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ABSTRACT In this paper, the impact of Electric Vehicle (EV) uncontrolled charging with four levels of
EV penetration in overall 21 real low voltage distribution grids in two seasons are analysed. The employed
real grid data is provided by distribution system operators from three European countries: Austria, Germany
and the Netherlands. At least six grids in each country were considered and they are categorised into three
types, namely rural grids, suburban grids and urban grids. The EV charging data used in this study is based
on real measurements or surveys. The seasonal and the weekday-weekend factors are also considered in
the EV charging impact research. Three key congestion indicators, the transformer loading, line loading and
node voltage as well as several other evaluation indexes are studied. The results reveal that the majority of the
simulated grids had no or minor moments of mild overloading while the rest grids had critical issues. Among
all the grids, suburban grids are most vulnerable to massive EV integration. Out of the evaluated grids, those
who are located in Germany have the highest redundancy for high EV penetration accommodation. Overall,
the impact of uncontrolled EV charging depends on the combination of EV charging demand as well as the
grid inherent features.

INDEX TERMS Electric vehicle (EV), low voltage distribution grid, uncontrolled charging.

I. INTRODUCTION
It is well established that the market penetration of Electrical
Vehicles (EVs) is rapidly growing and consequentially, the
technological impact of this mass deployment has attracted
considerable research attention [1]–[5]. The grid impact is
particularly relevant because the conventional uncontrolled
charging strategy, in which the EVs start to draw the rated
power at the instant of connection, can result in numerous
simultaneous charging events [6]. The widely implemented
level 2 AC charging has a rated power that can be high
as 22 kW (3 phase 32A) [7]. Such charging requirements
due to an anticipated increase in EV penetration levels
can stress the facilitating distribution grid infrastructure,
such that it can cause transformer overloading and lifetime
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reduction [2]–[4], [8], [9], line overloading [2], [4], [10],
voltage drop below acceptable limits at the far-end of the
feeder [2]–[4], [9], higher distribution losses [2]–[4], power
mismatch between supply and demand, phase imbalance [4],
[9], as well as harmonic distortion [11]. It is suggested
in [5] that future work investigating the grid impact with
increased EV penetration can be scaled up when real-world
transportation and power data becomes available. The
specific aim of our paper is to contribute towards this goal
and provide a realistic insight based on the acquired on-field
data sets.

A. LITERATURE REVIEW
The influence of data-driven uncertainties in driver behaviour
and energy demand of the EVs toward the grid impact of
uncontrolled charging is considered in [3], [4], [12], [13].
For example, [3] uses data of the daily miles driven and the
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arrival times to show that the load demand for a 34-node
IEEE test feeder has no noticeable change from 3:00 a.m
to 11:00 a.m even with 45% EV penetration level, resulting
in approximately 11% (in summer) and 15% (in winter)
increased peak from the average loading ratio. In [4] the IEEE
RTS load profile data was clustered into representative curves
to show there is no loading variation for IEEE 123-node
test feeder substation in 3:00 a.m to 9:00 a.m window even
considering 100% EV penetration, but the probability of
overloading the 50 kVA transformer increased to 35% with
the peak demand increasing linearly by 2-3% for every 10%
increase in EV penetration. Study [12] tested four charging
methods with several scenarios including the uncontrolled
method with a 33-buses sample grid and assess the impact
on the distribution system. It is found that EV penetration
levels of 28.1-46.5% can be accommodated in the system
without violating the grid constraints. An 11 kV 38-node
typical UK sample distribution system was used in [13] to
test three representative uncontrolled EV charging scenarios
and one ‘‘smart’’ charging scenario. The results indicate a
35.8% peak load growth with 20% EV penetration in the
worst uncontrolled charging case. However, these papers
consider standard test grids in the study and therefore,
extending the insight with real distribution grid data can be
useful.

Research [14] studies the charging impact of 0 to 500 EVs
in a modified IEEE 13-bus system as well as a 25-bus real
Taiwan distribution system. One thousand iterative Monte
Carlo simulations were conducted to study the stochastic
effect of both the feeder load and EV charging while using
measured data at two large charging stations. It appears in
the results that for the real grid there is no voltage drop
violation even with the worst scenario, but for the IEEE
standard grid the congestion problems are already present
with 200 EVs and the under-voltage problem develops earlier
than the line congestion. Two distribution systems located
at a residential-urban area and an industrial-residential area
with 35, 51, 62% EV penetration levels were modelled
in [15]. This study examines the impact of two charging
patterns (valley and peak hours) and found that a maximum
of 19% total actual network cost is required to increase the
capacity and accommodate all charging requests. Paper [16]
investigates three real distribution grids (urban, rural and
commercial) with 20, 40, 60, 80% EV penetration levels.
The result shows that transformer overloading can already be
observed for 20% EV penetration in the urban grid, but in the
rural grid, the EV penetration can increase to 40%. None of
the grids has under-voltage problems, and line loading is not
discussed in the paper. Study [17] investigates EV integration
into a cluster of real distribution grids with 39-feeders in the
USA. The examined network contains a mix of area types,
where half of the feeders supply residential areas and the rest
are distributed among industrial, commercial and agricultural
areas. The EV charging data is modelled based on real vehicle
itineraries and only one EV penetration level (one EV per
household) is analysed. The study concludes that 58% of

