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ABSTRACT
How human-like do conversational robots need to look to enable
long-term human-robot conversation? One essential aspect of long-
term interaction is a human’s ability to adapt to the varying degrees
of a conversational partner’s engagement and emotions. Prosodi-
cally, this can be achieved through (dis)entrainment. While speech-
synthesis has been a limiting factor for many years, restrictions in
this regard are increasinglymitigated. These advancements now em-
phasise the importance of studying the effect of robot embodiment
on human entrainment. In this study, we conducted a between-
subjects online human-robot interaction experiment in an educa-
tional use-case scenario where a tutor was either embodied through
a human or a robot face. 43 English-speaking participants took part
in the study for whom we analysed the degree of acoustic-prosodic
entrainment to the human or robot face, respectively. We found that
the degree of subjective and objective perception of anthropomor-
phism positively correlates with acoustic-prosodic entrainment.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collabo-
rative and social computing; Empirical studies in interaction
design; • Computer systems organization → Robotics.

KEYWORDS
multi-modal, human-robot interaction, prosody, acoustic-prosodic
entrainment
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1 INTRODUCTION
To what degree the anthropomorphism of robots affects human-
robot conversation is becoming an increasingly pressing question.
Underlying technology such as speech synthesis, speech recogni-
tion, and natural language understanding has improved recently to
such a degree that long-term human-robot applications are becom-
ing much more feasible. A critical aspect of long-term human-robot
interaction is the creation of rapport, a social clicking or bonding
between interaction partners [34]. In human-human interaction,
rapport has been shown to be related to acoustic-prosodic entrain-
ment [19], an ability of humans to adapt their prosody to each
other within the conversation [16]. Acoustic-prosodic entrainment
can also be a reliable indicator of conversational involvement and
interaction quality [7, 24]. Higher acoustic-prosodic entrainment
can indicate more interest in the topic discussed, higher levels of
attention [14, 24] and can also be related to the activation of mirror
neurons [11, 17].

In human-robot interaction, acoustic-prosodic entrainment has
been implemented as a tool to increase a robot’s social presence and
a user’s rapport towards it [20]. The ability of the robot to entrain
to the user has also been shown to increase children’s engagement
within the interaction [28].

The famous ’uncanny valley’ phenomenon [21] implies that if the
robot is too human-like, it can decrease the likeability of the robot.
Yet, human-like appearance has shown to increase perceived trust-
worthiness [8, 22] and social presence [13, 29] of conversational
agents. Questions related to the link between anthropomorphism
of and attitudes towards virtual agents are widely studied [9], yet
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questions related to how anthropomorphism influences the user’s
behaviour are less explored.

Certain qualities within Instructors in educational contexts can
potentially impact the educational outcomes as well. In an educa-
tional context, the anthropomorphism of the tutor has been shown
to improve the understanding and memorisation of information,
and human tutors still show better results than a robot or a tablet
[36]. Nguyen et. al [33] investigated how acoustic-prosodic entrain-
ment correlates with the quality of information acquisition in a
tutoring experiment. They compared knowledge gain and acoustic-
prosodic entrainment of students when learning from a tutor with
a human in contrast to a synthesized voice. Based on amplitude and
pitch features, [33] show that higher acoustic-prosodic entrainment
positively correlates with students’ knowledge gain. More impor-
tantly, they found that students’ acoustic-prosodic entrainment
was higher in the human voice scenario. In [33]’s study, the virtual
tutor was a voice assistant, and the conditions were different in
the human-likeness of the virtual tutor’s speech. But does visual
human-likeness affect the entrainment in the same way?

In this paper, we investigate the effect of a virtual tutor’s human
versus machine-like appearance on a user’s prosodic entrainment.
In fact, there have been human-robot interaction studies measuring
user entrainment in human-robot interaction. Breazeal [5] showed
that humans are able to adapt their turn-taking behaviour to a robot.
Strupka et al. [32] investigated how humans adapt their speech to
the robots of different genders found that participants exhibited
speech divergence (the opposite of entrainment) in both conditions.

If there is a connection between anthropomorphism of robot
appearance and acoustic-prosodic entrainment, that could indicate
the importance of making virtual agents and social robots as human-
like as possible for long-term interaction scenarios such as in a
hybrid-intelligence scenario [1].

