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Chapter 1

Introduction

In this chapter, we introduce the research topic and summarize the main
contributions of this thesis. We first present the research background of co-
operative vehicle driving strategies at urban signalized intersections. Then,
the current knowledge and the main challenges in this line of research are
reviewed, followed by discussions on the research gaps. The research ob-
jectives and contributions of this thesis are clarified thereafter. Finally, the
thesis structure is outlined.
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1.1 Background
Vehicle automation has become a domain of substantial development for the
recent three decades owing to its potential in enhancing safety, efficiency
(energy and fuel), and comfort. Parallel to vehicle automation is the connec-
tivity between vehicles and infrastructures that enables the ability to acquire
and anticipate both the motions of surrounding vehicles and information
from roadside infrastructures (e.g., traffic lights, road signs, and lane mark-
ings). The advances in vehicle autonomy and communication systems pave
the way towards vehicle cooperation, which can promote traffic efficiency,
safety, and sustainability owing to the completeness of environmental aware-
ness and the possibilities of coordinated control. Although it will take years,
even generations, and monumental amounts of investment to realize vehicle
cooperation and the requisite infrastructure facilities, the big shift that we
are witnessing from legacy vehicles to connected and automated vehicles is
expected to revolutionize transportation of people and goods.

According to the Society of Automotive Engineers (SAE) (SAE., 2018),
driving automation levels are classified from no automation (Level 0 of full
human driver control) to high and full automation (Level 4 and 5 of no re-
quired human driver control). Lower level (1 to 2) automation systems, such
as Adaptive Cruise Control (ACC) (Xiao & Gao, 2010), are able to control
vehicles but require drivers to keep an eye on the driving tasks and even
intervene when necessary. Level 3 automation can disengage drivers from
driving but still require human override. Level 4 and 5 automation means
the system can operate the vehicle in all circumstances, and the human oc-
cupants need never be involved in the operational design domain for Level
4 and in all conditions for Level 5 (Shladover, 2018). This thesis focuses on
the control strategies of cooperative vehicles under the assumption of Level
4 and 5 vehicle automation.

Providing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications, automated vehicles can be upgraded to cooperative vehi-
cles, which can forecast and utilize information from the downstream/upstream
traffic controllers and infrastructures (Sciarretta & Vahidi, 2020). With such
information, platooning enables cooperative vehicles to coordinate individ-
ual vehicle behaviors for a common goal, e.g., smaller gaps, faster responses,
less disturbances and delay (Lu, 2016). Although vehicle technology and
legislation challenge the realistic full automation and cooperation, the adop-
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tion and deployment of cooperative and automated vehicles is likely to be
the trend in the future.

Connected and automated vehicle (CAV) technology will be initiated by
the synergy between the advances in communication technologies and rev-
olution in automotive industry over the next several decades (Gutesa et al.,
2021). Therefore, the emerging needs arise to utilize the CAV data for bet-
ter traffic operations and control strategies. Vehicular platoons have been
proposed and piloted on highways, but the concept remains challenging re-
searchers in urban environments. Although vehicle speeds are generally
lower in the vicinity of signalized intersections than on highways or ex-
pressways, the road safety of the vulnerable road users (e.g., pedestrians
and cyclists) and the public transport services bring complication to the traf-
fic planning and operations in urban environments. Amongst a multitude of
factors contributing to the complexity of traffic operations on urban roads,
signal controllers at intersections remarkably complicate the platoon coordi-
nation.

Signalized intersections play an important role in separating traffic flows,
pedestrians and cyclists from different movements spatiotemporally. Al-
though signal controllers are capable of alleviating traffic congestion, ac-
cidents, fuel consumption and emission, and travel delay in the vicinity of
intersections, they also cause the interrupted traffic flow and thereby increase
the complexity of urban traffic operations. In the CAV environment, real-
time data of signals and trajectories can be obtained and adjusted by taking
advantage of CAVs as sensors and control actuators. Therefore, we should
not lose the opportunities provided by the cooperative urban driving envi-
ronment, i.e., to improve traffic efficiencies by integrating multiple signal
control approaches with CAV trajectory optimization based on utilizing and
actuating traffic signals.

To this end, traditional signal control approaches (fixed or pre-timing,
actuated, and adaptive signals) should be taken into account in the hierar-
chical architecture where traffic control is placed on top of vehicle control.
Besides, the joint integration between signal optimization with vehicle con-
trol by determining traffic signals and vehicle trajectories in a unified and
single-layer framework is also promising to be realized in the CAV environ-
ment. This thesis focuses on these two topics to improve multiple measures
of efficiencies at signalized intersections (comfort, safety, fuel economy, and
travel delay).
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1.2 CAV trajectory planning and traffic signal
optimization

This section provides an overview of cooperative driving strategies and sig-
nal control in the urban environments, including CAV trajectory planning
under exogenous traffic signals, traffic signal optimization using connected
vehicle data, and the joint optimization of CAV trajectories and traffic sig-
nals, followed by summarizing the research gaps.

1.2.1 CAV trajectory planning under exogenous traffic sig-
nals

In trajectory planning systems, cooperative vehicles are generally controlled
to avoid collision for minimal travel delay. The major differences between
different studies are how to deal with the traffic signals at intersections.

With the presence of signal controllers, speed guidance systems such as
GLOSA (Green Light Optimized Speed Advisory) (Stevanovic et al., 2013;
Li et al., 2014a; Stebbins et al., 2017) and Eco-Approach and Departure
systems (Altan et al., 2017; Hao et al., 2018; Wang et al., 2019) provide
speed advice in the vicinity of signalized intersections. The generated ad-
visory speed is designed to reduce travel delay, vehicle stops, and/or energy
consumption, but these systems aim for an individual vehicle rather than a
system of multiple vehicles.

CAV trajectories can be directly controlled assuming known signal pa-
rameters. The trajectory optimization systems at an isolated signalized in-
tersection take fuel consumption and comfort into account in the objective
functions (Jiang et al., 2017; Zhao et al., 2018). The terminal time (i.e., the
signal cycle tail), the terminal vehicle position (i.e., the position of stop-line),
the terminal speed (i.e., the limit speed), and the terminal acceleration when
passing the stop-line (i.e., zero acceleration) can be easily determined at an
isolated intersection, and the red phases can be represented by restricting
these terminal conditions. However, this red phase representation method
regards every intersection as a separate optimal control problem, and thereby
fails to yield the global optimal trajectories when vehicles are traveling along
a corridor (He et al., 2015).

To resolve this problem, the red phases along a corridor with multiple
pre-timing signalized intersections are formulated as tracking the pre-defined
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piece-wise speeds or accelerations in the cost terms to reflect the following,
stopping, and leading modes of the controlled vehicles (Asadi & Vahidi,
2010; Kamal et al., 2012; HomChaudhuri et al., 2016; Wan et al., 2016).
In general, the trajectory optimization systems under pre-timing signals are
designed for an individual vehicle, considering multiple criteria in the ob-
jective function (Asadi & Vahidi, 2010; Kamal et al., 2012; He et al., 2015;
HomChaudhuri et al., 2016; Wan et al., 2016; Jiang et al., 2017).

Furthermore, the autonomous intersection systems assume that the traf-
fic signal controller is eliminated completely, and vehicles are coordinated to
depart the intersection with no collision at a signal-free intersection (Lee &
Park, 2012; Ahmane et al., 2013; Zohdy & Rakha, 2016; Yu et al., 2019).
However, these systems cannot work in the mixed traffic flow of human
drivers and cooperative vehicles, which is expected to appear and continue
at least for the next decade (Sivak & Schoettle, 2015). The vulnerable road
users (e.g., pedestrians and bicyclists) are neglected at the autonomous inter-
sections, which questions the realistic applicability in the near future. Addi-
tionally, the autonomous intersection systems require high robustness for ve-
hicle control to guarantee traffic safety, because the conflicting traffic flows
are not separated.

1.2.2 Signal optimization using connected vehicle data

Signal optimization systems predict the traffic flow state by utilizing con-
nected vehicles (but not necessarily automated vehicles) information and
then generate the optimal signals (Feng et al., 2015; Al Islam & Hajbabaie,
2017; Beak et al., 2017; Li & Ban, 2018). Al Islam & Hajbabaie (2017)
distribute the urban network into the intersection level to solve the signal
timing optimization problem in real-time. Feng et al. (2015); Beak et al.
(2017); Li & Ban (2018) (re)formulate the signal optimization problem in
a bi-level structure to enumerate the feasible set of signal parameters in the
upper level using the forward and backward recursion. In the lower level, the
total vehicle delay or queue length are optimized in Feng et al. (2015); the
green allocation at intersections and the offsets on the corridor are optimized
iteratively in Beak et al. (2017); the total fuel consumption and travel time
are optimized in Li & Ban (2018).
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1.2.3 Joint optimization of CAV trajectories and traffic sig-
nals

The signal optimization models in section 1.2.2 only use CAVs as sensors
without exploring their potential as traffic control actuators. To fill this gap,
several research efforts are devoted to the joint optimization of traffic signals
and vehicle trajectories.

Traffic signals and vehicle trajectories are mutually dependent in the
vicinity of signalized intersections. Owing to the differences in the time
scales of the considered dynamics (e.g., slow or fast dynamics, short or long
horizon), the joint optimization of signals and trajectories are generally cast
into hierarchical models to determine signals and trajectories in the upper
and lower levels respectively (Li et al., 2014b; Yang et al., 2016b; Xu et al.,
2018; Feng et al., 2018; Yu et al., 2018; Guo et al., 2019b; Niroumand et al.,
2020). These bi-level models usually optimize signal parameters using enu-
meration or the similar forward/backward recursion method, and adopt dif-
ferent approximation methods to decrease control dimensions or to solve the
control problems iteratively in a shorter horizon. However, the current joint
approaches lose the benefits of integration between vehicle control and sig-
nal optimization in a unified framework on account of treating vehicle and
signal control separately.

1.2.4 Research gaps
From the discussion above, the research gaps that are addressed in this thesis
are detailed by summarizing the limitations of current literature on trajectory
control and signal optimization.

G1. Individual vehicle performance : Current trajectory optimization sys-
tems at signalized intersections are normally designed for an individ-
ual vehicle (Asadi & Vahidi, 2010; Kamal et al., 2012; He et al., 2015;
HomChaudhuri et al., 2016; Wan et al., 2016; Jiang et al., 2017). The
scalability to surrounding vehicles in incorporating platooning of mul-
tiple traffic movements have to the best or our knowledge not been
demonstrated.

G2. Simple objective function: In general, existing trajectory optimization
systems consider few criteria in the objective functions. Fuel con-
sumption is optimized in Asadi & Vahidi (2010); Kamal et al. (2012);
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He et al. (2015); HomChaudhuri et al. (2016); Wan et al. (2016); Jiang
et al. (2017); Zhao et al. (2018), and besides the ride comfort is in-
troduced in HomChaudhuri et al. (2016); Jiang et al. (2017). Addi-
tionally, the desired gap penalty term is formulated in Kamal et al.
(2012); HomChaudhuri et al. (2016), and the red phase term is de-
signed for stopping vehicles in Asadi & Vahidi (2010); Kamal et al.
(2012); HomChaudhuri et al. (2016). However, the designs of cost
terms in these objective functions are simple, which cannot reflect the
realistic traffic flow at signalized intersections.

G3. Inflexible red phase representation: The controlled vehicles that can-
not pass the stop-line during the green phase should decelerate or stop
confronting the red indication of the traffic light. Currently, there are
two methods proposed to represent the red phases, i.e., the terminal
condition method and the target speed method. Firstly, the terminal
condition method requires vehicles to reach the stop-line at the ter-
minal time (e.g., the arrival time to the stop-line) with specific speed
(e.g., the limit speed) and position (e.g., the position of the stop-line).
The arrival time of stopping vehicles is designed as the end of the red
light, so the basis of this method is the estimation of the vehicle arrival
time to the stop-line. Inaccurate arrival time estimation probably leads
to inefficient vehicle trajectories (i.e., vehicles stop during the green
phase) or infeasible trajectories (i.e., vehicles pass the stop-line during
the red phase). The arrival time of an individual vehicle can be easily
determined at an isolated intersection, but the arrival times of a pla-
toon are difficult to be accurately calculated especially at the corridor
or network level. Therefore, this method is neither scalable to multi-
ple consecutive vehicles nor extendable to a large urban network scale.
Secondly, the target speed method designs the vehicle trajectories to
reflect signal changes by tracking the pre-defined desired accelera-
tions/deceleration rates or speeds facing the green and red signal indi-
cations respectively (Kamal et al., 2012; Wan et al., 2016; HomChaud-
huri et al., 2016). The pre-determined target speeds possibly generate
unnecessary vehicle stops facing the red phase and dramatic acceler-
ations/decelerations at the red phase starts/ends. Therefore, more at-
tention should be paid when designing the target speeds to avoid such
inefficient trajectories.
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G4. Trajectory optimization using exogenous signal parameters: The ways
to utilizing the signal phase and timing (SPaT) information in current
trajectory optimization studies to our knowledge cannot be applied un-
der actuated traffic signals. The feed-forward optimal control systems
are restricted to be applied in the fixed or pre-timing signals owing
to lack of system feedback (He et al., 2015; Wan et al., 2016; Jiang
et al., 2017). The feedback systems using the model predictive control
(MPC) framework allow for system feedback (Asadi & Vahidi, 2010;
Kamal et al., 2012; HomChaudhuri et al., 2016; Zhao et al., 2018),
but these studies cannot incorporate actuated signals. The main reason
is that SPaT information, which is used for calculating the estimated
arrival time or determining the target speed, can be hardly updated in
the control systems.

G5. Computational complexity of jointly optimizing signals and trajec-
tories: Research efforts on the joint control approaches of signals
and trajectories usually adopt the inefficient enumeration method to
solve the signal optimization problem of the bi-level models (Li et al.,
2014b; Yang et al., 2016b; Xu et al., 2018; Feng et al., 2018; Guo
et al., 2019b; Niroumand et al., 2020), which questions the scalability
of the computational load to large-scale problems and real-time perfor-
mance. In addition, the approximation methods in Li et al. (2014b);
Yang et al. (2016b); Xu et al. (2018); Feng et al. (2018); Yu et al.
(2018); Guo et al. (2019b); Niroumand et al. (2020) oversimplify the
signal optimization, and the global optimum of the platoon trajectories
are not guaranteed.

1.3 Research objectives
The overall research objective of this thesis is to develop an optimization-
based control framework to plan CAV trajectories with multiple signal con-
trol approaches in a unified framework. The research aims at not only ad-
dressing the trajectory optimization problem under exogenous signal phase
and timing (SPaT) information, but also jointly optimizing traffic signal tim-
ing and vehicle trajectories for the global optimum. In order to close the
research gaps presented in Section 1.2.4 and fulfil the overall research ob-
jective, the detailed research sub-objectives are defined as follows.
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R1. To design a controller that optimizes the CAV platoon trajectories
along a corridor with pre-timing signal controllers, taking throughput,
ride comfort, travel delay of passing vehicles, and fuel consumption
of stopping vehicles into account. The controller should respect ve-
hicle position constraints when facing the red light and does not need
to prescribe vehicle arrival time and terminal conditions of speed and
position. (Chapter 2)

R2. To design a controller that optimizes CAV platoon trajectories at ac-
tuated signalized intersections. The platoon controller should be able
to anticipate signal plans and react to actuated signal changes by re-
planning trajectories. Multi-criteria of safety, efficiency, sustainability,
and comfort should be considered in the design. (Chapter 3)

R3. To design a bi-level controller that optimizes traffic signal timing at
the upper layer and platoon trajectories at the lower layer at standard
signalized intersections. (Chapter 4)

R4. To design a computationally scalable single-level controller that si-
multaneously optimizes traffic signals and vehicle trajectories of a full
intersection. The signal timing variables should be formulated as the
vehicle-level control variables and no terminal conditions on speed
and position at the cycle tail need to be pre-specified. (Chapter 5)

1.4 Contributions
The main contributions of the thesis are highlighted in this section, consid-
ering both theoretical or methodological contributions in Section 1.4.1 and
societal contributions and relevance in Section 1.4.2.

1.4.1 Scientific contributions
An optimal CAV platoon trajectory control approach under the pre-timing
signals is proposed considering multiple measures of efficiencies (related to
R1). The proposed control approach optimizes throughout, ride comfort,
travel delay, and fuel consumption, subject to the constraints on admissi-
ble accelerations, speeds, and safe gaps. Additionally, the red traffic light
under the pre-timing signals is formulated as the position constraint for the
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stopping vehicles. The proposed optimal control approach is flexible in in-
corporating queue discharging, platoon split and merge maneuvers along a
corridor of multiple intersections. (see Chapter 2)

A closed-loop control approach is presented for actuated signals to op-
timize CAV platoon trajectories considering multi-criteria using the model
predictive control (MPC) framework (related to R2). The MPC framework
is computationally efficient due to the use of an iterative Pontryagin maxi-
mum principle approach. The feedback information (such as signal changes)
at each time step in the closed-loop is used to re-plan the trajectories under
actuated signal plans. The red indication is designed as a position penalty
term in the running cost, and signal changes are anticipated by updating sig-
nal parameters in the online trajectory optimization problem at each time
step. The proposed system is flexible in accounting for queue discharging,
platoon split/merge, and stops along a corridor with multiple intersections in
an oversaturated traffic flow. (see Chapter 3)

A hierarchical control approach is developed at standard full intersec-
tions to simultaneously optimize signals and CAV platoon trajectories (re-
lated to R3). The hierarchical control approach is able to incorporate dif-
ferent traffic movements during multiple signal phases. The red phase is
formulated as the logic position constraint, which removes the restrictions
of the existing terminal condition approach (i.e., prior estimation of vehi-
cle arrival time) and applicability limitation to an isolated intersection. (see
Chapter 4)

A new joint optimal control method is proposed at isolated signalized
intersections for integrated optimization between traffic signals and CAV
platoon trajectories (related to R4). The objective function and the con-
straints of this joint control problem can be linearized and thereby solved
using mixed integer linear programming (MILP) techniques. The recon-
structed linear red phase constraints reduce computational complexity by
removing the need for calculation of vehicle arrival time. The joint approach
is capable of generating the global optimum considering platoons from dif-
ferent movements within the signal cycle. Furthermore, the optimal vehicle
trajectory pattern and the optimal traffic signal pattern are discovered. (see
Chapter 5)
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1.4.2 Practical contributions
This thesis proposes a framework of integrating traffic signals with trajectory
planning under multiple signal control approaches. The policymakers can
be inspired by the simulation results of the framework in the future CAV
environment. The optimal signal and trajectory patterns explored in this
framework offer suggestions on signal settings and speed prediction to urban
road operators. Furthermore, the benefits of jointly optimizing signals and
trajectories over the individual signal or vehicle optimization convince the
road administrators to establish such communication systems and requisite
infrastructures earlier for better traffic management and operations.

The flexibility and generality of this control framework proposed in this
thesis are verified under different signal control approaches and platoon set-
tings. Therefore, this framework is able to: 1) provide recommendations
and guidance on developing vehicle controllers to original equipment manu-
facturers (OEMs) and service providers of cooperative vehicle systems; and
2) provide advice on developing intelligent traffic signal algorithms for traf-
fic signal controller and ITS device manufacturers, and traffic infrastructure
designers.

1.5 Thesis outline
The thesis structure consists of six chapters, as outlined in Figure 1.1. Chap-
ter 1 introduces the background and motivation of this thesis. Chapter 2 to
Chapter 5 respond to the specific research objectives as in Section 1.3, which
are based on published or accepted scientific journal papers. And Chapter 6
concludes the findings of this thesis and further directions for research.

Chapter 2 and 3 focus on vehicle trajectory optimization where the signal
phase and timing information is applied as exogenous inputs. Specifically,
Chapter 2 aims at designing an optimal platoon trajectory control approach
under fixed or pre-timing signals by optimizing accelerations of the con-
trolled CAV platoon. The optimal throughput is determined first, and then
comfort, travel delay, and fuel consumption are optimized subject to safe and
physical constraints. The red phases are formulated as position constraints
for stopping vehicles during the red phases. The control approach is flexible
in incorporating multiple intersections with downstream vehicle queues.

Chapter 3 proposes a CAV trajectory control approach under actuated
signals using model predictive control (MPC) framework. The actuated sig-
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Chapter 1
Introduction

Individual trajectory optimization

Chapter 2
Trajectory optimization under the pre-timing signal

Chapter 3
Trajectory optimization under the actuated signal

Joint optimization of trajectory and signal

Chapter 4
A bi-level control approach of optimizing trajectories and signals

Chapter 5
A single-layer control approach of optimizing trajectories and signals

Chapter 6
Conclusion

Figure 1.1: Overview of thesis structure

nal information is conveyed to the platoon controller since the beginning of
the signal cycle. Unlike the design of safe gap and red phase constraints
in Chapter 2, Chapter 3 regards the safe gap requirement as a penalty term
in the running cost, and the red phases are represented by penalizing the
gap between the stopping vehicles and the virtually stationary vehicles at the
stop bar. The proposed MPC framework in Chapter 3 is solved using the
receding horizon scheme, i.e., the iterative Pontryagin Maximum Principle
(iPMP) approach.

Chapter 4 and 5 develop the optimal control approaches to integrating
vehicle trajectories and traffic signals in a unified framework at isolated in-
tersections. In Chapter 4, the two-layer control design is proposed to in-
corporate different traffic movements of the platoons during multiple signal
phases. The signal phase lengths and the CAV platoon accelerations are op-
timized in the upper and lower layers respectively, considering comfort and
travel delay. The red phases are formulated as logic constraints of position
to render vehicles responsive to adaptive signal changes. Typical platoon
performance and the optimal patterns of trajectories and signals are explored
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in Chapter 4.
In order to simplify the hierarchical structure in Chapter 4, the joint con-

trol approach presented in Chapter 5 simultaneously optimizes traffic signals
and trajectories of cooperative (automated) vehicle platooning in a single
layer. The control formulation is linearized and then recast into a mixed in-
teger linear programming (MILP) optimization problem to enable efficient
solutions using MILP techniques. The joint control approach incorporates
trajectory optimization of the platoons from all incoming traffic movements.
The optimal trajectory and signal patterns are further revealed for the optimal
traffic control actions at intersections.

Finally, Chapter 6 concludes this thesis by summarizing the findings,
implications for practice, and directions for future research.



Chapter 2

Trajectory optimization under the
pre-timing signal

In this chapter, we present an optimal control approach to optimize co-
operative vehicle trajectories at pre-timing signalized intersections along an
arterial. The proposed approach aims to maximize throughput, and sub-
sequently optimize comfort, travel delay and fuel consumption. The red
phases are taken into account as position constraints for stopping vehicles.
Safety is guaranteed by constraining the inter-vehicle distance to be larger
than some desired value. To verify the performance of the controlled pla-
toon, simulation under three different traffic scenarios is conducted, includ-
ing platoon trajectory control at an isolated intersection with/without vehicle
queue, and platoon trajectory control at multiple intersections. The results
demonstrate the control approach generates plausible behavior at an intersec-
tion and along a corridor with downstream queues. Moreover, the benefits
of the proposed approach in mobility and fuel consumption are revealed by
comparing with three baseline scenarios without control.

This chapter is an adapted version of the journal paper:

Liu, M., Wang, M. and Hoogendoorn, S., 2019. Optimal platoon trajectory
planning approach at arterials. Transportation Research Record, 2673(9),
pp.214-226.

15
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2.1 Introduction

From the safety-oriented perspective, setting traffic lights on urban roads
is an important traffic control approach (Guler et al., 2014). Unlike high-
ways, vehicles have to decelerate or stop during the red time and accelerate
or restart when the green time starts at signalized intersections, resulting in
shock waves. Therefore, there are always acceleration and deceleration be-
haviors - even stops - in the vicinity of signalized intersections, which causes
travel delay as well as excessive fuel consumption and emissions (Yang et al.,
2016a). With the development of cyber-physical technologies, connected
and automated vehicles (CAVs) are able to extend the sensing and anticipa-
tion ranges, and coordinate their decisions for a common goal (Wang et al.,
2016). They have the potential to improve efficiency, safety, and sustainabil-
ity at signalized intersections. Thus, the necessity for taking advantage of
CAV technologies for effective traffic operations at signalized intersections
has become pervasive.

Significant research efforts have focused on CAV platooning on high-
ways (Wang et al., 2014b,c; Han et al., 2017; Fountoulakis et al., 2017),
however, less attention has been devoted to design of CAV platoons on ur-
ban roads. Vehicle acceleration/deceleration maneuvers in the vicinity of
signalized intersections on urban roads produce high levels of emissions and
fuel consumption (Li et al., 2011). Thus it is valuable to optimize the fuel
efficiency at signalized intersections, in addition to travel delay. Many exist-
ing research efforts of optimization-based control framework designs on ur-
ban roads applied different microscopic fuel consumption models (Akcelik,
1989; Ahn et al., 2002; Rakha et al., 2004) in simulation to validate the effec-
tiveness in reducing fuel consumption and emission, and/or delay (average
stop time) (Kamal et al., 2011; Hu et al., 2016; Rakha & Kamalanathsharma,
2011; Kamalanathsharma & Rakha, 2013; Kamalanathsharma et al., 2015).
However, these studies aimed for an isolated intersection and eliminated fuel
efficiency and even travel delay in the objective functions, which could not
reflect realistic performance of the controlled vehicles.

Reported efforts on trajectory control of CAV systems can be grouped
into two categories: V2V-based trajectory control and V2I/I2V-based speed
advice/control. As to V2V-based trajectory control, several control algo-
rithms were proposed at an isolated intersection without a traffic signal.
Some researchers argued that the application of CAV technologies on traffic
control had the potential to remove traditional signal controllers at isolated
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intersections, if reliable connectivity of V2V information was provided (Lee
& Park, 2012; Lee et al., 2013b; Zohdy & Rakha, 2016; Krajewski et al.,
2016). Such control algorithms were proposed aiming at avoiding collision
and improving traffic efficiencies, i.e., travel time and total delay. However,
these control algorithms could not account for potential conflicts and safety
problems of pedestrians and bicyclists, and they only confined to an isolated
intersection. These two features rendered these algorithms far away from
realistic traffic operations.

As to V2I/I2V-based speed advice systems, a number of efforts were
made to investigate optimization-based speed advice algorithms on urban
arterials via V2I and I2V communications. Some optimization-based veloc-
ity planning algorithms used simplified objective functions, such as max-
imizing the absolute value of accelerations or minimizing the differences
between actual and maximal feasible speeds, when safety constraints were
satisfied (Mandava et al., 2009; Asadi & Vahidi, 2010; Xia et al., 2013).
Green Light Optimized Speed Advisory (GLOSA) system was proposed to
provide drivers with speed advice on urban corridors by calculating travel
time to the stop-line (Katsaros et al., 2011b,a; Stevanovic et al., 2013) or by
minimizing fuel consumption (Li et al., 2014a; Stebbins et al., 2017; Sere-
dynski et al., 2013) or delay (Stebbins et al., 2017). However, such speed
advice systems considered only one criterion in the objective function, ig-
noring the comprehensive traffic operations in reality.