the feeders reach their power capacity limit and 47% of the
grids have shown line overloading problem, yet none of the
grid’s experiences voltage drop to lower than 0.9 p.u.. What
is the maximum number of EVs that can be integrated into
the grid is explored in [18]; the mobility of EVs are also
considered. Two Swedish distribution networks where one
residential network with 3 feeders and 26 substations and
one commercial network with 4 feeders and 9 substations
are employed. When the system runs in normal conditions,
only in one case which all EVs only charge at home in the
residential area can the grid accommodate less than 100%
EV penetration. However, if any feeder is disconnected due
to maintenance, the grid can experience overloading even
without any EV charging. Besides, none of the grids has
any under-voltage problem in the simulations. Study [19]
considers an even larger area in the Netherlands where
the simulated network contains 55 distribution systems that
consist of a total of 12,000 substations. It is assumed in
this study that EVs only charge at home with two fixed
power levels, and the charging profile is generated based
on a big dataset of Dutch driving patterns. An increase EV
penetration trend along with time up to 75% in the year
2040 was assumed and 49% of the transformers experience
overloading issues at the worst scenario. All the works
mentioned above focus on the big scale in which the grid
performance of MV distribution systems is evaluated as a
whole, a closer insight into each LV distribution gridwould be
beneficial.

While [20] investigates a real LV distribution grid in
Norway to suggest an overload and under-voltage tolerance
up to 20% and 50% EV penetration level respectively, the
paper highlights the limitation that the charging profile is
derived from a single household load profile and thereby
neglecting the uncertainties in arrival and departure time as
well as energy demand that can occur with mass deployment
of EVs. The results suggest a 20% EV penetration tolerance
boundary with no grid limitation violation.

In paper [21], historical driving data was used to generate
home EV charging profiles and four EV penetration levels
from 25% to 100% were tested on a real Danish LV
distribution grid model. The paper explores grid loading and
phase unbalance caused by EV charging. It is found in this
study that the loading induced by EV charging at home is not
high as expected due to a relatively low simultaneous factor
(45%). It’s also concluded that a 30-50% EV penetration is
the maximum acceptable uncontrolled charging integration
rate, depending on the characteristics of the grid. Researchers
of [22], [23] ran a plentiful of Monte Carlo simulations to
investigate the EV charging impact of 0-100% penetration
levels on two real British LV distribution grids whose grid
types are not specified. The EV data implemented for
simulation is originally from a one-year-long site trial. The
main discovery regarding uncontrolled EV charging impact
is: the transformer overloading is the main issue in network 1
while voltage drop is the main challenge of network 2. The
upper limit of EV accommodation without grid congestion
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problem is 40% for network1 (thermal limit) and 20% for
network 2 (voltage limit). Another study inspects both real
transmission and distribution grids performance with 0-100%
EV penetration with real EV charging data [24]. In the paper,
three LV distribution grids were investigated, rural, suburban
and urban. It is found that with 100% EV penetration, there is
voltage drop violation and possible transformer overloading.
However, the results might still vary a lot and strongly depend
on the local EV, households and grid features. Besides, it is
predicted that by 2030, 10% of the distribution grids will
suffer from transformer overloading issues and 5% of the
distribution grids will have under-voltage problems. In total,
28% of grids would require upgrades.

B. CONTRIBUTIONS
The focus of this paper is to use measured probabilistic
data pertaining to energy demand, arrival and departure
time of EVs to investigate the impact of uncontrolled
charging for several actual grids in Europe. The findings are
useful and add to the body of knowledge in the following
aspects:
• We show that Suburban grids have relatively higher
congestion issues compared to rural and urban grids.

• We also investigate how the type of grid in different
countries affects the grid impact of uncontrolled EV
charging. Austrian distribution grids are most vulnerable
to grid congestion, followed by the Netherlands, while
German grids are most robust seeing no overloads even
with the highest modelled EV penetration.

• The grid performance impact factors including seasonal
changes in load, PV and EV demand, weekday-weekend
changes in EV demand, location of charging sessions
(home, semi-public and public) as well as EV charger
accessibility are investigated and discussed. All the
above factors have not been dealt with together in
previous works

• Grid performance is evaluated based on magnitude,
duration and scale of the impact for node voltage drop,
transformer and line loading as a function of increased
EV penetration. The interrelation between the impact
and the grid feature is also inspected.

The numerical results for these key observations are compar-
atively quantified using grid simulations and presented in the
subsequent sections.

