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Abstract—Accurate wind information is crucial in air traffic
management, for instance, to improve trajectory predictability
and precision in controlled time of arrival. Nowadays, air
traffic management relies on Numerical Weather Prediction,
which usually has a low resolution and low update rate. A
potential approach for improving the resolution and accuracy
of the weather predictions consist in using airborne aircraft
as meteorological sensors. Aircraft surveillance systems such
as ADS-B and Mode S, transmit data related to weather
conditions, automatically or in response to interrogation by air
traffic control surveillance radars. In this paper, three different
methods for constructing wind profiles from surveillance data
have been applied and a comparison between them carried out.
The first two methods being modifications of the Kalman filter
have been referred to as the Adapted Kalman Filter and Smooth
Adapted Kalman Filter. The third one is based on Gaussian
process regression. The Kalman filter based methods are able to
assimilate nearby data in a straightforward way and update the
wind speed estimation in real time. Gaussian process regression
is a very flexible and general regression model that can smoothly
interpolate in space and extrapolate in time. These three methods
have been validated using a test data set, achieving a 50%
reduction of the prediction uncertainty in comparison with a
baseline model. In addition, the Gaussian process methodology
has been applied to reconstruct and forecast the wind field.

Keywords—Wind Estimation; Kalman Filter; Gaussian Pro-
cess Regression; Air Traffic Management; ADS-B; Mode S.

I. INTRODUCTION

Improving capacity, efficiency, safety, and reducing costs
and environmental impact of Air Traffic Management (ATM)
system are the main objectives of the Single European
Sky ATM Research (SESAR) and the Next Generation Air
Transportation System (NextGen) projects, among others.
Both projects are based on the concept of Trajectory-Based
Operations (TBO). The idea behind TBO is to enable the
ATM system to know and, when appropriate, modify the air-
crafts planned and actual trajectories, before or during flight,
based on accurate information shared among stakeholders.
The enabling technology is the System-Wide Information
Management1 (SWIM) project, a European system not yet
fully deployed with the goal of achieving a full integration of
flight information in order to create a synchronised view of
flight data by all actors.

1 https://www.eurocontrol.int/concept/system-wide-information-management

In the TBO framework an important aspect is trajectory
predictability, which can be improved by planning aircraft
trajectories using quality weather information. In particular,
this requires precise wind information [1], [2].

Nowadays, aircraft trajectory planning relies on winds
reports from Numerical Weather Prediction (NWP) models.
NWP observations are mainly gathered from radiosondes and
aircraft equipped with Aircraft Meteorological Data Relay
(AMDAR). However, the NWP meteorological information
generally has a coarse grid resolution and an update rate at
most once an hour such as National Oceanic and Atmospheric
Administration (NOAA) Rapid Refresh2. In Europe, Aeolus
satellite data is beginning to be used [3]. The European
Centre for Medium-Range Weather Forecasts (ECMWF) has
been including Aeolus data in its forecasts since January
2020, and they have been distributed publicly to forecasting
services and scientific users with a time delay of three hours
since July 2020. The satellite can deliver vertical profiles
that show the horizontal speed of the world’s winds in the
lowermost 26 km of the atmosphere. Moreover, radiosondes
are launched at specific times, no more than four times per
day, the spatial distribution of which is too coarse. In addition,
most of the aircraft are not equipped with the AMDAR
system. Due to these limitations, current weather predictions
are unlikely to satisfy the future ATM system requirements
[4]. These limitations can be resolved using meteorolog-
ical aircraft derived data, in which aircraft are employed
as airborne meteorological sensors. With this aim in mind,
the Royal Netherlands Meteorological Institute (KNMI) has
established the so called European Meteorological Aircraft
Derived Data Center (EMADDC). One of the activities of
this centre is to distribute derived wind and temperature data.
Mode S data began to be available to users in July 20203. A
methodology based on Mode S data has the advantage of a
high grid resolution and on-demand refresh rate [5]. Mode S
observations are gathered every few seconds. According to
Flightradar244, there are normally more than 10,000 aircraft

2 https://rapidrefresh.noaa.gov
3 https://www.ecmwf.int/en/newsletter/164/news/

emaddc-mode-s-new-source-aircraft-data-over-europe
4 https://www.flightradar24.com



in the air around the world at any one time - and this figure
is set to increase.