A few speed advisory or optimization systems were designed under ac-
tuated or adaptive signal control approaches. As to the actuated signal con-
trol approach (without optimizing signal parameters), speed advisory sys-
tems were designed at isolated actuated signalized intersections (Yang et al.,
2016a; Altan et al., 2017) or corridors with actuated signal traffic lights (Hao
et al., 2018). An optimization-based speed control algorithm was proposed
on arterials by combining control effects of isolated intersections together
(He et al., 2015). With respect to the integrated optimization of adaptive
traffic signals and vehicle trajectories, existing research efforts mainly fo-
cused on isolated intersections (Feng et al., 2018; Yu et al., 2018). However,
only acceleration fluctuations of platoon leaders were optimized over time
for the representative of energy savings and emission reduction of the pla-
toon, which was hard to reveal the optimal eco-driving performance of the
platoon. In addition, actuated or adaptive signal control approaches will add
computational complexity to optimization-based control approaches. Thus,
we design a control system under fixed-timing control approach in this chap-
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ter, which only requires fixed-timing signals within the prediction horizon.
From the discussion above, we conclude that the existing control algo-

rithms seldom optimize fuel efficiency and travel delay of the platoon. In
addition, it is not evident that existing algorithms are scalable to multiple
intersections. This chapter aims at designing an optimal platoon trajectory
control method by optimizing accelerations of the controlled CAV platoon
when satisfying safe driving requirements. The proposed control approach
obtains the optimal throughput first, and then maximizes ride comfort (by
minimizing accelerations) and simultaneously minimizes average travel de-
lay (by maximizing vehicle speeds) and fuel consumption rates, subject to
admissible constraints on acceleration and speed. Rear-end collisions are
avoided by constraining the inter-vehicle distance to be greater than the (min-
imum) safe gap. The red traffic light is formulated as position constraints to
vehicles that cannot pass the stop line during the green phase. The control
approach is flexible in incorporating queue discharging features on intersec-
tion approaches, as well as the platoon splitting and merging performance.
Therefore, the proposed framework is flexible since it can be applied at mul-
tiple intersections with queues on signalized intersection approaches under
multi-criteria in the objective function. Finally, the performance of the pro-
posed control method is verified by simulation using several scenarios.

The remainder of this chapter is organized as follows: the following
section introduces the control formulation for longitudinal driving task, fol-
lowed by analysis of the simulation results. We summarize the study in the
last section.

2.2 Control formulation
The longitudinal platoon control problem is formulated in this section, in-
cluding design assumptions, control objectives and constraints, system dy-
namics, and solution approach.

2.2.1 Design assumptions and description of the control
problem

The basic assumptions in this optimal trajectory design are described as fol-
lows:

1. Fixed signal timing during a cycle at signalized intersections;
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2. Signal plan communicated to CAVs via I2V communication;

3. CAVs connected to the signal controllers via V2I communication;

4. Accelerations of all CAVs in the control zone are controlled;

5. No spillback.

We consider 100% CAV environment to demonstrate the workings of
the proposed approach. First, we take the isolated intersection without a
queue as an example. The longitudinal position of the stop-line is defined
as 0. When the leader of the CAV platoon reaches L0 meters upstream of
the stop-line, the platoon trajectory optimization starts, i.e., the beginning
of the prediction horizon. The prediction horizon ends with the signal cycle
tail. Assuming the signal indication is green when the optimization starts,
the prediction horizon length can be described as T = g1 + r. g1 and r are
defined as the lengths of the (remaining) green phase and red phase in the
current cycle when control starts. The control problem aims to optimize
acceleration trajectories in order to fulfil control objectives and constraints,
which will be detailed in the forthcoming subsections.

If the downstream vehicle queues are taken into account, the controlled
platoon can be treated similarly to the aforementioned traffic scenario. As
shown in Figure 2.1, an approaching platoon is traveling along the corridor
when downstream CAVs are queuing behind the stop-lines. L1 denotes the
lane length between the stop-lines of the upstream and the adjacent down-
stream (second) intersection. The prediction horizon T is considered to start
from the time when the leader of the approaching platoon arrives at L0 me-
ters away from the stop-line in the upstream direction at the first intersection
to the end of the green phase at the second intersection.

QueueQueueing Platoon 

L0 L1

-L0 0 L1

Downstream 
(second) 

intersection

Longitudinal position

Optimization starts Upstream 
(first) 

intersection

Figure 2.1: Illustration on operations of the control system
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2.2.2 Control objectives
Due to the red phase, the platoon may split into two parts in the control de-
sign. The first part which can pass the intersection is required to operate
with minimum travel delay and depart the intersection as soon as possible.
Meanwhile, the maximum number of vehicles that can depart at the intersec-
tion is one of the variables that can be optimized. On the other hand, CAVs
in the second part that cannot leave the intersection are expected to oper-
ate with minimum energy consumption and emission, and decelerate facing
the red phase. Furthermore, the ride comfort and safety requirements of the
platoon are considered. All these strategies aim to control the CAV platoon
efficiently.

The control design is expected to fulfil the following control objectives:

1. To maximize ride comfort (by minimizing accelerations);

2. To minimize the travel delay of passing vehicles (by maximizing ve-
hicle speeds);

3. To maximize the number of vehicles that is able to pass the stop-lines
during the (remaining) green phases;

4. To minimize the fuel consumption of vehicles that can not pass the
intersection.

In addition, the controller should satisfy the no-collision driving require-
ments.

2.2.3 System dynamics model
The control input variables include the acceleration, ai(t), and the maximum
number of vehicles that can pass the stop-line, q (veh). i denotes the vehicle
sequence number on a single lane, and N is the number of controlled vehi-
cles. State variables x are considered as the longitudinal position, xi(t), and
the speed, vi(t), of the controlled vehicle i.

x(t)=(x1(t), ...,xi(t), ...,xN(t),v1(t), ...,vi(t), ...,vN(t))T (2.1)

u(t) = (a1(t), ...,ai(t), ...,aN(t))T (2.2)
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The longitudinal dynamics model is described by the following ordinary
differential equations:

d
dt

x(t) = d
dt
(x1(t), ...,xi(t), ...,xN(t),v1(t), ...,vi(t), ...,vN(t))T = f(x,u)

(2.3)

f(x,u) = Ax+Bu (2.4)

where

A =

�
0N,N IN
0N,N 0N,N

�
;B =

�
0N,N
IN

�

0N,N =





0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0




; IN =





1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1





Here, the subscripts indicate the dimensions of the identity matrix I and the
zero matrix 0.

2.2.4 Optimal control problem formulation
From aforementioned discussion, the control problem formulation at an iso-
lated signalized intersection without a queue can be described as:

min
u,q

J0 =min
u,q

� T

0

�
β1

N

∑
i=1

a2
i (t)−β2

q

∑
i=1

vi(t)−β3q+β4

N

∑
i=q+1

fv (vi(t),ai(t))

�
dt

(2.5)
Here, β1, β2, β3, β4 are positive cost weights. fv is the instantaneous fuel

consumption rate which can capture transient changes in speed and acceler-
ation. For typical vehicles on a flat road, the instantaneous fuel consumption
rate fv (milliliter/s) can be estimated by the 3rd order polynomial with coef-
ficients bi for all instantaneous accelerations and the 2nd order polynomial
with coefficients ci for only positive accelerations, as follows.

fv(t) =






b0 +b1v(t)+b2v2(t)+b3v3(t)+a(t)
�
c0 + c1v(t)+ c2v2(t)

�

a(t)> 0

b0 +b1v(t)+b2v2(t)+b3v3(t) a(t)� 0
(2.6)



2.2 Control formulation 23

Detailed parameter values can be found in Kamal et al. (2011). Optimiz-
ing instantaneous consumption rates may give the trivial optimal solution of
v = 0 and a = 0, but we overcome this problem by maximizing speeds in the
objective function.

In Equation 2.5, the passing q vehicles are optimized to depart in max-
imal speeds while vehicles that can not leave are expected to operate with
minimum fuel consumption rates. In addition, ride comfort for all controlled
vehicles is included, as shown in the first cost term of Equation 2.5. Note-
worthy is the fact that q is a variable which also needs to be optimized. We
define an upper bound for the maximum passing vehicle number in the re-
maining green time, M1. M1 can be obtained as follows

M1 = �
g1 −L0

�
vmax

tmin
� (2.7)

Here, vmax denotes the limit speed on a single lane with signalized in-
tersections. tmin denotes the minimum safe car-following time gap. All the
integer values that are not more than M1 are given to q (q ≤ M1), so q is a
constant in the objective function. Based on the enumeration of possible q,
the biggest value of q is selected in condition that all these q vehicles can
pass the stop-line during the green phase. In this way, q is optimized, and
then the objective function is minimized with this optimal q value. Although
the objective function value will decline with an increase in q value, q is lim-
ited by the signal status. There is a position constraint for these q vehicles
when the signal status turns red, which means, they are mandatory to pass
the intersection during the green phase.

This formulation can also be extended to capture features of queues at
multiple intersections on the arterial. Regarding the aforementioned isolated
signalized intersection as the most upstream intersection, the control for a
corridor applies a different objective function during the prediction horizon,
which is detailed in Equation 2.8. The control problem formulation regard-
ing two intersections with queues can be described as:

min
u,q

J1 = min
u,q

� T
0

�
β1

N
∑

i=1
a2

i (t)−β2
Q2+q

∑
i=1

vi(t)−β3q

+β4
N
∑

i=Q2+q+1
fv (vi(t),ai(t))

�
dt −β5

� T
g1+r

�
N
∑

i=Q2+q+1
vi(t)

�
dt

(2.8)

Here, N is the number of vehicles in the controlled platoon, including
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the approaching platoon and the vehicles queues at intersections. q can be
regarded as the maximum number of vehicles that can pass the stop-line at
the most upstream intersection, and Q2 denotes the queuing vehicle number
at the downstream intersection. Assuming no queue spillback occurs, Q2+q
vehicles are supposed to be discharged during the green phases along the
corridor. If i denotes the vehicle sequence number on a single lane (i ≥ 0),
vehicles between i = 1 and i = Q2 are regarded as the vehicle queue on the
downstream intersection approach, and the vehicle sequence number of the
q passing vehicles at the most upstream intersection is therefore described
as i = Q2 +1 to i = Q2 +q. g1 and r correspond to the most upstream inter-
section. In Equation 2.8, the passing q vehicles and queuing Q2 vehicles are
optimized to depart in maximal speeds within the prediction horizon, while
vehicles that can not depart the most upstream intersection are expected to
operate with minimum fuel consumption rates. Ride comfort is considered
in all controlled vehicles. In addition, the fifth cost term shows that the ve-
hicles that can not depart the most upstream intersection are instructed to
maximize their speeds during green indication of the next cycle at the most
upstream intersection. Herein, the maximum passing vehicle number in the
remaining green time at the most upstream intersection considering queue,
M, can be obtained as follows

M = �
g1 −L0

�
vmax

tmin
�+Q1 (2.9)

Q1 denotes the downstream vehicle queue at the most upstream intersec-
tion. It should be noted that the optimal value of q can be obtained based on
M, which is similar to Equation 2.7.

2.2.5 Controller constraints
The control problem requires the control and state variables to respect some
constraints:

1. Admissible acceleration is bounded between the maximum accelera-
tion, amax, and the (negative) maximum deceleration, amin.

amin ≤ ai(t)≤ amax (2.10)

2. Speed is restricted to be no larger than the limit speed, vmax, but non-
negative.

0 ≤ vi(t)≤ vmax (2.11)
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3. No-collision requirements: Space gap and time gap is required to be
greater than or equal to the minimum safe gap within the prediction
horizon.

xi(t)− xi+1(t)≥ vi+1(t)tmin + s0 + l (2.12)

l denotes the length of a standard vehicle and s0 is the minimum space
gap at standstill conditions.

4. Red phase position constraint

The red phases within the prediction horizon are regarded as position
constraints, which can adapt to deal with queues by adjusting the value of
Q2,q and signal timing parameters , g1 and r. There are two position con-
straints regarding the red phase. As to two intersections along a corridor, the
(Q2+q)-th vehicle should be restricted to pass the stop-line during the green
time at the most upstream intersection after optimizing the value of q, that
is, the longitudinal position of the (Q2+q)th vehicle should be more than or
equal to 0 at the end of green time at the first intersection.

xQ2+q(g1)≥ 0 (2.13)

In addition, the i = Q2 + q+ 1 to i = N vehicles which will encounter
the red time at the most upstream intersection should be constrained to stop
behind the stop-line during the red phase, which means, the longitudinal
positions of i = Q2 +q+1 to i = N vehicles should be less than or equal to
0 during the red time at the first intersection, as follows.

xi(t)≤ 0, for Q2 +q+1 ≤ i ≤ N,g1 ≤ t ≤ g1 + r (2.14)

2.2.6 Solution approach
The continuous-time optimal control problem is transformed into a nonlinear
programming (NLP) problem by discretizing the control variable of accel-
erations within the prediction horizon. System dynamics are transcribed as
linear equality constraints in the NLP problem. The linear inequality con-
straints on the control variable, i.e., lower and upper bounds on accelera-
tions, are set to limit admissible control signals. Other linear inequality con-
straints regarding speed, safe gap and longitudinal position during the red
time are described in the form of control variables using the system dynamic
equation, as the solver required. Thus, all vehicles in the controlled platoon
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within the prediction horizon obey the controller constraints. This optimal
control problem is solved with fmincon function in the MATLAB environ-
ment, using the SQP algorithm. Hereinafter, we discuss the performance of
the controller.

2.3 Simulation results and analysis
In order to verify the platoon performance under different scenarios, ten to
fifteen vehicles are simulated in different experiments.

2.3.1 Experiment design
Three scenarios are designed to test the performance of the controlled CAV
platoon for different experiment objectives. Table 2.1 describes the experi-
ment design. The parameter values in the simulation settings are detailed in
Table 2.2.

Table 2.1: Design of the numerical simulation experiments

Scenario 1 Scenario 2 Scenario 3

Scenario
design

An isolated inter-
section without
a downstream
queue

An isolated in-
tersection with
a downstream
queue

A corridor of
two signalized
intersections
with downstream
queues

Settings N = 10, g1 =
30 s, r = 30 s

N = 15, |Q1| =
4, g1 = 30 s, r =
30 s

N = 10, |Q1| =
2, |Q2| = 2, g1 =
20 s, r = 20 s, g2 =
20 s, L1 = 400 m

Experiment
objectives

To test the va-
lidity of the red
phase position
constraints and
to tune the cost
weights

To evaluate the
workings of
a downstream
queue and the
scalability of the
control system

To examine the
applicability of the
control framework
on a corridor and
to validate possi-
ble deceleration
maneuvers
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Table 2.2: Parameter and coefficient values

Notation Parameter/ Coefficient Value Unit
- time step 1 s
- initial speed of the approaching platoon 8 m/s
- initial space gap in the approaching platoon 21 m
- initial space gap in vehicle queues 5 m
N number of vehicles in the controlled platoon 10,15 -
Q1 vehicle queue on the first intersection approach 0,2,4 -

Q2
vehicle queue on the second intersection ap-
proach 0,2 -

g1
remaining green phase length at the first inter-
section 30,20 s

r red phase length at the first intersection 30,20 s
g2 green phase length at the second intersection 20 s
l length of every controlled vehicle 3 m

L0

distance from L0 meters away from the stop-line
in the upstream direction (at the first intersec-
tion) to the stop-line at the first intersection

200 m

L1
lane length between the stop-line at the first and
second intersection 400 m

tmin minimum safe car-following time gap 2 s
s0 minimum space gap at standstill conditions 2 m
vmax limit speed on the urban corridor 15 m/s
amax allowable maximum acceleration 2 m/s2

amin allowable minimum acceleration -5 m/s2

β1 cost weight 1 -
β2 cost weight 1 -
β3 cost weight 1 -
β4 cost weight 34 -
β5 cost weight 1 -

Scenario 1 represents the situation that the controlled platoon splits into
two at an isolated intersection without a downstream queue on the approach
within the prediction horizon (Q1 = Q2 = 0). Scenario 1 is simulated to
verify the workings of the optimal control approach when the red phase is
included as position constraints. In Scenario 1, the first q vehicles of the
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approaching platoon are expected to pass directly and the subsequent N −q
vehicles cannot depart due to the red phase. The prediction horizon length
T is 60 s (T = g1 + r), including the remaining green phase length (g1 = 30
s) and red phase length (r = 30 s). Performance in Scenario 1 can help
understand how the control framework works under the weighted sum of
different criteria and prove the flexibility of the control approach.

Scenario 2 introduces a downstream vehicle queue at an isolated signal-
ized intersection (|Q1| = 4, Q2 = 0), which provides insights into the ef-
fectiveness of the control approach regarding a downstream queue. Apart
from the approaching platoon, Q1 vehicles are set to stop behind the stop-
line waiting for the green phase at the start of the optimization. The lengths
of the remaining green and red phases are 30 s (g1 = 30 s and r = 30 s). In
Scenario 2, platoon split and merge and the acceleration behavior of queuing
vehicles at the start of the green phase can be tested. In addition, an increase
in the number of controlled vehicles (N = 15) can validate the scalability of
the control system.

Scenario 3 is designed along a corridor of two signalized intersections
with downstream queues. The remaining green phase length at the first in-
tersection g1 = 20 s (from t = 0 s to t = 20 s), the red phase length at the
first intersection r = 20 s (from t = 21 s to t = 40 s), and the green phase
length at the downstream (second) intersection g2 = 20 s (from t = 41 s to
t = 60 s). The prediction horizon T is 60 s. The controlled N (=10) ve-
hicles includes Q1 (|Q1|=2) and Q2 (|Q2|=2) vehicles waiting for the green
phases behind the stop-line at the first and the second intersection respec-
tively, and N − |Q1|− |Q2| (=6) vehicles approaching from L0 meters away
from the stop-line in the upstream direction at the first intersection. Given a
short lane length (L1 = 400 m) between two intersections, q passing vehicles
at the first intersection may experience deceleration maneuvers between the
first intersection and the second intersection. The q vehicles are expected
to pass as soon as possible but decelerate to keep safe gaps. Q2 vehicles on
the second intersection approach keep zero acceleration behind the stop-line
during the red phase (t ∈ [0,g1 + r]). Scenario 3 can help validate the flex-
ible characteristic of the control framework regarding the application on an
arterial corridor of multiple signalized intersections with queues.

The results of three designated scenarios can verify the performance of
the platoon trajectory control approach. Similar settings (e.g., the number
of controlled vehicles, vehicle queues behind the stop-line at intersections,
and the number of consecutive intersections along a corridor) can be imple-
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mented in the same way. In addition, the communication ranges of V2I, I2V
and V2V are limited to about 200 meters in reality, so the control approach
starts from L0 (=200) meters away from the stop-line in the upstream direc-
tion at the first intersection. The distance between the upstream intersection
and the downstream intersection L1 is set to be 400 m to verify the possible
deceleration maneuvers.

2.3.2 Platoon performance
Three scenarios are simulated to evaluate control effects based on trajectory
analysis, as depicted in Figure 2.2 to Figure 2.4. The horizontal red lines in
these figures show the red traffic light. Instantaneous fuel consumption rates
(see subfigure (d) of Figure 2.2 to Figure 2.4) are calculated based on ac-
celerations and speeds using Equation 2.6. Since speeds are developed from
accelerations, fluctuations in instantaneous fuel consumption rate are highly
relevant with variations in accelerations (see subfigure (a) of Figure 2.2 to
Figure 2.4). Overall, it is evident that vehicle accelerations and decelerations
are considerably smooth owing to the cost term of maximizing ride comfort,
and the optimal trajectories satisfy the controller constraints, including con-
straints on the safe gap, allowable acceleration, and limited speed.

The remainder of this section analyzes the platoon performance in differ-
ent scenarios. Finally, three comparison baseline scenarios are implemented
using intelligent driver model (IDM) under the same settings of the desig-
nated scenarios. The simulation results can reveal differences and benefits
of the proposed control approach in comparison to human drivers.

Tuning cost weights

The cost weights are tuned in Scenario 1 and applied in all scenarios. Firstly,
we regard β1 = 1 as a baseline. The choice of β3 (=1) does not influence the
optimal solution because q is a constant in the objective function. The cost
weight of speed, β2, is supposed to keep the same order with the cost weight
of acceleration β1, thus β2 = β1 = 1. The same also holds for β5. As to the
fuel consumption cost weight β4, we find that bigger values of β4 (> 34)
will overweight the fuel consumption cost term, causing lower speeds with
respect to the first q vehicles when passing the intersection. It is obvious that
an overweighted fuel consumption cost weight β4 has a negative effect on
the trajectory performance, especially speeds. Therefore, β4 is selected to be
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34, which reaches its largest value without sacrificing speeds.

Analysis of Scenario 1

In Scenario 1, M1 = 9 and q is optimized to be 7. The optimal trajectories of
Scenario 1 are demonstrated in Figure 2.2. Vehicle 1 to 10 represent the vehi-
cle sequence number of the approaching platoon on the lane. In Figure 2.2,
only the first q (=7) vehicles are leaving the intersection, while the subse-
quent N −q (=3) vehicles cannot catch the green phase. The first q vehicles
accelerate quickly till the limit speed vmax and then keep it. Only Vehicle
1 reaches the maximum acceleration at the beginning, because it does not
have to satisfy the safety constraint as the followers do. Vehicles that can-
not pass the intersection decelerate and slowly approach the stop-line, due to
an explicit optimization function of fuel consumption rates. Performance in
Scenario 1 proves the flexibility of the control approach that multiple criteria
in the objective function can be applied, and the control approach works well
subject to all constraints and system dynamics.

Analysis of Scenario 2

Platoon performance of Scenario 2 at an isolated intersection with a down-
stream queue is depicted in Figure 2.3. The first |Q1| (=4) vehicles in the
legend represent the vehicle queue Q1 on the intersection approach. The
maximum number of vehicles that can depart the first intersection, q, is opti-
mized to be 11. It is shown that the last N −q (=4) vehicles cannot catch the
green time and decelerate behind the stop-line. Similar trajectories appear in
Scenario 1 in terms of the split of the approaching platoon (see Figure 2.2).
Using position constraints to express the red phase, it is clear that the im-
plementation of a downstream queue works in the proposed optimal control
approach.

Analysis of Scenario 3

The optimal trajectories of Scenario 3 are presented in Figure 2.4. In Sce-
nario 3, q is optimized to be 5. The approaching platoon experiences split
and merge with the preceding vehicles (Q1 and Q2) when the signal sta-
tus changes (t = 20 s and t = 40 s). The vehicle queue Q2 (Vehicle 1 and
2) accelerates when the signal status turns green at the second intersection
(t = 41 s). The vehicle queue Q1 (Vehicle 3 and 4) starts acceleration from
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Figure 2.2: Optimal trajectories in Scenario 1

standstill conditions at the beginning of the green time at the first intersec-
tion and moves to the second intersection with gradually increasing speeds.
While merging, Q1 vehicles keep the safe gap with Q2 vehicles. The pass-
ing vehicles (Vehicle 3 to 7) accelerate at the beginning and depart the first
intersection directly. The leader in the approaching platoon (Vehicle 5) is
expected to accelerate till the maximum speed vmax but it cannot, because
Vehicle 5 should keep the safe gap with Vehicle 4 on the short lane length
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Figure 2.3: Optimal trajectories in Scenario 2

(L1 = 400 m). Owing to the red phase constraints, the last 3 vehicles (Vehi-
cle 8 to 10) can pass the first intersection only if the subsequent green phase
starts (t = 41 s). Vehicle 8 to 10 have to decelerate facing the red phase and
then accelerate till the maximum speed after the next green phase starts.
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Figure 2.4: Optimal trajectories in Scenario 3

Analysis of comparison scenarios

In order to show the behavioral differences and potentials of the controlled
platoon, three comparison baseline scenarios, which apply the intelligent
driver model (IDM) (Treiber et al., 2000), are designed using the same set-
tings in Scenario 1 to Scenario 3. The simulation results of the compari-
son scenarios are shown in Figure 2.5. The maximum number of vehicles
that can pass the intersection is evaluated first when implementing the IDM
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model. Later, a virtual standstill vehicle (also applicable to the safe gap con-
straint) is placed at the stop line representing the red phase. After adding
the virtual vehicle(s), the IDM model is implemented again to simulate the
trajectories under the workings of the red phase constraint (i.e., the safe gap
constraint of the virtual vehicle). The virtual vehicle is removed after the
green time starts.

Figure 2.5 shows the simulation results under the IDM model. It is ob-
vious that the optimal throughputs in the IDM model are worse than the
counterparts in our control approach. Two, two, and one more vehicles are
released in our control approach compared with IDM under Scenario 1 to
Scenario 3. In addition, the total fuel consumption of all controlled vehi-
cles by integrating the instantaneous fuel consumption rate in time is also
an advantage of our approach. For instance, the fuel savings of our control
approach are 18.4509 ml in Scenario 3.
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Figure 2.5: Longitudinal trajectories of IDM in Scenario 1, 2 and 3

2.4 Conclusions and future work
In this chapter, we proposed a flexible CAV acceleration control approach
on urban roads that optimizes traffic operations with multiple criteria of
throughput, ride comfort, travel delay, and fuel consumption, subject to safe
and physical constraints. The optimal control-based approach takes down-
stream vehicle queues into account and can be applied not only at an isolated
signalized intersection but on urban arterials as well. The proposed control
approach is applied to design the controller, the performance of which is
verified by simulation with multiple intersections and downstream vehicle
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queues. Simulation results show that the proposed control system is able to
achieve control objectives and satisfy constraints.

However, this approach treats the red phases as position constraints with-
out tracking the vehicle in front with desired gaps, and consequently cost
weights are required to be selected carefully to avoid unexpected trajectories
such like vehicles stop far away from the stop bar to save fuel.

In the next chapter, a platoon trajectory control approach under actuated
signal plans will be proposed to improve this limitation in Chapter 2.





Chapter 3

Trajectory optimization under the
actuated signal

In this chapter, a platoon trajectory control approach using model pre-
dictive control is proposed for cooperative (automated) vehicles under ex-
ogenous actuated signals. Real-time signal phase and timing information
is available to the platoon Infrastructure-to-Vehicle communication. This
control approach optimizes acceleration trajectories of the controlled CAV
platoon along a corridor with signalized intersections. The objectives of the
proposed approach are to maximize the throughput first, and optimize com-
fort, travel delay and fuel consumption simultaneously after that. Safety is
included by penalizing smaller gaps between CAVs in the running cost. The
red phases are represented by virtual vehicles at the stop-line during the red
time to force stopping vehicles to decelerate using the safe gap penalty. The
acceleration and speed are constrained within the upper and lower bounds.
The proposed approach is flexible in dealing with platoon merging, splitting,
stopping, and queue discharging maneuvers at signalized intersections. Fi-
nally, the proposed approach is verified by simulation under five scenarios,
considering a variety of pre-timing and actuated signal settings with/without
anticipating red phases. The simulation results show the benefits of the pro-
posed approach in fuel savings, compared with the state-of-the-art approach
which used the virtual vehicle term without anticipation. The adjustments
of signal parameters in Scenario 3 and 4 demonstrate the applicability of the
MPC approach under actuated signals.

37
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This chapter is an adapted version of the journal paper:

Liu, M., Hoogendoorn, S. and Wang, M., 2020. Receding horizon coop-
erative platoon trajectory planning on corridors with dynamic traffic signal.
Transportation Research Record, 2674(12), pp.324-338.
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3.1 Introduction

Although considerable amount of work has been done to mitigate urban con-
gestion, traffic delays are still urgent problems on urban roads (Ubiergo &
Jin, 2016). In addition, the deceleration and acceleration maneuvers of tradi-
tional vehicles in the vicinity of signalized intersections produce high levels
of emissions (Li et al., 2011). The current advances in connected and auto-
mated vehicle (CAV) technology have the potential to operate vehicles in an
efficient, safe and environmental-friendly way (Wang et al., 2014a). CAVs
can exchange information under Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, which provides possibilities for antic-
ipation and cooperative driving (Guanetti et al., 2018). Thus, numerous re-
search efforts have been conducted to improve traffic operations by using
CAV technologies at signalized intersections (Wang et al., 2018).

