
 
 

Delft University of Technology

Modeling and Detecting Anomalous Safety Events in Approach Flights Using ADS-B Data

Bonifazi, A.; Sun, J.; van Baren, Gerben; Hoekstra, J.M.

Publication date
2021
Document Version
Final published version
Citation (APA)
Bonifazi, A., Sun, J., van Baren, G., & Hoekstra, J. M. (2021). Modeling and Detecting Anomalous Safety
Events in Approach Flights Using ADS-B Data. Paper presented at 14th USA/Europe Air Traffic
Management Seminar.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Fourteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

Modeling and Detecting Anomalous Safety Events
in Approach Flights Using ADS-B Data

Alberto Bonifazi∗, Junzi Sun∗, Gerben van Baren†, Jacco Hoekstra∗

∗Faculty of Aerospace Engineering,
Delft University of Technology,

Delft, the Netherlands

†Inspectie Leefomgeving en Transport
Minister van Infrastructuur en Waterstaat

Den Haag, the Netherlands

Abstract—Not all flight data anomalies correspond to oper-
ational safety concerns. But anomalous safety events can be
linked to anomalies in flight data. During the final phases of a
flight, two significant safety events are unstable approach and go-
around. In this paper, using Automatic Dependent Surveillance-
Broadcast (ADS-B) data, we develop several exceedance and
anomaly detection techniques to identify these events. Rule-
based algorithms and data-driven Gaussian Mixture Models
(GMM) are proposed to identify unstable approaches. A fuzzy
logic approach is developed to model and to identify go-arounds.
We extend our analysis combining runway information and
meteorological reports to provide deeper insights on flight
safety during the approach. These identification models are also
applied to the ADS-B data from the Schiphol Airport area in
Amsterdam in 2018. By using a reference report provided by the
Dutch transportation regulatory agency, the chosen GMM model
can identify 25% to 30% of reported unstable approaches, and
the go-around detection model can identify 98% of go-arounds.

Index Terms—flight safety, anomaly detection, safety moni-
toring, ADS-B, Schiphol Airport, data mining

I. INTRODUCTION

One of the goals of air traffic management is to ensure safe
aircraft operations. To this end, aviation authorities around
the world have promoted safety information sharing report-
ing mechanisms. The most notable ones are the European
Co-ordination Centre for Accident and Incident Reporting
Systems (ECCAIRS) and the Aviation Safety Information
Analysis and Sharing (ASIAS) from the FAA. Although
the majority of stakeholders join these initiatives, much
of the safety knowledge they generate remains within the
boundaries of the organizations. Under the current framework,
only serious occurrences are communicated. It is also often
challenging for researchers to use safety related data due to
confidentiality.

Automatic Dependent Surveillance-Broadcast (ADS-B)
technology can complement this information, and it is com-
pulsory for most aircraft as of 2020. With ADS-B, aircraft
continuously broadcast their position, velocity, track angle,
and other related flight information. In addition to flight mon-
itoring, combining ADS-B data with data-mining techniques
can also give us extra safety knowledge. Researchers and
regulators can rely on this independent data source to monitor
and verify safety reports.

The approach and landing phase is the most critical phase
of a flight. In this phase, 65% of accidents occurred between
2011 and 2015 [1], particularly unstable approaches and go-
arounds. The first event corresponds to 14% of the accidents
occurring during approach and landing [1]. The second one is
a standard procedure that can be initiated by the pilot or ATC
for different reasons, such as an unstable approach, conflicting
traffic, or adverse weather. For this reason, there is a strong
link between go-arounds and anomalous safety events.

Extracting safety knowledge from aircraft data is an active
field of research. Commonly, safety knowledge is extracted
using exceedance detection algorithms [2], which are depen-
dent on certain thresholds. The main pitfall of this method
is that it fails to detect unknown events. The focus of
recent research is on anomaly detection techniques, which
have shown better performance but may demonstrate a false-
positive rate as high as 70% [3].

The most well-recognized technique in anomaly detection
is the Once Class Support Vector Machine (OC-SVM) variant
called the Multiple Kernel Anomaly Detection (MKAD)
algorithm [4]. This algorithm has been tested extensively for
approximately 10 years for various phases of flights, and it
is able to detect unstable approaches and go-arounds [5], [6].
However, its focus is on discovering flight level anomalies,
and it has shown the best results when used with a single type
of aircraft and FOQA data. To overcome these limitations,
energy metrics [7], [8] have shown potential in identifying
instantaneous anomalies in general aviation operations.

This paper aims to contribute to the field of safety moni-
toring during the approach phase of commercial flights. The
goal is to produce insights based on the safety knowledge
extracted from ADS-B data and to develop an independent
safety monitoring mechanism. We combine both rule-based
and data-driven unstable approach detection. We also develop
a go-around detection model based on fuzzy logic extending
our previous research [9].