When estimating the wind using aircraft derived data, three
important features must be taken into account: the estimation
resolution, update rate, and confidence level of prediction.
This can be achieved using data assimilation techniques as
those implemented in this paper. The main contributions
of this work are the following: firstly, a Gaussian Process
Regression (GPR) has been considered for estimating wind
profiles. In this paper, an iterative version of GPR has been
implemented, which enables nowcasting. To the best of the
authors’ knowledge, GPR models have not been used in this
context. Second, a variant of the Kalman Filter (KF) proposed
in [6] has been employed. In this variant, the transition matrix
is no longer the identity matrix and has been designed to
model the spatio-temporal relation among elements of the
state vectors in the prediction step. This approach provides
smoother wind profiles than the original KF, in accordance
with the fact that wind speed is a continuous variable. Finally,
an evaluation of the performance of these methods and a
comparison have been carried out. The obtained results show
that GPR achieves the best performance.

This paper is structured as follows. Section II provides
background information regarding data treatment and wind
estimation. Section III describes the mathematical develop-
ment of the wind estimation methods and in Section IV, the
setup of the case study and parameters. The performance
of the proposed techniques is tested in Section V and in
Section VI, reconstruction and forecast of wind field is
discussed. Finally, conclusions are drawn in Section VII.

II. BACKGROUND

This section discusses the data features, the procedure via
which information is derived from data, the current methods
for wind estimation, and the case study.

A. ADS-B and Mode S

Automatic Dependent Surveillance-Broadcast (ADS-B) is a
surveillance technology that enables the automatic broadcast
of aircraft flight states. ADS-B relies primarily on global
navigation systems to obtain the flight states of position and
ground speed, which are transmitted periodically at a rate of
every 0.5 seconds, approximately.

The most common implementation of ADS-B is through
the Mode S extended squitter. Mode S is a selective interro-
gation protocol employed by air traffic controllers to obtain
additional flight states other than the position and altitude.
Within Mode S Enhanced Surveillance communication pro-
tocol, a set of parameters related to aircraft airspeed are
interrogated by surveillance radar and transmitted by aircraft.

Mode S signals, including ADS-B signals, can be freely
received by researchers around the world. The inference and
decode of these signals can also by achieved using open
source tools like pyModeS [7]. The ground speed, track
angle, airspeed, and heading are used to generate the wind
observations.

B. Wind Estimation

In order to estimate the wind, the true airspeed needs to
be calculated first, based on the Mach number and indicated
airspeed that are transmitted by the aircraft in Mode S
communication. This is performed using aeronautical airspeed
conversions under International Standard Atmosphere (ISA)
conditions.

Once the true airspeed, ground speed, heading, and track
angles are known, the wind vector can be calculated as the
difference between ground speed vector and true airspeed
vector. Fig. 1 illustrates the relationship among these vectors.
Here, χg , χa, and χw represent the ground track, heading, and
wind direction, while Vgs, Vtas, and Vw represent the ground
speed, true airspeed, and wind speed vectors, respectively.

χw

χa
χg

Vgs

Vw

Vtas

Figure 1. Relationship between true airspeed, ground speed, and
wind vectors.

C. Current Methods for Wind Estimation

Different approaches have been employed during the last
decades to take advantage of the surveillance data in the
meteorological framework. In [8] and [9], it has been shown
that assimilation of weather surveillance has a positive impact
on Regional NWP models. Kriging, a geostatistical method,
is used in [10] to generate short-term weather prediction
along trajectories. An innovative model combining particle
filtering and Lagrangian transportation modeling is employed
for weather field reconstruction in [11]. Aircraft wind ob-
servations have been used in [2] to update the optimal
descent trajectory in real-time. In [12], statistical data and
Kalman filtering have been used to predict wind for trajectory
predictions. In [13] and [14], Kalman filtering has been used
in wind field estimation to reduce measurement noise. It has
also been recently used to estimate wind in aircraft turns with
a high roll angle [15]. Lastly, Kalman filtering has been used
in [6] to create an aircraft moving wind profile for continuous
descent operations and spacing performance.