Current literature on CAV platooning on urban roads can be categorized
into four directions, i.e., driver assistant systems, cooperative vehicle inter-
section control algorithms, CAV trajectory optimization, and the integrated
optimization of traffic signals and vehicle trajectories.

Driver assistant systems, such as GLOSA (Green Light Optimized Speed
Advisory) (Stevanovic et al., 2013; Li et al., 2014a; Stebbins et al., 2017) and
Eco-Approach and Departure systems (Altan et al., 2017; Hao et al., 2018;
Wang et al., 2019), are able to provide speed advice to drivers at signalized
intersections for eco-driving. The purpose of these systems was to operate
vehicles in such a way that vehicles arrived at the stop bar in green phases
without stop by calculating the advisory speed based on the predefined rules.
Therefore, the travel time and the fuel consumption were reduced at signal-
ized intersections for the single subject vehicle. Although the further appli-
cations of actuated signal plans, market penetration rates and the extension
to multiple intersections were studied in Stevanovic et al. (2013); Hao et al.
(2018); Wang et al. (2019), the traffic and vehicle dynamics models were
usually oversimplified, making the results less convincing. Furthermore, the
drivers may not comply with the advisory speed and may not control the ve-
hicle speed perfectly as suggested in reality, so the effects of these systems
were required to be validated in field experiments. The empirical validation
was only tested in few studies (Bodenheimer et al., 2014; Altan et al., 2017).
In addition, these systems were designed only for the individual vehicle ben-
efits, rather than the benefits of the platoon or the traffic flow.

A cooperative vehicle intersection is a “signal-free” intersection which
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enables the CAVs to communicate with each other and thereby pass the in-
tersection cooperatively without collision (Lee & Park, 2012). Although
these intersection control algorithms had the potential to improve the traffic
operations of CAVs at a typical four-arm intersection (Ahmane et al., 2013;
Lee et al., 2013a; Zohdy & Rakha, 2016; Yu et al., 2019) or along a corridor
(Lee et al., 2013b), the driver/user acceptance in relation to safety perception
and potential conflicts of pedestrians and bicyclists were neglected, which
questions the applicability of this line of research in reality.

With respect to the CAV trajectory optimization by controlling speeds or
acceleration rates at fixed-timing intersections, some CAV trajectory control
approaches at isolated intersections only applied simple objective functions
to optimize the energy consumption and/or ride comfort (Zhao et al., 2018;
Jiang et al., 2017). These control algorithms used terminal costs to represent
the red phase, assuming that the terminal conditions (time and position) were
known at an isolated intersection. However, terminal costs are confined to be
applicable at isolated intersections, because it is difficult and suboptimal to
combine intersections along an arterial using terminal costs. Several instan-
taneous fuel consumption and/or emission models (Akcelik, 1989; Rakha
et al., 2004; Kamal et al., 2011) were adopted in these control approaches
to minimize the fuel usage, or to validate the reduction of fuel consump-
tion and emission in simulation. More sophisticated systems on corridors
with multiple pre-timing intersections were designed for an individual vehi-
cle considering multiple criteria (Asadi & Vahidi, 2010; Kamal et al., 2012;
He et al., 2015; Wan et al., 2016; HomChaudhuri et al., 2016; Liu et al.,
2019). The key in the control design was how to make vehicles stop facing
the red phase.

Generally, there are three approaches to represent the red phase, i.e., us-
ing the virtual vehicle, tracking the target speed, and constraining the posi-
tion. The first approach was to apply a virtually preceding vehicle at the stop
bar representing the red phase. Together with the safe gap requirement, the
followers behind the virtual vehicle were able to stop in order to keep the
safe gap with the virtual vehicle. The control approach in Asadi & Vahidi
(2010) considered the red phases in constraints by introducing a virtual vehi-
cle in front, but the signal information was implemented with no prediction.
The second approach aimed to track the piecewise target speed (including
desired deceleration rates/speeds) facing the red phases (Kamal et al., 2012;
He et al., 2015; Wan et al., 2016; HomChaudhuri et al., 2016). To track the
pre-defined target speed would produce large decelerations once the vehicle
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was recognized to miss the green phase, and then accelerate dramatically
at the beginning of the next green phase. Therefore, more attention should
be paid to design the target speed in an optimal way, and relieve computa-
tional burden when tracking the piecewise target speed cost term. The last
approach was to regard the red phases as position constraints that the stop-
ping vehicles could not pass (Liu et al., 2019). However, this work was not
tracking the preceding vehicles in desired gaps. Therefore, elaborate work
on tuning cost weights was necessary to make a trade-off between maximiz-
ing speeds and minimizing fuel consumption. Otherwise, the vehicles might
stop far away from the stop bar to save fuel.

There were also research interests focusing on the integrated optimiza-
tion of adaptive traffic signals and vehicle trajectories in a unified framework
(Yu et al., 2018; Xu et al., 2018; Feng et al., 2018). The platoons were de-
signed to decelerate but not stop when approaching the intersection during
the red phase. However, these control algorithms were designed to optimize
simple objective functions of the platoon leader in the vicinity of an isolated
intersection for relieving computational load.

From the discussion above, it can be concluded that most current ap-
proaches only optimize the trajectories of an individual vehicle using simple
objective functions of a few criteria. In addition, it is evident that the exist-
ing optimization-based control algorithms under traffic signals mostly focus
on design for pre-timing signals, and the current approach to treat the red
phases using the piecewise target speed term may result in computational
issue. The previous work in Chapter 2 was designed for an arterial by opti-
mizing throughput, ride comfort, travel delay and fuel savings. However, the
previous control system was open-loop based on the feed-forward optimal
control, and thereby was restricted in fixed-timing signal plan. One advan-
tage of closed-loop control systems over open-loop systems is the fact that
the use of feedback allows the system to be insensitive to both external dis-
turbances and internal variations in system parameters (Åström & Murray,
2010), such as changes in signal settings. Although the control approaches
allow for system feedback in (Zhao et al., 2018; Asadi & Vahidi, 2010; Ka-
mal et al., 2012; HomChaudhuri et al., 2016), they did not take advantage of
it and were thereby confined to pre-timing signals. The reason is that signal
information in these approaches is an input when tracking the pre-defined
target speed, which excludes signal changes within the control systems. In
order to include the actuated signal plan, a closed-loop system is developed
to overcome the limitations of open-loop systems. The feedback at each
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time step in the closed-loop can re-plan the trajectories under actuated or
semi-actuated signals. In addition, the work in Chapter 2 required elaborate
work on tuning cost weights to avoid stopping away from the stop-line. An
improvement to address the problem is to transform the red phase position
constraint to a penalty term and add a desired gap term in the running cost.

In this chapter, a model predictive control (MPC) framework is proposed
for urban corridors to overcome the aforementioned limitations of platoon
trajectory control approaches. The proposed MPC framework is efficient
on computational time using an iterative Pontryagin Maximum Principle
(iPMP) approach (Hoogendoorn et al., 2012). An optimal platoon trajectory
control algorithm is presented by optimizing accelerations of the controlled
CAV platoon. The control algorithm determines the optimal throughput first,
and then optimizes multi-criteria including ride comfort (by minimizing ac-
celerations), average travel delay (by maximizing vehicle speeds), safe space
gap, and fuel consumption rates, subject to admissible constraints on accel-
eration and speed. Safety requirements are incorporated by stimulating the
inter-vehicle distances larger than the minimum safe gap as a penalty term in
the running cost. The red phases are represented by introducing virtual vehi-
cles at the stop bars during the red phases, so the stopping vehicles can avoid
departure in red time using the safe gap penalty with the virtual vehicles.
The red phases are designed with anticipation by updating the cost terms in
the running cost at the beginning of the current signal cycle. The proposed
control approach is flexible in accounting for platoon dynamics of merging,
splitting, stopping, and queue discharging along a corridor with multiple in-
tersections. The proposed trajectory control approach is not restricted to
fixed signal timing. It also works under the actuated signal plan by updat-
ing the signal parameters in the closed loop, which reveals the flexibility of
the control approach under different signal control approaches. Finally, the
performance of the proposed control algorithm is verified by simulation us-
ing four scenarios and a baseline scenario, taking the signal settings and the
anticipation time of the red phases into account.

The remainder of Chapter 3 is organized as follows: the following section
introduces the control formulation for longitudinal driving task, followed by
the experiment design and analysis of the simulation results. We conclude
the study in the final section.
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3.2 Control formulation
The longitudinal platoon control problem is formulated in this section, in-
cluding control problem, control objectives and constraints, system dynam-
ics, controller formulation, running cost specification, derivation of the opti-
mal control input and solution approach.

3.2.1 Control problem
100% CAV environment and exogenous signal parameters are considered
to demonstrate the workings of the proposed algorithm. It is assumed that
Signal Phasing and Timing (SPaT) information is available for the platoon
controller under Infrastructure-to-Vehicle (I2V) communication, and CAVs
can communicate with each other and be controlled via accelerations. The
actuator lag and the sensor delay are not considered. Merging behaviors
from side streets or adjacent lanes are not taken into account.

The statement of the control problem can be described as a CAV pla-
toon traveling on the corridor with multiple intersections where downstream
CAVs are queuing behind the stop-lines. The platoon trajectory control sys-
tem will be activated if the platoon leader reaches the control zone (e.g., 200
meters upstream of the stop-line at the upcoming intersection). The control
objective is to determine the accelerations of the CAV platoon and CAVs
in the queue in order to fulfil control objectives and constraints. The maxi-
mal throughput is pre-determined, which will be detailed in the forthcoming
subsection.

3.2.2 Control objectives
The control design is expected to fulfil (a trade-off between) the following
control objectives.

1. To maximize the throughputs during the (remaining) green phases

2. To maximize the ride comfort (by minimizing accelerations)

3. To minimize the travel delay (by maximizing vehicle speeds)

4. To minimize the fuel consumption

5. To maintain the safe gap with the preceding vehicle
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6. To decelerate or even stop confronting the red phases if unable to pass
the intersection

The throughput is optimized first by determining the maximal number of
vehicles that are able to pass the intersection during the green phase. The
reason for that is to confirm the first-stopping vehicle facing the red phase,
and then the red phase term of the sixth objective will be applied to the first-
stopping vehicle.

3.2.3 System dynamics model

To describe the longitudinal dynamics model, a second-order model is pro-
posed in this subsection. The control input variable u is the acceleration,
ui(t). i (1 ≤ i ≤ N) denotes the vehicle sequence number on a single lane,
and N is the total vehicle number in the controlled platoon. State variables x
are considered as the longitudinal position, xi(t), and the speed, vi(t), of the
controlled vehicle i. The control and state variables can be defined as:

u = (u1, ...,ui...,uN)
T (3.1)

x = (x1, ...,xi...,xN)
T (3.2)

xi(t)=
�

xi (t)
vi (t)

�
(3.3)

The longitudinal dynamics model is described by the following ordinary
differential equation:

d
dt

xi(t) =
d
dt

�
xi (t)
vi (t)

�
= f(xi,ui) (3.4)

f(xi,ui) = Axi +Bui (3.5)

where

A =

�
0 1
0 0

�
;B =

�
0
1

�
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3.2.4 Controller formulation and running cost specifica-
tion

If q j (veh) denotes the maximal number of vehicles able to pass the jth
intersection, the cost function J of the control system can be formulated as
the following:

min
u,q j

J
�
x,u, t,q j

�
= min

u,q j

� Tp

0
L
�
x,u, t,q j

�
+G(x(Tp))dt (3.6)

subject to

1. the system dynamics model of Equation 3.4

2. the initial condition: x(0) = x0

3. the constraints on state and control variables: x(t) ∈ X, u(t) ∈ U, t ∈
[0,Tp]

where L denotes the running cost and G denotes the terminal cost at the end
of the prediction horizon Tp. Although the terminal cost function has an in-
fluence on the controller stability and performance, a longer prediction hori-
zon can compensate this impact of G at the cost of computational load (Wang
et al., 2012). The terminal cost G (=0) and an appropriate prediction horizon
are chosen in this work to guarantee the controller performance. Noteworthy
is the fact that the maximal throughput q j can be pre-determined before the
final optimal solution. The value of q j can be maximized beforehand based
on the optimal position trajectory xi(t) when removing the red phase penalty
in the control objectives. In other words, the last vehicle that can depart the
jth intersection during the green time is pre-determined as the q jth vehicle.
Here, the first vehicle unable to pass and behind the q jth vehicle is defined
as the first-stopping vehicle (i = q j +1) at the jth intersection.

In this control design, the running cost of vehicle i, Li (a constituent of
L), is defined as follows (the time t is omitted in order to simplify equations):

Li
�
xi,ui, t,q j

�
= β1ui

2 −β2vi +β3
(vi−1−vi)

2

xi−1−xi−li

+β4(xi−1 − xi − vitmin − s0 − li)2 +β5 fv (ui,vi)+β6

�
vvir

j −vq j+1

�2

xvir
j −xq j+1

(3.7)

L
�
x,u, t,q j

�
=

N

∑
i=1

Li
�
xi,ui, t,q j

�
(3.8)
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Here, li denotes the length of vehicle i, tmin denotes the minimum safe
car-following time gap, and s0 is the minimum space gap at standstill condi-
tions. Turning vehicles to leave intersections can be included in the control
approach by setting different values of tmin for different turning movements.
To represent the red phase, a virtual standstill vehicle is introduced in the
last term of the running cost. vvir

j (=0) and xvir
j are the speed and the position

of the virtual vehicle at the jth intersection respectively. β1, β2, β3, β4, β5,
β6 are cost weights.

The first cost term in the running cost is designed to maximize ride com-
fort by minimizing accelerations. The second cost term in the running cost
is to maximize speeds in order to minimize travel delay. The third cost term
is to track the preceding vehicle and consider the safety as a large penalty
if the distance to the predecessor is short. The fourth cost term implies that
the gap is stimulated to follow the desired time gap, tmin. The fifth cost term
represents the minimization of fuel consumption. The last cost term is de-
signed only for the first-stopping vehicle at the jth intersection (i = q j + 1)
during the red phase. This term renders the stopping vehicles stay behind
the stop-line using the safe gap penalty with the virtual vehicle.

In the fifth term, fv is the instantaneous fuel consumption rate (ml/s).
Detailed parameter values can be found in Kamal et al. (2011). Although fv
is optimized to approach zero accelerations and speeds, other criteria in the
running cost trade off with the fuel consumption term to generate optimal
trajectories in the vicinity of signalized intersections. For typical vehicles on
a flat road, fv (ml/s) can be estimated as (omitting the time t)

fv =

�
b0 +b1v+b2v2 +b3v3 +u

�
c0 + c1v+ c2v2� u > 0

b0 +b1v+b2v2 +b3v3 u ≤ 0 (3.9)

It should be noted that the running cost in Equation 3.7 is a piecewise
function according to the vehicle sequence in the platoon, see Equation 3.10.
The running cost is categorized into three modes for better illustration, i.e.,
the leading mode, the following mode, and the first-stopping mode. Leading
mode is designed for the platoon leader (i = 1), so the third and fourth (safe
following and desired time gap) cost terms vanish owing to no preceding
vehicle ahead. Following mode is used for the following vehicles, so the
sixth (virtual vehicle) term is removed. First-stopping mode is used for the
first-stopping vehicle (i = q j +1), which engages in avoiding collision with
the virtual vehicle and anticipating signals facing the red phase, so the fourth
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(desired time gap) term is unnecessary.

Li =






β1ui
2 −β2vi +β5 fv (ui,vi) i = 1

β1ui
2 −β2vi +β3

(vi−1−vi)
2

xi−1−xi−li +β5 fv (ui,vi)+β6
(vvir

j −vi)
2

xvir
j −xi

i = q j +1

β1ui
2 −β2vi +β3

(vi−1−vi)
2

xi−1−xi−li +β5 fv (ui,vi) others
+β4(xi−1 − xi − vitmin − s0 − li)2

(3.10)
The piecewise running cost of Equation 3.10 can be implemented by

updating cost weights, i.e., β3 = 0 when i = 1, β4 = 0 when i = 1 and i =
q j + 1, and β6 = 0 when i �= q j + 1. In this way, the switch between the
leading mode (β3 and β4), the first-stopping mode (β4) and the following
mode (β6) is achieved. Hereinafter, the running cost of Equation 3.7 is still
applied but the cost weights of β3, β4, and β6 are replaced using β̂3, β̂4, and
β̂q j+1

6 as follows.

β̂3 =

�
β3 i �= 1
0 others , β̂4 =

�
β4 i �= 1,q j +1
0 others , β̂q j+1

6 =

�
β6 i = q j +1
0 others

(3.11)
Assuming the signal cycle starts from the green phase, all cost weights

can remain unchanged within the cycle. This is beneficial to apply the pro-
posed control approach under actuated signal plan because the red and green
phase lengths are flexible during a signal cycle.

3.2.5 Derivation of the optimal control input
Hereafter, the control problem is solved based on Pontryagin Maximum
Principle (PMP). Without providing too much detail, the Hamiltonian H is
defined as follows (t is again omitted):

Hi
�
xi,ui,λ, t,q j

�
= Li

�
xi,ui, t,q j

�
+λifi (xi,ui, t)

= β1ui
2 −β2vi + β̂3

(vi−1−vi)
2

xi−1−xi−li + β̂4(xi−1 − xi − vitmin − s0 − li)2

+β5 fv (ui,vi)+ β̂q j+1
6

�
vvir

j −vq j+1

�2

xvir
j −xq j+1

+λ1
i vi +λ2

i ui

(3.12)

where λ denotes the co-state of the system:
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λi (t) =
�

λ1
i (t)

λ2
i (t)

�
(3.13)

Thus, the optimal control law can be obtained according to the neces-
sary condition for the optimal control law using Hamiltonian. Therefore, the
optimal control law can be described as:

u∗i =





−λ2

i +β5(c0+c1vi+c2v2
i )

2β1
λ2

i <−β5
�
c0 + c1vi + c2v2

i
�

− λ2
i

2β1
otherwise

(3.14)

In order to simplify the piecewise feature of the instantaneous fuel con-
sumption model fv, the Heaviside function h is introduced:

h(n) =
�

1 n > 0
0 n ≤ 0 (3.15)

In Equation 3.15, the Heaviside function value is zero for negative and
zero arguments (n ≤ 0), and holds for one under positive arguments (n > 0).
The co-state dynamics are thereby derived as:

−dλ1
i

dt = ∂H
∂xi

= β̂3
(vi−1−vi)

2

(xi−1−xi−li)2 −2β̂4 (xi−1 − xi − vitmin − s0 − li)

+ β̂q j+1
6

�
vvir

j −vq j+1

�2

�
xvir

j −xq j+1

�2

(3.16)

−dλ2
i

dt = ∂H
∂vi

=−β2 −2β̂3
vi−1−vi

xi−1−xi−li −2β̂4tmin (xi−1 − xi − vitmin − s0 − li)

+β5
�
b1 +2b2vi +3b3v2

i +uih(ui)(c1 +2c2vi)
�
−2β̂q j+1

6
vvir

j −vq j+1

xvir
j −xq j+1

+λ1
i

(3.17)

3.2.6 Controller constraints
The control problem should respect some constraints on control and state
variables. Admissible acceleration is restricted between the maximum accel-
eration, amax, and the minimum (negative) acceleration, amin. Speed should
be lower than the limit speed, vmax, but nonnegative.
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amin ≤ ui (t)≤ amax (3.18)

0 ≤ vi (t)≤ vmax (3.19)

3.2.7 Solution approach
An iterative Pontryagin Maximum Principle (iPMP) solution approach is ap-
plied to solve this control problem, referring to Appendix and Hoogendoorn
et al. (2012); Wang et al. (2014b) for details. The continuous-time control
problem is discretized in time within the prediction horizon in terms of the
control and co-state variables. The iPMP approach solves the state and co-
state dynamics forward and backward in time respectively, and then updates
the co-state dynamic with a weight factor. The updated co-state will be im-
ported to the next iteration as an input. The optimization converges if the
error between the state and co-state dynamics is smaller than the pre-defined
threshold, and then the iteration stops. The illustration of the solution ap-
proach is depicted in Figure 3.1 .

The model predictive control (MPC) framework is applied, which solves
the control problem in a shorter horizon than the optimal control framework
in Chapter 2. This shorter horizon of the MPC framework results in an ef-
ficient computational time. The MPC framework only selects the first time
step of the optimal solution in the iPMP algorithm. The constraints on con-
trol and state variables are implemented on restricting control variables based
on system dynamics.

Platoon dynamics of merging, splitting, stopping, and queue discharging
along a corridor are achieved by switching three modes of the running cost
(updating the values of cost weights), which is included within the MPC
closed-loop at every time step. In presence of signal anticipation, the red
phases can be anticipated by implementing the virtual vehicle term as early
as possible, i.e., at the beginning of the current signal cycle or at the mo-
ment when the platoon controller receives the updated actuated signal plan.
MPC framework allows for system feedback, i.e., signal changes, so actu-
ated signal settings can be incorporated in the MPC closed-loop. In addition
to signal anticipation, the signal settings (the green and red time) can be up-
dated in the MPC closed-loop by switching the cost weights in response to
the actuated signals. Therefore, this approach can also be applied under the
actuated signal control approach.
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Figure 3.1: Illustration of the solution approach
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3.3 Simulation results and analysis
This section verifies the platoon performance of this control algorithm under
four scenarios, considering the signal settings and the anticipation time of the
red phases. Furthermore, a baseline scenario is presented for comparison.

3.3.1 Experiment design

In order to test the behaviors of the platoons resulting from the proposed con-
trol approach, trajectories on a corridor with two signalized intersections are
simulated, taking into account the signal settings, the lane length between
two adjacent intersections, the speed limit, the numbers of vehicles in the
controlled platoon and in the queue. Four scenarios and a baseline scenario
are designed to verify the characteristics of platoon splitting, merging, de-
celerating, accelerating, stopping and queue discharging. The control effects
on the fuel savings are revealed by comparing the total fuel consumption of
all controlled vehicles within the simulation horizon. Hereinafter, the inter-
section in the upstream direction on the arterial is referred as the upstream
intersection, and the intersection in the downstream direction is considered
as the downstream intersection.

Two pre-timing signal settings are designed to test the workings of the
red phase term, i.e., the opposite and overlapped signal settings, as shown in
Figure 3.2. The effective green phase lengths in both settings are 30 s, and
the effective red phase lengths are 30 s and 20 s respectively. Therefore, the
simulation horizon lengths are 90 s and 80 s in the opposite and the overlap
signal settings. The prediction horizon length is selected to be 10 s, because
the influence of the zero terminal cost is negligible with respect to 5 s and
larger prediction horizon (Wang et al., 2012).

30 s 30 s 30 s

30 s 30 s 30 sDownstream 
intersection

Upstream 
intersection

t

Position x(t)

(a) opposite signal setting

30 s 20 s 30 s

20 s 20 s30 s 10 sDownstream 
intersection

Upstream 
intersection

t

Position x(t)

(b) overlap signal setting

Figure 3.2: Design of signal settings



52 3 Trajectory optimization under the actuated signal

In reality, the communication ranges of I2V and V2V are about 200 me-
ters, so the control zone starts from 200 m away from the stop bar in the
upstream direction at the upstream intersection. The longitudinal position
of the stop-line at the upstream intersection is defined as 0. The lane sec-
tion length between two adjacent intersections is designed as 800 m, so the
longitudinal position of the stop-line at the downstream intersection is 800.

In order to test the performance of different signal settings and the an-
ticipation time of the red phases, four scenarios and a baseline scenario are
designed aiming to verify the feasibility of the platoon trajectory control ap-
proach regarding the applications on an arterial with intersections. The char-
acteristics of platoon splitting, merging, decelerating, accelerating, stopping
and queue discharging in all the scenarios provide insights into the effective-
ness of the control approach. The benefits on fuel savings are explored in
all scenarios. Similar settings (e.g., the number of controlled vehicles, vehi-
cle queues, the number of multiple intersections and the signal timing plans)
can be implemented easily in the same way. The cost weights are tuned in
Scenario 1 and then are applied in other scenarios. The parameter values in
the simulation experiments are detailed in Table 3.1. The choices for the pa-
rameter values mostly come from Chapter 2. In our experiment settings, the
time step is 1 s, which means delays under 1 s have no effect on the optimal
trajectories.

The baseline scenario is presented under the opposite signal setting with-
out anticipating the red phase. Removing the anticipation of the red phases
means the virtual vehicle term is added just at the beginning of the red phase.
The objective of this baseline scenario is to obtain insights of the validity of
the red phase (virtual vehicle) term, which is similar to the application in the
previous work of Asadi & Vahidi (2010).

However, the anticipation time of the red phases is the implemented at
the beginning of the current signal cycle in Scenario 1 to Scenario4. An-
ticipating the red indication before the start of the red phases is supposed
to outperform the baseline scenario where no anticipation exists (e.g., save
more fuel). Scenario 1 is simulated under the pre-timing opposite signal set-
ting. The comparison between the baseline scenario (no anticipation) and
Scenario 1 (anticipation from the beginning of the current signal cycle) can
explore the benefits of anticipating the red phases in the proposed control
approach. Scenario 2 is designed under the pre-timing overlapped signal
setting, the objective of which is to prove the workings of the adjustment in
signal settings under pre-timing signal control approach.
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Table 3.1: Parameter and coefficient values

Notation Parameter/ Coefficient Value Unit
- time step 1 s
- prediction horizon 10 s
- the effective green phase length 30 s
- the effective red phase lengths 20, 30 s
- initial speed 0, 15 m/s
- initial space gap in the nonstatic platoon 35 m
- initial space gap in vehicle queues 5 m

- the range of the control zone at the upstream
intersection 200 m

- vehicle queues at the upstream intersection 3 veh

- the number of vehicles on the lane section be-
tween two intersections 8 veh

N the number of total controlled vehicles 25 veh
Yj the position of the stop lines at intersections 0, 800 m
li length of every controlled vehicle 3 m
tmin minimum safe car-following time gap 2 s
s0 minimum space gap at standstill conditions 2 m
vmax limit speed on the urban corridor 20 m/s
amax allowable maximum acceleration 2 m/s2

amin allowable minimum acceleration -5 m/s2

β1 cost weight 1 -
β2 cost weight 1 -
β3 cost weight 1 -
β4 cost weight 1 -
β5 cost weight 5 -
β6 cost weight 5 -

Scenario 3 and 4 include the actuated signals in the MPC closed-loop,
aiming to investigate the workings of the proposed control approach under
the actuated signals assuming the platoon controller receives the actuated
signal plan after the first prediction horizon, i.e., 10 s after the beginning
of the signal cycle. In Scenario 3, the green phase lengths increase 5 s and
the red phase lengths decrease 5 s based on the initial overlapped signal
settings. Scenario 4 updates the signal plan based on the initial overlapped
signal setting to reflect the vehicle actuation.
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3.3.2 Platoon performance

The aforementioned scenarios are simulated to evaluate control effects based
on trajectory analysis, as depicted in Figure 3.3 to Figure 3.7. The vehicle
numbers in the legend represent the vehicle sequence of the platoon on a
single lane. The horizontal red dashed lines in these figures show the red
signal indication at intersections. The longitudinal positions of the stop-line
at the upstream and downstream intersections are 0 and 800 respectively.
The initial conditions at the beginning of the simulation are as follows: the
first eight vehicles are set with initial speed (15 m/s) on the lane section
between two adjacent intersections, after that three vehicles stop (0 m/s) at
the upstream intersection, and the last 14 vehicles are traveling (15 m/s)
from 200 m upstream direction of the upstream intersection (-200 m). The
maximal throughputs are determined first for all scenarios when removing
the red phase penalty, as discussed in Chapter 3.2.4. Overall, it is obvious
that the safe gap penalty and the red phase penalty work, and the controller
constraints are satisfied in all scenarios.