Real-time assessment of entrainment could act as a non-verbal
indication of engagement and rapport towards the robot in the
future. This way, no additional questionnaires are needed to access
the user perception of the robot. It could be done in an online
manner, by processing the user’s speech.

Another field that could benefit from understanding the connec-
tion between anthropomorphism and acoustic-prosodic entrain-
ment is multi-modal addressee detection. There are many studies fo-
cusing on advancing automatic detection of human- versus system-
addressed speech [30, 31, 35]. All of the cited algorithms show to
benefit from using prosodic features as predictors of addressee tags.
However, they have not used acoustic-prosodic entrainment as their
feature, and in case our hypothesis is confirmed, it might aid the
automatic detection of whether the user is addressing a machine or
another human.

2 RESEARCH QUESTION
The research question we aim to answer in the present paper is
following: Does the type of facial embodiment of a conversational
agent influence the level of acoustic-prosodic entrainment of a
person interacting with it?

To answer this question in the present work we investigate
human acoustic-prosodic entrainment in two conditions:

(1) Human condition (Human Face, Human Voice) - A lesson
is taught with pre-recorded videos of a human tutor.

(2) Robot condition (Robotic Face, Human Voice) - The same
lesson is taught by a virtual agent mimicking the exact face
movements and using the audio of the human tutor from the
first condition.

2.1 Hypothesis
In relation to audio cues, it has been tested and confirmed in that
the synthesized voice modulates less acoustic-prosodic entrainment
than the human voice. However, it hasn’t been tested in relation to
visual cues independently of the phonetic or non-verbal cues. In
this experiment, our main hypothesis is that the human appearance
of a virtual tutor will incite more acoustic-prosodic entrainment
than the robotic tutor with the same voice and facial expressions.
Our second expectation is that the perceived anthropomorphism
of the tutor will positively correlate with user acoustic-prosodic
entrainment.

We hypothesise that :
(1) H1: participants show greater entrainment towards the hu-

man than the robot face
(2) H2: the greater the participant’s perception of anthropomor-

phism the greater the degree of entrainment

3 METHOD
3.1 Stimulus Preparation
3.1.1 Task. Because of the COVID-19 pandemic, all participant
interactions were carried out via Zoom. The participants followed
three lessons on random topics (about meatball production, beer
crafting and venomous species). Each lesson lasted around 10 min-
utes and consisted of multiple pre-recorded videos taught by a
virtual tutor (robot or human depending on the condition). Each
pre-recorded video lasted for about 2-10 seconds and ended in an
open question inviting participants for interaction. The partici-
pants were invited to verbally interact with the tutor throughout
the whole lesson but especially after the tutor asks a question. Af-
ter the video, a pre-recorded idle state was played for as long as
a participant was replying. The idle states consisted of common
back-channels (nodding, smiling, etc.) also pre-recorded with the
same virtual tutor. The length of idle states was controlled by the
experimenter within each experiment to avoid interrupting partici-
pants. After finishing all the lessons participants had to complete a
questionnaire on their perception of the interaction and the tutor.

3.1.2 Conditions. There were two conditions: (1) human and (2)
robot. In the human condition, the lessons were recorded from
a male English-speaking actor. The only difference between the
human and the robot condition was the appearance of the tutor.
The audio from the human tutor recording was used in both con-
ditions, the content and the post-questionnaire was also the same
across conditions. Since the conditions had the same content, the
experiment had a between-subject design.

For the robot condition, we used the Furhat SDK [2]. Furhat is "a
social robot with human-like expressions and advanced conversa-
tional artificial intelligence (AI) capabilities" [27]. For the recording
of the robot condition stimuli, we used the Furhat simulation.
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Tomake facial expressions as similar as possible between the two
conditions, we used code that resynthesised the human tutor’s face
movements in Furhat. The importance of this step can be illustrated
by Breazeal’s [6] findings on the significance of body posture, head
tilt and facial expression for human-robot entrainment. The code
used OpenCV python library [4] to track mouth movements, smile
and head position and rotation in the video of the human tutor. It
then proceeded to convert the resulting facial movements and their
durations to the Furhat implementation.