D. Wind Profile and Case Study

The wind profile is a vertical representation of the hor-
izontal mean wind speed. In analogy with the ISA model
for temperature, there are empirical functions describing this
profile. The best known are: the log wind profile, which
describes a standard wind in the planetary boundary layer
under stable atmospheric conditions; and the power law wind
profile, which relates the wind speed at one altitude to
those at other altitudes [16]. In the case study presented in
this paper, a precise estimation of the wind profile at two



different positions is performed. More precisely, the RILKO
Initial Approach Fix (IAF) and the Final Approach Fix (FAF)
neighbouring the airport Adolfo Suarez Madrid-Barajas have
been chosen. The former has coordinates 40◦58′44.1′′N ,
3◦47′48.6′′W and the latter has coordinates 40◦40′59.4′′N ,
3◦34′32.6′′W , as shown in the navigation chart5 represented
in Fig. 2. Data collected at the RILKO IAF describe the wind
profile at altitudes around 3.3 km, while the FAF has been
chosen to study the wind profile at lower altitudes of around
1.2 km. The FAF also allows the number of test points to be
duplicated, since all aircraft passing through the RILKO IAF
also pass through the FAF. The position of the wind profiles
along with a landing aircraft path can be observed in Fig. 3.

Figure 2. Instrument approach chart IAC/6 LOC RWY 18R. Source
Spanish AIP service. Not for operational use.

III. WIND PROFILE ESTIMATION METHODS

This section describes wind speed estimation using the
Adapted Kalman Filter (AKF) first and goes on to present the
Smooth Adapted Kalman Filter (SAKF). These two methods
are based on the classic linear Kalman filter [17], which
has been used in [18] for meteorological data assimilation.
Finally, the method employed for wind estimation using GPR
is introduced.

A. Adapted Kalman Filter

The AKF is a variant of the Airborne Wind Estimation
Algorithm (AWEA) proposed in [6], which is an adaptation

5 The full navigation chart can be consulted in the webpage of the Spanish
AIP service https://aip.enaire.es/AIP

IAF RILKO

FAF

Adolfo Suárez 

Madrid-Barajas Airport

Figure 3. The cyan trajectory represents an approach aircraft path.
Blue vertical lines represent the locations where wind profiles are
estimated.

of the classic KF. The key idea in the AWEA is to modify the
appropriate covariance matrix to take into account the uncer-
tainty of the observations. Specifically, the covariance matrix
considers physical distances between the wind observations
and the points where the wind is to be estimated.

Generally, the KF consists of two stochastic equations:

xk = Mkxk−1 +wk (state equation) (1a)
yk = Hkxk + vk (measurement equation) (1b)

The state equation 1a models the dynamics of the system
including unobserved or hidden states. It describes the evo-
lution of state in time. The measurement equation 1b models
the observed variables and describes the relationship between
the observation and true states of the variables.

In the state equation 1a, xk is the wind speed vector at
time k, Mk the transition matrix, and wk the process noise.
In the measurement equation 1b, yk is a vector containing
the measured wind speeds at time k, Hk is the observation
matrix defining the relationship between state variables and
observations, and finally vk is the measurement noise. It
is worth noting that matrices Mk and Hk indicate linear
relationships between variables. This is a simplified form of
the general model, where, instead of matrices, Mk and Hk

are replaced by nonlinear operators.
The matrix Mk in the KF allows modeling of the dynamics

of the hidden state xk, which in our case, represent the wind
profile. As in AWEA wind dynamics are not considered in the
AKF method, therefore Mk is reduced to the identity matrix
In×n, where n is the number of altitude intervals. The model
errors wk and vk are assumed to be unbiased, uncorrelated,
and with covariance matrices:

Qk = E[wkw
t
k] (2)

Rk = E[vkvtk] (3)

At each time step tk, the KF algorithm is as follows:
1) At k = 0 the algorithm is initialized. An initial wind

speed vector is given as xf
0, where the superscript f

indicates forecast. An error covariance matrix of this
estimation, P f

0, is also given as an input.



2) If k ≥ 1:
a) Analysis
• The Kalman gain matrix is computed with the

formula: Kk = P f
kH

t
k(HkP

f
kH

t
k +Rk)

−1. This
matrix is based on the uncertainties in the
current state and the new measurements.