The remainder of this section analyzes the platoon performance and spac-
ing gap in each scenario. The advantages of the proposed control approach
are discussed in comparison to the baseline scenario.

Tuning cost weights

Firstly, the cost weights are tuned to gain insights of optimal trajectories
based on Scenario 1. Considering β1 = 1 as a baseline, the cost weight of
speed, β2, the cost weight of safe gap term, β3, and the cost weight of the
desired gap, β4, keep the same order with the cost weight of acceleration β1,
thus β2 = β3 = β4 = β1 = 1. Bigger values of the fuel consumption cost
weight, β5, will result in lower accelerations and speeds, so the maximal
throughput cannot be obtained via this overweighed β5. The biggest value
of β5 (=5) is selected to avoid unnecessary deceleration. Smaller values
of virtual vehicle cost weight β6 are unable to act as the red phase, while
vehicles will decelerate and stop near the initial position if β6 is too large.
The appropriate value of the red phase cost weight, β6 = 5, is chosen such
that vehicles stop just behind the stop-line during the red phase. The selected
cost weight values are chosen in Scenario 1 and then applied in all scenarios.
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Analysis of the baseline scenario

The baseline scenario provides no anticipation of the red phases under the
opposite signal setting, and the optimal trajectories are presented in Figure
3.3. The vehicles in the queue at the upstream intersection (vehicle 9 to 11)
start from 0 speed, while other vehicles begin with the initial speed of 15
m/s. Vehicle 1 to 12 that pass the downstream intersection and vehicle 9 to
20 that leave the upstream intersection accelerate till the limit speed vmax, so
the maximal throughput can be guaranteed. Vehicle 9 decelerates from 38 s
to 43 s to keep the safe gap when merging with the preceding platoon. The
same also holds for vehicle 12 from 10 s to 13 s.

Since the red phases are not anticipated, vehicle stops during the red traf-
fic light cannot be avoided. The stopping vehicles can stop but with drastic
decelerations at the beginning of the red phases (e.g., for vehicle 21 at 30 s
and for vehicle 13 at 60 s). Vehicle 1 to 8 decelerate facing the red time and
then accelerate suddenly at the beginning of the green phase, which causes
more fuel consumption. The total fuel consumption of all vehicles within
the simulation horizon is 1888.3 ml (0.0606 ml/m) in this baseline scenario.

Analysis of Scenario 1

Scenario 1 is simulated under the opposite signal setting but with anticipating
the red phases at the beginning of the current signal cycle, as shown in Figure
3.4. Vehicle 9 and 12 still decelerate to keep the safe gap with the preceding
vehicles while merging, as in the baseline scenario.

However, owing to the anticipation of the red phase starts/ends, two more
vehicles are released at the downstream intersection when comparing Figure
3.3 with Figure 3.4. The fluctuations in accelerations and decelerations are
smoother in Scenario 1 compared with the baseline scenario. In particular,
the first-stopping vehicles (vehicle 15 and 21) react more predictively to the
red phases and approach the stop-line slowly in comparison with the baseline
scenario.

The differences in trajectory performance between the baseline scenario
and Scenario 1 prove the benefits of anticipating the red phases in the pro-
posed control approach. The sharp decelerations and stops facing the red
phases are avoidable, and more fuel savings are verified in Scenario 1. The
total fuel consumption of all vehicles is 1854.9 ml (0.0579 ml/m) in Sce-
nario 1, which is 12% (calculated using milliliter per meter) smaller than the
counterpart in the baseline scenario.
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Figure 3.3: Optimal trajectories of the baseline scenario
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Figure 3.4: Optimal trajectories of Scenario 1

Analysis of Scenario 2

The optimal trajectories of Scenario 2 under the overlapped signal setting are
depicted in Figure 3.5. The trajectory performance in Scenario 2 have the
same features as in Scenario 1. Therefore, Scenario 2 validates the flexibility
of the control approach in changes of signal settings under the pre-timing
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signal plan. The total fuel consumption of all vehicles are 1736.2 ml (0.0550
ml/m) in Scenario 2.
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Figure 3.5: Optimal trajectories of Scenario 2

Analysis of Scenario 3

Scenario 3 explores the potentials to implement the proposed approach under
the actuated signal plan. The signal plan is the overlapped signal setting
initially, and then is updated in the MPC closed loop after the first prediction
horizon finishes (10 s). The lengths of green phases change with an increase
of 5 s, and the lengths of red phases varies with a decrease of 5 s. The total
fuel consumption of all vehicles is 1879.2 ml (0.0550 ml/m) in Scenario 3.
The optimal trajectories depicted in Figure 3.6 prove the feasibility of the
control approach in terms of application in actuated or adaptive signal plans.

Analysis of Scenario 4

Scenario 4 provides more insights for the proposed control approach be-
ing applied with the actuated signal approach. The initial signal plan is the
overlapped setting, and then signal parameters are adjusted to accommodate
changes in the traffic flow. At the downstream intersection, the red time
starts from 0 s to 17 s and from 35 s to 59 s. At the upstream intersection,
the red time starts from 27 s to 45 s and from 62 s to 80 s. The total fuel
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Figure 3.6: Optimal trajectories of Scenario 3
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Figure 3.7: Optimal trajectories of Scenario 4

consumption of all vehicles is 1885.1 ml (0.0592 ml/m) in Scenario 4. The
optimal trajectories in Figure 3.7 further validate the workings under actu-
ated signals.
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Table 3.2: Vehicles sequence number considering splitting gaps and stop-
ping gaps

Vehicle Type First-stopping
vehicle

Splitting
gap

Stopping
gaps

Downstream
intersection

Scenario 1 V15 V14, V15 V15 to V20
Scenario 2 V12 V11, V12 V12 to V20
Scenario 3 V12 V11, V12 V12 to V22
Scenario 4 V9 V8, V9 V9 to V18

Upstream
intersection

Scenario 1 V21 V20, V21 V21 to V25
Scenario 2 V21 V20, V21 V21 to V25
Scenario 3 V23 V22, V23 V23 to V25
Scenario 4 V19 V18, V19 V19 to V25

Analysis of spacing gap

The spacing gaps of all controlled vehicles can be categorized into four
groups, i.e., the splitting gaps, the stopping gaps, the following gaps and
the merging/catching gaps. The splitting gaps aim to reflect the increases in
gaps resulted from the red indication, i.e., the gaps between the first-stopping
vehicles and the immediately preceding vehicles. For other stopping vehi-
cles behind the first-stopping vehicles, the stopping gaps can describe the
gaps between two adjacent stopping vehicles. Table 3.2 details the vehicle
sequence number (represented by V) regarding the first-stopping vehicles,
the splitting gaps and the stopping gaps under four scenarios at two inter-
sections. The following gaps account for gaps between vehicles that can
pass the downstream intersection during the first green phase. The merging
or catching gaps are proposed to capture declines in spacing owing to the
signal settings and the initial position settings. The differences between the
merging gaps and the catching gaps are whether the gaps drop into the fol-
lowing gaps within the horizon. It is noted that the merging/catching gap and
the splitting gap may occur on a certain vehicle sequentially under different
signal phases, e.g., in Scenario 2, Scenario 3 and Scenario 4.

In order to explore the performance of spacing, the gaps between two
adjacent vehicles under four scenarios are illustrated in Figure 3.8. The ver-
tical ordinates of the spacing subfigures are presented compactly in the way
of logarithmic scale. Four spacing gap categories are depicted in different
colors and line types. It can be concluded that the spacing gaps are in ac-
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Figure 3.8: Spacing gap under four scenarios

cordance with the system design, because the space gaps satisfy the safe
requirement over the simulation horizon in all scenarios, and the spacing
gaps fluctuate with changes in splitting and merging performance and signal
changes.

There are general characteristics in all scenarios. The initial space gaps
are 5 meters for queuing vehicles at the standstill condition, and 35 meters
for the nonstatic vehicles. The maximal following gap is 45 meters, which is
calculated using vmaxtmin + s0 + li. Taking into account the speed constraint
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which limits the controlled speeds being equal to or lower than the maximal
speed, the following and stopping gaps cannot exceed the maximal following
gap (45 m). The stopping gaps of stopping vehicles decline during the red
phases at the upstream and downstream intersections, as the two declined
trends of dashed lines in subfigures (a) to (d) of Figure 3.8. The depths of
the declines in stopping gaps vary under different scenarios as a result of
various red phase lengths. Longer red phase lengths, such as under pre-
timing signals in Scenario 1 and 2, give rise to deeper drops. In addition,
the merging gaps between vehicle 8 and 9 increase slightly at the beginning
of the horizon in all scenarios, because vehicle 9 needs accelerations to pass
the upstream intersection from the stationary condition while vehicle 8 is
moving forward.

Taking Scenario 1 as example, the merging gaps between vehicle 8 and 9
and between 11 and 12 fall below the maximal following gap (45 m), which
means vehicle 9 and 12 merge with the predecessors into platooning. As
shown in the subfigure (a) of Figure 3.8, the splitting gap between vehicle 14
and 15 rises when vehicle 15 confronts the red indication at the downstream
intersection. Vehicle 21 decelerates facing the red time at the upstream inter-
section, resulting in the splitting gap, and then accelerates to catch up with
the vehicles in front during the subsequent green phase, causing the catching
gap. Same explanation holds for other scenarios.

3.4 Conclusions and future work

In this study, a flexible CAV trajectory control approach is proposed on ar-
terial with signalized intersections based on model predictive control frame-
work. The throughput is firstly maximized during the green phase, and mul-
tiple criteria of ride comfort, travel delay, and fuel consumption are opti-
mized after that, subject to linear constraints on acceleration and speed. The
safe following requirement is formulated as a penalty in the running cost
function to regulate vehicles to follow the predecessor at a safe gap . The red
phases are represented by keeping the safe gap with a virtually stationary
vehicle at the stop bar, and it can also be anticipated by the first-stopping ve-
hicle since the beginning of the signal cycle. The control approach is flexible
in incorporating platoon merging, splitting, stopping, and queue discharging
characteristics. Simulation under four scenarios verified the performance of
the approach.
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The simulation results show that the red phase term with anticipation
works better than the case where no anticipation is provided. The perfor-
mance of the control approach also demonstrates its flexibility regarding ap-
plication in different settings, i.e., changes in signal parameters under pre-
timed signal plan and actuated signal plan. Future work can be directed to
remove the piecewise feature of the running cost function and the switch of
cost weights.

In the next chapter, a bi-level control approach to optimize traffic signals
and cooperative vehicle trajectories in a unified framework will be presented.



Chapter 4

A bi-level control approach of
optimizing trajectories and signals

This chapter proposes a bi-level control approach for optimizing traf-
fic signals and cooperative vehicle trajectories at urban intersections. The
upper layer determines the optimal signal timing parameters using enumer-
ation method, and the lower layer optimizes vehicle trajectories under each
feasible signal plan. In the lower layer, the accelerations of the platoons
are optimized considering ride comfort and travel delay, while satisfying
physical motion constraints and safe driving requirements. The red phase
is enforced as a logic constraint, which restricts vehicles to stay behind the
stop-line during the red phase. Typical platoon maneuvers at intersections
such as split, merge/approach, acceleration/deceleration can be included in
the lower layer. The integrated control approach is adaptive to traffic de-
mands, and is flexible in incorporating different traffic movements during
multiple signal phases. Simulation is performed to verify the performance
of the integrated control approach. Three scenarios are designed and sim-
ulated to demonstrate the advantages on throughput and fuel consumption,
delay and vehicle stops, compared with two baseline scenarios of trajectory-
only optimization and signal-only optimization respectively. Analysis of the
simulation results reveals insights into the optimal patterns on signals and
vehicle trajectories.

63
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This chapter is an adapted version of the journal paper:

Liu, M., Zhao, J., Hoogendoorn, S. and Wang, M., 2021. An optimal control
approach of integrating traffic signals and cooperative vehicle trajectories at
intersections. Transportmetrica B. https://doi.org/10.1080/21680566.2021.
1991505
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4.1 Introduction
The suboptimal setting of traffic lights is considered to be one of the leading
causes of travel delay as well as excessive fuel consumption and emissions
on urban roads (Ubiergo & Jin, 2016). Considerable numbers of studies have
been conducted to relieve this problem at urban intersections from design,
control, and management perspectives (Zhao et al., 2020; Guler et al., 2014).
Connected and automated vehicle (CAV) technology enables the roadside
infrastructure to communicate with the onboard vehicle control algorithms
(Wang et al., 2014a). The promise of further optimizing traffic conditions
has led to a surge in the number of studies devoted to enhancing traffic oper-
ations at signalized intersections by improved and integrated design of traffic
signals and/or CAV trajectories.

Four directions have been explored with respect to CAV platooning at
urban intersections, i.e., cooperative intersection systems, speed advisory
algorithms, CAV trajectory planning and the optimization of traffic signals
and vehicle trajectories. The cooperative intersection algorithms develop a
signal-free intersection to coordinate CAVs to depart the intersection with-
out collision (Lee & Park, 2012; Ahmane et al., 2013; Lee et al., 2013a;
Zohdy & Rakha, 2016; Yu et al., 2019), but the challenges of this line of
research are how to consider the safety requirements of pedestrians and cy-
clists. Speed advisory systems such as GLOSA (Green Light Optimized
Speed Advisory) (Stevanovic et al., 2013; Li et al., 2014a; Stebbins et al.,
2017) and Eco-Approach and Departure systems (Altan et al., 2017; Hao
et al., 2018; Wang et al., 2019) aim at providing speed advice to avoid stops
when passing signalized intersections, causing less stops and energy con-
sumption. However, only individual vehicles are considered in these sys-
tems, neglecting the benefits of operating the vehicle platoons. CAV trajec-
tory planning systems optimize vehicle trajectories at isolated intersections
(Zhao et al., 2018; Jiang et al., 2017) or along a corridor (Asadi & Vahidi,
2010; Kamal et al., 2012; He et al., 2015; Wan et al., 2016; HomChaudhuri
et al., 2016; Liu et al., 2019), whereas the signal phase and timing informa-
tion is used as exogenous inputs to the optimization model and consequently
the superiority of integrated information between vehicles (i.e., speed and
position) and infrastructures (i.e., signal parameters) is hampered for lack-
ing signal optimization.
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The integrated approaches of optimizing traffic signals and vehicle tra-
jectories in Li et al. (2014b); Yang et al. (2016b); Xu et al. (2018); Feng
et al. (2018); Guo et al. (2019b) generally adopt a two-layered structure to
solve the problem. In the signal optimization layer, the enumeration method
(Li et al., 2014b; Xu et al., 2018) and the similar forward/backward recur-
sion method (Feng et al., 2018; Guo et al., 2019b) are applied, whereas the
signals are not explicitly optimized in a few studies (Li et al., 2014b; Yang
et al., 2016b; Yu et al., 2018). The red phase in the signal layer is considered
as constraining the arrival time in Xu et al. (2018); Feng et al. (2018); Guo
et al. (2019b), which requires estimation of vehicle arrival time at the stop
bar. In the vehicle trajectory layer, as opposed to trajectory optimization of
the vehicle platoon, the trajectories of the platoon leader (Feng et al., 2018;
Yu et al., 2018) or an individual vehicle (Xu et al., 2018) are optimized to
reduce the computational load. Alternatively, the rule-based trajectory plan-
ning methods are used to simulate trajectories (Li et al., 2014b; Yang et al.,
2016b). The red indication in Xu et al. (2018); Feng et al. (2018); Yu et al.
(2018) is regarded as terminal condition constraints on position and/or speed.
This unfortunately restricts the applicability on a corridor with multiple in-
tersections, due to the difficulties in determining the terminal conditions at
each intersection.

To conclude, current studies are confined to a single subject vehicle in the
trajectory optimization models, excluding the potential benefits of consider-
ing the vehicle platoons. With respect to signal optimization, the red phases
in existing research are presented by constraining the arrival time and/or
terminal conditions, causing additional calculation of arrival time and the
restricted application scope of isolated intersections. Therefore, the neces-
sity of proposing an approach to integrating signal optimization with platoon
trajectory planning that is not restricted at isolated intersections arises.

To fill the scientific gaps, this chapter proposes an integrated control ap-
proach of optimizing signals and trajectories for CAV platoons at standard
full intersections. In the upper layer, all feasible signal plans are enumerated
provided the signal cycle length, and each feasible signal plan is transferred
to the lower layer iteratively. The lower layer determines accelerations of the
CAV platoons under each feasible signal plan, optimizing ride comfort (by
minimizing accelerations) and average travel delay (by maximizing speeds)
, subject to the constraints on admissible accelerations, speed bounds, and
safe driving requirements. The red phase is formulated as a logic position
constraint so that vehicles can react to signals accordingly. The optimal sig-
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nal plan is determined in the upper layer by finding the minimal objective
function value among all feasible signal plans. The queue discharging and
the transmissions from low speeds to high speeds (or vice versa) are taken
into account in the lower layer.

The integrated signal and trajectory control approach is flexible owing
to design of the logic red phase constraint. Unlike the existing terminal
condition constraints of red phases which require prior knowledge of the
arrival time of every vehicle, our formulation applies the logic constraint
and thereby is not limited at an isolated intersection. The proposed trajec-
tory optimization layer can also work under adaptive signals without pre-
determining stopping vehicles, which lifts one of the limitations in Chapter
2 and Chapter 3. The integrated approach is scalable to incorporate different
traffic movements during multiple signal phases. Finally, the performance of
the integrated control approach is validated by simulation of three scenarios
and two baseline scenarios. Simulation results demonstrate the benefits of
the proposed control approach.

The rest of this chapter is structured as follows. First, the control archi-
tecture is introduced, followed by the integrated control formulation for the
vehicle trajectories and the traffic signals. The experiment design and simu-
lation analysis are discussed after that. The last section provides conclusions
and directions of future work.

4.2 Control architecture
In this section, the hierarchical control problem is specified, which deter-
mines the signal parameters in the upper layer and optimizes the vehicle
trajectories in the lower layer. Later, the operational assumptions (e.g., min-
imum and maximum admissible vehicle accelerations) are illustrated.

4.2.1 Control problem description
Without loss of generality, CAV platoons are considered to approach the
signalized intersection from four arms, and downstream CAVs are queuing
behind the stop-lines, as shown in Figure 4.1 (a). The longitudinal trajectory
control algorithm will be triggered when the approaching platoon leader at
any direction enters the control zone, which is the interior region of the circle
in Figure 4.1 (a). The center of the control zone is the signal controller, and
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Figure 4.1: Illustration on operations of the control system

the radius of the control zone is the communication range (normally 200
meters).

The control objectives are to determine the optimal signal plan in the
upper layer and to optimize accelerations of all CAVs in the lower layer,
subject to safety and comfort constraints, as shown in Figure 4.1 (b). In the
upper layer, the feasible signal plans are generated and iteratively imported
to the lower layer. In the lower layer, the ride comfort is maximised by
minimizing accelerations and the travel delay is minimised by maximizing
vehicle speeds under each iterative signal plan. The control designs of the
upper and lower layers are detailed in the forthcoming section.

4.2.2 Design assumptions
The assumptions of the integrated control algorithm are described as follows:

1. The signal phases are arranged in a pre-defined sequence at the con-
sidered intersection. The phase lengths are controlled under the as-
sumption of a constant cycle length;

2. All vehicles in the control zone are cooperative and controlled via their
accelerations within the admissible range. They exchange position and
speed information with each other via V2V communication;



4.3 Control problem formulation 69

3. Signal Phasing and Timing (SPaT) information is delivered to the pla-
toon controller via I2V communication;

4. The sum of feedback information and vehicle actuation delay is smaller
than 1 second. Hence delays can be omitted in formulation with an ac-
celeration sampling time interval of 1 second.

5. Lane changing behavior is not taken into account in the control zone.

Under these assumptions, different geometry configurations of multiple
lanes at intersections are able to be accommodated by regarding the traffic
movements released during the same green phase but on multiple lanes as
multiple platoons of one traffic movement.

4.3 Control problem formulation
The integrated control problem of trajectories and signals is formulated in
this section, including control objectives and constraints, system dynamics,
controller formulation and solution approach.

4.3.1 Upper layer
Let J denote the total number of green phases for different traffic movements
within the signal cycle, and j (∈ J) is the green phase sequence number in
the current cycle. The movement(s) released in the jth green phase refers as
the jth movement(s). The yellow change intervals and the all-red clearance
time are converted to the effective green and red time. The decision variables
in the upper layer are the green phase lengths, g j, ( j ∈ J), the summation of
which are equal to the fixed signal cycle length, C:

g = [g1,g2, . . . ,gJ]
T (4.1)

J

∑
j=1

g j =C (4.2)

If gmin
j and gmax

j are the minimal and maximal green time of the jth green
phase, the bounds on green phase lengths are

gmin
j ≤ g j ≤ gmax

j ,∀ j ∈ J (4.3)
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The feasible set of control variables in the upper layer mainly depends
on the constraints of green phase lengths. The signal parameters can be op-
timized based on enumerating the feasible set. Each feasible signal plan is
transferred to the lower layer that will determine vehicle trajectories and si-
multaneously calculate the objective function. The objective function values
under all feasible signal plans are recorded and compared to find the optimal
signal plan in the upper layer. In other words, the objective functions in the
upper and lower layer are the same.

The integration between the upper layer and the lower layer is reflected
in the objective function and the constraints. To this end, the upper layer
decision variables are conveyed to the lower layer as parameters, which will
be detailed in the forthcoming subsection.

4.3.2 Lower layer
The vehicle trajectories are optimized in the lower layer. The control variable
in the lower layer is the acceleration of vehicle i in jth movement, ai j(t), and
the state variables are the longitudinal position, xi j(t), and the speed, vi j(t).
Here, i denotes the vehicle sequence number and Nj is the total number of
controlled vehicles in the jth movement (1 ≤ i ≤ Nj). The control and state
variables are defined as:

u(t) = (a11(t),a21(t), ...,aN11(t), ...,a1J(t),a2J(t), ...,aNJJ(t))T (4.4)

x = (x11,x21, ...,xN11, ...,x1J,x2J, ...,xNJJ)
T,

xi j(t)=
�
xi j (t) ,vi j (t)

� (4.5)

The following ordinary differential equation is used to describe the sys-
tem dynamics model of a single vehicle:

d
dt

xi j(t) =
d
dt

�
xi j (t)
vi j (t)

�
= f(xi j,ui j) (4.6)

f(xi j,ui j) = Axi j +Bui j (4.7)

where

A =

�
0 1
0 0

�
;B =

�
0
1

�
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If T (≥ C) is the prediction horizon, the control problem formulation is
described as:

f = min
u

J

∑
j=1

Nj

∑
i=1

� T

0
β1a2

i j (t)−β2vi j (t)dt (4.8)

Here, β1 and β2 are positive cost weights. β1 is unitless and the unit
of β2 is defined as m/s3. The first cost term in Equation 4.8 is designed to
maximize ride comfort by minimizing accelerations. The second cost term
represents the minimization of travel delay by maximizing speeds.

In addition, the control and state variables are required to obey some
constraints in the lower layer.

1. Admissible acceleration
The control variable, acceleration, should be bounded between the
maximal acceleration, amax, and the minimal acceleration, amin.

amin ≤ ai j (t)≤ amax (4.9)

2. Speed bounds
The state variable of speed should be restricted between the limit speed,
vmax, and 0.

0 ≤ vi j (t)≤ vmax (4.10)

3. Safe driving requirements
The following vehicles are required to track the vehicles in front with
the safe space and time gaps, which should not be less than the mini-
mum safe gap.

xi j (t)− x(i+1) j (t)≥ v(i+1) j (t) tmin + s0 + li j (4.11)

Here, li j denotes the length of vehicle i in the jth movement, tmin is the
minimum safe car-following time gap, and s0 is the minimum space
gap at standstill conditions.

4. Red phase constraint
The red phases can be represented as position constraints in the lower
layer. In order to react to the red phase, the logic constraint is applied
to generate trajectories facing the signals. Whether vehicles can pass
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or not is determined by the active of the logic decision. In this way,
the vehicles can be responsive to the adaptive signal changes, without
pre-determining the first-stopping vehicles as in Chapter 2 and 3.
Assume the longitudinal position at the stop bar is xstop. If vehicle i
in the jth movement cannot pass the intersection during the jth green
phase, it cannot leave within the signal cycle either. The red phase is
formulated as the logic position constraint, i.e., if the vehicle position
at the jth green phase tail is behind the stop-line, the vehicle position
at the signal cycle tail is also behind the stop-line.

xi j (C)� xstop, if xi j

�
∑ j

k=1 g j (k)
�
� xstop (4.12)

Here, k represents the sequence number of green phases no later than
the jth green phase, k = {1,2, ..., j}. The implication of Equation 4.12
is that, for the subject vehicle i in the jth movement, it cannot leave
the intersection within the signal cycle (xi j (C) � xstop) if it is behind
the stop-line at the jth green phase tail (i.e., xi j

�
∑ j

k=1 g j (k)
�
� xstop),

otherwise xi j (C)> xstop.

The lower layer optimization problem can be solved by applying the up-
per layer decision variables as parameters. To integrate the lower layer with
the upper layer, the lower layer optimization problem is cast as a constraint
to the upper layer optimization problem.

4.3.3 Solution approach
The lower layer is a parametric optimization problem which applies the up-
per layer decision variables as parameters. Therefore, the upper and lower
layers can be integrated by implementing the lower layer optimization prob-
lem as a constraint to the upper layer optimization problem. As discussed
above, the objective function for the upper layer F is the same as the objec-
tive function for the lower layer f as in Equation 4.8, thus

F = min
u

J

∑
j=1

Nj

∑
i=1

� T

0
β1a2

i j (t)−β2vi j (t)dt (4.13)

The two-layered problem is formulated as follows:



4.3 Control problem formulation 73

Decision variable space
of upper layer, 

green phase lengths g 

Decision variable space
of lower layer, 
accelerations u

Parameter 
to the 

lower layer

Lower layer 
parametric 

optimization 

Lower layer 
objective f

(     ,     ) 

Any upper layer decision vector g
Optimal lower layer response *u
A feasible solution of the two-layered optimization problem *,g u

t

a

0

g1 ... gJ

*u

g

Figure 4.2: Illustration of the two-layered problem

min
g,u

F (g,u) (4.14)

s.t.
u ∈ argmin

u
{ f (g,u) : h(g,u)≤ 0} (4.15)

G(g,u)≤ 0 (4.16)

G and h correspond to the upper layer constraint and the lower layer con-
straint respectively, i.e., Equation 4.2, 4.3, 4.7, 4.9 to 4.12. The relationship
between the upper layer and the lower layer is depicted in Figure 4.2. In Fig-
ure 4.2, the parametric lower layer optimization problem can be solved given
any upper layer decision vector ḡ. Then, the lower layer provides the optimal
response considering the lower layer ū∗ to the upper layer. This parametric
flow is defined as an enumeration step of the upper layer.
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Figure 4.3: Illustration of the solution approach

The solution approach is illustrated in Figure 4.3. In the upper layer, an
enumeration method is adopted to evaluate all feasible signal plans, in other
words, to solve the equality constraint of Equation 4.2. Let PPP and Λ denote
the upper layer feasible region (i.e., the feasible signal phase lengths) and
the number of all feasible signal plans respectively. If τ (∈ [1,2, . . . ,Λ]) im-
plies the enumeration step sequence of the upper layer, PPPτ is defined as the



4.4 Simulation results and analysis 75

feasible signal plan at the τth enumeration step, which is conveyed to the
lower layer for trajectory control. The algorithm starts with τ = 1, and then
the feasible signal plan PPP1 is transferred to the lower layer for trajectory op-
timization. In the lower layer, the accelerations are optimized and recorded
at each enumeration step, together with the corresponding value of the ob-
jective function f . The enumeration continues (τ = τ+ 1) until all feasible
signal plans are evaluated (τ=Λ). Finally, the optimal signal plan is selected
by comparing values of the objective function in the upper layer F . The out-
puts of the integrated control approach are the optimal signal parameters and
the vehicle trajectories.