C. STRUCTURE OF THE PAPER
The simulation setup and the data-driven approach is
in-detailed explained in Chapter II. The simulation results
of three countries and three grid types are analysed in
Chapter III. The study of grid performance impact fac-
tors including winter-summer, weekday-weekends, plus EV
charger accessibility is also placed in Chapter III. The
detailed interpretation over several grid performance key
indicators is given in Chapter IV. Finally, Chapter V reports
on the Study conclusions and recommendations for future
work.

FIGURE 1. Comparison of basic grid features based on the 9 categories
defined for the country and functional type (a) total number of
households (b) yearly energy consumption (c) length of the longest
feeder (d) the ratio of average baseload power with the total transformer
capacity.

II. METHODOLOGY: DATA-DRIVEN APPROACH FOR
REALISTIC GRID IMPACT EVALUATION
In this section, three layers of data-driven considerations of
simulation input data are described, followed by the depiction
of the simulation methodology as well as the output data.

1) Actual Grids segregated by (a) geography (b) function.
(Section II-A)

2) Historical power profiles in the corresponding grid.
(Section II-B)

3) EV charging data measured from chargers and
survey-based car driving data pertaining to charging
energy demand, arrival and departure time based on
different charging session types. (Section II-C, II-D )

In each subsection, how the raw data was acquired and
pre-processed are explained respectively.

A. GRID SPECIFIC DATA
Actual representative grids from three countries, namely,
the Netherlands (NL), Germany (DE) and Austria (AT) are
obtained from the Distribution System Operators (DSO).
Further, three different functional grid types; rural (RR),
suburban (SUB) and urban (UB); are considered. For each
of these 9 categories, at least two test grid data per type per
country is acquired, as summarized in Appendix A.

Fig. 1 compares the average values of the listed basic
features based on 3 × 3 defined categories. The compared
basic features are: total number of households (Nhh); yearly
energy consumption (Eyr); length of the longest feeder, which
is the length of the feeder from the transformer to the farthest
end of the grid (Lf,max), and the ratio (τ normb,avg = Ptrafoavg /C

trafo
tot )

of average base load power (Ptrafoavg ) with the total transformer
capacity (C trafo

tot ). τ normb,avg value is related to minimum reserve
capacity and it can be used to identify which grids are
relatively more vulnerable to overloading. In Fig. 2, all grids
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FIGURE 2. Clusters for base energy consumption as a function of the
number of households for different category combinations of grid types
and countries.

are clustered into two groups based on their number of
households and yearly energy consumption. Cluster 2 grids
have both high Nhh and Eyr values and Cluster 1 grids have
relatively low Nhh and Eyr values. Most of the SUB grids and
AT grids fall in Cluster 2 while the majority of RR grids,
as well as DE grids, are in Cluster 1. The line features of
each grid type in every country are also plotted and compared,
which can be found in Fig. 3. Each dot in this box plot
represents a line (cable) in the grids. Fig. 3 (a) shows the
line rated current and it is clear that DE grids have a greater
number of high-capacity lines compared to other countries.
Similarly, the length of every line in each country is plotted
in Fig. 3 (b). It can be observed that AT grids have relatively
long lines and NL grids have shorter lines implemented.

Fig. 1-3 show that in general SUB grids have the highest
Nhh, Eyr and τ normb,avg relative to other functional categories for
the given country. An out-liner to this trend are the Nhh and
Eyr values of AT-UB grids, which are both slightly higher
than the AT-SUB grids. Since EV penetration is assumed
proportional to the Nhh in this paper, it can be inferred that an
increase in serviced EVs for the given penetration level will
be maximum for the SUB functional category. RR grids have
the lowest Nhh, Eyr and τ normb,avg across functional categories
for any given country. Therefore, it is least prone to increase
in EV penetration. However, RR grids have relatively high
Lf,max (NL grid is an out-liner). Therefore it is important to
determine the minimum node voltage levels in these grids.

It can be inferred that for all functional category types,
DE grids have maximum country-specific reserve capacity
as indicated by lowest Nhh, Eyr and τ normb,avg . Furthermore, the
number of serviced EVs per grid is lowest in DE for a given
penetration level. In general, AT grids have the highest Nhh,
Eyr and τ normb,avg across functional categories, indicating lowest
reserve capacity and a high number of serviced EVs for
the given penetration. NL-SUB grids have the highest Nhh
and therefore suggesting the highest increment in number
of serviced EVs for the given penetration. At the same
time, relatively high τ normb,avg indicates a low reserve capacity
in NL-SUB grids, making them vulnerable to transformer

FIGURE 3. Grid line feature comparison between countries and grid
types. (a) Line rated capacity in ampere (b) Line length in meter.

overloads. Furthermore, a significantly higher Lf,max value for
AT-RR grids suggests a wider spread of service area in these
grids, thereby suggesting issues related to low node voltages
are more likely in the former.

B. LOAD AND PHOTO-VOLTAIC (PV) PROFILES
In this study, the load and PV profiles were generated
based on historical measurements or standardised profiles
and the information of the unit, i.e. the load yearly energy
consumption and the PV installation capacity.

