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Abstract. Rapid advancements in technology have led to the miniaturization of electronic
devices which typically dissipate heat fluxes in the order of 100 W/cm2. This has brought about
an unprecedented challenge to develop efficient and reliable thermal management systems. Novel
cooling technologies such as Two-Phase Thermosyphons that make use of nanofluids provide a
promising alternative to the use of conventional systems. This article analytically estimates the
effects caused by nanoparticles that deposit on the evaporator surface and their effect on the
heat transfer process.

1. Introduction
It is estimated that air-based cooling infrastructures consume up to 45% of the total power [1]
in data centers. In comparison, Two-Phase Thermosyphons (TPT’s) have proven to be more
efficient, sustainable, and economically viable cooling systems under high heat fluxes [2-4]. In
these systems, the working fluid in its liquid phase absorbs heat from the source at the evaporator
section converting into a two-phase fluid that travels upward via a riser to the condenser section
where it exchanges heat with a secondary coolant resulting in a dense liquid that travels back
to the evaporator through a downcomer thus forming a closed loop.

To enhance heat transfer in TPT, conventional working fluids can be replaced by nanofluids
which are suspensions of solid (metal, metal oxide, carbon) particles with average crystal sizes
below 100 nm (nanoparticles) [5-7]. Few studies have also reported a deteriorated performance [8-
10] due to the changes induced in the two-phase heat transfer mechanism of its evaporator. The
present article focuses on gaining insights into the heat transfer process in the evaporator by
developing an analytical model of TPT and analyse effects induced by nanoparticles on the heat
transfer process.

2. Modelling of TPT
The analytical model to evaluate performance uses the dimensions of TPT and heat flux
experienced at the evaporator as input parameters. A mini TPT with following dimensions
(evaporator: 4 parallel channels each 15 mm, 500 µm; riser: 30 cm, 4 mm; condenser: 25 cm,
4 mm; downcomer: 30 cm, 4 mm; dimensions in terms of length, radius) is modelled. The
evaporator is assumed to consist of multiple parallel channels so that sufficient surface area is
available to dissipate high heat fluxes. It is assumed that evaporator and condenser sections are
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horizontal with flow entering and exiting them at saturated conditions respectively while the
riser and downcomer are adiabatic. Based on these dimensions and heat flux experienced by the
evaporator from the source, hydrodynamic parameters are evaluated in each section of TPT [11-
15] following a numerical methodology detailed in [16]. The outputs of this model namely,
equilibrium mass flow rate and evaporator exit flow quality can then be used to evaluate the
thermal performance of the evaporator. This is quantified in terms of its two-phase heat transfer
coefficient (htp) which consists of nucleate (hnb) and convective boiling (hcb) mechanisms and is
expressed as [17]

htp =
(
h2nb + h2cb

)0.5
. (1)

The developed model was validated against data from the literature as shown in Fig. 1. The
resulting htp for various heat flux inputs for R134a as working fluid at 16.8 bar operating pressure
is shown in Fig. 2.
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Figure 1. Validation of developed model
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Figure 2. Evaporator thermal performance

In the given range of heat fluxes in Fig. 2, it is found that the heat transfer process is
dominated by nucleate boiling mechanism (average hnb/hcb = 6.7). This implies that analysing
the influence of nanoparticles on this mechanism is of primary importance. From Eq. (1) it can
be derived that the relative change in htp with respect to hnb can be expressed as

∆htp/htp =
[
h2nb/h

2
tp

]
(∆hnb/hnb). (2)

Equation (2) will be used in the next section to evaluate the effects of nanoparticles on the
nucleate boiling mechanism which in turn affects the overall heat transfer rate.

3. Effect of nanoparticles on nucleate boiling
In general, a heating surface (evaporator in case of TPT) has certain micro-level cavities where
the working fluid in its liquid state upon experiencing heat flux converts into vapor thus creating
a bubble. This is the mechanism underlying nucleation boiling and can be expressed as [17]

hnb ∝
(
Bo

PH

PF

)0.70

p0.38r (1− x)−0.51. (3)
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The ratio of heated to the wetted perimeter (PH/PF ), reduced pressure (pr), and diameter of the
channel (D) are constants and thus remain the same for both conventional fluids and nanofluids.
The liquid mass fraction (x) depends on the heat transfer rate. Boiling number (Bo) is directly
proportional to the heat flux (q

′′
) experienced by the working fluid which can be quantified as

q
′′ ∝ ∆T 1.4

s N0.4
a [18] where ∆Ts is the wall super-heat (difference between surface temperature