In the lower layer, the control variable (i.e., acceleration) is discretised
in time to solve the continuous-time optimal control problem using nonlin-
ear optimization techniques (Rao, 2009). System dynamics of Equation 4.7
are transformed as linear equality constraints. The control variables, accel-
erations, are bounded within the admissible range. The linear inequality
constraints on state variables, such as the speed bound and the no-collision
requirement, are transformed to restrict the control variable using the system
dynamics equation. The logic red phase constraint is enforced as the position
constraint, under which the vehicles can stop if they cannot pass during the
current green phase, as shown in the diamond of the lower layer in Figure
4.3. The vehicles are thereby able to react to the instant changes in the phase
lengths, which is beneficial to the applications under adaptive and actuated
signal control approaches. The logic red phase constraint is implemented
as nonlinear positon constraints for all vehicles. This optimal control prob-
lem is solved in MATLAB using fmincon solver. The performance of the
controller is simulated and analyzed in the following section.

4.4 Simulation results and analysis
In this section, three scenarios and two baseline scenarios are designed to
validate the platoon performance of this control algorithm.

4.4.1 Experiment design
The vehicle trajectories are simulated at a typical four-arm intersection (and
each arm is indexed by j) when optimizing the signal parameters. The right-
turn, through, and left-turn movements are not differentiated. The queuing
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and approaching vehicles on arm j are regarded as the jth movement and are
released in sequence during the jth green phase (corresponding to the arm
index). Therefore, four signal phases are considered in a signal cycle (J = 4).
The longitudinal position of the stop-line xstop is set to 0 m. The control
zone starts from -200 m to 200 m, considering the fact that the realistic
communication ranges of I2V and V2V are around 200 m.

In this experiment settings, the signal cycle length is given (C = 50 s)
when optimizing four green phase lengths ( j = 1,2,3,4) within the cycle.
The prediction horizon T is 60 s, longer than the signal cycle length to
test the accelerating characteristics at the beginning of the subsequent green
phase in the next cycle. The time step is 1 s, so delays under this time step
have no effect on trajectories. The initial speed of the approaching vehicles
in the first movement is 10 m/s to catch the first green phase ( j = 1), while
the counterparts of other movements are 8 m/s. The various initial speeds
are designed to test the feasibility of the control approach under different
initial conditions. The signal phase lengths are enumerated from the mini-
mal green phase to the maximal green phase with an increase of 2 s. The
choice is motivated by the minimum safe car-following time gap tmin, which
implies the throughput remains unchanged within 2 s during the green time.
Other parameter values are detailed in Table 4.1, most of which come from
the previous work in Liu et al. (2019). Similar settings (e.g., the vehicle
number, the green phase number and signal cycle length) can be simulated
in the same way.

In order to test the performance of the integrated control approach, three
scenarios and two baseline scenarios are designed. Hereinafter, the symmet-
ric traffic flow refers to the situation that vehicle actuations are the same in
all movements, and otherwise it is referred as the asymmetric traffic flow.

In Scenario 1, two queuing vehicles behind the stop-line and three ap-
proaching vehicles from the boundary of the control zone (-200 m) are set on
each arm. Scenario 1 is designed to validate the optimal signal performance
under the symmetric traffic flow and the platoon characteristics such as the
decelerations of stopping vehicles facing the red phase and the accelerations
of passing and queuing vehicles during the green phase. Scenario 2 is also
simulated under the symmetric traffic flow but one more vehicle is added at
the approaching platoon tail. The trajectory performance in Scenario 2 helps
explore the trajectory pattern generated by the control approach. Scenario
3 aims to investigate the workings under the asymmetric traffic flow. The
vehicles are set as follows: two, three, four, and five approaching vehicles in
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Table 4.1: Parameter and coefficient values in the experiment

Notation Parameter/ Coefficient Value Unit
- time step 1 s
- initial speed of approaching vehicles 10,8,8,8 m/s
- initial space gap of approaching vehicles 35 m
- initial position of the leader in the approach-

ing vehicles
-200 m

- initial space gap of queuing vehicles 5 m
- initial position of the leader in the queuing

vehicles
-5 m

- control zone range 200 m
J green phase number within the signal cycle 4 -
gmax

j the maximal green phase, ∀ j 20 s
gmin

j the minimal green phase, ∀ j 4 s
C signal cycle length 50 s
T prediction horizon length 60 s
xstop the position of the stop lines at intersections 0 m
li j length of vehicle i in the jth movement 3 m
tmin minimum safe car-following time gap 2 s
s0 minimum space gap at standstill conditions 2 m
vmax limit speed 20 m/s
amax allowable maximum acceleration 2 m/s2

amin allowable minimum acceleration -5 m/s2

β1 cost weight 1 -
β2 cost weight 1 m/s3

the first, second, third, and fourth movement respectively, with two queuing
vehicles on each arm.

Baseline Scenario 1 and 2 have the same settings as Scenario 1 and 2,
but they apply different methods of optimizing either signals or trajectories.
In Baseline Scenario 1, the traffic signals are optimized in the same way as
Scenario 1 does (using Equation 4.13), while the vehicle trajectories are rep-
resented using the intelligent driver model (IDM) (Treiber et al., 2000). The
comparisons between Scenario 1 and Baseline Scenario 1 provide insights
into the optimal signal pattern of the integrated control approach. In Baseline
Scenario 2, the signal controller is assumed to allocate the green time based
on the traffic demand, so only vehicle trajectories are optimized but signal
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parameters are not. According to the vehicle settings of Baseline Scenario 2,
the signal timing plan is 12 s, 13 s, 12 s, and 13 s, for the first to the fourth
movements. The comparisons between Scenario 2 and Baseline Scenario 2
can help explore the optimal trajectory pattern.

The following pseudo-code in Algorithm 4.1 shows the implementation
procedure of the simulation experiments. UP and LW represent the upper
layer and the lower layer respectively. In the simulation experiments, all pa-
rameter values and the initial conditions of state variables are first set. Later,
the cost weights are tuned under Scenario 1 and then applied in all scenarios.
The cost weights of ride comfort and speed, β1 and β2, are supposed to keep
the same order, thus β1 = 1 and β2 = 1 m/s3. The selected cost weights are
appropriate to stimulate vehicles for reaching the maximal speed while un-
necessary fluctuations in accelerations are evitable. Detailed discussion on
tuning cost weights and parameter values can be found in Chapter 2. Then,
the objective function and all constraints are transcribed in matrix as the
fmincon solver required. After optimization, the optimal solution of accel-
erations is generated, and thereby the state variables of position and speed
can be determined using the system dynamics model. Furthermore, the fuel
consumption, delay, and number of stops in all scenarios are calculated to
verify the benefits of the integrated control approach. The instantaneous fuel
consumption rate fv (ml/s) could be estimated using

fv =

�
b0 +b1v+b2v2 +b3v3 +a

�
c0 + c1v+ c2v2� a > 0

b0 +b1v+b2v2 +b3v3 a � 0 (4.17)

Here, v and a represent vi j(t) and ai j(t) for simplification. Detailed pa-
rameter values can be found in Kamal et al. (2011).

4.4.2 Platoon performance
In this section, the designed scenarios and baseline scenarios are simulated
and analyzed to illustrate the control effects. As in Figure 4.4 to Figure
4.8, we select the representative speed and position figures to present the
trajectories concisely. The vehicle numbers Nj, the signal phase lengths,
throughputs during the green time, fuel consumption, delay, and the number
of stops are revealed in all scenarios, as detailed in Table 4.2. The travel de-
lay is calculated by the vehicle arrival time at the stop-line minus the minimal
traveling time to the stop bar, i.e., the distance from the initial position to the
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Algorithm 4.1 Pseudo-code of implementing the simulation experiments
1: Introduce parameter values of simulation settings [UP]
2: Set initial conditions of state variables [UP]
3: Pre-run for tuning cost weights [UP]
4: Set the enumeration step τ = 1 (τ ∈ [1,2, · · · ,Λ]) [UP]
5: Generate the feasible set of signal plans PPP (PPPτ ∈ [PPP1,PPP2, · · · ,PPPΛ]) [UP]
6: Convey PPP to the lower layer as parameters [UP]
7: while τ ≤ Λ do
8: Solve the lower-layer control problem under PPPτ [LW]
9: if Vehicle position at the green phase tail is behind the stop-line

xi j

�
∑ j

k=1 g j (k)
�
≤ xstop then

10: Add constraints on vehicle position at the cycle tail xi j (C) ≤ xstop
[LW]

11: end if
12: Yield the optimal solution of accelerations under PPPτ [LW]
13: Generate state variables of position and speed using system dynamics

[LW]
14: Record trajectories and the objective function value under PPPτ [LW]
15: end while
16: Select the optimal signal plan by comparing all objective function val-

ues, ∀τ [UP]
17: Yield the optimal signal plan and the corresponding trajectories [UP]
18: Calculate fuel consumption, delay, number of stops [UP]

stop-line divided by the limit speed vmax. The fuel consumption (ml/m) is
calculated according to the instantaneous fuel consumption model in Kamal
et al. (2011) and the traveling distance within the prediction horizon.

Overall, all controller constraints are satisfied, and the indicators can fur-
ther explore the advantages of the proposed control approach, but the com-
putational times of all scenarios are infeasible in real time, normally more
than 100 seconds. Hereinafter, all scenarios are analyzed and compared in
detail.

Analysis of Scenario 1 and Baseline Scenario 1

The trajectories of Scenario 1 and Baseline Scenario 1 are analyzed in this
subsection to derive the optimal signal pattern. The indicators of throughput,
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Table 4.2: Indicators in all scenarios (S and BS represent Scenario and
Baseline Scenario)

Indicator S1 S2 S3 BS1 BS2
Vehicle number of the jth ( j =
1,2,3,4) movement, Nj (veh)

5,5,
5,5

6,6,
6,6

4,5,
6,7

5,5,
5,5

6,6,
6,6

Optimal/ Pre-timed green phase
lengths of the jth ( j = 1,2,3,4)
movement (s)

6,13,
13,18

6,15,
15,14

6,13,
15,16

6,16,
12,16

12,13,
12,13

Throughputs of the jth ( j =

1,2,3,4) movement (veh)
2,5,
5,5

2,6,
6,5

2,5,
6,6

2,5,
5,5

2,5,
5,5

Fuel consumption (ml/m) 0.0804 0.0837 0.0841 0.1091 0.0830
Number of stops 3 4 2 9 4
Delay (s) 21.49 24.36 22.76 23.29 29.32

delay, vehicle stops, and fuel consumption are calculated and compared after
that. Speed trajectories of each movement are presented in Figure 4.4. The
vehicle sequence numbers from 1 to 5 are depicted as V1 to V5 in all sub-
figures of Figure 4.4, where V1 and V2 are queuing vehicles (0 speed when
t = 0 s) and V3 to V5 are approaching vehicles (10 or 8 m/s when t = 0
s). In general, the constraint on speed bounds is respected. The following
vehicles in Scenario 1 reach the maximal speed later than the predecessors
because of the no-collision requirement, and the queuing vehicles accelerate
from the standstill condition at the beginning of the green phases to pass the
intersection.

In Scenario 1, the optimal green phase lengths are 6 s, 13 s, 13 s, and 18
s in sequence, releasing 2 vehicles, 5 vehicles, 5 vehicles and 5 vehicles re-
spectively. The signal parameters are optimized to release as many vehicles
as possible thanks to the travel delay cost term. In the first movement, as
shown in Figure 4.4 (a), the signals are optimized to terminate the first green
phase after two queuing vehicles pass the intersection (t =6 s); the approach-
ing vehicles experience stops confronting the long red phase length of 44 s,
and start accelerations when t = 30 s to catch the next green phase (t = 51
s to t = 60 s). On the contrary, the approaching vehicles in the latter three
movements react to the signal changes by accelerating to catch the green
phase (see Figure 4.4 (b)) or decelerating facing the red phase (see Figure
4.4 (d)). In addition, the safe driving constraint and the red phase constraint
are satisfied in Scenario 1, see Figure 4.5.
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(a) the first movement (b) the second movement

(c) the third movement (d) the fourth movement

Figure 4.4: Speed trajectories under Scenario 1 (S1) and Baseline Scenario
1 (BS1)

Baseline Scenario 1 optimizes signals in the same way as Scenario 1 does
based on the trajectories generated by IDM. The red phase is represented
using the logic constraint of Equation 4.12 when implementing IDM. The
speed trajectories of IDM model are illustrated in Figure 4.4, as depicted in
the dashed lines. The green phase lengths are optimized to be 6 s, 16 s, 12 s,
and 16 s. The optimal signals in Baseline Scenario 1 shorten the first green
phase to release more vehicles from the latter movements. Together with the
optimal signals in Scenario 1, the optimal signal pattern can be concluded as
switching signal phases in time to release as many vehicles as possible.
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(a) the first movement (b) the second movement

(c) the third movement (d) the fourth movement

Figure 4.5: Longitudinal position under Scenario 1

The tuning procedure in Scenario 1 is simple, while IDM model in Base-
line Scenario 1 requires elaborate calibration of parameters to smooth fluc-
tuations in trajectories and adapt to all traffic scenarios. In this chapter, we
apply the parameter values of the original IDM model (Treiber et al., 2000),
and the generated trajectories sometimes are unsmooth or fail to reach the
maximal speed (see Figure 4.4 (b)). On the contrary, the optimal speeds in
Scenario 1 are considerably smooth when climbing to the maximal speed
owing to the ride comfort cost term. Furthermore, unnecessary vehicles
stops during the red time are often unavoidable using IDM (66.67 % more
than Scenario 1), which also causes more fuel consumption. The integrated
approach in Scenario 1 saves 0.0287 ml/m (26.31 %) compared to the IDM
model. The vehicles speeds generated using IDM ascend slowly, which dete-
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riorates the traffic delay of Baseline Scenario 1 (7.73 % worse than Scenario
1). These indicators and features highlight the benefits of the integrated con-
trol approach in trajectory optimization.

Analysis of Scenario 2 and Baseline Scenario 2

Scenario 2 introduces one more vehicle at the platoon tail, including two
queuing vehicles and four approaching vehicles in every movement. For
concise illustration, the speed and position trajectories in the second move-
ment are selected to demonstrate the performance under Scenario 2 and
Baseline Scenario 2 (see Figure 4.6 and 4.7, which prove the safe following
requirement, the speed bounds and the red phase constraint are respected).
The other movements show similar trajectories and the same features. Here-
inafter, the optimal trajectory pattern is concluded in this subsection, and the
indicators such as fuel consumption, throughput, and delay are evaluated.

The optimal green phase lengths under Scenario 2 are 6 s, 15 s, 15 s,
and 14 s, with 2 vehicles, 6 vehicles, 6 vehicles and 5 vehicles passing the
intersection respectively. Compared to Scenario 1, two more vehicles are
released in Scenario 2, which explores the benefits of signal optimization
in the upper layer. In Scenario 2, the first green phase length is still 6 s,
switching signals after releasing the queuing vehicles in the first movement;
the second and third green phases are longer than in Scenario 1 because one
more vehicle is optimized to depart the intersection; the last vehicle in the
fourth movement cannot pass.

The speed trajectories in Figure 4.6 have the similar features as under
Scenario 1 in Figure 4.4 (b). The approaching vehicles V3 to V6 (see red
lines under Scenario 2 and red dashed lines under Baseline Scenario 2) climb
to the maximal speed over time and the queuing vehicles V1 and V2 are de-
picted as the black lines under Scenario 2 and black dashed lines under Base-
line Scenario 2. The differences in speeds between Scenario 2 and Baseline
Scenario 2 result from the first green phase lengths (6 s versus 12 s). The
passing vehicles accelerate quickly facing a shorter red phase (6 s) in Sce-
nario 2. However, facing a longer red phase (12 s) in Baseline Scenario 2, the
passing vehicles accelerate slowly during the red phase to keep the safe gap
and then climb to the maximal speed after merging with the preceding vehi-
cles during the green phase. The trajectory differences in other movements
between Scenario 2 and Baseline Scenario 2 are negligible.
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Figure 4.6: Speed trajectories of the second movement under Scenario 2
(S2) and Baseline Scenario 2 (BS2)

(a) Scenario 2 (b) Baseline Scenario 2

Figure 4.7: Longitudinal position of the second movement under Scenario 2
(S2) and Baseline Scenario 2 (BS2)

The optimal trajectory pattern can be summarized into three categories
based on the trajectories under Scenario 1, Scenario 2 and Baseline Scenario
2, as shown in Figure 4.4 to Figure 4.7. Firstly, the queuing vehicles ac-
celerate from the stationary condition at the beginning of the green phases,
aiming to reach the maximal speed as soon as possible. Secondly, the pass-
ing vehicles, normally the first multiple vehicles in the approaching platoon,
accelerate but slower than the predecessors to keep the safe gaps when facing
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a shorter red phase (e.g., j = 2), or otherwise decelerate first and then accel-
erate smoothly to avoid stops and arrive at the stop-line with higher speeds
(e.g., j = 3,4). Thirdly, the stopping vehicles, normally the last several vehi-
cles in the approaching platoon, decelerate first and subsequently accelerate
to leave at the beginning of the next green phase.

In Baseline Scenario 2, two vehicles, five vehicles, five vehicles and five
vehicles are optimized to depart the intersection. Scenario 2 outperforms
Baseline Scenario 2 in throughputs because signal phases are pre-determined
according to traffic demand on each arm under Baseline Scenario 2, which
neglects the real-time information of vehicle position and speed. Further-
more, Baseline Scenario 2 optimizes vehicle trajectories for each movement,
unlike the integrated optimization of four movements in Scenario 2.

As shown in Table 4.2, the overall throughputs in Scenario 2 and Base-
line Scenario 2 are 19 and 17, respectively. Two more vehicles are released
in Scenario 2 (11.76 % more than in Baseline Scenario 2), which partly ex-
plains the almost identical values of fuel consumption between Scenario 2
and Baseline Scenario 2. In addition, more travel time is proved to be saved
in Scenario 2 (16.92 %), which demonstrates the superiority of the integrated
control approach on signal optimization.

Analysis of Scenario 3

The longitudinal position of all movements under Scenario 3 are depicted
in Figure 4.8, with the red lines indicating the optimal signal plan. The
signal phase lengths are optimized as 6 s, 13 s, 15 s, and 16 s respectively,
and 2 vehicles, 5 vehicles, 6 vehicles and 6 vehicles depart the signalized
intersection.

In Scenario 3, the trajectories obey the optimal trajectory pattern, as dis-
cussed above, and the signal optimization tends to shorten the first green
phase for releasing as many vehicles as possible in the latter movements,
as concluded in the optimal signal pattern. Based on Scenario 3, it is veri-
fied that signal optimization can react to different traffic demand levels and
switch signals for the optimal performance. The fuel consumption (ml/m)
under Scenario 3 is 0.0841 ml/m.
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(a) the first movement (b) the second movement

(c) the third movement (d) the fourth movement

Figure 4.8: Longitudinal position under Scenario 3

4.5 Conclusions and future work
In this chapter, we proposed an integrated approach for controlling traffic
signals and vehicles trajectories at intersections. The problem is formulated
as a two-layer optimization model. The upper layer enumerates all feasible
signal plans and sends to the lower layer iteratively. The lower layer de-
termines the accelerations of the platoons at each signal enumeration step,
until completing the signal enumeration. The ride comfort and average travel
delay are optimized, subject to safe and physical constraints. To be noted,
the red phase is represented using the logic constraint, which enables vehi-
cles to respond to the adaptive signal indication. The upper layer finds the
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optimal signal plan after enumeration, by searching the minimal objective
function value among all enumeration steps. The proposed control approach
is feasible in incorporating multiple traffic movements and signal phases,
and the benefits of optimizing the vehicle platoons from all incoming traffic
movements are taken into account. Simulation under three scenarios and two
baseline scenarios demonstrated the performance of the proposed approach.

The simulation results show the potentials of the throughput improve-
ment and environmental benefits. Based on analyzing performance of all
scenarios, the optimal signal pattern and the optimal trajectory pattern are
derived.

The enumeration method in the signal optimization layer results in in-
tensive computational time, which requires further improvement. In the next
chapter, a single-layer design approach that is computationally scalable will
be presented.





Chapter 5

A single-layer control approach of
optimizing trajectories and signals

In this chapter, a joint control approach that simultaneously optimizes
traffic signals and trajectories of cooperative (automated) vehicle platooning
at urban intersections is presented. The signal parameters and the accelera-
tions of the controlled platoons are optimized to maximize comfort and min-
imize travel delay subject to motion constraints on speeds, accelerations and
safe gaps. The red phases are recast as several linear constraints to enable ef-
ficient solutions. This joint control approach is flexible in incorporating mul-
tiple platoons and traffic movements under different traffic demand levels.
The performance of the proposed control approach is verified by simulation
at a standard four-arm intersection with balanced/unbalanced arrival rates
from different arms, taking the released traffic movement numbers, turning
proportions, signal cycle lengths and the controlled vehicle numbers into ac-
count. The simulation results demonstrate the platoon performance (such
as split, merge, acceleration and deceleration maneuvers) under optimal sig-
nals. Based on the simulation results, the optimal patterns of trajectories and
signals are explored. Furthermore, the computational performance of the
proposed control approach is analyzed, and the benefits of the proposed ap-
proach on the average travel delay, throughput, fuel consumption, and emis-
sion are proved by comparing with the two-layer approaches using the car
following model, the signal optimization models, and the state-of-the-art ap-
proach.

89
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This chapter is an adapted version of the journal paper:

Liu, M., Zhao, J., Hoogendoorn, S. and Wang, M., 2022. A single-layer
approach for joint optimization of traffic signals and cooperative vehicle tra-
jectories at isolated intersections. Transportation Research Part C: Emerging
Technologies. https://doi.org/10.1016/j.trc.2021.103459
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5.1 Introduction

Traffic lights are one of the fundamental elements on urban roads for traf-
fic management. The red phases are beneficial to separate conflicting traf-
fic movements at intersections, but they also cause substantial travel delay,
fuel consumption and emissions on urban roads (Zhao et al., 2020). To re-
lieve these problems, the recent advances in connected and automated ve-
hicle (CAV) technology have attracted considerable attention. CAVs can
communicate with each other and the roadside infrastructures via Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications (Wang
et al., 2015), and consequently vehicles can be operated in an efficient, safe
and sustainable way in a CAV environment, taking the real-time traffic sig-
nals into account (Feng et al., 2018). Therefore, numerous studies have in-
vestigated the cooperative design of traffic signals and/or CAV trajectories
at signalized intersections taking advantage of CAV technology.

There are mainly three research directions for improving traffic oper-
ations at urban intersections using CAV technology: the classical control
(e.g., signal control algorithms), guiding or controlling vehicular speeds and
paths (e.g., cooperative intersection methods, speed guidance systems and
CAV trajectory planning), and the joint control approaches of both traffic
signals and vehicle trajectories.

As to classical control, the signal control algorithms with connected ve-
hicles (not necessarily automated vehicles) aim to generate the optimal sig-
nal parameters at an isolated intersection (Feng et al., 2015; Chen & Sun,
2016), along a corridor (Beak et al., 2017; Li & Ban, 2018), or at the network
level (Le et al., 2015; Al Islam & Hajbabaie, 2017), based on the prediction
of future traffic flow states, such as vehicle speeds, arrival time and queue
lengths (Guo et al., 2019a). These signal control algorithms do not optimize
CAV trajectories but use connected vehicle information for state estimation
and prediction. They are usually integer nonlinear programming problems
and/or bi-level optimization models, which are difficult to solve. Dynamic
programming (DP) (Feng et al., 2015; Chen & Sun, 2016; Beak et al., 2017;
Li & Ban, 2018) and the distributed control (Le et al., 2015; Al Islam &
Hajbabaie, 2017) are frequently adopted to formulate and approximate the
control problems.

The cooperative intersection controller organizes the sequence of CAVs
to discharge vehicles without collision at a signal-free intersection in a fully
CAV environment (Lee & Park, 2012; Ahmane et al., 2013; Zohdy & Rakha,
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2016; Yu et al., 2019). Vehicle trajectories before arrivals of the intersection
are usually not considered in these methods. Therefore, complete and sudden
stops of CAVs are sometimes inevitable in the vicinity of the intersection in
order to avoid crashes, and the optimality of vehicle platooning is not guar-
anteed in this line of research (Yu et al., 2018). Furthermore, ignoring other
road users (e.g., pedestrians, cyclists and human drivers) also challenges the
realistic applications of the cooperative intersection controllers.

Individual speed guidance systems provide advisory speeds to individ-
ual vehicles for fewer vehicle stops, travel delay and/or energy consumption
in the vicinity of urban intersections, such as GLOSA (Green Light Opti-
mized Speed Advice) (Stevanovic et al., 2013; Li et al., 2014a; Stebbins
et al., 2017) and Eco-Approach and Departure systems (Altan et al., 2017;
Hao et al., 2018; Wang et al., 2019). The generated speed advice can also
be implemented in automated vehicles, resulting in the reduction of uncer-
tainties caused by human drivers and thereby better control performance.
However, these speed guidance systems are dedicated to an individual vehi-
cle rather than the vehicle platoon(s), implying that the effects on the overall
platoon or the traffic flow are ignored.

The cooperative CAV trajectory planning algorithms optimize vehicle
accelerations at an isolated intersection or along a corridor, assuming that
signal timings are known to the optimization models as exogenous inputs.
As to the trajectory planning systems at isolated intersections, the objec-
tive functions simply consider comfort and/or fuel consumption (Jiang et al.,
2017; Zhao et al., 2018; Li et al., 2018; Typaldos et al., 2020). Providing
a fixed signal cycle length, the red phases at isolated intersections are nor-
mally represented as constraining the terminal conditions of vehicle posi-
tion, speed and acceleration using terminal costs and/or equality constraints.
These terminal conditions are normally estimated as the position of stop-
line, the maximal speed and zero acceleration respectively. On the other
hand, the trajectory planning systems along a corridor are usually designed
for an individual vehicle such as Asadi & Vahidi (2010); Kamal et al. (2012);
He et al. (2015); Wan et al. (2016); HomChaudhuri et al. (2016), apart from
the control approaches in Liu et al. (2019, 2020) which consider the vehicle
platooning. This line of research lacks signal optimization, so the full uti-
lization of vehicle information (e.g., speed and position) and infrastructure
information (e.g., signal timings) is hindered.