The load energy consumption information of all three
countries was provided together with the grid models by
DSOs. The standardised load profile for Austria is available
through AT Power Clearing & Settlement group [25], the
standardised load profile for DE grids was obtained through
the German Association of Energy and Water Industries,
BDEW [26] and the standardised load profile for NL
can be acquired from the Dutch Energy Data Exchange
Association [27]. The standardised profiles are available for
different load categories in each of the original data sources.
For this study, three different categories are employed to
model the baseload profiles. In Fig. 4, the load profiles of a
load with 1000 kWh/year energy consumption are presented
for all three countries. For AT and DE grids, the three used
profile types are household, business and agriculture. The
load categorisation is slightly different for NL grids in that
they are distinguished by connection capacities, namely E1,
E2 and E3 type groups. E1 types are small size connections
that can be considered as households. E2 types are medium
size connections with a different peak time compared to
E1 types, and this type group is usually seen in small
businesses like shops and companies. The E3 type group are
other big capacity connections, for example, manufactures,
farms. Fig. 4 not only compares the seasonal difference
between different profiles but also shows the variations
during weekdays and weekends. Almost all summer profiles
are slightly smaller than the winter profiles except the
business profile in AT. We can also see from this figure that
business profiles in AT, DE and E2, E3 profiles in NL drop
during the weekend. Therefore, the summer baseload is lower
than the winter baseload for a certain grid. For a grid with
more small business loads, a decreased weekend baseload
could be expected.
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FIGURE 4. Standardised base load profiles with 1000 kWh yearly energy
consumption of three countries, (a) AT, (b) DE, (c) NL.

FIGURE 5. Standardised PV generation profiles with a 1kW peal rate of
three countries (a) One sample winter week (b) One sample summer
week.

For AT grids, the information of the installed PV is
available in the grid models provided by Austrian DSO.
The standardised PV profile was derived from weather data
using the Python package PVwatts from NREL [28]. The
raw standardised PV profile is in an hourly resolution, but
an interpolation method was applied and the fluctuation of
the per-minute PV power is introduced in the profile during
the simulation. Similarly, the PV information including the
location and capacity of installed PV systems is included in

TABLE 1. EV ownership distribution.

the DE grid models. The PV standard profile was generated
by Meteonorm software, where ambient temperature and
wind speed were considered and an optimal azimuth and
tilt angle was assumed [29]. The PV installation information
was not available via Dutch DSOs, thus an assumption was
made based on the PV installation [30], [31] and the Dutch
households [32] statistics. The PV installation assumption
for NL grids is 25% PV penetration in RR grids, 15% PV
penetration in SUB grid, and 5% PV penetration in UB grid
where each installation has a 2.5 kW rated power. The PV
penetration is calculated based on the number of loads in the
grid. The standardised PV profile of NL is generated based
on previous work [33]. The standard PV profile of all three
countries with a 1 kW capacity installation in one summer
week and one winter week is shown in Fig. 5.

C. EV PENETRATION REPRESENTATION
In this study, the EV penetration levels 0%, 20%, 50% and
80% were simulated, where the EV penetration is defined
as the percentage of total cars in a certain grid. The EV
penetration level in simulations is handled in the form of
the total number of charging sessions. The number of EVs
in a certain grid is calculated as the product of the total
number of households (Nhh), the car ownership distribution
(car per household, αcar,hh) and the EV penetration level
(γEV), as shown in Eq. 1.

NEV = Nhh × αcar,hh × γEV (1)

For all three countries, the number of households in the
grid was provided by the DSOs. In AT models, car ownership
is calculated based on the data of population, household size
and the car per-capita registration data [34]. For NL, the car
ownership data is assumed based on [35] and for DE the
car ownership assumption data is provided by the German
DSO. The summary of EV ownership distribution is shown
in Table. 1
To simulate the impact of excessive charging demand

caused by massive connected EVs, the total number of EVs
in a certain grid needs to be converted to the corresponding
EV charging sessions. The total EV charging sessions in a
grid is calculated by its total number of EVs (NEV) times the
charging frequency (βsess,EV), which is the average charging
sessions per EV during a certain time period, as presented in
Eq. 2.

Nsess = NEV × βsess,EV (2)

In addition, the charging sessions are categorised into
three types namely home, semi-public and public, based on
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TABLE 2. EV charging session distribution.

their features like location of charging, time of arrival and
duration of parking, as described in a previous study [36]. The
charging sessions are then translated into different types of
chargers to integrate into the grid simulation. Similar to local
load and PV generation modelling, several data resources
were used for EV charging demandmodelling as well. Half of
the EV demand data is based on the real measurement from
EV chargers, so they are easy to be processed and ready to
use. However, the other half of the raw EV demand data is
based on real car driving statistics. This means extra steps
are requested to convert these mobility data into EV charging
demand. How these data were processed and implemented is
explained in detail in the next section.