Figure 1 shows a screenshot of videos shown to the participants
in two different conditions, side-by-side, in the same moment of
time:

Figure 1: Screenshot of stimuli videos in human (a) and in
robot (b) conditions, at the same point of time

3.1.3 Questionnaires. After the participants have finished the vir-
tual lessons, they answered questions relating to their experience
of interacting with the tutor in a Qualtrics survey. These questions
included Godspeed questionnaire scales on animacy and anthro-
pomorphism [3] and two questions on perception of whether the
videos had smooth transitions between interaction and how inter-
esting were the lessons.

3.2 Experimental Set-Up.
3.2.1 Experimental Study. We strove to reduce the differences be-
tween conditions to the level of human-likeness of tutor appearance
to use conditions as an objectivemeasure of anthropomorphism. For
the subjective measure of anthropomorphism, we used the ratings
collected from the Godspeed anthropomorphism scale. The subjec-
tive measure was meant to both validate the distinction between
conditions and test our hypothesis.

3.2.2 Participants. The experiment was conducted on 51 English-
speaking participants, who have never met the tutor before and
never came across Furhat robot. It was important to have partici-
pants that have never interacted with the human tutor since prior
interactions might bias the way in which people display their en-
trainment [37]. Of these 51 participants, 43 have been included in
the results. The 8 other participants have been excluded because
of internet problems and recording errors, which made the data
unusable. The resulting set of participants included 22 females and
21 males (mean age 28 +- 10).

3.2.3 Procedure. Each experiment lasted for about 40 minutes al-
together. Each participant was assigned a random condition. After
signing a consent form for audio recording and data storage, par-
ticipants had to join a Zoom call with the experimenter, and after
being fully instructed, watched the lessons through experimenter’s
screen sharing. The experimenter’s video was off throughout the
whole call and the audio interaction was reduced to a minimum to
avoid participants entraining with the experimenter. The instruc-
tions for the participants were to wear a personal headset, listen
carefully and verbally interact with the tutor as much as possible.

3.3 Analysis
Our experiment contains one independent variable (facial embodi-
ment) and one dependent variable (acoustic-prosodic entrainment).
Facial embodiment is a binary variable. Namely, the facial appear-
ance is either a video of a human actor or a robotic face (Furhat
robot). This distinction between conditions we use as a measure of
objective anthropomorphism. The acoustic-prosodic entrainment
is a variable that spans over multiple features and metrics extracted
from the audio recording of participants’ speech.

3.3.1 Prosodic feature extraction. To analyse the audio Parselmouth
[12] and Pydub [26] python libraries were used. Parselmouth was
used to extract pitch and RMS-intensity.

The prosodic features that we extracted are similar to the ones
used in Levitan et al. [15]: mean Intensity, max Intensity, mean Pitch,
max Pitch. Because of the online setting of the experiment, we could
not control for the quality of the microphone, most participants
used wired earphones. This was done to avoid leaking of tutor voice
into the audio recording of the participants and to reduce the noise
captured in the recording.

3.3.2 Preprocessing of features. The prepossessing conducted on
the data before computing the entrainment metrics included stan-
dardization and KNN regression.

In a normal conversation, there are many moments in which one
person is silent while the other is speaking and vice versa. There
are also moments in which both speakers are silent. In both of these
scenarios, it would make no sense to compute values for the metrics
for entrainment. We use KNN regression on the data in order to
fill in those gaps [10]. For every feature at each time point take we
take the average of the k nearest values (k = 7 in our case). Where
the distance per value is computed against the centre time point of
the utterance. In other words 𝐹𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒+𝐹𝑒𝑛𝑑_𝑡𝑖𝑚𝑒

2 .

3.3.3 Acoustic-prosodic entrainment metrics. We used acoustic-
prosodic entrainment metrics introduced by [16] and commonly
used for measuring entrainment: proximity, convergence and syn-
chrony.

Proximity is computed by taking the negative absolute differ-
ence per feature at every time point. In order to make our results
comparable between participants of different voice characteristics
(such as male and female voices) we standardized values to their
z-score.