In the rest of this paper, section II and section III discuss
the detection of anomalous safety events using a rule-based
algorithm, GMM, and fuzzy logic. Section II addresses the
detection of unstable approaches and section III the detection
of go-arounds. Section IV covers aspects regarding the data in
use and the preprocessing strategy. The findings are presented
in section V and section VI. The result consists of a set of



safety indicators that can be aggregated in different manners
to produce insights.

II. DETECTING UNSTABLE APPROACHES

Several definitions of an unstable approach have been used
in air traffic management depending on the operator and the
entity [10]. All definitions consider trajectories that are not
aligned with the correct flight path, being too fast or too slow.

When analyse unstable approaches, it is common to relate
them to corresponding meteorological conditions, which are
1000 feet above airport elevation in Instrument Meteorolog-
ical Condition (IMC) or 500 feet above airport elevation in
Visual Meteorological Condition (VMC). When these condi-
tions can not be met, go-arounds should be executed.

We propose two strategies in this paper to detect unstable
approaches. The first one checks the horizontal boundaries of
stable approach operations with the flight data. The second
one models the normal specific energy boundaries of flight
operations and checks the specific energy profile of particular
approach with this model.

A. Horizontal Compliance

This method assumes that approaches in the airport of
interest (EHAM) are ILS approaches. Hence flights must flow
within one-dot of the localizer [10], which represents a dot on
the Course Deviation Indicator. The definition of dot depends
on the instrument. For instrument landing system localizer
(LOC), this corresponds to one degree, while for a very high
frequency omni-directional range (VOR), it corresponds to
two degrees.

The ideal ILS-intercept trajectory is defined for each run-
way as the line connecting the final approach fix (FAF),
runway threshold, and localizer. Information is collected
from the instrument approach chart. A horizontal compliance
region is constructed as the area comprised within 1 degree of
the ILS-intercept. It results in areas with the same dimension
and shape but positioned differently depending on the runway.

In Figure 1, we visualize the horizontal compliance area for
each runway in gray. As defined in regulations, an aircraft is
considered unstable if it only stabilizes after 1000 ft in IMC,
or 500ft in VMC.

B. Energy Compliance

An unstable approach can commonly display abnormal
energy levels during the flight [11]–[13]. This strategy makes
use of various specific energy parameters during the approach.
Specific energy (e) refers to energy (E) per unit mass (m):

e =
E

m
(1)

The detection strategy is composed of two steps: energy
features generation and anomaly detection. The energy fea-
tures are derived from ADS-B data. Subsequently, anomaly
detection is performed using a Gaussian Mixture Model
(GMM). GMM is an unsupervised learning model, with the
advantage of not requiring a priori knowledge of anomalous
data. The GMM algorithm clusters normal operations based
on a weighted sum of Gaussian component densities, and

Figure 1: Example of Schiphol airport compliance areas. The hor-
izontal compliance area (in gray) corresponds to the area in which
an aircraft needs to be flying once it intercepts the ILS.

anomalous operations can be found where energy features
are beyond certain confidence intervals. The main challenges
in this approach are to identify the number of Gaussian
mixtures and the appropriate confidence interval to determine
anomalies.

1) Energy Features Generation: The energy features we
chose for unstable approach detection are: specific total en-
ergy (e), specific kinetic energy (ek), specific potential energy
(eu), energy angle (γp), and the specific energy rates (ė, ėk,
ėu). In addition, the energy angle is a measure of how the
flight-path angle can change given the current energy level
[14].

These features are similar to the ones used by Puranik and
Marvis in their work [11], and they are computed as follows:

e = ek + eu (2)

ek = 0.5 · v2 (3)
eu = h · g (4)

γp = arcsin
(
VS

v

)
+
v̇

g
(5)

ė = ėk + ėu (6)
ėk = v · v̇ (7)
ėu = VS · g (8)

where v is the true airspeed, and h is the altitude above
the ground. They require additional information than ADS-
B to be computed, as explained in section IV-B. g is the
gravitational acceleration, and VS is the vertical rate.

Once the energy features are calculated, the enhanced
trajectory data are re-sampled to for training the GMM. We
sample the data in space using a median window of 0.5
NM, which corresponds roughly to 12 seconds. The time



interval varies greatly depending on the flight stage. The
analysis considers aircraft flying between 0.5 to 10NM from
the runway threshold. This is the area where final approach
procedures occur, as shown in the Instrument Approach
Charts. The last portion, between 0 and 0.5, is not used due
to lower ADS-B data quality closer to surface.