Due to the nature of the raw EV charging demand
data, there were two approaches implemented to model the
increasing EV penetrations in the grid. For car mobility based
data, approach 1 is applied. In this approach, the chargers are
placed at every household, workplace and shop node and the
total number of chargers is fixed for all EV penetrations. The
higher the EV penetration level is, the more charging sessions
will occur, hence more chargers will be used. The average
EV charging frequency of this approach is an outcome of the
EV trip modelling, and the value is 0.9 times per day. With
charger measurement based data, approach 2 is employed.
Unlike approach 1, the number of chargers increases along
with the EV penetrations in approach 2, but the location of the
chargers in lower EV penetrations will not change for higher
EV penetrations. This means the higher EV penetration
scenarios are modelled by only adding new chargers on top
of lower EV penetration scenarios. The average EV charging
frequency of this approach is assumed to be 4 sessions per
week per EV [37]. For both approaches, the charging sessions
in lower EV penetration scenarios are preserved and the new
charging sessions are added for higher EV penetration levels
in a different format. This makes sure the only difference
between different EV penetrations is the added new charging
sessions for a certain grid. The summary of EV charging
session distributions of both approaches is shown in Table. 2.
How the charging profile of each charging session was
modelled is introduced in the next section.

D. HISTORICAL MEASUREMENT-BASED EV FLEET AND
DEMAND PROFILE GENERATION
The EV charging profile data consists of two parts, the EV
fleet composition and the featured data of every charging
session. Six to ten top-selling EVs in each country were

FIGURE 6. EV fleet demand probability distributions.

selected to compose the EVfleet based on their market data in
2018 separately [34], [38], [39]. As introduced in the previous
section, the two rawEVdata resources lead to two approaches
of charging session modelling as well. Approach one needs
extra steps to convert EV trip data into charging session
data including EV arrival/departure time, EV arrival SOC
and charging energy requests. While approach 2 models EV
charging sessions directly from charger point of view based
on the real charger measurements. Approach one was applied
to all the AT grids and half of the DE grids while approach
two was applied to the rest of the grids.

For approach 1, the mobility survey ‘‘Österreich Unter-
wegs 2013/2014’’ [40] conducted by the Austrian ministry
of transportation serves as a good base for the probabilistic
modelling of typical driving behaviour observed in rural,
suburban and urban areas in Austria. This survey contains
information on 196,604 trips which offers the time, frequency
and distance distribution of the trips throughout the week.
A Monte Carlo Approach as described in [41] was applied to
generate specific trip data for each of the simulated electric
vehicles by using the aforementioned EV fleet and trip data.

6058 VOLUME 10, 2022



Y. Yu et al.: Data-Driven Study of Low Voltage Distribution Grid Behaviour With Increasing EV Penetration

FIGURE 7. Loading of rural grids in winter.

FIGURE 8. Loading of suburban grids in winter.

In the end, these trip data were translated into time, location,
duration and charging energy information at the chargers.

Approach 2 simulates the charging sessions from the
charger perspective and the employed data is based on a study
conducted by ElaadNL [37], [42]. In this study, more than
1.5 million charging sessions were recorded and analysed,
and the probability distribution of featured information of
charging sessions including EV arrival time, parking duration
and charged energy were provided. AMonte Carlo Approach
was implemented to generate the charging session data based
on the EV fleet as well as the charging session featured data.

For both methods, several boundaries were set to ensure there
are no anomalies in the generated data.

The probability distributions of EV charging session’s
arrival time, parking time and the energy demand/driven
distance are presented in Fig. 6. All data is distinguished
between weekdays and weekends except the EV parking and
energy demand data in the Netherlands. The plot of NL EV
arrival time distributions indicates that every type of charging
session presents at least one of the morning/evening arrival
peaks during the week, while the weekends’ arrival times
are mainly accumulated in the latter half of the day. Apart
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FIGURE 9. Loading of urban grids in winter.

from that, there is only minor weekday-weekends differences
appeared in other distribution curves. Besides, the CC-CV
charging stages of the battery were also considered in the
charging profile modelling.

E. METHODOLOGY AND SIMULATION DATA
The simulations of this study were carried out with Python
interfaced DIgSILENT-PowerFactory load flow simulations.
A Python script was written to read input and modify the
parameters in PowerFactory, then to initiate the load flow
calculation at every time step. After every step of load flow
analysis, the results were read and stored by this script as
well. The input data for simulations are the aforementioned
profiles. The raw output data of the load flow contains
the loading/power/losses information of all the branches
(including the transformer, the cables as well as the other link
elements like fuses, impedance), and the voltage information
of every node at every time step. All the EV chargers are
modelled as constant power loads since it is our intention to
see the consequence of all EVs being charged with their rated
power without the influence of voltage drop at the end of the
feeders. In this study, the overloading limit of transformer and
lines are set to be 100% of their ratings and the under-voltage
threshold is set as 0.9 p.u. [43]. The raw data was then
processed and analysed referring to these limits.