Based on previous research findings, we conclude that it is difficult to
integrate traffic signal optimization with vehicle trajectory planning in a uni-
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fied framework, because signal optimization and vehicle control are mu-
tually dependent. Signals affect vehicle maneuvers and performance such
as energy consumption and delay, and vehicle trajectories are of vital im-
portance when adjusting signals in return. Therefore, the joint control ap-
proaches of traffic signals and vehicle trajectories can be solved by casting
the problem in a bi-level optimization model to solve the problem iteratively
(Li et al., 2014b; Yang et al., 2016b; Xu et al., 2018; Feng et al., 2018; Guo
et al., 2019b; Niroumand et al., 2020; Liu et al., 2021). The vehicle arrival
time at the stop-line is normally required to be estimated first and then be
constrained in the terminal conditions of position and speed to represent the
red indication (Xu et al., 2018; Feng et al., 2018; Guo et al., 2019b; Yu et al.,
2018). In the traffic signal optimization, the enumeration method (Li et al.,
2014b; Xu et al., 2018; Liu et al., 2021) and the similar forward/backward
recursion method (Feng et al., 2018; Guo et al., 2019b) are usually adopted
to evaluate all feasible signal parameters, while signals are not explicitly
optimized in Li et al. (2014b); Yang et al. (2016b); Yu et al. (2018). Further-
more, some approximation methods are adopted for relieving computational
load in vehicle trajectory optimization. The rule-based trajectory patterns are
designed to approximate trajectories in Li et al. (2014b); Yang et al. (2016b);
the following vehicles are simulated using car following models, while only
the platoon leader is controlled (Feng et al., 2018; Yu et al., 2018); each
vehicle is optimized individually in Xu et al. (2018), as opposed to trajec-
tory optimization of the platoon; the receding horizon scheme is adopted to
update trajectories and signals (Li et al., 2014b; Yang et al., 2016b; Feng
et al., 2018) or update trajectories more frequently than signal timing vari-
ables (Niroumand et al., 2020), which benefits the computational load but
unfortunately causes suboptimum owing to the shortsighted prediction.

This chapter presents a joint control approach to simultaneously optimize
traffic signals and vehicle trajectories of all CAV platoons in the vicinity of
signalized intersections. The vehicle accelerations and signal phase lengths
are jointly optimized aiming to maximize ride comfort and minimize travel
delay, subject to motion constraints. The red indication is first formulated as
a logic constraint and then reconstructed as a series of linear position con-
straints. This red phase constraint formulation in this chapter is generic as
it requires neither the prescribed terminal conditions of speed/position nor
the additional estimation of vehicle arrival time. To further relieve the com-
putational burden, the joint control problem is solved using mixed integer
linear programming (MILP) techniques after the linearization of the objec-
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tive function. The outputs of the proposed approach are the optimal signal
phase lengths and the optimal acceleration trajectories of CAV platoons, so
the global optimum considering all platoons is guaranteed within the signal
cycle. This approach is scalable to incorporate multiple platoons from dif-
ferent movements under various traffic demand levels. To demonstrate the
performance of the proposed approach, simulations under the balanced and
unbalanced arrival rates from each arm are conducted, based on which the
optimal vehicle trajectory pattern and the optimal traffic signal pattern are
found. Finally, the comparison with the Intelligent Driver Model, the sig-
nal optimization models, and a state-of-the-art approach (Xu et al., 2018)
is made, the results of which show the proposed approach generates higher
throughput and less delay, energy consumption, and emission.

The contributions of this study are threefold. First, our approach simulta-
neously optimizes signal timing and vehicle trajectories of all platoons from
multiple traffic movements. It does not require bi-level programming, nor
simplifications of vehicle trajectories when optimizing signal timing, which
results in nonlinear problems in general. Our formulation in mixed integer
linear programming form ensures the global optimum of the control prob-
lem. Second, this chapter formulates the joint problem in a single layer
other than in a bi-level structure. The nonlinear formulation of this joint
control problem is recast in a linear formulation, which reduces the compu-
tational load substantially. The red phases are formulated into four linear
constraints, which can avoid specifying the terminal conditions of speed and
position beforehand. Thereby the infeasible solutions stemming from the
inaccurate arrival time estimation are bypassed. Finally, the controller per-
formance of the proposed approach is thoroughly verified in simulation and
compared with the state-of-the-art approaches, based on which the optimal
signal and trajectory patterns are derived.

The rest of this chapter is structured as follows. Section 5.2 formulates
the joint optimal control problem of traffic signals and vehicle trajectories,
and then the control formulation is reconstructed and linearized. In Section
5.3, the solution approach is introduced. The controller performance is val-
idated by simulation in Section 5.4, and both the optimal vehicle trajectory
pattern and the optimal traffic signal pattern are explored after that, in addi-
tion to the analysis on computational performance and the comparison with
the car following model, the signal optimization models, and the state of the
art. Finally, conclusions and future work are delivered in Section 5.5.
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5.2 Control formulation
In this section, the joint optimal control problem of traffic signals and vehi-
cle trajectories is formulated, including problem description, specifications
of control and state variables, system dynamics, the objective function and
controller constraints. Finally, the control formulation is linearized in this
section.

5.2.1 Problem description
In this chapter, a standard signalized intersection is considered under a given
signal phase sequence. The left-turn movements are separate from the through
and right-turn movements from the perspective of signal and intersection de-
signs. The example research scenario and the pre-defined signal plan are
illustrated in Figure 5.1.

The control zone at the signalized intersection is restricted by V2V, V2I
and I2V (Infrastructure-to-Vehicle) communication ranges (normally a few
hundred meters), where the lane changing behavior is not considered. Ve-
hicles in the control zone are assumed to be cooperative and thereby can be
controlled via their (admissible) accelerations. Based on V2V and I2V com-
munication, vehicle position and speed information as well as Signal Phasing
and Timing (SPaT) information can be exchanged among each vehicle and
the signal controller. The sum of feedback and vehicle actuation delays is
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Figure 5.1: Illustration on operations of the control system
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assumed to be less than 1 second and hence can be neglected in the control
formulation when we choose a discrete time step size of 1 second.

Table 5.1: List of notations

General variables and parameters
R Set of real numbers
Z Set of integers
Z+ Set of positive integers

C ∈ Z+ Signal cycle length, s
∆t = 1 Time step size, s

K = C
∆t ∈ Z+ Total number of time steps, i.e., prediction horizon

k ∈ Z+ Time index, k ∈ {1,2, . . . ,K}
J ∈ Z+ Total number of signal phases in a signal cycle
j ∈ Z+ Sequence number of signal phase, j ∈ {1,2, . . . ,J}

ω ∈ Z+ Sequence number of signal switch in a signal cycle,
ω ∈ {0,1, . . . ,J}

kω The moment of the ωth signal switch, s
N j ∈ Z+ Vehicle number in the jth movement
N ∈ Z+ Total vehicle number in a signal cycle
(i, j) Vehicle sequence number i in the jth movement

β1, β2 Cost weights
H Objective function
M A large value

A j(ω) Attached moment of signal switch, s
li j The length of the ith vehicle in the jth movement, m

x j
stop Longitudinal position of the stop-line regarding the

jth movement, m
amin The minimal acceleration, m/s2

amax The maximal acceleration, m/s2

vmax The maximal speed, m/s
tmin The minimum safe car-following time gap, s
s0 The minimum space gap at standstill conditions, m

T max
m Maximal number of the released traffic movements
Tm Released traffic movement sequence, Tm ≤ T max

m
Pj The jth optimal signal phase length, s
fv The instantaneous fuel consumption rate, ml/s

Control variables
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Table 5.1: List of notations (continued)
ai j(k) Discrete control variable, acceleration of the ith vehi-

cle in the jth movement
s j(k) Discrete control variable, signal switch in the jth

movement
γi j(ω) Auxiliary control variable, binary variable of passing

the intersection or not at the moment of the ωth signal
switch

qi j(k) Auxiliary control variable for linearization
ri j(k) Auxiliary control variable for linearization

uV Control variable vector of vehicle trajectory optimiza-
tion for all vehicles in all movements

uS Control variable vector of traffic signal optimization
for all vehicles in all movements

u Control variable vector of the joint controller for all
vehicles in all movements

Γ Control variable vector of γi j(ω) for all vehicles in all
movements

State variables
xi j(k) Discrete state variable, position of the ith vehicle in

the jth movement
vi j(k) Discrete state variable, speed of the ith vehicle in the

jth movement
p j(k) State variable, binary variable of traffic signal indica-

tion in the jth movement
xV State variable vector of vehicle trajectory optimiza-

tion for all vehicles in all movements
xS State variable vector of signal optimization for all ve-

hicles in all movements

The control objective is to jointly determine each signal phase length
and vehicle acceleration trajectories from all traffic movements. In the pro-
posed approach, the ride comfort and the travel delay are optimized subject
to safety and physical motion constraints, and the vehicle positions during
the red signal indication are also constrained when optimizing signal param-
eters. The main variables and parameters are summarized in Table 5.1.
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5.2.2 Control and state variables

The control variables of the joint optimal control problem are the acceler-
ations and the signal phase switches of the signal controller, which are de-
tailed in this subsection. The prediction horizon is the signal cycle C ∈ Z+,
which is an input of the joint controller. k ∈ Z+ is the time step within the
prediction horizon, and ∆t is the time step size. With the choice of ∆t = 1
s and K = C

∆t , we have k ∈ {1,2, . . . ,K}. Let J denote the total signal phase
number within a signal cycle and j represent the signal phase sequence num-
ber, j ∈ {1,2, . . . ,J}. J can respond to the vehicle actuation by skipping cer-
tain phase(s) if no vehicle is detected. For simplification, we refer the move-
ment(s) that is released during the jth green phase as the jth movement(s).
If i and N j are the vehicle sequence number and the total vehicle number
in the jth movement respectively, the pair of (i, j) can thereby describe the
vehicle sequence number i in the jth movement (i ∈ {1,2, . . . ,N j}). N is the
total vehicle number within a cycle, which can be calculated by

N =
J

∑
j=1

N j (5.1)

For vehicle trajectory planning, the control variable for vehicle i in jth
movement uV

i j is acceleration (vehicle decelerations are represented as nega-
tive accelerations), as follows:

uV
i j(k) = ai j(k),k ∈ {1,2, . . . ,K} (5.2)

The state variables of the subject vehicle, xV
i j, are the longitudinal posi-

tion, xi j(k), and the speed, vi j(k). The state variables of trajectory planning
are

xV
i j(k) =

�
xi j(k)
vi j(k)

�
,k ∈ {1,2, . . . ,K} (5.3)

The control variable vector of vehicle trajectory within the signal cycle,
uV , is defined by uV

i j(k), as in Equation (5.4). The same also holds for the
state variable vector xV in Equation (5.5).
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uV (k) =



a11(k),a12(k), · · · ,a1J(k)� �� �
i=1, j∈{1,2,...,J}

, · · · ,aNJ1(k),aNJ2(k), · · · ,aNJJ(k)� �� �
i=NJ , j∈{1,2,...,J}





T

(5.4)

xV (k) =



xT
11(k),xT

12(k), · · · ,xT
1J(k)� �� �

i=1, j∈{1,2,...,J}

, · · · ,xT
NJ1(k),x

T
NJ2(k), · · · ,x

T
NJJ(k)� �� �

i=NJ , j∈{1,2,...,J}





T

(5.5)
With respect to the signal optimization, the control variable is the signal

state of whether or not switching the signal phase to release the jth move-
ment at each time step, s j(k). s j(k) is defined as a binary variable, setting
s j(k) equal to 1 if shifting the signal at the time step k and 0 otherwise, as
shown in Equation (5.6) and Equation (5.7).

uS
j(k) = s j(k),k ∈ {1,2, . . . ,K} (5.6)

s j(k) =
�

1 switching signal of movement j
0 otherwise (5.7)

The state variable of signal optimization is the color indication of the
traffic light in the jth movement at each time step p j(k). p j(k) = 1 if the
signal controller indicates red and otherwise p j(k) = 0, as can be seen in
Equation (5.8) and Equation (5.9).

xS
j(k) = p j(k),k ∈ {1,2, . . . ,K} (5.8)

p j(k) =
�

1 red signal indication
0 green signal indication (5.9)

The control and state variable vectors of signal optimization regarding
all traffic movements within the cycle, uS and xS, are defined by uS

j(k) and
xS

j(k) in time (k ∈ {1,2, . . . ,K}, j ∈ {1,2, . . . ,J}). It is also noted that the
control variable vector of the joint controller is defined by uV and uS, thus

u =

�
uV

uS

�
(5.10)
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5.2.3 System dynamics
The system dynamics model of the joint optimal control problem is pre-
sented separately for trajectory planning (as Equation (5.11 )) and signal op-
timization (as Equation (5.12)). For the trajectory optimization subproblem,
the system dynamics model is described using the following second-order
equation.

xV
i j(k+1) = AxV

i j(k)+BuV
i j(k) (5.11)

where

A =

�
1 ∆t
0 1

�
;B =

� 1
2∆t2

∆t

�

Here, ∆t denotes the time step size. In addition, the dynamics equation
of signal optimization is

p j(k+1) =
��p j(k)− s j(k)

�� (5.12)

5.2.4 Objective function
Within the prediction horizon (k ∈ {1,2, . . . ,K}), the ride comfort and travel
delay of all controlled vehicles from all traffic movements are taken into
account by minimizing the absolute value of accelerations and maximizing
speeds. The objective function is designed as follows:

H = min
u

J

∑
j=1

N j

∑
i=1

K

∑
k=1

[β1|ai j(k)|−β2vi j(k)] (5.13)

Here, β1 and β2 are cost weights. The unit of β1 is defined as second
and β2 is unitless. The first cost term of ride comfort is designed to reduce
fluctuations in accelerations. The second cost term of travel delay aims at
stimulating vehicles to speed up, departing the intersection as soon as possi-
ble.

5.2.5 Controller constraints
The joint optimal controller requires the control and state variables to respect
certain constraints, i.e., admissible accelerations, maximum speed bounds,
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safe driving requirements, signal switch limitation and the red phase position
constraints.

For vehicle trajectory planning, the accelerations of all vehicles are bounded
within the admissible range between the maximal acceleration, amax, and the
minimal acceleration (i.e., the negative of the maximal deceleration), amin.

amin ≤ ai j(k)≤ amax (5.14)

The speeds of all vehicles are restricted to be nonnegative but not larger
than the limit speed, vmax.

0 ≤ vi j(k)≤ vmax (5.15)

As to the safe driving requirements, the following vehicles should keep at
least the minimal safe gap with the vehicles in front. If li j denotes the length
of vehicle i in the jth movement, tmin is the minimum safe car-following
time gap, and s0 is the minimum space gap at standstill conditions, the safety
requirements can be represented as:

xi−1, j(k)− xi j(k)− vi j(k)tmin − s0 − li j ≥ 0, i ≥ 2 (5.16)

In terms of signal optimization, the signal cycle is supposed to contain at
least a green phase and a red phase for each traffic movement, so the signal
indication should switch at most twice within the prediction horizon. The
total signal switch number of the jth movement is constrained as follows.

K

∑
k=1

s j(k)≤ 2 (5.17)

Vehicles are required to respond to signal changes when jointly optimiz-
ing traffic signals and vehicle trajectories. In order to connect vehicle posi-
tions with signal indications, auxiliary variables are introduced to represent
the red phases. Let ω (∈ {0,1, . . . ,J}) denote the sequence number of signal
switches. In the simple signal plans, such as Figure 5.1, ω = 0 refers to the
beginning of the signal cycle, ω = J corresponds to the signal cycle tail, and
ω = j means the end of signal phase j. However, the signal switch ω and the
signal phase j may be different in sophisticated signal plans.

Furthermore, the auxiliary binary variable of vehicle position condition,
γi j(ω), is introduced to represent whether or not the ith vehicle in the jth
movement can pass the intersection when switching the ωth signal. At the
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specific moment of the ωth signal switch, γi j(ω) is defined as 1 if the subject
vehicle cannot pass, and γi j(ω) = 0 if it can pass the stop-line. To reflect the
ωth signal switch in time, we refer to kω as the time step of the ωth traffic
signal switch, i.e., the time when the ωth signal phase ends. Therefore, ve-
hicle position condition γi j(ω) is represented using state variables of xi j(kω)
and p j(kω). As in Equation (5.18), γi j(ω) is a step function, in which γi j(ω)
becomes to 1 when xi j(kω) ≤ 0 until p j(kω − 1) �= p j(kω) and drops to 0 if
the ith vehicle in the jth movement passed the intersection.

γi j(ω) =
�

1 xi j(kω)≤ 0,until p j(kω −1) �= p j(kω)
0 afterwards (5.18)

5.2.6 Linear formulation of red phase constraints

The dimension of the joint control problem can be significantly large under
high traffic demand levels. In order to relieve the excessive computational
load, the control formulation is reconstructed. The red phase representation
using the logic constraint of Equation (5.18) is first linearized, followed by
linearization of the objective function.

The red phase representation of Equation (5.18) are a logic constraint,
which is difficult to solve. To bypass this issue, the auxiliary variable of ve-
hicle position condition γi j(ω) is introduced as additional control variables.
If Γ is defined by γi j(ω) (see Equation 5.19), the control variable vector of
the joint controller is replaced by Equation (5.20).

Γ =




ω=1� �� �

γ11(1), · · · ,γ1J(1), · · · ,
ω=J−1� �� �

γ11(J−1), · · · ,γ1J(J−1)� �� �
i=1, j∈{1,2,...,J}

, · · · ,

ω=1� �� �
γNJ1(1), · · · ,γNJJ(1), · · · ,

ω=J−1� �� �
γNJ1(J−1), · · · ,γNJJ(J−1)� �� �

i=NJ , j∈{1,2,...,J}





T (5.19)

u =




uS

uV

Γ



 (5.20)
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The problem arises when representing the additional system dynamics of
the position condition γi j(ω), owing to its logical and binary features. How-
ever, the relationship between the position condition and the original control
and state variables can be described as a series of inequality equations, as
discussed below.

In the joint optimization of signals and trajectories, the vehicle posi-
tion conditions γi j(ω) are known at the beginning and the tail of the sig-
nal cycle (i.e., ω = 0 and ω = J), but unknown at the intermediate signal
switches when ω ∈ {1,2, . . . ,J −1}. Nevertheless, the unknown intermedi-
ate γi j(ω) values can be exploited using the known position conditions γi j(0)
and γi j(J), because the vehicle position condition remains constant during
any red phase, either behind or beyond the stop bar. In other words, we can
convert the known position condition values to the uncertain position condi-
tions when switching the ωth (∈ {1,2, . . . ,J−1}) signal, i.e., γi j(ω) = γi j(0)
if the ωth signal switches to the green phase, and γi j(ω) = γi j(K) if the ωth
signal switches to the red phase in the current signal cycle.

Although the phase lengths are jointly optimized and thereby unknown
in the control formulation, γi j(ω) stays unchanged within the red signal in-
dication, as discussed previously. Hereinafter, the red phase logic constraint
of Equation (5.18) is reformulated by introducing the piecewise time mo-
ment A j(ω) (ω ∈ {1,2, . . . ,J −1}). A j(ω) is designed to attach the moment
of the certain signal switch to the beginning or the end of the signal cycle
(k = 1,K), as in Equation (5.21). The illustration of the signal switch and
the attached moment A j(ω) within a signal cycle are explained in Figure 5.2.
The first (or the second) red time can be removed if the signal cycle starts
(or ends) with the green phase. In Equation (5.21), the attached moment
equals to the time step of either the beginning or the end of the current cycle,
i.e., A j(ω) = 1 if the ωth signal switches to the green phase and A j(ω) = K
otherwise.

A j(ω) =
�

1 until p j(kω −1) = 0, p j(kω) = 1
K afterwards ,ω ∈ {1,2, . . . ,J−1}

(5.21)
Furthermore, four linear constraints of Equation (5.22) to Equation (5.25)

are proposed to restrict vehicle positions during the red phase(s) without spe-
cific signal parameters. Let x j

stop imply the longitudinal position of the stop
bar in the jth movement, and M is a large value. Under the workings of
these four constraints, the known position condition values can be trans-
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ferred from the beginning/end of the signal cycle to the unspecific moments
of signal switches.

The constraints of Equation (5.22) and Equation (5.23) demonstrate the
position condition at the ωth signal switch equal to the position condition at
the attached moment (either the beginning or the end of the signal cycle).
Taking Figure 5.2 as an example, if the vehicle can pass the intersection
during the green phase (γi j(J−1) = 0), Equation (5.22) and Equation (5.23)
require the vehicle position to be larger than or equal to the position of the
stop bar at the end of the current signal cycle, xi j(A j(J)) ≥ x j

stop. Similarly,
the terminal position condition of stopping vehicles that cannot depart the
intersection (xi j(K)≤ x j

stop,γi j(J)= 1) is also conveyed to the (J−1)th signal
switch via A j(ω), thus γi j(J − 1) = 1. If the subject vehicle is behind the
stop bar at the beginning of the signal cycle, i.e., γi j(0) = 1, this position
condition is transferred to the first signal switch by the attached moment,
thus γi j (1) = 1. In this way, the vehicle position remains unchanged during
the red phase(s) in the signal cycle under indefinite signal parameters.

xi j(A j(ω))− x j
stop ≤ (1− γi j(ω))M (5.22)

− xi j(A j(ω))+ x j
stop ≤ γi j(ω)M (5.23)

Regarding the remaining time within the signal cycle, the vehicle po-
sition constraints are elaborated in Equation (5.24) and Equation (5.25).
As denoted above, kω is the time step of the ωth signal switch, and thus
s j(kω) = 1 means that the traffic signal is switched at t = kω and otherwise

If th signal switches to redIf th signal switches to green

1 1jA 1jA J K

0ij 0ij ij ij ij J ij J

k=K

0 J1J1

k=1

Transfer
value

Transfer
value

Figure 5.2: Illustration of signal switches and attached moments
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s j(kω) = 0. Therefore, the position condition γi j(ω) is unchanged until the
traffic signal is switched (i.e., s j(kω) = 1).

xi j(k)− x j
stop ≤ (1− γi j(ω))M+(1− s j(kω))M (5.24)

xi j(k)− x j
stop ≥−γi j(ω)M− (1− s j(kω))M (5.25)

In this way, the red phase logic constraint of Equation (5.18) is replaced
by a series of linear constraints.

5.2.7 Linearization of the objective function
To simplify this control formulation, the first cost term in the objective func-
tion of Equation (5.13) should be linearized. Two auxiliary non-negative
variables qi j(k) and ri j(k) are introduced as follows:

qi j(k) =
|ai j(k)|+ai j(k)

2
,qi j(k)≥ 0 (5.26)

ri j(k) =
|ai j(k)|−ai j(k)

2
,ri j(k)≥ 0 (5.27)

Therefore, the accelerations and the ride comfort cost term can be repre-
sented as

ai j(k) = qi j(k)− ri j(k),qi j(k)≥ 0,ri j(k)≥ 0 (5.28)

|ai j(k)|= qi j(k)+ ri j(k),qi j(k)≥ 0,ri j(k)≥ 0 (5.29)

The auxiliary variables of qi j(k) and ri j(k) can be regarded as additional
control variables in the controller, subject to the above linear equality con-
straints. After replacing the ride comfort cost term in the objective function
using Equation (5.29), the control problem is reformulated as:

H = min
u

J

∑
j=1

N j

∑
i=1

K

∑
k=1

[β1(qi j(k)+ ri j(k))−β2vi j(k)] (5.30)

subject to constraints of Equation (5.11), (5.12), (5.14) to (5.17), (5.22)
to (5.25), and (5.28).
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5.3 Solution approach
The control variables contain integer variables of signal state s j(k) and po-
sition condition γi j(ω), so the optimal control problem can be solved using
mixed integer linear programming (MILP) techniques. The system dynam-
ics of Equation (5.11) and (5.12) and the linearization equation via auxiliary
variables Equation (5.28) are implemented as linear equality constraints. The
state variables of speeds and positions can be represented using accelerations
via the system dynamic equation. Therefore, all linear inequality constraints
of Equation (5.14) to (5.17) and Equation (5.22) to (5.25) are transformed
to restrict the control variable acceleration. This optimal control problem is
solved using intlinprog solver in MATLAB.

To be noted, the optimization solver intlinprog is warm-started to expe-
dite the runtime. The initial guess of the signal plan is assumed to divide the
signal cycle evenly into average signal phases. The initial guess of acceler-
ations is the maximal acceleration until reaching the maximal speed at the
beginning of green phases. The initial guess of position condition γi j(ω) is
estimated by the vehicle positions at the end of green phases under the initial
acceleration guess, i.e., whether the vehicles can pass the intersection. The
joint optimal control algorithm yields the optimal signal parameters and the
optimal vehicle trajectories. In the forthcoming section, the outputs of this
control algorithm are presented and analyzed before the optimal patterns of
trajectories and signals are explored.

5.4 Simulation results and analysis
In order to demonstrate the performance of this controller, the simulation
results are discussed after designing several experiments in this section. The
optimal results have the single optimum due to the linearity feature of the
control formulation.

5.4.1 Experiment design
In simulation experiments, traffic movements on multiple lanes are designed
to be released during the same green phase. To make it clear, the nota-
tions of J and j are consequently replaced by T max

m , the maximal number of
the released traffic movements, and Tm (� T max

m ), the released traffic move-
ment sequence. In other words, each green phase (e.g., jth) discharges two
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movements, so the jth movement in control formulation corresponds to two
movements (i.e., Tm = j, j + J) from two opposite arms within one green
phase in simulation settings.

Multiple simulation experiments are designed to validate the performance
of the control algorithm, taking into account the controlled vehicle number
N, the maximal number of the released traffic movements T max

m (correspond-
ing to each arm during every signal phase), and the signal cycle length C.
The controlled vehicles include the queuing vehicles at the stop-line and the
approaching vehicles from the boundary of the control zone. To verify the
flexibility of the joint control approach in incorporating various signal de-
signs, the controlled vehicles are released into multiple movements within
the cycle lengths from 40 s to 60 s respectively.

When T max
m = 4, the turning movements are indistinct at the intersection,

so the traffic movements of (a) and (b) (see Figure 5.1) are regarded as two
movements from two opposite arms which are released during the first phase,
and movements of (c) and (d) are released during the other phase. When
T max

m = 6, the turning movements from one pair of the two opposite arms
(either movements of (a) and (b) in the northbound/southbound direction
or movements of (c) and (d) in the eastbound/westbound direction) are not
differentiated at the intersection, which means they are released together in
one green phase. The remaining movements of (c) and (d) (or (a) and (b))
are discharged separately during two green phases with the distinction of
left-turning movements. When T max

m = 8, traffic movements (a) to (d) depart
the intersection in sequence respectively within four signal phases. To be
noted, the signal phase(s) can be skipped based on the vehicle actuation if
no queuing and incoming vehicles are detected. In other words, the signal
phase number J can be optimized according to vehicle actuation.