As an example, Figure 2 shows the variation of the specific
potential energy, the specific kinetic energy, and the specific
total energy during the approach phase for all the flights we
analyze in this paper.
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Figure 2: Variation of the specific potential energy, the specific
kinetic energy and the specific total energy depending on the distance
to runway threshold

2) Anomaly Detection: The anomaly detection step makes
use of GMM. A GMM is fully defined by the following
equation:

p(x|λ) =

k∑
i=1

wig(x|µi,Σi) (9)

Equation (9) represents a parametric probability density
function that is a weighted (wi) sum of Gaussian components.
g(x|µi,Σi) indicates a single component, where Σ is the
covariance matrix that captures the relation between the
different features. k is the number of components in the
mixture. The majority of these parameters can be obtained
using the expectation-maximization (EM) algorithm. Only the
type of covariance matrix and the number of components need
to be specified beforehand. This approach is very common in
the literature [7], [15].

The type of covariance matrix has direct consequences on
the shape of the Gaussian components. [7] and [15] use a di-
agonal covariance matrix because of the lower computational
cost, which restricts the shape of the Gaussian components
forcing it to be oriented along the coordinate axes. During

the experimentation process, the computational time of using
any kind of covariance matrix is reasonable.

Because aircraft’s behavior changes while performing an
approach, a single GMM would over-generalize behavior.
Hence, we propose a multi-GMM approach comprised of
three separate Gaussian mixtures, referred to as 3-GMM
model henceforth. The 3-GMM approach can be described
as follows:

1) The first GMM learns what it means to be stable
during the final approach. This GMM is trained on
aircraft flying at a distance from the runway threshold
between 0.5 NM and 4 NM. This covers the most
interesting aircraft operations because it corresponds
to the decision area described by the Flight Safety
Foundation as it includes the gates of 500ft and 1000ft.

2) The second GMM learns how aircraft descend and
intercept with the ILS. It comprises the final approach
area that goes at a distance from the runway threshold
between 4 NM to 7 NM.

3) The last GMM learns a broader spectrum of aircraft be-
haviors as the area expands 3NM starting at a distance
of 7NM from the runway threshold. At this stage, an
aircraft could be descending, turning, or at flying level.

In addition to the energy features we have discussed earlier,
3-GMM includes two more features, which are time and
distance to runway threshold. These two new features are
significant due to the fact that each energy level is closely
related to a particular position and time before landing.

We use a full covariance matrix for the 3-GMM model
so that the shape of GMM components are not constrained.
The number of components is chosen using the Calin-
ski–Harabascz (C-H) index, as suggested by Puranik in [7].
This is an internal evaluation criterion that measures how
compact and how separated components are.

Based on this information, the 3-GMM model can be
trained after normalizing the data. We perform the training
with data that are within 95% confidence interval of its param-
eter values. It is worth noting that this does not automatically
classify data beyond 95% confidence interval as anomalies.
The final anomaly detection still relies on GMM thresholds,
which need to be carefully chosen.

In Figure 3, an example GMM model is shown. The GMM
is trained based on the first segment from 10 NM to 7 NM to
runway threshold. The figure contains around 50 k flights. The
shade of green represents the log-probability of a trajectory
during normal operation.

After the 3-GMM model is trained, it is possible to obtain
the probability density of every point, as shown in Figure 3.

Finally, to detect unstable approaches, a threshold is se-
lected such that it contains a percentage of points with the
lowest probability density. Puranik in [7] suggests to use
0.05%, or 0.1% of points. In this paper, the amount of points
is selected experimentally, as will be detailed in section V-D2.
The anomaly detection goes as follows:

1) Each trajectory is fed into to the 3-GMM model, which
will return the probability density for each of its points.

2) If the probability density of a point is above the
anomaly threshold, the point is labeled as anomalous.



Figure 3: The GMM model visualized for the first segment. Model is
trained on all features, while only specific total energy and distance
to runway threshold are illustrated. The color bar represents the log-
probability of a flight point being a normal operation.

3) A trajectory is considered anomalous if at least two
points are anomalous in the last 7 NM.

III. DETECTING GO-AROUNDS

A go-around is an operation that occurs when landing
is aborted. Go-around deviates from the intended operation,
which increases the risk that can be caused by increased work-
load of pilots. Accommodating a go-around in busy airspace
also increases the workload for air traffic controllers. In
some cases, pilots can refrain from performing this maneuver,
where the approach is continued and may remain unstable.
Thus, it May lead to loss of control, runway excursion, or
controlled flight into terrain.

On top of the inherent risks of go-arounds, it is important
to understand what are the circumstances surrounding a go-
around because they are potentially anomalous safety events
themselves. Generally, these are unstable approach, conflict-
ing traffic, or adverse weather. The detection of go-arounds
from ADS-B data follows a two-steps approach: identification
of a possible go-around and evaluation of go-around score.

In some part of the world, go-around may be considered as
a normal operation to mitigate capacity constraints. However,
it is worth noting that, for the airport in this paper (EHAM),
go-rounds are only issued if there is a safety risk.