It should be noted that even though the input information
used for simulation is based on real data, it cannot cover
all the possible situations in real life. The local load,
PV generations and EV charging patterns are uncertain
naturally. This study picked one possible combination and
executed deterministic simulations to give an insight into

the distribution grid performance under the influence of
uncontrolled EV charging. Based on the there-layer data-
driven considerations, the derived results of our paper are
close to reality, and therefore the presented insight is useful.

III. SIMULATION RESULTS AND IMPACT FACTOR
DISCUSSION
In this section, the simulation results are presented and
compared. The possible impact factors of the results are
analysed and discussed as well.

Fig. 7-9 show the results of transformer loading (top
row), maximum line loading (middle row) and minimal node
voltage (bottom row) versus time for three grid types in
winter. The summer results can be found in Appx. V. The
maximum line loading is the loading value of the most loaded
line among the whole grid at each time step, and similarly,
the minimal node voltage plot shows the voltage value of the
lowest voltage node among the whole grid at every moment.
For maximum line loading and minimal node voltage plots,
the presented results are not from a specific line or node, but
the worst recorded value among all the relevant elements of
the grid as a whole.

From Fig. 7-9 we can see that transformer, line and
node results show a similar trend in most cases. When the
transformers experience high loading, the maximum line
loading also has the tendency to increase while the minimal
node voltage is more likely to have deep dips. These high
loading moments usually occur on top of existing peaks that
even without any charging EVs. This outcome is intuitive
that the most uncontrolled charging moments occur during
morning peaks when people charge their cars at work or
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evening peaks when the users charge their cars once they
are home. There are few occasions when the line loading or
the node voltage do not share the same trend, for example,
voltage drop in AT-RR grids, line loading in NL-RR2 and
line loading in AT-UB2 grid. These phenomena were caused
by local line overloading and regional voltage drop in remote
areas of the grid.

A. RESULTS OF DIFFERENT GRID TYPES AND COUNTRIES
From Fig. 7 it can be noticed that none of the RR grids’
transformers nor the lines are getting close to the overloading
threshold. However, severe under-voltage problems already
appear at some moment in both AT-RR1 and AT-RR2 grids
with only 20%EV penetration. This under-voltage problem is
purely caused by extremely long feeder length to the far-end
of the grid, which is 1134 m and 1312 m separately. Besides,
the EV charging adds a high level of extra loading to the RR
grids that the transformer or line loading is doubled at some
point even though the overall loading is within the limit.

The plots of SUB grids in Fig. 8 present dissimilar results
in comparison to the RR grids. Half of the SUB grids bear
different forms, magnitudes and duration of overloading.
There are several reasons behind this effect. On average,
the SUB grids especially AT and NL SUB grids, have high
household numbers as well as a high baseload demand.
On top of that, the car ownership per household is also
considerable for SUB grids, which induces a high absolute
number of EVs in SUBgrids. In the end, the exorbitant overall
load demand passes beyond the grid limits, which suggest that
the potential of SUB grids for a high EV penetration is very
restricted.

In Fig. 9, the simulation results of UB grids are displayed.
The plots show that except for AT-UB2, all the other grids
are within the congestion boundaries with very few moments
being on the verge of the limit. The line congestion that occurs
in the AT-UB2 grid is not because of EV charging, but due to
the high grid baseload and the limit of the partial grid facility.
A few cables in the grid are already overloaded with only
baseload consumption, which strongly suggests an upgrade
for these cables. It can be also seen from this plot that the
EV charging does not add extensively extra loading to the
grid. The near breach moments are largely due to the high
baseload. There are two possible reasons for this outcome.
In our simulation settings, urban grids do not have many
households, thus the absolute number of EVs are not as high.
Secondly, urban grids tend to have a compact layout where
the line lengths are shorter in comparison to other grid types,
as introduced in Fig. 3. With a compact layout, the node
voltages are less likely to drop dramatically. Both factors
lead to relatively less problematic results in urban grids.
In all simulations, none of the DE grids had any congestion
problem while a considerable ratio of AT grids experienced
transformer, line overloading and under-voltage problems.
For NL grids, the overloading and voltage drop issues only
develop in SUB grids. The simulation results confirm with
the inference in Section II-A.

One dominant reason of this outcome is the simulated DE
grids have a relatively oversize-designed capacity compared
to the other grids. This is signified by low Nhh, Eyr and τ normb,avg
values of DE grids, whilst more lines with higher capacity
are possessed by DE grids as displayed in Fig. 1 to 3. The
same mechanism falls on AT grids. Features of AT grids
including high Nhh, Eyr values, long Lf,max and high ling
length, suggesting they are more likely to encounter grid
congestion issues in comparison with DE and NL grids. The
simulation results show the corresponding tendency that a
considerable ratio of AT grids experienced transformer (AT
SUB1, SUB3, SUB4), line overloading (AT SUB4, UB2) and
under-voltage problems (AT RR1, RR2, SUB1, SUB4, UB3).