If the other cost weight is constant, the magnitude of ride comfort cost
weight β1 affects the fluctuations of accelerations. Smaller values of β1 re-
sult in more frequent variations on accelerations, while vehicles may not
reach the maximal speed if β1 is overweighted, causing lower traffic efficien-
cies because of unable to fully utilize the green phases. The cost weights of
β1 and β2 are tuned based on the scenario with the largest dimension of con-
trol variables, and then applied in all scenarios. First, β2 is fixed to be 1, and
then β1 is increased from 1 until the variations of accelerations/decelerations
are smooth facing the red phases and most vehicles can reach the maximal
speed after the green phase. Finally, β1 is selected to be 7 when β2 = 1, un-
der which the acceleration trajectories are smooth without any unnecessary
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fluctuation, and the vehicle speeds are able to reach the maximal speed when
passing the intersection.

The parameter and coefficient values are detailed in Table 5.2, which
mainly come from our previous work (Liu et al., 2020). The designed initial
conditions in Table 5.2 are representative. In addition, similar settings and
initial conditions add no difficulty on implementation. Delays under 1 s can
be ignored because the time step is 1 s.

5.4.2 Operational performance analysis
To verify the feasibility of the control algorithm, the performance of the pro-
posed approach is simulated under different traffic demand levels, signal cy-
cle lengths and the maximal released traffic movement numbers, as detailed
in Table 5.3. First, the controller performance is explored thoroughly under
the balanced vehicle arrival rates from different arms, i.e., the uniform vehi-
cle settings of Case 1, 2 and 3 (see Table 5.2) per movement released into at
most 4, 6 and 8 traffic movements (T max

m = 4,6,8) within the cycle lengths
from 40 s to 60 s. For concise demonstration, only two scenarios under the
balanced vehicle arrival rates are selected to present the optimal trajectories
and the optimal signals (Scenario 1 and 2). In addition, Scenario 3 and 4
are designed under the unbalanced vehicle arrival rates from each arm con-
sidering the signal phase sequences and turning proportions. The objectives
of Scenario 1 to Scenario 4 aim to not only explore the controller perfor-
mance of the optimal trajectories when platoons react to the optimal signals,
but prove the feasibility of the proposed approach in integrating the over-
saturated traffic flow and the balanced/unbalanced arrival rates, considering
various signal plans and turning proportions under different cycle lengths
and the maximal released movements.

The traffic demand levels and the vehicle arrival rates under all scenarios
are detailed as follows. The total controlled vehicle numbers are different un-
der four scenarios in order to test the performance of the proposed approach
under various traffic demand levels, such as in Scenario 2 and 4 where the
controlled vehicle numbers are larger than the maximal vehicle numbers to
be released while fewer vehicles are included in Scenario 1 and 3. The con-
trolled vehicle numbers of each movement are balanced in Scenario 1 and
2, i.e., 4 queuing vehicles at the stop bar and 4 approaching vehicles from
the upstream direction of the intersection (referring to Case 3). However,
the vehicle arrival rates from each arm are unbalanced in Scenario 3 and
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Table 5.2: Parameter and coefficient values

Notation Parameter/ Coefficient Value Unit
- Initial speed of approaching vehicles 10 m/s
- Initial space gap of approaching vehicles 25 m
- Initial position of the leader in the ap-

proaching vehicles
-200 m

- Initial space gap of queuing vehicles 5 m
- Initial position of the leader in the queu-

ing vehicles
-5 m

- Control zone range 200 m
∆t Time step size 1 s
M A large value 100000 -
li j Length of the ith vehicle in the jth move-

ment
3 m

x j
stop Position of the stop line 0 m

amin Allowable minimum acceleration -5 m/s2

amax Allowable maximum acceleration 2 m/s2

vmax Limit speed 20 m/s
tmin Minimum safe car-following time gap

for the right-turn, through and left-turn
movements respectively

3,2,2.5 s

s0 Minimum space gap at standstill condi-
tions

2 m

β1 Cost weight 7 s
β2 Cost weight 1 -
- Queuing vehicle number per movement in

Case 1, 2, 3
2,3,4 -

- Approaching vehicle number per move-
ment in Case 1, 2, 3

2,3,4 -

N j Total vehicle number per movement in
Case 1, 2, 3

4,6,8 -

T max
m Maximal number of the released traffic

movements within the signal cycle
4,6,8 -

C Signal cycle length 40,41,. . .,60 s

4, which means the compositions of the queuing and approaching vehicle
platoons from 8 movements are randomly generated, just like determining
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the number of balls in each basket when throwing N balls into 16 baskets
randomly.

The turning movements and signal designs under all scenarios are here-
inafter disclosed. Scenario 1 and 2 do not distinguish the turning movements,
and thereby the desired time headways are 2 s for all vehicles. However, the
movements of right turning, through and left turning can be reflected by
adopting different values of the minimal safe car-following time gap tmin
(see Table 5.2). Scenario 3 and 4 make a distinction between the different
signal phase sequences and the turning proportions. In Scenario 3, the left-
turn movements (Tm = 1,3,5,7) are released prior to the through/right-turn
movements (Tm = 2,4,6,8), while things are opposite under Scenario 4. The
left-turn movements have exclusive lanes and signal phases, so the left-turn
proportions are equal to 1. For the through/right-turn shared movements, the
right-turn proportions in movements of Tm = 2,4,6,8 are 0.3 under Scenario
3, while the right-turn proportions under Scenario 4 are 0.3, 0.4, 0.5 and 0.6
in movements of Tm = 1,3,5,7 respectively. In addition, the vehicle com-
positions of through and right-turn vehicles in the through/right-turn shared
movements are produced at random.

In general, the simulation results of Scenario 1 to Scenario 4 show that
vehicles are able to respond to the optimal signals via smooth trajectories and
all constraints are satisfied. The passing vehicles reach the maximal speed
as soon as possible and the stopping vehicles perform to decelerate from the
initial speed, smoothly approaching the stop-line with lower speeds. When
the green phase starts, vehicles behind the stop bar accelerate to pass but
still keep the safe following gaps with the vehicles in front. Overall, it can
be concluded that the control approach is feasible under different traffic de-
mand levels, vehicle arrival rates and signal designs. In addition, the joint
controller is flexible in accounting for multiple platoons from various traffic
turning movements, including queuing and approaching vehicles at the in-
tersection. The optimal trajectories under Scenario 1 to Scenario 4 and the
optimal signals are explored and discussed below.

Vehicle trajectory pattern

The optimal performance of longitudinal position trajectories under all sce-
narios are depicted in Figure 5.3 to Figure 5.6. In Figure 5.3 and 5.4, the tra-
jectories of movements Tm = 5,6,7,8 are not presented under Scenario 1 and
2, because they are the same as the trajectories of movements Tm = 1,2,3,4
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Table 5.3: Scenario design

Scenario design Scenario
1

Scenario
2

Scenario
3

Scenario
4

Cycle length (s) C=50 C=60 C=50 C=40
Maximal released move-
ments

T max
m = 6 T max

m = 8 T max
m = 8 T max

m = 8

Total controlled vehicle
number (veh/cycle)

N = 48 N = 64 N = 44 N = 48

Maximal vehicle number
to be released (veh/cycle)

50 60 50 40

Controlled vehicle
number per movement
(veh/movement)

8 (Case3) 8 (Case3) Random Random

Vehicle arrival rates per
movement

Balanced Balanced Unbalanced Unbalanced

Signal phase sequence - - Left-turn
first

Right-turn
first

Turning proportions of
the right-turn movements

- - 0.3,0.3,
0.3,0.3

0.3,0.4,
0.5,0.6

under the balanced vehicle arrival rates. Other scenarios of the balanced
vehicle arrival rates that are not presented here have the significantly sim-
ilar performance as Scenario 1 and 2. The speed information is displayed
in color, as shown in the colorbar of Figure 5.3 (c). The optimal red phase
lengths are depicted as black dashed lines at the stop bar in these figures, and
the vehicle sequence number in the legend of Figure 5.4 (h) starts from the
queuing vehicle with the largest initial position (Vehicle 1) to the approach-
ing vehicle in the platoon tail.

The trajectories under all scenarios demonstrate that all vehicles are able
to react to the signal changes, as the longitudinal position subfigures in Fig-
ure 5.3 to 5.6. Thus, the red phase constraints of Equation (5.22) to Equation
(5.25) are proved to be effective in the joint control formulation. In addition,
typical vehicle trajectories such as accelerations/decelerations of stopping,
passing and queuing vehicles are considerably smooth, as can be seen in the
acceleration subfigures of Figure 5.4 (e) to (h).

The optimal trajectory pattern of vehicles’ approach/exit, acceleration,
merge, and platoon stability can be summarized from the optimal perfor-
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3 ( j = 3)

Figure 5.3: Optimal performance under Scenario 1

mance under all scenarios in Figure 5.3 to 5.6. Vehicles tend to avoid stops
and try to exit the intersection with higher speeds. At the beginning of the
green phase, the queuing vehicles accelerate dramatically from the stationary
condition, aiming to exit the intersection as soon as possible. This accelera-
tion pattern of queuing vehicles is evident when we look at the accelerations
of Vehicle 1 in Figure 5.4. When merging, vehicles may decrease the ac-
celeration rates a little bit to keep the safe gap with the preceding vehicles.
With respect to the acceleration fluctuations, the following vehicles always
perform smaller changes than the predecessors, which proves the platoon
stability.

In Scenario 3 and 4, the turning movements are distinguished using the
minimal safe car-following time gap tmin, i.e., setting tmin = 3 s for the right-
turn movement, tmin = 2 s for the through movement and tmin = 2.5 s for the
left-turn movement. The turning movements are depicted as the solid lines
for the through movement, the dotted lines for the right-turn movement and
the dashed lines for the left-turn movement in Figure 5.5 to 5.6. The differ-
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(a) position of movement Tm = 1
( j = 1)

(b) position of movement Tm = 2
( j = 2)

(c) position of movement Tm = 3
( j = 3)

(d) position of movement Tm = 4
( j = 4)

(e) acceleration of movement
Tm = 1 ( j = 1)

(f) acceleration of movement
Tm = 2 ( j = 2)

(g) acceleration of movement
Tm = 3 ( j = 3)

(h) acceleration of movement Tm = 4
( j = 4)

Figure 5.4: Optimal performance under Scenario 2
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3
( j = 3)

(d) trajectories of movement Tm = 4
( j = 4)

(e) trajectories of movement Tm = 5
( j = 1)

(f) trajectories of movement Tm = 6
( j = 2)

(g) trajectories of movement Tm = 7
( j = 3)

(h) trajectories of movement Tm = 8
( j = 4)

Figure 5.5: Optimal performance under Scenario 3
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3
( j = 3)

(d) trajectories of movement Tm = 4
( j = 4)

(e) trajectories of movement Tm = 5
( j = 1)

(f) trajectories of movement Tm = 6
( j = 2)

(g) trajectories of movement Tm = 7
( j = 3)

(h) trajectories of movement Tm = 8
( j = 4)

Figure 5.6: Optimal performance under Scenario 4
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ences in the gaps between the right-turn and through movements are obvious
(see the second and third vehicles in Figure 5.5 (b), for instance). The op-
timal trajectory pattern is still respected under Scenario 3 and 4 considering
various turning proportions and signal phase sequences, as can be seen in
Figure 5.5 to 5.6. Therefore, the flexibility of the proposed control approach
in incorporating different signal designs and turning movements is verified.

Furthermore, the approaching vehicles in the movements of Tm = 4,8
confront a long preceding red phase, so they have to decelerate and arrive
at the stop-line with relatively low speeds. For instance, the arrival speeds
of approaching vehicles in movements of Tm = 2 and 4 are normally 12 m/s
and 4 to 5 m/s respectively. Therefore, the traffic efficiency of releasing
vehicles in movements of Tm = 4 and Tm = 8 is lower compared to the other
movements, which is demonstrated by the dispersion in position trajectories
during the green phases in the movements of Tm = 4 and 8, as can be seen in
Figure 5.3 (c), 5.4 (d), 5.5 (d) and (h), 5.6 (d) and (h). This lower efficiency
in the movements of Tm = 4 and 8 also affects the performance of the optimal
signals, which will be detailed in the discussion of the traffic signal pattern.

Traffic signal pattern

In order to explore the signal pattern, the optimal signals under the balanced
vehicle arrival rates of Case 1, 2, and 3 with the cycle lengths from 40 s
to 60 s are listed, as in Table 5.4 (T max

m = 6) and Table 5.5 (T max
m = 8).

Furthermore, the optimal signals under the cycle lengths of 40 s, 50 s, and
60 s are presented in Figure 5.7 for convenience of analysis, where the signal
phase lengths are arranged in sequence. If Pj denotes the length of the jth
signal phase, the green, grey, red and blue lines in Figure 5.7 represent the
first phase length P1 to the last phase length P4 respectively.

Overall, the signals are optimized to release as many vehicles as possible
by switching signal phases in time, owing to the travel delay cost term in the
objective function of Equation (5.30). The benchmark values observed from
the optimal signals are identified for analysis, that is, releasing all vehicles
as soon as possible in P1 under Case 1, 2 and 3 requires 14 s, 16 s and 20 s
respectively, and the counterparts in P2 are 8 s, 12 s and 17 s. Hereinafter,
the oversaturated traffic flow represents the situation that some vehicles have
to be left within the signal cycle. The undersaturated traffic flow refers to the
condition that all vehicles can be released within the cycle, i.e., the signals
are longer than or equal to the aforementioned benchmark signal values. The
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Figure 5.7: Optimal signals under the balanced vehicle arrival rates

optimal signals under the undersaturated traffic flow are demonstrated as the
diamond markers in Figure 5.7 and also in the bold numbers of Table 5.4 and
5.5.

First, the optimal signal pattern in the undersaturated traffic flow with
the balanced arrival rates is explored. The optimal signals tend to fix P1 as
the benchmark value, and then distribute more green time to the latter signal
phases in the undersaturated traffic flow. As the bold numbers in Table 5.4
and 5.5, P1 is always optimized to obey the benchmark signals when T max

m =
6 and T max

m = 8, while P2 and P3 are partially deviated from the benchmark
values. This observation also holds for T max

m = 4 (J = 2). The traffic flow
is undersaturated with the cycle lengths from 40 s to 60 s when J = 2, so P1
under T max

m = 4 is always optimized to switch as the benchmark signals, as
can be seen in Figure 5.7. It can be concluded that P1 is independent of the
signal cycle lengths and the signal phase numbers under the undersaturated
traffic flow.

However, the optimal signal performance in the oversaturated traffic flow
with the balanced vehicle arrival rates is different, as shown in the phase
lengths without markers in Figure 5.7 and the normal numbers in Table 5.4
and 5.5. The joint controller tends to allocate more green time to the signal
phases in middle (e.g., P2 or P3). On one hand, the approaching vehicles
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in the movement of Tm = 1 have to utilize the green time to catch up with
the queuing vehicles. This however is not a problem for the approaching
vehicles of movements Tm = 2,3,4 during P2, P3 and P4, because they are
able to utilize the preceding red phase (at least P1) to reach the stop bar. Thus,
terminating P1 earlier results in releasing more vehicles in the later green
phases in the oversaturated traffic flow. As can be seen in Scenario 2, P1 is
switched even without releasing the last queuing vehicle in Figure 5.4 (a),
and in this way all vehicles of movements Tm = 2,3,4 are dissipated, as in
Figure 5.4 (b) to (d). On the other hand, the arrival speeds of the approaching
vehicles in the last signal phase (e.g., P3 or P4) is lower compared to the
counterparts in other signal phases, as discussed in the vehicle trajectory
pattern. In other words, the signal phases in middle (P2 or P3) require less
green time to release one more vehicle. The last signal phase is thereby less
efficient (with respect to throughput and travel delay) under the oversaturated
traffic flow.

The optimal signals under the unbalanced vehicle arrival rates from dif-
ferent arms basically obey the abovementioned patterns, and the signals are
optimized to be responsive to the unbalanced vehicle actuations, as shown
in Figure 5.5 of Scenario 3 and Figure 5.6 of Scenario 4. The optimal signal
phase lengths of P1 to P4 are 15 s, 6 s, 13 s and 16 s under Scenario 4, and 3 s,
12 s, 13 s and 12 s under Scenario 4. Although the optimal signals under the
unbalanced vehicle arrival rates do not obviously allocate more green time
to the signal phases in middle as under the balanced vehicle arrival rates, the
optimal signals can react to the actuation of the controlled vehicles based on
the information of speed and position. It can be concluded that the traffic
signals are optimized to release the most vehicles within the cycle under the
unbalanced vehicle arrival rates, so the green time is rarely wasted without
discharging any vehicle.

With an increase in the signal cycle length, the total number of passing
vehicles within the cycle rises, but the objective function value decreases.
Thus, the cycle length should be restricted as a constant or at least be bounded
within a certain range; otherwise, the signal optimization will extend the cur-
rent cycle as long as possible. In addition, the signal phase lengths in Table
5.4 and 5.5 show the tendency that the moments of switching signals are
normally the same under similar signal cycle lengths.
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From the discussion above, the joint controller is capable of incorporat-
ing different traffic demand levels and signal designs, determining signals
for the optimal performance of all vehicles from multiple movements in the
control zone. The optimal signal pattern can provide design insights into
engineering implementations. For instance, the first signal phase length P1
can be pre-determined using the empirical data in the undersaturated traffic
flow with balanced vehicle arrival rates, which can relieve the computational
time to some extent.

5.4.3 Computational performance analysis
In this subsection, the computational performance of the proposed joint con-
troller is analyzed, considering the dimension of control variables and the av-
erage running time under different traffic demand levels, the released traffic
movement numbers and signal cycle lengths. The mean computational time
is calculated by averaging ten runtimes on the desktop of Intel(R) Core(TM)
i7-9700K CPU with 16 GB memory.

The average computational time under the balanced arrival rates is de-
tailed in Figure 5.8. In the horizontal plane of Figure 5.8, the southwestern
coordinate presents Case 1 to Case 3, and the southeastern coordinate im-
plies the cycle lengths of 40 s, 50 s and 60 s under the maximal released
traffic movement number T max

m = 4,6,8. The vertical coordinate shows the
average runtime in color, as demonstrated in the colorbar. The blue, green
and orange bars represent the runtime sections of 0 to 2 s, 2 s to 10 s, and
10 s to 30 s, respectively, the total of which account for the majority of all
runtimes. The longest mean running time, 153,21 s, occurs under Case 3
when C = 60 s and T max

m = 8. It is obvious that the increases in the released
movements Tm, signal cycle lengths C and vehicle numbers N result in longer
runtime.

The relationship between the computational time and the control variable
dimension is revealed in Figure 5.9. The vertical axis is presented compactly
by way of the exponential scale. The horizontal axis shows the dimension of
control variables, which ascends with the increases in the released movement
numbers (see line colors), cycle lengths (see line markers), and Case 1 to
Case 3 (see the grey dashed arrows). The cycle lengths with same markers on
a certain line are distinguished by the case number, as the grey arrows from
the left bottom to the top right. As can be seen, the average runtime normally
undergoes the exponential growth when the control dimension increases.
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Figure 5.8: Average computational time under the balanced arrival rates
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5.4.4 Comparison analysis

In order to demonstrate the advantages of the joint controller, the compari-
son is made between the proposed approach and five other approaches, i.e.,
the Intelligent Driver Model (IDM) (Treiber et al., 2000), the Webster model
(Webster, 1958), the capacity factor maximization model (Cantarella & Im-
prota, 1988), the delay minimization model (Improta & Cantarella, 1984),
and the state of the art in Xu et al. (2018). The comparison scenario is
designed similarly as Scenario 4. The left-turn movement is released after-
wards with various turning proportions under the unbalanced vehicle arrival
rates. The controlled vehicle numbers per movement are generated in the
same way as in Scenario 4. The only differences are the cycle length of
C = 60 s and the controlled vehicle number of N = 64. The same parameter
values and settings are applied in all comparison cases.

The comparison cases are the indicators are listed in Table 5.6. In com-
parison cases I to IV, the signal parameters are calculated in the upper layer
using the Webster model, the capacity factor maximization model, and the
delay minimization model respectively. In the lower layer which treats the
signal parameters generated from the upper layer as inputs, vehicle trajecto-
ries in the comparison case I are determined using IDM, while trajectories
are optimized in comparison cases II to IV using Eq. (5.1) to (5.5), (5.11),
(5.13) to (5.16), (5.26) to (5.30) to diminish the differences resulted from
the trajectory optimization. The comparison case V jointly optimizes vehicle
trajectories and traffic signals using the state-of-the-art approach (Xu et al.,
2018), which excludes the stopping vehicles in the control design so they are
removed in implementation. Finally, the comparison case VI aims at verify-
ing the benefits of the proposed joint control approach. The performance of
comparison cases II, V, and VI is illustrated in Figure 5.10 to Figure 5.12.
The comparison cases III and IV are not presented owing to the similar per-
formance as case II, resulted from their similar signal parameter values and
the same trajectory optimization model.

The indicator of travel delay is calculated by vehicle arrival time mi-
nus the minimal traveling time from the initial position to the stop-bar (e.g.,
traveling with the limit speed vmax). Throughput is the number of vehicles
that can pass the intersection within the current signal cycle. The VT-Micro
model of Rakha et al. (2004) is adopted to calculate the HC emission. The
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instantaneous fuel consumption model in Kamal et al. (2011) and the travel-
ing distance are applied to calculate the fuel consumption in ml/m. The fuel
consumption rate (ml/s) can be estimated by

fv =

�
b0 +b1vi j +b2v2

i j +b3v3
i j +ai j

�
c0 + c1vi j + c2v2

i j

�
ai j > 0

b0 +b1vi j +b2v2
i j +b3v3

i j ai j ≤ 0
(5.31)

The indicator values of throughput, delay, fuel consumption, and emis-
sion are detailed in Table 5.6 (stopping vehicles in the state-of-the-art ap-
proach are excluded). The proposed control approach outperforms the other
strategies of cases I to V in throughput and delay, and the proposed approach
performs well on fuel consumption and emission, which proves the superi-
ority of the proposed controller. The advantages of the proposed control
approach over the signal-only optimization are revealed by comparing case
I with case VI. The benefits of the joint optimization between trajectories
and signals over the trajectory-only optimization can be demonstrated by the
differences of indicator values between cases II to IV and cases V to VI.
The advantages of the trajectory optimization model in this control approach
are explored by the comparison between case I and case II. The benefits of
the proposed approach over the state-of-the-art approach, which excludes all
stopping vehicles, are verified by comparing case V with case VI.

Furthermore, the signal parameters generated from different signal con-
trol methods (comparison cases I to IV) are almost the same, because these
signal optimization models generally reflect the traffic flow ratios. As a re-
sult, there are only minor differences in the values of all indicators among
comparison cases II to IV. On the contrary, the proposed control approach
can not only consider vehicle arrival rates but also take vehicle speeds and
positions into account to release more vehicles during the green phases,
which have been discussed in subsections 5.4.2.
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3
( j = 3)

(d) trajectories of movement Tm = 4
( j = 4)

(e) trajectories of movement Tm = 5
( j = 1)

(f) trajectories of movement Tm = 6
( j = 2)

(g) trajectories of movement Tm = 7
( j = 3)

(h) trajectories of movement Tm = 8
( j = 4)

Figure 5.10: The performance of Case II
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3
( j = 3)

(d) trajectories of movement Tm = 4
( j = 4)

(e) trajectories of movement Tm = 5
( j = 1)

(f) trajectories of movement Tm = 6
( j = 2)

(g) trajectories of movement Tm = 7
( j = 3)

(h) trajectories of movement Tm = 8
( j = 4)

Figure 5.11: The performance of Case V
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(a) trajectories of movement Tm = 1
( j = 1)

(b) trajectories of movement Tm = 2
( j = 2)

(c) trajectories of movement Tm = 3
( j = 3)

(d) trajectories of movement Tm = 4
( j = 4)

(e) trajectories of movement Tm = 5
( j = 1)

(f) trajectories of movement Tm = 6
( j = 2)

(g) trajectories of movement Tm = 7
( j = 3)

(h) trajectories of movement Tm = 8
( j = 4)

Figure 5.12: The performance of Case VI
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5.4.5 Discussion
The proposed controller jointly optimizes cooperative vehicle trajectories
and traffic signal parameters at a standard four-arm signalized intersection
with a pre-defined phase sequence, providing perfect V2V and I2V commu-
nication. It is observed from simulation results that the control objectives are
fulfiled and all constraints are satisfied under different traffic demand levels
with the balanced or unbalanced arrival rates from different arms, and the
proposed controller has the flexibility in incorporating various cycle lengths,
signal phase sequences, and turning proportions. Furthermore, the optimal
trajectory and signal patterns are discovered based on the optimal perfor-
mance of the joint controller. Multiple runs of different experiments show
the generalizability of the proposed controller.

The dimensionality of the control problem will dramatically rise with
an increase in vehicle numbers, resulting in long runtime. This is the main
limitation of the proposed controller. A high performance computer is able
to reduce the computational time and possibly solve this problem in real
time. Decentralized computation approach can also contribute to expediting
the solution time, which will be studied in the future to implement the joint
control approach in real time.

5.5 Conclusions and future Work
In this chapter, we propose a joint control approach that simultaneously op-
timizes traffic signals and vehicle trajectories at isolated intersections in a
cooperative vehicle environment. The objective of the proposed approach
is to release as many vehicles as possible with ride comfort during the sig-
nal cycle (i.e., maximize comfort and minimize travel delay of the controlled
platoons) by determining vehicle accelerations and signal phase lengths. The
physical speeds, admissible accelerations, the safe gap requirement are im-
posed as linear constraints. The red phase logic constraint is recast into linear
position constraints, which enables determining signal changes as vehicle-
level variables without the need of the pre-specified terminal conditions on
speed and position at the cycle tail. Our approach formulates the joint sig-
nal and trajectory control problem into a single-layer mixed linear integer
framework, which bypasses the process of simulating vehicle trajectories
when evaluating feasible signal plans and can be solved by standard solvers.

The flexibility of the joint control approach is revealed when integrating
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multiple traffic movements under different traffic demand levels. Simulation
under various scenarios is conducted at a standard four-arm intersection to
validate the performance of the joint control approach considering the bal-
anced/unbalanced vehicle arrival rates and different signal phase sequences.
The simulation results demonstrate the characteristics of the optimal signals
and the platoon performance of splitting, merging, accelerating and decel-
erating. Typical vehicle trajectories and the optimal signal performance can
be extracted from the optimal trajectory and signal patterns respectively, and
then be applied in similar control problems. Furthermore, the comparison
is made with the two-layer approaches using the car following model, the
signal optimization models, and the state-of-the-art approach, which demon-
strate the benefits of the proposed approach in throughput, travel delay, fuel
consumption, and emission.

Further research is directed to reducing the computational time of the
optimization model for real-time control, and handling detection errors and
uncertainties. The applicability under the sophisticated phasing plans (e.g.,
optimization of phase sequence) and intersection configuration designs will
be verified in the next research step. Refining the design framework in the
mixed traffic with human-driven vehicles and the extension to a corridor or
a network level are also relevant topics for future research.



Chapter 6

Conclusions

In the final chapter, we summarize the research findings and the main con-
tributions of this thesis in Section 6.1. Section 6.2 and Section 6.3 elaborate
the recommendations for practice and for future research respectively.

131





6.1 Findings and conclusions 133

6.1 Findings and conclusions
We established four research objectives in Section 1.3 of Chapter 1. Here-
inafter, we will discuss the main findings and conclusions of this thesis aim-
ing at reflecting the extent to which the objectives are accomplished.