1) Identification of a Possible Go-Around: A go-around
consists of climbing to a predetermined altitude prescribed in
the Instrument Approach Chart and then turning 360 degrees
around the runway. Thus, an intuitive strategy to detect a go-
around is identifying when an airplane starts climbing and
then changes its course.

This idea forms the basis of the detection model presented
in this paper. This step employs the technique developed by
Sun et al. in [9]. Applying this algorithm allows for the
identification of rapid changes in aircraft behavior. The flight
phase detector can distinguish between five different phases:
climb (CL), ground(GND), descent (DE), level (LVL), and

cruise (CR). As shown by Proud [16], this is particularly
useful in the case of a go-around as the algorithm detects
changes from DE to LVL/CL.

The change in phase is the indication for the beginning of
a possible go-around; this will be referred to as the starting
position in the text. Four ADS-B variables are analyzed:
vertical rate, altitude, ground speed, and track angle. During
a go-around, these variables are expected to change in a
very specific way and in a specific time interval. A moving
average with a window of 15 seconds is used to reduce the
susceptibility of the model to outliers.

The vertical rate and the altitude indicate that the airplane
is climbing and gaining altitude. It is expected that these
two variables will be changing immediately after the starting
position and up to the next 2 minutes. In particular, the model
analyzes the delta, namely the change in altitude from the
starting position.

In this go-around detection approach, the ground speed and
the track angle are expected to change some time up to 10
minutes from the starting position.1 These two states will
start varying after the climb. The track angle keeps changing
until the aircraft is aligned with a runway for landing. The
algorithm constantly computes the change in ground speed
and track angle from the starting position.

2) Evaluation of Go-Around Score: In this step, we want
to evaluate how much the data resemble a go-around. We
describe the expected behavior of these variables using four
S-functions, which output one for highest possibility. Every
variable has its specific S-shape function with the following
general definition:

S(x; a, b) =



0, if x ≤ a

2
(

x−a
b−a

)2
, if a ≤ x ≤ a+b

2

1− 2
(

x−b
b−a

)2
, if a+b

2 ≤ x ≤ b
1, if x ≥ b

(10)

where a and b are values where the score is 0 and 1, as shown
in Figure 4. The functions for each variable are defined as
follows, where delta represents the difference between the
current position and the starting position:

∆X(m) = S(m; 30, 300) [deg]

∆H(n) = S(n; 100, 1000) [ft]

∆V (p) = S(p; 5, 80) [kn]

V S(q) = S(q; 10, 1000) [fpm]

(11)

These 4 S-functions in (11) represent a simplified version
of the behavior of an aircraft during a go-around, where X
corresponds to the track angle, H to the altitude, V to the
ground speed, and V S to the vertical rate. By applying to
actual flight data, we obtain go-around scores. Ideally, there
should be points in the trajectory considered where all these
functions have scores of 1. This is not always the case since

1This 10 minute value is chosen because a go-around typically adds a flight
delay of this amount. https://www.casa.gov.au/safety-management/advice-air-
travellers/go-arounds



Figure 4: S-function of the ground speed

flight data are prone to errors. For this reason, the model
identifies the trajectory of a go-around if the average of the
maximum score obtained from all four S-functions is higher
than 0.5. Figure 5 provides direct insights into the working
mechanism of this strategy.

Figure 5: Evolution of the scores of the various ADS-B variables
during a go-around. The red areas indicate scores above the 0.5
go-around detection threshold.

The figure shows how the score is obtained using the S-
functions and the ADS-B data during a go-around procedure
with the red areas corresponding to the 0.5 detection thresh-
old. The detected flight phases are labelled using different
colors. The change in color represents a change in phase
corresponding to different stages of a go-around. In particular,
time zero corresponds to the starting position that is the point
in which the phase changes from descent (DE) to climb (CL)/
level (LVL).

In this example, a go-around is clearly detected because
all variables have at least a point above the 0.5 detection
threshold. As expected, the altitude and the vertical rate vary
rapidly. In the vertical rate plot, there is a sudden jump. This
is not surprising as this variable represents the instantaneous
change in altitude. Furthermore, once the aircraft has reached

the go-around altitude, this variable drops as the altitude of
aircraft does not increase anymore. The altitude score remains
high during the whole go-around and then it starts decreasing
gradually during the final descent towards the airport.

IV. DATA PROCESSING

A. Data sources

Data used in this research consist of flight data and weather
data. Flight data include ADS-B data, an aircraft database
from OpenSky2, and Schiphol’s Aeronautical Information
Services (AIS) publications3. The weather data are METe-
orological Aerodrome Report (METAR) reports and Global
Forecast System (GFS) data from the National Oceanic and
Atmospheric Administration (NOAA)4.

The ADS-B data are collected through the antenna po-
sitioned at the Aerospace Faculty of the Delft University
of Technology. ADS-B data provide aircraft identification,
positions, and velocities. The aircraft database from OpenSky
contains additional information on the aircraft, including
manufacturer, aircraft model and typecode, registration, and
operator. Among Schiphol’s data from the AIS publication,
the Instrument Approach Charts and runway data are used.