B. IMPACT FACTOR DISCUSSION
To investigate factors that influence the EV integrated grid
performance is also an objective of this paper. The impact
of seasons, time of the week (weekday/weekends) as well as
charger accessibility are discussed in this section.

1) SEASONAL AND TIME OF THE WEEK RESULTS
VARIATIONS
The combination of PV generation, baseload and EV
charging load affects the grid performance. Among
these three inputs, baseload and EV charging load have
weekday-weekend variations while PV generation and
baseload deviate in different seasons.

The distribution analysis of all grid elements’ loading
values was performed and compared between the weekdays
and the weekends. One analysis example is visualised in
Fig. 10. The first two rows of this figure show the daily
loading/voltage distribution of every element in this grid
where the first row exhibits the weekday variations and
the second row represents the weekend fluctuations. The
weekday-weekends loading percentage difference distribu-
tion is illustrated in the last row of the figure. The colour
of the curves in this figure depicts various quantile values of
this distribution. For example, q1.5-q98.5 lines mean 1.5%
and 98.5% quantile, and these two lines signify the 97%
confidence interval. The min-max values are not plotted in
this graph since they are already included in the previous
results section.

For all three categories of AT and NL grids, the
percentage difference between weekend-weekday loading
shows a similar sinusoidal trend for all grid elements: the
weekend loading is higher than the weekday loading in
two time periods (during post-midnight hours before 6:00
and during the mid-day between 9:00 and 18:00), and
the weekend loading is lower than the weekdays’ during
the rest of the day. The exact time windows as well as
the magnitude of the weekend-weekday loading difference
varies between countries and grid categories. The weekend-
weekday percentage difference of DE grids deviates during
the day but it still shares the same early morning trend where
the weekend loading is lower.
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FIGURE 10. Loading distribution analysis between weekdays-weekends of AT SUB grids in winter.

This weekday-weekend loading difference is an outcome
of a temporal and scale shifted demand in the weekend, espe-
cially for AT and NL grids. The daily morning demand starts
to increase significantly from 6:00 during the weekdays, but
this situation is alleviated during the weekends. The rising
of morning demand is delayed to a later moment of the day
and a higher morning peak is observed in the meantime.
As a result, a higher loading during the day in comparison
to the weekdays has developed. Concurrently, the evening
demand peak of the weekend appears slightly earlier than on
the weekdays, but the duration of the high evening load lasts
longer than on the weekdays. This explains the shrink of the
evening peak as well as the increment of the post-midnight
loading. The loading shift shows a different pattern in DE
grids that the weekend loading subsides around 9:00 - 18:00
in comparison to the weekday loading. Apart from that, there
are no other conspicuous disparities between weekdays and
weekends that can be summarised.

This shifted demand is contributed by the baseload
oscillation and the diverted EV arrival time. From the
baseload comparison graph Fig. 4 we can see that the
household baseload (household profile for AT/DE grids and
E1 profile for NL grids) has a delayed rising trend yet an
elevated morning peak in the weekend. On the other hand,
the business profiles (E2 profile for NL grids) encounter a
considerable decline in weekends to different degrees during

various time windows for all three countries. The EV arrival
time probability distribution plots in Fig. 6 (a) & (b) clearly
signify the EV start charging time discrepancy between the
weekdays and weekends. Since this study investigates an
uncontrolled EV charging scheme, the EV arrival time equals
the EV charging start time. The weekend EV arrival time in
NL congregates with a mild ramp between 9:00 and 23:00
instead of clustering around morning and evening peaks at
9:00 and 18:00 respectively. Similarly, the weekend charging
start time of AT and DE EVs happen less in both morning
and evening peaks but more during the day between 9:00 and
18:00.

As introduced in Section II-B, grids with more busi-
ness/factory/agriculture types of loads have the tendency of
experiencing less loading during the weekend. It is also
suggested in Section II-D that there are lower EV charging
peaks at weekends thanks to the spread-out arrival time
distributions with a smoother ramp during the weekend.
Even though some grids for instance AT-RR2, NL-SUB1,
AT-SUB1 and DE-UB1 indeed have less severe loading
during the weekend, the congestion level difference between
weekdays and weekends is inconsequential.

In this study, only a one-week length of simulation was
conducted thus the observed weekday-weekends differences
have their limitations. It is encouraged to explore more weeks
throughout the whole year in future research.
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For the difference between seasons, it is not surprising
to see that all grids bear notably fewer congestion issues in
Summer than inWinter. This change is caused by a lower load
demand and a higher PV generation in summer along with
a nonseasonal distinguished EV demand, which is indicated
in Fig. 4-6. The employed EV input data in this paper does
not characterise seasonal deviations, but it is interesting to
consider in future studies.