• The state vector is updated using the new
observations with the formula: xa

k = xf
k +

Kk(yk−Hkx
f
k), where the superscript a stands

for analysis.
• The covariance matrix of the analysis estima-

tion is computed as: P a
k = (I −KkHk)P

f
k.

b) Forecast
• The forecast of states for the next time step is

calculated as: xf
k =Mk+1x

a
k.

• The error covariance matrix of this estimation
is calculated as: P f

k =Mk+1P
a
kM

t
k+1 +Qk+1.

In this paper, the algorithm is used to compute the wind
speed profile. The matrices Mk = I and Qk = Q are assumed
constant. The Rk matrix, which models the measurement
errors, is updated at each time step, taking into account
the uncertainty of the observations. If m observations are
available at time interval [tk, tk+1), the Rk matrix becomes:

Rk =


σ2
1 0 0 · · · 0
0 σ2

2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
m


m×m

(4)

σ2
i =

[
1 + α

d(i)

215

]
· σ2 (5)

where σ is the instrumental measurement error, d(i) is the
great circle distance from the observation to the waypoint
in NM, and α is a scaling parameter. In this way, the
measurement error is modelled as a function of the distance.
For example, if the observation is at 215 NM away and α is
chosen to be one, the error becomes (1+1)σ2 = 2σ2, which
is twice the typical instrumental error σ2.

The H matrix is computed such that the observations are
linearly interpolated in the altitude grid. For example, con-
sidering an observation i at 11, 700 ft, the closest discretized
altitudes levels are at 11,500 ft and 12,000 ft. The i-th row in
the matrix H that corresponds to this observation is computed
as:

Hi×1:n =
(
0 0 0 · · · 0.6 0.4 · · · 0

)
1×n

, (6)

where n indicates the number of altitude intervals, which
depends on the chosen resolution.

B. Smooth Adapted Kalman Filter

The SAKF method is similar to the AKF. The idea is to
construct a smoother filter, as wind speed is a continuous
variable. As shown in Section IV, the AKF usually generates
peaks at the discretization points and the resulting wind
profile has a saw shape. To achieve a smooth estimation, the
state matrix Mk in the SAKF is adjusted so that it is no longer

a simple identity matrix. The idea is to assign weights to the
values of the state vector xk = (x1k, x

2
k, ..., x

n
k )
t in order to

make each element xjk dependent on the neighborhood points
xj−1k and xj+1

k . Thus, the following matrix is proposed:

Mk =


α1 α2 0 0 · · · 0 0
α2/2 α1

α2/2 0 · · · 0 0
0 α2/2 α1

α2/2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · α2 α1


m×m

,

(7)
with weights α1, α2 ∈ [0, 1], α1 + α2 = 1. In this way, an
updated estimation at point xjk is built as the combination of
α1 the estimation at that point, and α2 the estimation at the
neighborhood points.

C. Gaussian Process Regression

GPR has applications in a wide variety of disciplines, such
as finance, physics, geostatistics or machine learning [19],
[20].

A Gaussian Process (GP) is a stochastic process {Za}a∈S ,
where S is the index set, in which any sample of the process
Za1 , Za2 , ..., Zak is jointly Gaussian distributed for all k,
and all choices of a1, ..., ak. This definition applies to both
discrete and continuous time random processes. GP models
are very flexible in the sense they are suitable for data pat-
terns with different properties, such as linearity, periodicity,
symmetry, continuity, differentiability, or non differentiability.
In Fig. 4, these different patterns represented as wind profiles
are illustrated.

A GPR model addresses the question of predicting the
value of a variable y given the predictor variables x. In this
case, y is the wind speed and x = (t, x, y, z)t corresponds
to time and position. Given a linear regression model of the
form

y = xtβ + ε, ε ∼ N(0, σ2), (8)

where parameters β and error variance σ2 are estimated from
the data, the GPR model predicts the variable y by introducing
two new features:
• A latent random variable f(x) from a Gaussian process.

For any sample of points, f(x1), f(x2), f(x3), ..., f(xn)
are jointly Gaussian distributed with zero-mean and
covariance function k(x,xt). The covariance is used
to model properties and smoothness of the response
variable y.

• A basis function h that projects the inputs x into a
p−dimensional feature space.