− |𝑓 𝐴 (𝑡) − 𝑓 𝐵 (𝑡) | (1)
Important to note that the metrics are computed after the KNN pre-
processing so the time points are not referring to the raw data. The
closer the metric value is to 0 the higher the assumed entrainment.
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Convergencemeasures howproximity changes over time, where
𝐷 (𝑡) stands for −|𝑓 𝐴 (𝑡) − 𝑓 𝐵 (𝑡) |∫ 𝑡𝑛

𝑡0
(𝐷 (𝑡) − �̄�) ∗ (𝑡 − 𝑡)𝑑𝑡√∫ 𝑡𝑛

𝑡0
(𝐷 − �̄�)2𝑑𝑡

∫ 𝑡𝑛
𝑡0

(𝑡 − 𝑡)2𝑑𝑡
(2)

Convergence applies Pearson correlation and a positive conver-
gence for a feature suggests that over the course of the conversation
the proximity between the tutor and the student increases. Mean-
ing the feature values become more similar. Likewise, negative
convergence for a given feature means it becomes more dissimilar.

Synchrony is here taken simply as Pearson correlation for a
given feature between the tutor and student.∫ 𝑡𝑛

𝑡0
(𝑓 𝐴 (𝑡 + 𝛿) − ¯𝑓 𝐴) ∗ (𝑓 𝐵 (𝑡) − ¯𝑓 𝐵)𝑑𝑡√∫ 𝑡𝑛

𝑡0
(𝑓 𝐴 (𝑡 + 𝛿) − ¯𝑓 𝐴)2𝑑𝑡 ∗

∫ 𝑡𝑛
𝑡0

(𝑓 𝐵 (𝑡) − ¯𝑓 𝐵)2𝑑𝑡
(3)

3.3.4 Statistical Methods. To investigate the differences between
conditions, we utilized Kruskal-Wallis test. The reason for this
is due to data not meeting the assumptions of Anova which are
normality and homogeneity of variance. These assumptions were
tested through Shapiro and Levene tests. Pearson correlation was
computed to determine the significance and the direction of the
correlations between the entrainment metrics and subjective mea-
sures of anthropomorphism, animacy and interest. Finally, power
analyses were carried out to determine if the sample size and sta-
tistical power were appropriate and we found that the power was
adequate (power > 0.8) for all mentioned significant results.

4 RESULTS
4.1 Experiment perception
The experiment perception questions at the end of the experiment
included animacy and anthropomorphism scores from Godspeed
questionnaire in order to confirm the opposition of human vs ma-
chine in the conditions. They also included a question on how
interesting participants found the lessons and how smooth the tran-
sitions between interactions were. The interest score was aimed
to control for the fact that participants could be more interested
and therefore more engaged in the lesson with Furhat because of
its novelty. It also served as a measure of subjective engagement,
since entrainment has been linked to engagement before [28]. The
question on smoothness of transitions was aimed to control for the
differences in conditions connected to the way they were merged
together in the experimental stimuli.

Figure 2 illustrates the differences between perception of each
condition (human and Furhat). The y-axis shows the score nor-
malised over the maximum score for each type of question, there-
fore for each perception parameter the maximum score is 1 and the
minimum is 0.

The animacy and anthropomorphism scores were significantly
higher in the human condition (p<0.01). This confirms our assump-
tion of it being perceived more human-like. The animacy scores
were also significantly higher in the human condition, as expected
(p<0.01). The interest and the smoothness scores were insignifi-
cantly different between conditions, which confirms that the condi-
tions were similar technically and content-wise.

Figure 2: Average experiment perception scores for different
conditions (error bars show standard error).

4.2 Acoustic-prosodic entrainment
Our results indicate that, despite the online setting and artificial
nature of the interactions, all participants entrained on the tutor
voice: Every participant in both conditions had at least one fea-
ture with significantly positive convergence or at least one with
significantly positive synchrony.

Although there was entrainment in both conditions, participants’
proximity, convergence and synchrony in their intensity (mean
and max) and max pitch were insignificantly different between
conditions (p>0.01). However, for the mean pitch, which is a major
predictor of acoustic-prosodic entrainment [10], the convergence
was significantly lower in robot condition in comparison to the
human condition (p<0.01). This said, proximity and synchrony by
mean pitch by themselves were insignificantly different between
conditions.

Although the variability between participants is quite high (see
figure 3), the convergence by mean pitch was significantly positive
for 65% of participants in human condition. In robot condition only
39 % of participants displayed significantly positive convergence
by mean pitch in robot condition. This means that the acoustic-
prosodic entrainment was stronger in the human condition, con-
firming our hypothesis.

