016.11.011
https://doi.org/10.1137/1114019
https://doi.org/10.1137/1114019
https://doi.org/10.1145/142920.134011
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/j.jag.2017.09.010
https://doi.org/10.1016/j.autcon.2009.07.001
https://doi.org/10.1016/j.autcon.2009.07.001
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0310
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0310
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0315
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0315
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures-datasheet/leica_scanstation_p20_dat_en.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures-datasheet/leica_scanstation_p20_dat_en.pdf
https://w3.leica-geosystems.com/downloads123/hds/hds/scanstation_p20/brochures-datasheet/leica_scanstation_p20_dat_en.pdf
https://leica-geosystems.com/products/laser-scanners/software/leica-cyclone
https://leica-geosystems.com/products/laser-scanners/software/leica-cyclone
https://doi.org/10.5281/zenodo.1240534
https://doi.org/10.5281/zenodo.1240534
https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/features/
https://www.faro.com/en-gb/products/construction-bim-cim/faro-focus/features/
https://knowledge.faro.com/Software/Legacy-Software/Legacy-PointSense_and_CAD_Plugins/PointSense/PointSense_Pro_And_Basic/Overview_PointSense_Pro_and_Basic
https://knowledge.faro.com/Software/Legacy-Software/Legacy-PointSense_and_CAD_Plugins/PointSense/PointSense_Pro_And_Basic/Overview_PointSense_Pro_and_Basic
https://knowledge.faro.com/Software/Legacy-Software/Legacy-PointSense_and_CAD_Plugins/PointSense/PointSense_Pro_And_Basic/Overview_PointSense_Pro_and_Basic
http://refhub.elsevier.com/S0926-5805(21)00578-1/rf0345
https://doi.org/10.1016/j.cag.2015.03.001
https://doi.org/10.1016/j.cag.2015.03.001
https://doi.org/10.1109/DICTA.2014.7008096
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/TIT.1983.1056714
https://nl.mathworks.com/help/pdf_doc/matlab/index.html
https://nl.mathworks.com/help/pdf_doc/matlab/index.html

	Automatically extracting surfaces of reinforced concrete bridges from terrestrial laser scanning point clouds
	1 Introduction
	2 Related work
	3 Scope of work
	4 Proposed method
	4.1 Part 1: Point-to-surface
	4.1.1 Quadtree representation
	4.1.2 Local surface extraction
	4.1.3 Cell-based region growing (CRG)
	4.1.4 Voxel-based region growing segmentation (VRG)
	4.1.5 Connected surface component (CSC)

	4.2 Part 2: Superstructure extraction
	4.2.1 Top surfaces of the superstructure
	4.2.1.1 Roadway and sidewalk
	4.2.1.2 Road curb

	4.2.2 Railing extraction
	4.2.3 Bottom surfaces of a superstructure (Ssupstr.bot)
	4.2.4 Intermediate surfaces

	4.3 Part 3: Substructure extraction
	4.3.1 Extracting candidate points of abutments and piers
	4.3.2 Abutment extraction
	4.3.3 Pier extraction


	5 Experiental tests, results and discussions
	5.1 Bridge description and data acquisition
	5.2 Parameter selection
	5.3 Results
	5.4 Evaluation
	5.4.1 Location deviation
	5.4.2 Shape similarity

	5.5 Computational time
	5.6 Discussion

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References