Combining these definitions, the GPR model can be ex-
pressed as:

y = h(x)t1×pβp×1 + f(x) + ε. (9)

It has been shown in [20] that under these assumptions the
response variable y is also Gaussian distributed. For a fixed
point xi and a known realization f(xi) of the Gaussian
process at the point, it follows that:

y ∼ N(h(xi)
tβ + f(xi), σ

2). (10)
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Figure 4. Realizations of different Gaussian processes, generated by
diverse covariance matrices or kernel.

This feature makes GPR an effective tool, since it is able to
give not only an estimation but also the distribution of the
estimates. This allows, for example, a confidence interval for
the estimators to be provided.

IV. IMPLEMENTATION

In this section the data set and the implementation de-
tails are discussed. For the simulations, All-Purpose Struc-
tured EUROCONTROL Surveillance Information Exchange
(ASTERIX) aircraft data, courtesy of the Spanish National
Air Navigation Service Provider, in the vicinity of Madrid
Adolfo Suarez Madrid-Barajas airport have been used. Wind
speed is calculated using the methods described in Sec-
tion II-B.

In order to have a more accurate wind observation, noisy
data and outliers must be removed. It is well known that
wind data collected during roll manoeuvres are less reliable
[5]. In Fig. 5, aircraft roll angle and wind speed have been
represented versus time. It can be seen that noise in wind
speed increases when the aircraft has a high roll angle.
Therefore, data collected with roll angle larger than 5◦

have been removed. After the removal of low-quality data,
outliers were considered. Data have been grouped in based
on the altitude. Sets having a vertical extent of 1 km have
been considered. In each group, the usual interquartile range
method for outlier removal has been applied. They correspond
to outliers commonly seen in a boxplot.

In all models, the instrumental error used was σ = 3 m/s,
which is a typical wind measurement error [6]. In the AKF

Figure 5. Roll angle and wind speed versus time.

and SAKF models, the initial wind speed has been estimated
based on a standard logarithmic wind profile according to
the power-law described in [16]. The starting matrices are
Q0 = I , R0 = σ2 · I , and P0 = σ4I . The chosen elements of
the diagonal matrix P0, are large to give uncertainty to the
initial estimation. This allows the filter to adapt quickly to
new incoming data. For the SAKF model, α1 and α2 have
been set to 0.6 and 0.4, respectively.

In the GPR framework, the following parameters must
be estimated: the coefficients of the basis function β, the
instrumental variance σ2, which has been assumed fixed,
and the hyperparameters θ, if a parametric kernel function
is chosen to define the covariance matrix. In this paper, the
exponential kernel is chosen [20]:

k(xi,xj/θ) = σ2
f e
−r, (11)

where

r =

√√√√ d=4∑
m=1

(xim − xjm)2

σ2
m

. (12)

With this kernel, the correlation between two points decreases
exponentially as a function of the Euclidean distance in
space and time. Before computing the distance, each input
variable xim has been scaled by a factor σ2

m, which takes
into account the different scales of the input variables. This is
very important since in this case the variables are anisotropic,
i.e., not homogeneous [10]. The correlation scale in position is
different from the correlation scale in time. In other words, the
scaling factors define how far apart the input values xi must
be so that the response values can be considered uncorrelated.
Usually, σm is called the characteristic length scale. Having
time and space variables as input, GPR allows estimations
and predictions to be performed, i.e., to interpolate in space
and to extrapolate in time, respectively.

Finally, the chosen basis function h was:

h(xi) =
(
1 xti

)t
5×1. (13)

In this way the mean of the process changes linearly with
respect to the input variables.



V. PERFORMANCE EVALUATION

The models are trained and tested with a 2-hour and 5-
minute data set. Fig. 6 shows, all the aircraft paths contained
in the data set.
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Figure 6. Aircraft paths contained in the data set.

In the case of the GPR model, only the data in a square
region with a size of 240 by 240 km centered on the Adolfo
Suárez Madrid-Barajas airport are considered. In Fig. 7, the
training and test data is illustrated. The test paths are those
which pass through the waypoints RILKO IAF and FAF,
represented as dots.