Ts and saturation temperature of the working fluid) and Na is the active nucleation site density
(i.e. micro-level cavities). Although this has been derived for pool boiling mode (stationary
fluid), it is used in the present study for a TPT in which flow boiling takes place (working fluid
is driven by pressure gradients); as the underlying nucleation mechanism is quite similar in these
modes for a mini/micro channel [19]. Substituting this into Eq. (3) yields

hnb ∝ Bo0.7 ∝ (q
′′
)0.7 ∝ [∆T 1.4

s N0.4
a ]0.7. (4)

Here Na depends on the non-dimensional surface roughness Rnd and wall super-heat ∆Ts [20]

Na ≈ R−0.4
nd ∆T 3

s . (5)

When nanofluids are boiled, nanoparticles form an irregular porous deposition (nano-layer)
on the heating surface [21]. Formation of such nano-layer alters the non-dimensional surface
roughness (Rnd,nf ) which can be expressed from [22] as Rnd,nf = Rnd · λ3 · ψ−0.5. Where λ is
the wettability parameter (depends on contact angle between fluid and nano-layer) and ψ is the
interaction parameter (ratios of average roughness of pure surface and diameter of nano-particle
used). The nano-layer also affects ∆Ts, as the working fluid is now in contact with the top of
the nano-layer. The temperature (Tn) of the nano-layer differs from the inner wall temperature
due to the thermal resistance of the nano-layer. Let the new super-heat be ∆Tn after the nano-
particles have deposited. Substituting these into Eq. (5) yields the new nucleation site density
(Na,nf ) after the formation of nano-layer i.e. Na,nf ≈ R−0.4

nd λ−1.2ψ0.2∆T 3
n . Using this along with

Eq. (5), the relative change in nucleation site density can be expressed as

∆Na/Na = (Na,nf −Na)/Na ≈ [λ−1.2ψ0.2∆T 3
n −∆T 3

s ]/∆T 3
s . (6)

Scaling analysis for dimensions as assumed before is performed to determine the difference
between Tn and Ts for nano-layer thickness (δ) using 100 nm aluminium oxide nanoparticles.
For simplicity, it is assumed that nanoparticles stack vertically to form a nano-layer. In the
range of heat fluxes indicated in Fig. 2, at least 5% (240 layers) of the evaporator radius must
be filled by nano-layer for Tn to differ from Ts by at least 1%. This is highly unlikely considering
the dimension of evaporator channels, hence thermal resistance is neglected (i.e. Tn = Ts).
Consequently, Eq. (6) is reduced to

∆Na/Na ≈ λ−1.2ψ0.2 − 1. (7)

From Eq. (4), the dependence of hnb on Na can be expressed as ∆hnb/hnb ≈ 0.28(∆Na/Na)
where the value of ∆Na/Na can be obtained from Eq. (7). Substituting the resulting expression
(∆hnb/hnb ≈ 0.28[λ−1.2ψ0.2 − 1]) into Eq. (2) yields

∆htp
htp

≈ 0.28

[
h2nb
h2tp

] [
λ−1.2ψ0.2 − 1

]
. (8)

From this relation, it can be concluded that htp is maximized when the working fluid has high
wettability with the formed nano-layer (i.e. λ is low) and the same has been experimentally
observed [23, 24] in which low contact angles lead to high rates of thin micro-layer evaporation.
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htp is also enhanced when the nanoparticles of relatively smaller size (ψ is high) split up the
existing nucleation sites and this is in agreement with observations [25]. A similar trend is
observed in experiments in which htp is related to the surface roughness as ∼ R0.2 [26, 27].

Equation (8) is used in the earlier developed model of TPT, assuming nanoparticles of
diameter 100 nm on copper evaporator with the average surface roughness of 1 µm (ψ = 10).
R134a has a contact angle of 4.7° at 16.8 bar [28] on the copper surface. To compute the
theoretical maximum heat transfer enhancement with nanoparticles, it is assumed that the
nano-layer acts as a super-hydrophilic surface (λ = 0.003). The resulting htp is shown in Fig. 2,
where an average increase of 44% is predicted for the given range of heat fluxes.

4. Conclusions
On the basis of a model developed for a TPT with a mini channeled evaporator section, it has
been observed that the nucleate boiling mechanism dominates the heat transfer process. The
effect of nano-layer formed by nanofluids in a TPT is analytically analyzed in terms of changes
in surface wettability and nucleation site density. An average increase of 44% is predicted in the
heat transfer coefficient. The present model is based on steady-state conditions. However, due
to the inertial forces of a working fluid, nanoparticles might lift off the nano-layer, making it a
transient process. To determine this, a more detailed understanding of the deposition mechanism
is needed. It would also help to quantitatively analyse increased surface area due to such a layer.
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