METAR reports indicate the weather perceived at the
airport on any particular day. In this case, METAR reports
from Schiphol are downloaded from IOWA ASOS network5.
These reports are generated every 30 minutes, and they
include many weather variables. The ones that are used in this
research are timestamp, temperature, dew point temperature,
wind direction, wind speed, pressure, visibility, wind gust,
cloud coverage, and weather codes. GFS data is used for
higher altitudes, which offers wind information at intervals
of 700 ft with updates every 6 hours.

B. Preprocessing

In this step, the raw data are cleaned and combined to create
a clean dataset for further analysis. A preliminary procedure
consists of removing general aviation aircraft, helicopters, and
ground vehicles using the OpenSky aircraft database.

It is possible to know exactly which aircraft communicated
the ADS-B data point because the message includes the
ICAO’s identifier. However, the same aircraft might land and
take-off multiple times on the same day. For this reason,
the data points of a particular aircraft are further divided
into trajectories. This is a crucial step as we will be using
trajectories later in the analysis. Given the fact that we only
use the area around Schiphol for the analysis, it is easy
to detect inbound and outbound traffic, which gets labeled
respectively as approaching and taking-off traffic. In this way,
we can further refine the trajectories used for the analysis by
selecting only approaching traffic. Throughout this process,
incomplete trajectories are removed. Finally, using data from
Schiphol’s AIS publication, it is possible to determine the
landing runway for each approaching trajectory.

2opensky-network.org/aircraft-database
3en.lvnl.nl/information-for-airmen/publications-for-airmen
4ncdc.noaa.gov/data-access/model-data/model-datasets
5https://mesonet.agron.iastate.edu/request/download.phtml



The track angle included in ADS-B is a valuable source
of information. However, they are not always accurate. Iden-
tifying the causes of this behavior is beyond the scope of
this work, but a track angle fix is proposed. It is observed
that sometimes when an aircraft performs a go-around or
after landing when it moves along the taxiways, its track
angle indicator doesn’t follow the aircraft movements. The
track angle communicated via ADS-B data doesn’t change
whereas it is clear it should have. To solve this issue, the
track angle information communicated from the ADS-B data
is compared to a bearing estimated using its position. If the
difference between the two is higher than 60 deg, the estimate
is used as track angle data. To limit the influence of poor
measurements in the track angle estimation, a window of 40
seconds is considered and a minimum amount of 5 points.

Furthermore, ADS-B data provide ground speed and baro-
metric altitude. These are dependent on the weather, and
thus limit the comparison of aircraft in different meteorolog-
ical conditions. Nonetheless, it is possible to remove their
dependency using METAR reports and GFS NOAA data.
Since barometric altitude assumes standard temperature and
pressure, these two values are adjusted based on METAR
reports as follows:

TA = T + a · hA

PA = P ·
(
TA
T

) −g
a·R

PA,M = PA

TA,M = TM ·
(
PA,M

PM

)a·R
−g

hA,M =
TA,M − TM

a

(12)

where PA, TA, and hA refer to pressure, temperature, and alti-
tude of the aircraft assuming standard atmospheric conditions.
The variables P , T , g, a, and R are International Standard
Atmosphere constants, while, PA,M , TA,M and hA,M are the
airplane’s pressure, temperature, and altitude calculated using
PM and TM from the METAR report.

Ground speed is dependent on the wind speed, and it can
be corrected to obtain true airspeed by subtracting ADS-
B ground speed from the wind speed. METAR reports are
used to correct speed up to an altitude of 100 m, where the
difference in wind speed is estimated to be approximately 1.5
m/s. After this point, wind information is extracted from the
GFS NOAA data.

It is interesting to understand the relationship between
safety anomalous events and the weather. For this reason, we
establish a way to assess the severity of the weather with a
meaningful score using EUROCONTROL’s ATMAP weather
algorithm [17]. In this metric, a high score corresponds to
poor weather with four being the threshold for a weather
condition that disrupts airport operations. The algorithm also
takes consideration if an aircraft is flying in VMC or IMC
[18].

V. EXPERIMENTS AND RESULTS

The results are produced using the data collected in 2018.
This section shows examples of the detected events, the
validation for the three detection models, and insights drawn
from monitoring safety indicators.

A. Example of Horizontal Compliance

Figure 6 shows an example of the type of trajectory that
the horizontal compliance strategy is able to detect. In this
case, it shows a trajectory, purple line, that stabilizes at 500
ft, this gate is represented in orange.

Figure 6: A flight that stabilizes after the 1000ft light blue gate and
before the 500ft green gate.

B. Example of Energy Compliance

The flight shown in Figure 7 represents an unstable ap-
proach. The red dots are points belonging to this particular
aircraft, while the green area comprises 95% of data, with the
dashed line as its median.