4.5°W 4°W 3.5°W 3°W 2.5°W

39.5°N

40°N

40.5°N

41°N

41.5°N

Training trajectories

4.5°W 4°W 3.5°W 3°W 2.5°W

39.5°N

40°N

40.5°N

41°N

41.5°N

Validation trajectories

Test location 1 (40.979, -3.7968)
Test location 2 (40.606, -3.5691)

Figure 7. On the left, training trajectories around the Adolfo Suárez
Madrid-Barajas airport. On the right, the trajectories used for testing.

The time discretization or refresh rate of the estimators is
0.5 minutes and the altitude discretization is 500 ft, ranging
from 2,000 ft to 20,000 ft.

A simple wind profile, referred to as the baseline model,
has been computed for comparison of the performance be-
tween the AKF, SAKF, and GPR methods. This baseline
model is initiated with the same wind profile as in the
AKF and SAKF methods. Subsequently, each time step the
estimation is updated at each altitude by computing the mean

of the available data. If no data is available at the respective
altitude interval, the corresponding estimation remains un-
changed. This baseline model will give an idea of how much
performance our models achieve in comparison to merely
averaging the available data.

The chosen data correspond to a windy day on Decem-
ber 21, 2019. The maximum wind speed reaches 100 m/s
(360 km/h). The general scheme for estimation and validation
is as follows:

1) The AKF, SAKF, and baseline estimators initiate at
13:45, 15 minutes before validation. This acts as a burn-
in period.

2) A first GPR model is trained with one-hour data from
12:55 to 13:55. The training is performed by selecting
a subset of 2,000 data points, allowing the GPR to be
ready in less than 5 minutes. For prediction, the Block
Coordinate Descent Approximation method has been
used which allows for a fast and accurate prediction
[21].

3) The validation starts at 14:00 UTC. The wind speed
profiles are compared with the testing data coming
from the landing aircraft when passing through the
considered points the RILKO IAF and the FAF. Every
15 minutes, a new GPR model is trained to detect
possible trend changes in wind speed.

4) Validation finishes at 15:00, when the Root Mean
Square Error (RMSE) and the Mean Absolute Error
(MAE) of the estimated wind profile are computed
using the test data.

Fig. 8 represents the wind profiles estimations along with
the training and testing data at two different time instants.
The contrast in smoothness between the AKF and SAKF can
be clearly seen. The GPR also achieves a smooth estimation.
This is because values close in time and space are correlated
through the exponential covariance matrix (11).

Table I shows the RMSE and MAE for the different
estimation approaches. As expected, the baseline model has
lower performance in comparison with the other methods.

The SAKF method, despite giving smoother results than the
AKF, as required for a continuous variable, does not improve
its estimation. Indeed, for an estimator, not only smoothness
but also the ability to produce unbiased estimations that reflect
wind characteristics at each position in space is important.
This is better achieved by the GPR where the estimation is
unbiased (see Fig. 9). Furthermore, the GPR adapts better to
wind characteristics at each position in space, since significant
differences between the estimations at the RILKO IAF and
the FAF waypoints can be observed. Nevertheless, in the case
of the KF-based methods differences between wind profiles
at the waypoints are low and are not always visible. They
do not capture as well as GPR the behaviour of the wind at
each point in space because the KF-based methods compute
“weighted means” of the data. This advantage of GPR models
is achieved by its principal characteristic, the covariance
function, which allows the relationship between wind in space
and time to be described. It can also be observed that GPR
and KF estimations differ at the key altitudes of the RILKO
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(a) Wind profiles at 14:30 along with training and testing data available at that
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(b) Wind profiles at 14:45 along with training and testing data available at that
time.

Figure 8. Estimated wind profiles based on different methods.

IAF, around 3.3 km or 11,000 ft, but lesser at the key altitude
of the FAF, 1.2 km or 4,000 ft. This difference is due to
KF benefits of spatially close wind speed information, since
aircraft landing in the adjacent track, pass close to the FAF.

Type AKF SAKF Baseline GPR

RMSE (m/s) 4.3 4.8 5.9 3.0
MAE (m/s) 3.2 3.4 4.3 2.3

TABLE I. Wind speed errors when no landing aircraft wind mea-
surements passing through the chosen waypoints are given to the
models.

Fig. 9 shows the boxplot of the errors obtained for each
method. In general, GPR has a lower spread, whereas with
AKF and SAKF methods wind speed values are underesti-
mated.