Not only objective human-likeness (i.e. distinction between con-
dition), but also subjective perception of anthropomorphism ap-
peared to positively correlate with convergence by mean pitch
(Pearson correlation p<0.01). To illustrate the trend, we plotted
linear regression over all participants figure 4.

Another significantly positive correlation can be noticed be-
tween convergence by mean pitch and the perception of animacy
of the tutor (figure 5). The answers on a question on subjective
engagement (’Rate how interesting did you find the lesson from 1
to 10’) show similar trend: there was a significantly positive corre-
lation of convergence by mean pitch to the interest score (Pearson
correlation p<0.01).
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Figure 3: Differences in mean pitch convergence between
conditions.

Figure 4: Significant positive correlation between conver-
gence by mean pitch and perceived anthropomorphism.

Figure 5: Significant positive correlation between conver-
gence by mean pitch and perceived animacy.

5 DISCUSSION
We found that mean pitch convergence was significantly higher in
the human than in the robot condition. This confirms H1. The fact
that humans entrain more to other humans than to a robot is in
line with findings by Strupka et al. [32].

We found that the acoustic-prosodic entrainment in mean pitch
was positively correlated with participant’s perception of human-
likeness. In fact this was true for both the subjective (perceived
anthropomorphism) and objective (the distinction between condi-
tions) anthropomorphism measures. This confirms H2.

The fact that we did not find prosodic entrainment in other
prosodic features is in line with previous research on human-human
entrainment [10]. This might be related to the variability in partici-
pants’ mother-tongue - although they all were English-speaking,
they had different degree’s of English proficiency and English ac-
cents; they also had different cultural backgrounds and varied in
gender and age. Since all those can affect acoustic-prosodic entrain-
ment [16, 18]. A bigger sample study will be carried out in the
future.

Our results expand the previous study by [33] to the visual do-
main: in [33]’s experiment the less human-like voice triggered less
acoustic-prosodic entrainment than a human voice. In our experi-
ment, the robotic appearance of a tutor triggered less entrainment
than a human tutor. This also is in line with the distinction be-
tween human-addressed and machine-addressed speech found in
[31, 35]. Adding entrainment as one of the features could prove to
be beneficial for those algorithms.

The fact that we discovered the effect of anthropomorphism on
entrainment brings various implications, since there are many per-
ceptual factors that are entailed by anthropomorphism in human-
robot interaction and entrainment in human-human interaction.
More human-like conversational agents seem more trust-worthy
[8, 22] and socially present [13, 29]. Therefore, it may suggest that
higher prosodic entrainment could correlate with conversational
agent’s perceived trustworthiness and social presence in human-
robot interaction, as well as speakers’ rapport [19] and engagement
[16, 24].

All in all acoustic-prosodic entrainment appears to be a promis-
ing behavioural measure of access to a person’s perception of an-
imacy and anthropomorphism in his/her conversational partner.
A real-time measure based on prosodic entrainment could widely
benefit fields such as social robotics and hybrid intelligence [1].
It might further be a relevant measure to further investigate in
relation to human-human/machine addressee detection [30, 31, 35].

On a cognitive level, there might be a link between anthropo-
morphism and entrainment via mirror neurons, which is activated
when a human interacts or observes another human [11, 25]. The
mirror neurons are thought to activate embodied experiences and
therefore aid imitation learning [23]. Since entrainment is imitation
in itself, mirror neurons can also be viewed as crucial mechanism
in social entrainment [17]. This might explain why anthropomor-
phism of the tutor triggered more acoustic-prosodic entrainment
in our experiment, and why interest and animacy scores also corre-
lated with higher entrainment.
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6 CONCLUSION AND FUTUREWORK
In this work, we investigated the effect of a human versus robot
face on prosodic entrainment in an educational use-case scenario.
We could show that humans converged to a higher degree in mean
pitch to another human face than a robot face. Maybe more impor-
tantly, though, we could show that the greater the perception of
animacy and anthropomorphism, the greater the degree of prosodic
entrainment. In future research, we plan to add the variable of age
and gender to our experimental setup. Using purposeful manipu-
lations of prosodic convergence, we aim to explore their effect on
participants’ recollection of the conversation.
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