It is considered anomalous even though some of the param-
eters vary within normal energy bounds. This is where the
multivariate nature of GMM anomaly detection comes into
play because it discovers anomalies based on a combination
of different features.

Looking at the specific potential energy plot in Figure 7,
it is clear that the aircraft is approaching higher than usual.
The reason might be that a high speed is maintained until the
beginning of the final approach phase, which is shown in the
specific kinetic energy plot. This situation leads to an overall
higher than usual specific total energy level. It is possible to
infer that the aircraft tried to dissipate its excess energy, which
is visible in the rate plots. When we inspect the trajectory
from the time perspective, the aircraft is advancing faster than
usual towards the threshold.

This flight is also present in the validation list, which
is described in detail in section V-D. This occurrence is
accompanied by the following explanation as: after accepting



50

100

e u
 [x

10
0 

m
2 /s

2 ] Specific Potential Energy

Median
95% CI
Selected flight

20

40

60

e k
 [x

10
0 

m
2 /s

2 ] Specific Kinetic Energy

50

100

150

e 
[x

10
0 

m
2 /s

2 ] Specific Total Energy

10

5

0

p 
[d

eg
]

Energy Angle

75

50

25

0

e u
 [m

2 /s
3 ]

Specific Potential Energy Rate

100

0

100

e k
 [m

2 /s
3 ]

Specific Kinetic Energy Rate

0246810
Distance to Runway Threshold [NM]

100

0

e 
[m

2 /s
3 ]

Specific Total Energy Rate

0246810
Distance to Runway Threshold [NM]

0

100

200

T2
TH

R
 [s

]

Time to Runway Threshold

Figure 7: The energy metrics of an aircraft performing an unstable approach

a short line-up, the approach is unstable because the aircraft
is high during the approach, which visible in the energy
metrics plot.

C. Detection of Go-Around

An example of a go-around detected on runway 06 by the
algorithm is presented in Figure 8. In this figure, the flight
trajectory is illustrated in black, and we can clearly see that
a go-around is performed.

D. Validation

Validating the results of the detection algorithms is chal-
lenging because data is unlabeled. However, we could rely on
a list of known go-arounds and unstable approaches provided
by ILT (Environment and Transport Inspection), a part of
the Ministry of Infrastructure that in charge of the airports’
oversight in the Netherlands. The list, which will be called
the validation list, comprises 65 go-arounds and 48 unstable
approaches.

There is an important methodological difference that needs
to be made. Since this report data is generated by manual
reporting process, it is possible that a flight present in the
validation list is not present in the ADS-B data. For go-around
detection, this is less likely to happen, since go-around can
be visually inspected. However, for unstable approaches, this
is not always the case since energy compliance information
can not be inspected directly.

On the other hand, energy metrics do not always corre-
sponds to unstable approaches. This dilemma is presented by
LI et al. in [15] where four experts could not agree on which
situation poses safety concerns.

Figure 8: An airplane performs a go-around and then lands on
runway 06.

1) Horizontal Compliance: There are only two unstable
approaches detected for 2018 using this strategy, none of
which is present in the validation list. Furthermore, by in-
specting the detected cases, one detection is a false-positive
as it is caused by poor data quality. The analysis shows that
landing aircraft are at most times within horizontal stability
limits.



2) Energy compliance: Comparing the flights identified in
the ADS-B data with the ones of the validation data, we find
that 31 are present in both.

As mentioned in section II-B, a threshold is used to deter-
mine if a point is anomalous. The goal is to select a threshold
that includes all anomalous safety occurrences while limiting
as much as possible the number of false-positives. Table I
shows the relation between a particular GMM threshold,
number of detected events, detection accuracy, and ratio of
positives. They are defined as:

1) The number of detected events refers to the occurrences
that are also present in the validation list.

2) The detection accuracy is the ratio of the number of
detected events over the total number of events found
in the validation list.

3) The ratio of positives provides an overview of the
amount of approaches that are considered unstable in an
year relative to the total number of approaches occuring
that year.

TABLE I. Comparing the number of unstable approaches detected
from the validation list depending on a GMM threshold

GMM Detection Ratio of
threshold [%] Detecteda accuracyb [%] positivesc [%]

0.01 3 9.68 0.50
0.05 6 19.36 1.08
0.1 8 25.81 1.60
0.5 9 29.03 4.78
1 11 35.48 7.55
2 15 48.39 12.70
3 17 54.84 17.55
5 21 67.74 26.23
10 29 93.55 42.80

aNumber of detected unstable approaches that are present in the validation
list

bRatio between detected unstable approaches also present in the validation
list and the total number of elements in the validation list

cRatio between number of detected unstable approaches and overall
number of detected landing aircraft

As expected, when increasing the threshold the number of
detected events increases. In the last row, when the threshold
equals 10 %, the detection accuracy rises to roughly 94%.
However, 43% of landing trajectories are labeled as unstable.
It is likely that the higher percentage of positives results
underlies a high percentage of false positives. According to
[19], approximately 3% of the approaches are unstable. For
this reason, a reasonable choice of threshold is between 0.1%
and 0.5%.