Since all data collected by aircraft passing through the
chosen waypoints is only contained in the testing data set, the
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Figure 9. Test errors boxplot for the different methodologies.

showed results are worst case scenarios. If our testing data
selection criteria is relaxed by including some of the flights
passing these waypoints, the performances are expected to
be increased. Table II show clearly how estimation errors
improve when half and all of the testing data set are trans-
ferred to the training data set. We point out that no significant
improvement can be observed using the GPR model. This
indicates that the GPR model already has a good performance,
and better performance is not got by including more data.

In contrast, KF-based methods benefit from more training
data collected by aircraft passing through the waypoints.6

By dispensing data that pass through the waypoints, KF
methods produce higher weight on these observations, since
the distances to waypoints are practically zero. Finally, the
KF-based methods performance can be further improved if all
flights passing these waypoints is provided, as can effectively
be seen in Table II and the boxplots of Fig. 10.

Type Transferred test AKF SAKF Baseline GPR

RMSE (m/s) 50% 3.6 4 5.3 3.1
MAE (m/s) 50% 2.6 3 3.8 2.4

RMSE (m/s) 100% 3.2 3.6 4.9 2.9
MAE (m/s) 100% 2.4 2.7 3.5 2.2

TABLE II. Wind speed errors when 50% and 100% of the testing
data are given to the models.

VI. ESTIMATION AND FORECAST OF WIND IN A
CONTINUOUS FIELD

In earlier sections, the proposed GPR approach is used
to generate 1D vertical wind profiles at specific locations.
However, this approach can be extended to the entire 2D or
3D spaces.

6 Generally, the KF is less capable of knowing the wind speed behavior at
the waypoints, which may be different from the average behavior of the
data.
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Figure 10. Test errors boxplot for the relaxed scenario where data
passing through waypoints is dispensed.

In this section, we focus on applying the proposed GPR
wind estimation method to all locations around the Termi-
nal Manoeuvring Area (TMA). Both the reconstruction and
forecast of wind fields are discussed. For better illustration,
specific altitudes are selected for the demonstrations.

A. Wind Field Reconstruction

The objective is to reconstruct the wind speed field at a
specified time. Concretely, the same implementation as in
Section IV is performed with the following distinctions:
• Only the GPR method is used.
• The chosen kernel is the squared exponential, illustrated

in Fig 4. The difference with respect to the kernel
described in (11) is that r is now squared. This allows
for a smoother estimation of the wind field.

• The focus is on wind field reconstruction instead of
prediction. Now, the estimation is made all over a square
region with a size of 240 by 240 km centered on the
airport. To evaluate the performance of the reconstructed
wind field, 20% randomly selected data points are re-
served for testing.

In Table III the errors of the GPR models are shown. The
errors represents about 4.5% of the real measurement. Taking
into account the fact the data itself includes instrumental
errors and wind speed ranges from 3 m/s to 100 m/s, the
achieved performance is satisfactory. Fig. 11 displays the
error histogram distribution. It can be observed that the errors
are symmetrically distributed, non-biased and bell-shaped, as
expected for a well-trained GPR model.

Type GPR

RMSE (m/s) 2.3
MAE (m/s) 1.6
MAE (in percentage) 4.5%

TABLE III. Wind speed errors for the wind field reconstruction.

Figure 11. Wind field reconstruction error histogram.

With the aim to illustrate the wind speed field, the recon-
struction at a specific time instant and two different altitudes
is shown in Fig. 12. In the plots, the z-axis represents wind
speeds, while the x-axis and y-axis represent a region around
the airport. Selected train and test points close in time and
altitude are also depicted.

Figure 12. Wind field reconstruction at time 13:25 at two specific
flight levels. Black dots refers to a selection of training and testing
points close in time and altitude, ±7.5 min and ±500 ft.

B. Wind Field Forecast

This experiment aims to demonstrate the capability of GPR
in predicting scalar wind field at close future time instants.
The procedure is similar to the wind field reconstruction one,



except for the source of testing data. Instead of randomly
choosing the data from 12:55 to 13:55, all future data points
in a 15-minutes range, from 14:00 to 14:15, are considered
for testing. This process is repeated every 15 minutes for one
hour.