Research objective 1: To design a controller that optimizes the CAV pla-
toon trajectories along a corridor with pre-timing signal controllers, taking
throughput, ride comfort, travel delay of passing vehicles, and fuel consump-
tion of stopping vehicles into account. The controller should respect vehicle
position constraints when facing the red light and does not need to prescribe
vehicle arrival time and terminal conditions of speed and position.

To address this objective, Chapter 2 proposes a CAV trajectory control ap-
proach along a corridor with multiple pre-timing signalized intersections.
Multiple measures of efficiencies are optimized via the objective function
by determining vehicle accelerations of the CAV platoon subject to safe and
physical constraints. In the multi-criteria objective function, the travel de-
lay term stimulates vehicles to pass the stop-line as soon as possible; the
fuel consumption term motivates the vehicles that cannot pass to decelerate
and approach the stop-line slowly; the ride comfort term generates consider-
ably smooth accelerations; and the throughput term aims to dissipate vehicle
queues quickly during the green phases. The red phase representation is
designed as constraining vehicle positions to stay behind the stop-line fac-
ing red phases. The safe driving requirement is guaranteed using the safe
time gap constraint. The optimal control problem is solved using nonlinear
programming (NLP) techniques after discretizing the control variables. The
performance of the proposed control approach is verified by simulation on
an intersection approach with/without vehicle queue and along an arterial of
two intersections with queues. The results demonstrate the controlled ve-
hicle behaviors of queue discharge, platoon split and merge due to signal
changes at signalized intersections. Additionally, the comparison with the
Intelligent Driver Model (IDM) reveals the benefits of the proposed control
approach in throughput and fuel savings.

Research objective 2: To design a controller that optimizes CAV platoon
trajectories at actuated signalized intersections. The platoon controller should
be able to anticipate signal plans and react to actuated signal changes by re-
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planning trajectories. Multi-criteria of safety, efficiency, sustainability, and
comfort should be considered in the design.

To achieve this objective, we present a CAV trajectory control approach un-
der actuated signals using the model predictive control framework which can
adjust the trajectory planning according to dynamic signals. Throughput,
ride comfort, travel delay, and fuel consumption are optimized by determin-
ing the accelerations of the controlled CAV platoon on an urban corridor
with signalized intersections. The safe gap term in the running cost stim-
ulates vehicles to track the vehicles in front with the desired and safe time
gaps. The red phase is designed as switching cost terms in the objective
function when the traffic signal changes, i.e., adding a virtually preceding
vehicle for the first stopping vehicle facing the red phase and removing it
during the green phase, so the shorter gaps between the virtually preceding
vehicle and the first stopping vehicle are penalized. The red phase represen-
tation can be applied under both pre-timing and actuated signals, because
the applied model predictive control framework allows for system feedback
such as signal changes in the closed-loop. Therefore, traffic signals can be
anticipated by the platoon controller on condition of implementing the red
phase cost term since the beginning of the signal cycle, and be updated in the
closed-loop by switching the cost weights in response to the actuated signals
if the platoon controller receives signal changes.

To demonstrate the controller performance, simulation is conducted un-
der different pre-timing and actuated signal plans. The actuated signal plans
adjusts signal parameters by increasing/decreasing phase lengths according
to the vehicle actuation to accommodate changes in the traffic flow after the
optimization starts. The simulation results show that the proposed control
approach can not only optimize vehicle trajectories under pre-timing signals
with anticipation prior to the realistic phase starts/ends, but re-determine
trajectories according to the actuated signal changes. The safe driving re-
quirement, bounded accelerations, vehicle stops, queue discharge behav-
iors, and platoon merge/split performance are embodied in all scenarios.
Spacing gaps of four scenarios are distinguished into four categories, i.e.,
the splitting gaps, the stopping gaps, the following gaps, and the merg-
ing/catching gaps, under which the safe requirement, signal changes, and
platoon split/merge performance are reflected. In addition, the comparison
with the baseline scenario which removes signal anticipation uncovers the
benefits of signal anticipation in fuel economy, vehicle stops and smooth
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accelerations/decelerations.

Research objective 3: To design a bi-level controller that optimizes traffic
signal timing at the upper layer and platoon trajectories at the lower layer
at standard signalized intersections.

To reach this objective, we hierarchically optimize vehicle trajectories and
traffic signals at urban intersections in Chapter 4. The optimal signal param-
eters are determined in the upper layer by searching the minimal objective
function value among all feasible signal plans. In the lower layer, CAV pla-
toon accelerations are optimized under each feasible signal plan considering
ride comfort and travel delay subject to motion constraints and safe driving
requirement. The red phase design is enforced as the logic constraint to en-
able vehicles to respond to signal changes. The proposed control approach
in Chapter 4 is adaptive to traffic demand levels, and is flexible in incorporat-
ing different traffic movements during multiple signal phases. The optimal
performance of platoon split, merge/approach, acceleration/deceleration is
verified by simulation of three scenarios.

Furthermore, the benefits of the integrated optimization of trajectories
and signals are verified in comparison to signal-only optimization (Base-
line Scenario 1) and trajectory-only optimization (Baseline Scenario 2). The
comparison between the integrated control approach and the Intelligent Driver
Model (IDM) under Baseline Scenario 1 demonstrates the advantages of tra-
jectory optimization in fuel consumption (26.31%), travel delay (7.73%),
and the number of stops (66.67%). Additionally, extra work on calibration
of parameters is necessary when using the IDM model, or otherwise the
simulated trajectories may be less efficient or unsmooth. The comparison
between the integrated control approach and the pre-determined signal plan
under Baseline Scenario 2 proves the advantages of signal optimization in
travel delay (16.92%), and throughput (11.76%).

Research objective 4: To design a computationally scalable single-level
controller that simultaneously optimizes traffic signals and vehicle trajecto-
ries of a full intersection. The signal timing variables should be formulated
as the vehicle-level control variables and no terminal conditions on speed
and position at the cycle tail need to be pre-specified.

To fulfil this objective, a single-layer approach for joint optimization of traf-
fic signals and cooperative vehicle trajectories is presented in Chapter 5. The
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controlled platoons are optimized by determining vehicle accelerations and
signal phase starts/ends for releasing as many vehicles as possible with ride
comfort, subject to constraints on admissible accelerations, physical speeds,
and safe gaps. For simplification, the red phase design is recast into a set
of linear position constraints to integrate signal variables with vehicle-level
state space variables in a single layer, and therefore the process of simu-
lating vehicle trajectories when evaluating feasible signal plans is bypassed.
The reformulated problem can be solved using standard mixed-integer linear
programming techniques. The proposed joint control approach is scalable to
multiple traffic demand levels and is flexible in incorporating turning move-
ments with balanced/unbalanced vehicle arrival rates under different signal
phase sequences, which are demonstrated by a list of simulation experi-
ments. The benefits of the proposed approach over the two-layer approaches
using the car following model, the signal optimization models, and the state-
of-the-art model are around 43.75%, 12.20%, and 48.39% in throughput and
19.91%, 10.34%, and 10.98% in travel delay.

The optimal platoon performance and the optimal signal features are de-
rived based on the simulation results in Chapter 5. The optimal trajectory
pattern is identified as follows: 1) vehicles try to avoid stops and exit the
intersection with higher speeds; 2) the queuing vehicles accelerate dramat-
ically when the green time starts to leave the intersection as soon as pos-
sible; 3) the platoon leader may experience decelerations to keep the safe
gap when merging with the preceding platoon; and 4) the following vehicles
show smaller acceleration fluctuations for platoon stability.

Systematic simulation experiments also reveal the optimal signal pattern
as follows: 1) the optimal signals generally perform to release as many vehi-
cles as possible by switching signal phases in time owing to the travel delay
cost term; 2) the earliest signal phase length is constant under the under-
saturated traffic flow with balanced arrival rates, regardless of cycle lengths
and phase numbers; 3) the intermediate signal phase lengths are longer than
the first and the last signal phase lengths under the oversaturated traffic flow
with balanced arrival rates; 4) the optimal green time is reactive to the ve-
hicle actuation under unbalanced arrival rates; 5) the optimal green time is
rarely wasted without discharging any vehicle in the over-saturated traffic
flow; and 6) the optimal signals show minor differences under similar cycle
lengths.
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In sum, we conclude that the proposed control methods can be success-
fully deployed to optimize trajectories of all vehicle platoons in the vicinity
of intersections, taking into account different signal control approaches and
thereby making it possible to jointly optimize vehicle trajectories and traffic
signals in a unified framework. The control objectives aiming for efficiency,
safety, and fuel economy are formulated as either constraints or a weighted
combination of multiple criteria using tuned cost weights to make a trade-
off between these objectives in this thesis. Platoon split and merge can be
incorporated, and stochastic traffic flows (e.g., incoming vehicle numbers
and turning proportions) and unbalanced vehicle arrivals can be handled. In
terms of controller performance, the improvements in travel delay, through-
put, and fuel savings are verified, but the computational time is excessive.
For large scale applications, the network control problem can be decom-
posed into multiple sub-problems of interconnected individual intersections,
which is further discussed in the topic for future research (see Section 6.3).

6.2 Recommendations for practice
The practical suggestions and implications of this thesis listed below may
interest road traffic management authorities, AV and signal controller indus-
tries.

The joint optimization of vehicle trajectories and traffic signals can be
deployed to optimally utilize the vehicle and infrastructure information. We
conclude that this joint optimization outperforms the trajectory-only opti-
mization (by 11.76% in throughput and 16.92% in travel delay) and the
signal-only optimization using IDM (by 26.31% in fuel consumption, 7.73%
in travel delay, and 66.67% in vehicle stops), and therefore is worthwhile to
be applied in practice.

Such deployment of CAV platooning necessitates high-speed and low-
latency network communications and high-performance computing power
for real-time control. Therefore, road traffic management authorities are
suggested to pave the way to future CAV platooning by establishing requisite
facilities such as communication equipments, backhaul systems, traffic man-
agement centers, and roadside infrastructures (e.g., intelligent traffic signal
controllers).

We believe that the joint optimization with pure CAV environment will
not be practically feasible in the recent decades. The framework in this thesis
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also determines the optimal vehicle platoon trajectories on urban roads under
traditional signal control approaches. The generated outputs of the frame-
work can supply speed guidance to cooperative vehicles on current urban
roads, which facilitates the OEMs or AV industry in designing cooperative
vehicle controllers.

The optimal signal pattern and the optimal trajectory pattern derived
from the joint controller performance provide insights into signal design and
speed guidance for the traffic control authority and the signal controller in-
dustry. For instance, the queuing vehicles can be guided to accelerate to the
maximal speed with the maximal acceleration when the green time starts,
and most of the optimal traffic signals can remain unchanged if the cycle
lengths vary slightly.

The control framework in this thesis operates vehicles in platooning at ur-
ban intersections, taking multiple measures of efficiencies (comfort, safety,
fuel economy, and travel delay) into account. These efficiency factors may
be attractive to vehicle users and drivers, and thereby the user acceptability
of CAV systems can be enhanced.

6.3 Recommendations for future research
The control framework of CAV trajectory optimization at urban intersec-
tions fills the theoretical gap in the field of integrating platoon controller
design with traffic signal control. In this section, we propose a list of rec-
ommendations for future research in order to relax assumptions, address the
shortcoming of online and offline optimization, and finally realize practical
applications.

1. Incorporate lateral lane-changing decision making. (related to Chap-
ter 2, Chapter 3, and Chapter 5)
The control framework in this thesis focuses on longitudinal acceler-
ation optimization assuming that lane changes are not allowed in the
control zone. To relax this assumption, the mandatory lane changing
behaviors can be integrated with the longitudinal platoon trajectories
by defining and searching critical safe gaps for merging.

2. Extend to a network level. (related to Chapter 2, Chapter 3, and Chap-
ter 5)
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The performance of the proposed controllers are validated by simu-
lation along an arterial in Chapter 2 and 3, and at an individual in-
tersection in Chapter 4 and 5.The urban network control problem can
be spatiotemporally decentralized into sub-problems of interconnected
individual intersections to improve computation efficiency. The exten-
sion of the control zone to the urban network level should be elabo-
rately treated, because the divisions between adjacent intersections for
specifying the temporal and spatial boundaries of each sub-problem
remain challenging. The temporal and spatial divisions decompose
the network problem using the prediction horizon length (e.g., signal
cycle length) and the lane section length, noticing the terminal condi-
tions should be equal to the initial conditions of the next signal cycle
and the adjacent downstream intersections.

3. Refine the design framework in the mixed traffic with human-driven
vehicles. (related to Chapter 2, Chapter 3, and Chapter 5)
In the mixed traffic of human-driven vehicles and cooperative vehicles,
the cooperative vehicle trajectories can be optimized based on the per-
ception of the preceding vehicles and the current/prospective signal
plans. The uncertain human-driven vehicles can be regarded as model
disturbances, so the difficulty is how to obtain the exact car-following
behaviors of human-driven vehicles in the mixed traffic environment.
The stochastic and robust control approaches should be able to handle
uncertainties in the state estimation and prediction for human-driven
vehicles. An alternative is to capitalize the recent advances of ma-
chine learning algorithms such as Long Short-Term Memory to predict
human-driven vehicle trajectories. This may provide more accurate
prediction if vehicle position and speed measurements are available in
real time.

4. Reduce the computational time to reach the real-time control. (related
to Chapter 5)
Despite the advantages of the linear feature in the single-layer control
approach which jointly optimizes traffic signals and vehicle trajecto-
ries, the scalability of centralized approach can be constrained by the
computation load. To improve the computational efficiency, the cen-
tralized optimization problem can be decomposed using primal-dual
methods, which enables the decentralized computation. In addition,
trajectory planning using the reinforcement learning method can also
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expedite the computation.

5. Incorporate the sophisticated phasing plans and intersection configu-
ration designs. (related to Chapter 5)
In the single-layer joint formulation, the intricate signal plans can be
realized by introducing the corresponding signal control variables (i.e.,
signal switch of each phase) and the signal constraints (i.e., signal
switch numbers). The intersection configurations can be reflected by
separating and/or combining the traffic movements on each arm ac-
cording to the intersection design.



Appendix

Iterative solution algorithm based on Pontryagin Maximum
Principle

Based on the Pontryagin Maximum Principle, the Hamiltonian is defined as

H(x,u,λ) = L(x,u)+λTf(x,u)

where λ is the co-state of the state x. The necessary condition for optimal
control u∗ is derived using

u∗ = minH(x,u,λ),s.t. u ∈U,x ∈ X

subject to the admissible range U and the bounded set X . The co-state is
required to satisfy the dynamic equation as

− d
dt

λ =
∂H
∂x

=
∂L
∂x

+λ ∂f
∂x

subject to the terminal conditions at the end of the prediction horizon t = TP:

λ(TP) =
∂G
∂x

(x(TP))

The iterative solution based on Pontryagin Maximum Principle (iPMP) iter-
atively solves the state dynamics equation forward in time and subsequently
the co-state equation backward in time (Hoogendoorn et al., 2012; Wang
et al., 2014b). The essence of iPMP algorithm is the choice of α for fast
convergence. The algorithm is summarized by the following procedure.
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Algorithm Iterative solution algorithm based on Pontryagin Maximum
Principle

1: Select values for the error threshold εmax and the weight factor α (0 <
α < 1) to smoothly update the co-state.

2: Set the iteration number n = 1.
3: Set the initial co-state to be identity matrices ϒ(0)(t) = 0 (0 � t � TP).
4: Solve the state dynamics equation d

dt x(n) = f(x(n),u∗(x(n),ϒ(n−1))) for-
ward in time subject to the initial conditions of state variables x(n)(0) =
x0.

5: Solve the co-state dynamics equation backward in time − d
dt λ(n) =

∂H
∂x (x

(n),u∗(x(n),ϒ(n−1))) subject to the terminal conditions of co-state
at the end of the prediction horizon λ(n)(TP) =

∂G
∂x (x

(n)(TP)).
6: Update the co-state ϒ(n) using the weight factor α: ϒ(n) = (1 −

α)ϒ(n−1) +αϒ(n).
7: The algorithm stops if the error between the state and the co-state is less

than the threshold value, i.e., ε = ||ϒ(n)−λ(n)||2 < εmax, and otherwise
goes to the next iteration, n := n+1 (step 4).



Bibliography

Ahmane, M., A. Abbas-Turki, F. Perronnet, J. Wu, A. El Moudni, J. Buisson,
R. Zeo (2013) Modeling and controlling an isolated urban intersection
based on cooperative vehicles, Transportation Research Part C: Emerging
Technologies, 28, pp. 44–62.

Ahn, K., H. Rakha, A. Trani, M. Van Aerde (2002) Estimating vehicle fuel
consumption and emissions based on instantaneous speed and acceleration
levels, Journal of transportation engineering, 128(2), pp. 182–190.

Akcelik, R. (1989) Efficiency and drag in the power-based model of fuel
consumption, Transportation Research Part B: Methodological, 23(5), pp.
376–385.

Al Islam, S. B., A. Hajbabaie (2017) Distributed coordinated signal tim-
ing optimization in connected transportation networks, Transportation Re-
search Part C: Emerging Technologies, 80, pp. 272–285.

Altan, O. D., G. Wu, M. J. Barth, K. Boriboonsomsin, J. A. Stark (2017)
Glidepath: Eco-friendly automated approach and departure at signalized
intersections, IEEE Transactions on Intelligent Vehicles, 2(4), pp. 266–
277.

Asadi, B., A. Vahidi (2010) Predictive cruise control: Utilizing upcoming
traffic signal information for improving fuel economy and reducing trip
time, IEEE transactions on control systems technology, 19(3), pp. 707–
714.
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Summary

Growth in the number of vehicles causes excessive traffic congestion and
travel delay on urban roads, especially at signalized intersections. The re-
cent advances in connected and automated vehicle (CAV) technology and
the upgrade of Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
and Infrastructure-to-Vehicle (I2V) communications have been proposed as
potential solutions to efficient and effective urban transportation. CAVs en-
able the capability to share data, communicate with neighboring vehicles and
roadside infrastructures, and connect to traffic control systems, and there-
fore offer the benefits to reduce congestion and pollution levels and improve
comfort and road safety. CAV platoons can coordinate member vehicles
for a common goal in platooning. In this way, vehicles can be cooperative
to accelerate/decelerate facing the traffic signal controllers on urban roads.
The challenge is posed by the diversity of signal control approaches, such
as fixed-timing, actuated, and adaptive signals. However, the benefits and
effectiveness of CAV platoon trajectory optimization for all those various
systems in the vicinity of signalized intersections remain unclear in research
and also practice.

To gain insights generated from the integration between CAVs and signal
controllers, this thesis focuses on not only CAV trajectory optimization un-
der traditional signals but also simultaneous optimization of traffic signals
and vehicle trajectories in a unified framework. To this end, a novel con-
trol framework of CAV platoon trajectory optimization is proposed for urban
roads for multiple signal control approaches. This thesis aims at applying the
optimal control theory to address the research problems. Optimal control is
a mathematical approach for purpose of optimizing the objective function by
searching the paths of the controls for a dynamical system.

Firstly, we develop a control approach to optimize CAV platoon trajectories
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under pre-timing signals considering efficiency, comfort, energy economy,
safe gaps, and vehicle deceleration during red phases. This optimal con-
trol problem is solved by nonlinear programming techniques. We conclude
from the simulation results that the proposed controller works under pre-
timing signals and contributes to higher throughput and more fuel savings
compared with the Intelligent Driver Model, which is a longitudinal car-
following model for the simulation of traffic flow.

Secondly, we propose a receding horizon control approach using the model
predictive control (MPC) framework to optimize CAV platoon trajectories
under actuated signals. The proposed controller acquires signal parameters
since the cycle begins and incorporates changes of signal parameters as sys-
tem feedback in the MPC framework. Simulation results verify the workings
of re-planed trajectories under actuated signals and the benefits in fuel con-
sumption, comfort, and the number of stops.

Thirdly, we focus on hierarchical optimization of traffic signals and CAV
trajectories at isolated signalized intersections. Signals and trajectories are
determined respectively in the upper layer and the lower layer. In this formu-
lation, the signal control parameters are adapted (within certain constraints)
in such a way to enable CAVs to react to the red indication. Based on sim-
ulation results, we conclude that the proposed approach can control various
traffic movements during signal phases, and outperform the individual tra-
jectory optimization and the individual signal optimization of the proposed
approach in throughput (by 11.76%), fuel consumption (by 26.31%), travel
delay (by 12.33%), and vehicle stops (by 66.67%).

Fourthly, we integrate the traffic signal optimization and CAV trajectory op-
timization in a single-layer by recasting the red phase constraint into a set
of linear position constraints for the convenience of identifying CAV posi-
tion conditions when the adaptive traffic signals change. This formulation
overcomes the limitations of the state of the art which requires the simulated
or approximated trajectories when evaluating feasible signal parameters and
pre-specifying terminal conditions on speed and position. The proposed joint
controller is solved using mixed-integer linear programming techniques. The
optimal trajectory and signal patterns are derived based on the simulation re-
sults. The joint controller performs better than Webster and the state-of-the-
art methods in throughput (12.20% and 48.39%), fuel consumption (5.62%
and 3.45%), and travel delay (10.34% and 10.98%).



Summary 155

In summary, this thesis provides a CAV trajectory control framework under
a list of signal control approaches, aiming at optimizing multiple measures
of efficiencies (comfort, safety, fuel economy, and travel delay). The im-
provements of the control framework in efficiency, comfort, and energy con-
sumption are verified, but at the cost of high computational load. This thesis
can provide insights into signal designs and speed guidance for better traffic
management. Future research will be extended to the urban network level
after reducing the computational time.





Samenvatting

De groeiende verkeersvraag veroorzaakt aanzienlijke congestie op (stede-
lijke) wegen, met name bij geregelde kruisingen. De recente technologi-
sche ontwikkelingen op het gebied van communicerende en geautomati-
seerde voertuigen (CAV), voertuig-naar-voertuig (V2V) en voertuig-naar-
infrastructuur (V2I)-communicatie, leveren mogelijke oplossingen voor ef-
ficiënter en effectiever transport. CAVs maken het mogelijk om gegevens
te delen, te communiceren met voertuigen in hun omgeving en met de weg-
kant, en verbinding te maken met verkeersregelsystemen (VRI), en bieden
daarom de voordelen om congestie en vervuiling te verminderen en het com-
fort en de verkeersveiligheid te verbeteren. CAV-pelotons kunnen voertuigen
coördineren voor een gemeenschappelijk doel. Op deze manier kunnen voer-
tuigen samenwerken om te versnellen/vertragen ten opzichte van verkeers-
regelingsinstallaties op wegen binnen de bebouwde kom. De uitdaging om
CAV systemen te gebruiken zitin de diversiteit van verkeersregelsystemen,
zoals starre regelingen, voertuigafhankelijke regelingen of verkeersafhanke-
lijke regelingen. Het blijft echter onduidelijk hoe groot de effectiviteit en
voordelen zijn van de toepassing van trajectoptimalisatie van CAV-pelotons
bij geregelde kruispunten.

Om inzicht te verwerven aangaande de integratie van CAVs in de verkeersre-
gelsystemen, richt dit proefschrift zich niet enkel op CAV-trajectoptimalisatie
onder traditionele regelsystemen, maar op een totaalsyteem: een gezamen-
lijke optimalisatie van zowel het verkeersregelsysteem als de voertuigtrajec-
ten. Hiertoe wordt een nieuw regelsysteem voor trajectoptimalisatie voor
CAV-pelotons voorgesteld voor stedelijke wegen met verschillende regel-
systeem-benaderingen. In dit proefschrift wordt de “optimal control theory”
toegepast, dit is een wiskundige optimalisatiebenadering die de doelfunc-
tie te optimaliseert voor een dynamisch systeem door de regelvariabelen te
bepalen binnen een bepaald gegeven domein.
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Ten eerste ontwikkelen we een optimalisatie van de trajecten van het CAV-
peloton binnen een starre regelingen, daarbij rekening houdend met efficiëntie,
comfort, brandstofverbruik, veilige afstanden tussen voertuigen, en voertuig-
vertraging gedurende de roodtijd. Voor dit optimalisatieprobleem worden
niet-lineaire programmeertechnieken toegepast. We concluderen uit de si-
mulatieresultaten dat de voorgestelde starre regeling werkt, en bijdraagt aan
een hogere doorvoer en meer brandstofbesparing vergeleken met het “Intel-
ligent Driver Model”.

Ten tweede stellen we een regeling voor met een “receding horizon-approach”
binnen een “Model Predictive Control” (MPC)-kader om CAV pelotontrajec-
ten te optimaliseren voor voertuigafhankelijke regelingen. De voorgestelde
regeling bepaalt de parameters vanaf de start van de cyclus en neemt veran-
deringen van de parameters mee in de terugkoppeling naar het MPC-kader.
Simulatieresultaten tonen de opnieuw geplande trajecten bij de voertuigaf-
hankelijke regelingen, en de voordelen in brandstofverbruik, comfort en het
aantal stoppende voertuigen.

Ten derde richten we ons op het hiërarchisch optimaliseren van verkeers-
lichten en CAV-trajecten op geı̈soleerde geregelde kruispunten. In de boven-
laag en de onderlaag worden respectievelijk de regeling en trajecten bepaald.
In deze formulering worden de regelparameters van de voertuigafhankelijke
regeling binnen zekere grenzen aangepast om CAV’s in staat te stellen te
reageren op rood. Op basis van simulatieresultaten concluderen we dat de
voorgestelde regeling verschillende combinaties van richtingen tegelijk kan
regelen, en beter presteert op gebied van doorvoer (met 11,76%), brand-
stofverbruik (met 26,31%), verliestijd (met 12,33% en het gemiddeld aantal
stops (met 66,67%) als vergeleken wordt met optimalisatie van de trajecten.

Ten vierde integreren we de verkeersregeling-optimalisatie en CAV-traject-
optimalisatie in een enkele laag door de begrenzingen van de roodtijd te
definiëren als een reeks lineaire positiebeperkingen van de CAVs. Met voor-
gestelde formulering kan de beperking van de huidige stand van techniek
ondervangen worden, deze vereist nu dat evaluatie van de parameters plaats-
vindt door de trajecten van de voertuigen vooraf te simuleren of te benade-
ren, met gespecificeerde voorwaarden voor uiteindelijke snelheid en locatie.
De voorgestelde gezamenlijke regeling wordt bepaald met behulp van line-
aire programmeertechnieken met “mixed integers”. De optimale trajecten,
regelstructuren en signaalgroepafwikkeling worden afgeleid op basis van de
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simulatieresultaten. Bovendien presteert deze voorgestelde regeling beter
dan Webster en de state-of-the-art methoden, namelijk 12,20% en 48,39%
in doorvoer, 5,62% en 3,45% in brandstofverbruik, 10,34% en 10,98% in
verliestijd.

Samenvattend biedt dit proefschrift een kader voor een CAV-trajectregeling
met een reeks verkeersregelsysteem-benaderingen, gericht op het optimali-
seren van verschillende efficiëntiemetingen (comfort, veiligheid, brandstof-
verbruik en verliestijd). Deze verbeteringen, die de efficiëntie, comfort en
energieverbruik verifiëren, resulteren wel in een hoge rekenbelasting. Dit
proefschrift kan inzicht verschaffen in optimale regelstructuren en signaal-
groepafwikkeling, en bijbehorend snelheidsadvies, voor een beter verkeers-
management en betere verkeersregelsystemen. Voorstellen voor toekomstig
onderzoek zijn ten eerste het verminderen van de rekentijd, vervolgens het
uitbreiden tot een stedelijk netwerkniveau.
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