In our study, we recommend a lower threshold, 0.1%, to
limit the number of false positives. This corresponds to a
detection accuracy of 26%, and it reveals an overall number
of unstable approaches equal to 3000 for the year 2018.

3) Detection of Go-Around: In this paragraph, two vali-
dation tests are performed: 1) comparing the results with the
validation date set, and 2) manual inspection for the detection
of false-positives.

The first test reveals that 18 trajectories are not present
in the ADS-B data, approximately 28% of all 65 go-arounds

present in the validation list. The missing data is likely due
to the availability of ADS-B data for low altitude. Among
the present trajectories, 46 go-arounds are detected and 1 is
undetected, which yields a accuracy of 98%.

Another way to evaluate this algorithm is by manually
inspecting its output. This means logging when the result is
a go-around. The results are that 285 are true positives and 7
false positives out of 292 detected go-arounds in 2018. Thus,
false positives occur only 2% of the time.

E. Monitoring the Safety Indicators

In this section, safety indicators are constructed by aggre-
gating the results of the energy compliance model and the go-
around detection model. With the knowledge extracted from
the ADS-B data, it is possible to gain insights into operations
by analyzing the relationship between different variables.

1) Energy Compliance: Table IIa shows the relation be-
tween unstable approaches, months of the year, and weather
conditions. The weather column in the table represents unsta-
ble approaches happening in adverse weather situations.

This table shows that the months with the highest number
of unstable approaches are March, January, and July, with
approximately 300 unstable approaches per month. February
is the month with the least unstable approaches, around 180.
We can see a clear relationship between weather conditions
and unstable approaches. As expected, the months with the
largest portion of unstable approaches happening during poor
weather are January and December. In these months, approx-
imately 25% of the unstable approaches are linked with the
weather. During June and July, this occurs only 3% of the
time.

Furthermore, it is possible to see how the unstable ap-
proaches vary depending on the runway and the weather
conditions. This is shown in Table IIb. The runway with the
most unstable approaches is 36R with 809, almost 30% of
all. The runway where there seems to exist a strong link
between adverse weather and unstable approaches is runway
27. Almost 40% throughout the year, with peaks in January
and December, where poor weather is concurrent to unstable
approaches 60% and 50% of the time respectively.

2) Detection of Go-Around: The similar analysis is applied
to go-arounds. Table IIIa and Table IIIb show the relation-
ship between the number of go-arounds, weather conditions,
unstable approach, and separation to closest aircraft. Com-
pared to the analysis of unstable approaches, there are two
extra columns. The unstable column contains information on
whether the go-around is preceded by an unstable approach.
The separation column indicates if the closest aircraft to the
one performing the go-around is at a distance between 1.5NM
and 3NM. These values are chosen because there is no aircraft
closer than 1.5 NM, while 3NM is the minimal for terminal
airspace operations.

From Table IIIa, we can see that 25% of go-arounds happen
in December and January. The cause can be linked to poor
weather conditions since 60% of go-arounds in this period
are linked with adverse weather conditions. In September,
approximately 60% of go-arounds are also linked with bad
weather. April is the month where go-arounds are preceded by



TABLE II. Overview of detected approaches and unstable ap-
proaches by month, runway, and weather

(a) By month and weather

Month Unstablea Weatherb Totalc

Jan 297 77 15269
Feb 182 33 14370
Mar 304 30 16794
Apr 215 8 17645
May 256 36 17212
Jun 259 8 18276
Jul 298 7 19409
Aug 265 48 19554
Sep 213 48 18948
Oct 226 26 19292
Nov 214 14 16227
Dec 270 72 16249

(b) By runway and weather

Runway Unstablea Weatherb Totalc

06 528 57 48394
18C 409 20 35393
18R 662 86 66637
22 107 21 4018
27 351 131 17304

36C 133 27 9742
36R 809 65 27757

aNumber of unstable approaches
bNumber of unstable approaches with a weather score higher than 4
cNumber of approaches detected in the data

an unstable approach most often, at 40% of the time, followed
by October, at 36%. When we look at the separation between
aircraft, it seems to exert very little influence on the number
of go-arounds.

Table IIIb shows how the number of go-arounds varies
depending on the runway. The majority happens on runway
18R (68 go-arounds) and 27 (65 go-arounds). On this last
runway, 55% of go-arounds are linked with poor weather
conditions. In particular, 22 of 25 total go-arounds in January
are concurrent with a difficult weather situation. Also, runway
18R has 28% of go-arounds associated with adverse weather.
The peaks happen in January and September where go-
arounds are associated with poor weather 73% and 87% of the
time respectively. Unstable approaches precede 34% of go-
arounds on runway 36R and 29% on runway 06. In particular,
in April 80% of go-arounds on runway 06 are preceded by
an unstable approach.