Fig. 13 shows, 15-minute predictions of the wind field at
two different altitudes along with some selected test points.

Figure 13. Wind field prediction at time 14:10 at two specific flight
levels. The prediction is made for 15 minutes in the future with the
model trained from 12:55 to 13:55. Black dots refers to a selection
of testing points close in time and altitude, ±7.5 min and ±500 ft.

Based on all available data, the accuracy of the GPR wind
prediction model with 15 minutes look-ahead time horizon
can be analysed. Table IV shows a summary of the error
statistics on RSME and MAE across all the process. It is
noticeable that the accuracy of the wind forecast is lower
than the reconstructed wind in Table III.

Type GPR

RMSE (m/s) 5.9
MAE (m/s) 4.4
MAE (in percentage) 9.5%

TABLE IV. Wind speed errors for the wind field forecast.

Another way to evaluate the performance of the prediction
model is to compare the predicted wind field with 15 minutes
look-ahead time horizon with the reconstructed field at that
time. Fig. 14 shows the contour plots of the wind intensity at
Flight Level 350 for these two fields, and it can be seen that
the predicted wind field largely agrees with the reconstructed
wind field using future data.
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Figure 14. Comparison of predicted and reconstructed wind field at
time 14:10 and Flight Level 350.

VII. CONCLUSION

This paper has explored the applicability of KF and GPR
models to generate online and short-term weather predictions
from observations derived from ADS-B and Mode S aircraft
surveillance data. This approach is possible because the
volume, frequency, and coverage of data are high and much
larger than those provided by radiosondes or by AMDAR.
Furthermore, this technology is already available in the ATM
system and data decoders are accessible for open research [7].

At first, the raw information was decoded and wind speed
was computed from ADS-B and Mode S ASTERIX data.
Then, KF and GPR methods were used to construct wind
profile estimations at two relevant positions along the aircraft
paths. Thanks to appropriate implementation of the GPR
methodology, the GPR model is trained in less than 5 minutes,
achieving a large improvement in performance and allowing
for nowcasting. All the models have significantly improved
the accuracy of the baseline model. Among them, the GPR
model has the best performance achieving a RMSE of 3
m/s based on the data we tested. This increased accuracy,
reducing to half the baseline model on a windy day, has
potential benefits for air traffic performance studies and the
future requirements for ATM system, such as updating the
optimal descent trajectory in real-time [2] or aircraft spacing
[6].



Lastly, the GPR model has been used both to reconstruct
and to predict the wind speed field over the TMA. The GPR
model can accurately reconstruct the wind field with a low
error while generating short-term nowcast. The results are
promising and future research is expected on this topic.

In conclusion, this research focused on the development
of a theoretical model for accurate wind estimation. On the
one hand, selected key locations near the airport were used
to demonstrate the capability of the proposed models. On the
other hand, the capacity of GPR to estimate wind field has
been explored. Future work can be continued to, for example,
provide estimations of other meteorological variables such as
wind vector or temperature.
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Cépaduès Editions, 2013.

[2] R. Dalmau, X. Prats, and B. Baxley, “Using broadcast wind observa-
tions to update the optimal descent trajectory in real-time,” Journal of
Air Transportation, vol. 28, no. 3, pp. 82–92, 2020.

[3] O. Reitebuch, The Spaceborne Wind Lidar Mission ADM-Aeolus.
Springer Berlin Heidelberg, 2012, pp. 815–827.

[4] T. G. Reynolds, M. McPartland, T. Teller, and S. Troxel, “Exploring
wind information requirements for four dimensional trajectory-based
operations,” in Proceedings of the Eleventh USA/Europe Air Traffic
Management Research and Development Seminar, Lisbon, Portugal,
June 2015.

[5] S. de Haan, “High-resolution wind and temperature observations from
aircraft tracked by Mode-S air traffic control radar,” Journal of Geo-
physical Research: Atmospheres, vol. 116, no. D10, 2011.

[6] P. M. A. de Jong, J. J. van der Laan, A. C. in ’t Veld, M. M.
van Paassen, and M. Mulder, “Wind-profile estimation using airborne
sensors,” Journal of Aircraft, vol. 51, no. 6, pp. 1852–1863, 2014.
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