VI. DISCUSSION

Different models are tested to monitor unstable approaches
and go-arounds using ADS-B data. Overall all methods would
benefit by having better data availability, as 28% of the go-
arounds in the validation list are not present in the data, and
35% for unstable approaches. In particular, there are fewer
data available at a lower altitude because this study relies
on an antenna 40 km away. This impacts the detection of
unstable approaches more than the detection of go-arounds
because this last maneuver is performed at higher altitudes.

TABLE III. Overview of detected go-arounds by month, runway,
weather, unstable approach, and separation

(a) By month, weather, unstable approach, and separation

Month Totala Weatherb Unstablec Separationd

Jan 44 29 2 1
Feb 12 1 3 1
Mar 29 6 4 3
Apr 22 0 9 1
May 32 5 9 6
Jun 26 2 8 1
Jul 28 2 7 1
Aug 22 4 3 1
Sep 23 13 3 2
Oct 11 1 4 1
Nov 10 1 1 0
Dec 26 12 7 1

(b) By runway, weather, unstable approach, and separation

Runway Totala Weatherb Unstablec Separationd

06 49 2 14 2
18C 33 3 5 5
18R 68 19 14 2
22 11 6 2 2
27 65 36 5 1

36C 12 3 4 1
36R 47 7 16 6

aNumber of go-arounds
bNumber of go-arounds with a weather score higher than 4
cNumber of go-arounds linked with an unstable approach
dNumber of go-arounds where the separation to the closest aircraft is

between 1.5NM and 3NM

The horizontal compliance algorithm is the one that shows
the most limited applicability. The analysis shows that landing
aircraft are always within horizontal stability limits, thus
the method has shown low efficacy in detecting unstable
approaches.

The energy compliance algorithm, instead, shows promis-
ing results with a detection accuracy of 26% on the validation
list. After improving the availability of data especially at
lower altitudes, the threshold used for anomaly detection
could be reiterated by a safety expert to improve the detection
accuracy. GMM is chosen as the anomaly detection strategy
due to its interpretability and its ability to handle multivariate
data. The ability to detect anomalies at discrete flight point
level makes the model more resilient in case of missing data.

A limitation of this model is that it is linked with the true
airspeed calculation because the vertical wind velocity is not
taken into account and it relies on the GFS NOAA wind data
that is updated every 6 hours at intervals of 700 ft.

Go-around detection is the best performing model with a
false positive rate of 2% and over 98% detection accuracy
on the validation list. Minor variations of this model can
potentially detect other aircraft operations, such as holding
patterns, which provide a measure of the ATC workload. This
paper attempts to understand the most likely circumstances of
go-arounds. Another aspect that can be analyzed is the wake-
category of the preceding aircraft. Nevertheless, some factors
remain difficult to investigate such as an ATC instruction



because of an occupied runway.
The thresholds used for the S-functions of the go-around

detection strategy are chosen empirically. Further studies
could be performed to improve the choice. However, given
the low false-positive rate and high detection accuracy, the
final difference might be marginal.

It is also interesting to see that between December and
January 25% of the unstable approaches are linked to severe
weather conditions and 60% of go-arounds. This could indi-
cate that pilots are more careful in severe weather conditions
and tend to not perform landing in unstable approaches.

VII. CONCLUSIONS

This paper shows a data-driven approach to construct the
basis of a safety monitoring system for approaching flights at
an airport. The methods are able to extract safety knowledge
from flight trajectory data. Of all three methods, two focus on
detecting unstable approaches. The first one relies on the idea
that a stable approach is constrained within certain horizontal
bounds. The second one assumes that an unstable approach
is characterized by an anomalous energy level. Thus, energy
features are derived from ADS-B data, and anomalies are
revealed using a GMM. The third method detects go-arounds
using fuzzy logic and s-functions that dynamically scores go-
arounds in trjactory data.

These models can detect anomalous safety events using
ADS-B data from 2018 collected around Schiphol Airport.
These results are aggregated to derive useful insights. For
example, December and January are the months in which
adverse weather conditions have the highest impact on the
presence of unstable approaches and go-arounds. Also, on
runway 27 unstable approaches and go-arounds are often
linked with an adverse weather situation.

From the results, it can be concluded that the data-driven
methodology proposed in this paper has the potential to
enable independent monitoring of aircraft operations using
aviation and meteorological open data.

Future research could focus on detecting other events that
may impact the safety of operations at different flight phases,
such as during take-off and ground operations. Another pos-
sible development is make use the detection model for the
prediction of go-arounds and unstable approaches at a earlier
stage of flights.
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