2) IMPACT OF CHARGER ACCESSIBILITY
There is one interesting effect that can be noticed in the
simulation results, which is the branch loading and the
voltage drop for 20% and 50% EV penetrations are worse
than the 80% penetration case of some grids. For example,
the last day of transformer loading in AT-SUB3, the second
day of node voltage and line loading in DE-SUB2 and the
node voltage of AT-RR2.

This phenomenon is specific to the way the simulation
was set up and how the EV charging demand was modelled.
EV charging demandmodelling Approach 1 fixes the number
of chargers in the grids and models the EVs charging
sessions proportional to the EV penetration as explained
in Section II-C and II-D. This EV penetration increment
modelling method introduces a situation when a new earlier
charging session in a higher EV penetration scenario is
added on top of an existing later charging session in the
lower EV penetration scenario. If these two charging sessions
happen to occur at the same location and within the same
time window, a charging request overlap situation happens.
Under this circumstance, the later session from the lower EV
penetration scenario can no longer take place as plannedwhen
the earlier session from the higher EV penetration scenario
occupies the charging slot. This leads to two outcomes, one
is the later arrived EV waits in the queue for the already
connected EV to finish. Alternatively, if there is a nearby
available charging slot, the later arrived EV should move to a
different slot. Hence, if the later charging session causes the
overloading in lower penetration scenario could not happen
due to an earlier session in higher EV penetration scenario,
the worse overloading in lower EV penetration phenomenon
occurs. This overlapping situation appeared several times
in the simulation and it led to a slightly different EV
charging profile even for the exact same charging session and
eventually reflected in the grid loading results.

This queue mechanism induced by charging session
overlap has a two-edged effect. It can passively reduce
the potential congestion that new peaks will not be added
infinitely to the existing peaks thanks to the physical
limitation of available charging points. On the other hand, the
queue effect can also increase the peak loading, if the delayed
EV charging moves into another peak period or is connected
to another slot located at the overloaded region. EV charging
demand modelling Approach 1 mimics a situation where
there is limited charger accessibility to the number of EVs.
Differently, the EV demand modelling Approach 2 imitates
another situation where there are enough charge points and

they are always available for any EV to be charged whenever
and wherever there is a request. This situation can lead to
a circumstance where the charging demand happens during
the peak time stack on each other without any limitation,
resulting in an extremely high grid loading peak. One typical
example is the transformer loading of day one in NL-SUB1
(Fig. 8).

This difference in the loading peaks is an outcome of how
the EV demand is modelled, showing that whether there are
enough chargers to the corresponding number of EVs can
affect problems occurring at the node level for a very realistic
setup.

IV. COMPARISON OF DIFFERENT GRID BEHAVIOUR
WITH KEY INDICATORS
To better understand to what degree the grid congestion
problems occur and what the influential factors are, several
evaluation indexes are used to analyse the results.

A. THE MAGNITUDE OF GRID CONGESTION
Fig. 11 and Fig. 12 show the amplitude of grid congestion
with maximum loading values in descending order and
minimum voltage values in an ascending order together with
relevant grid features. The values in both figures are sorted
based on the 80% EV penetration winter results, which are
indicated by the black dash boxes. The common grid features
for both plots are total yearly energy consumption (Eyr)
and number of households (Nhh). Larger or higher density
grids (higher Eyr and Nhh) have a tendency to experience
more grid congestion issues. Apart from grid dimension, the
ratio of average baseload power and the total transformer
capacity (τ normb,avg ) also relate to higher transformer and line
loading. The average line ratings (rl,avg) instead do not show
a strong connection with the line loading trend. However, for
minimal node voltage, a clear association appears between
the decreased minimal node voltage and the combination
of average line length (Ll.avg) and the longest feeder length
(Lf,max). The winter and summer results comparison has an
expected effect that the grid congestion problem is milder in
summer.

NL-SUB1 grid has the highest transformer and line peak
loading and the highest loading growth caused by EV
charging for two possible reasons. One is the grid feature,
that NL-SUB1 has the highest Nhh, the lowest Ll.avg and the
second highest τ normb,avg values among all the grids. Another
reason is related to how the EV charging profile is modelled,
as previously mentioned in Section III-B2. The EV charging
demand in NL grids was modelled with Approach 2 (charger
approach), and the increased EV penetration is reflected as
the increasing number of chargers. Any newly added EV in
the grids has a guaranteed charging spot without having to
wait in the queue during the busy time, unlike in the AT grids.
This induces that all the EV charging requests will take place
without delaying and leading to an extremely high loading
peak.

VOLUME 10, 2022 6063



Y. Yu et al.: Data-Driven Study of Low Voltage Distribution Grid Behaviour With Increasing EV Penetration

FIGURE 11. Heat map of maximum transformer and line loading in both seasons.

FIGURE 12. Heat map of minimal node voltage in both seasons.

The results where congestion problems present are circu-
lated with red lines and it shows the ratio of problematic
grids caused by EV uncontrolled charging is moderate, but
the magnitude of overloading is significant for two SUB
grids. Besides, there are more grids that have under-voltage
problems than the number of grids with transformer and line
overloading issues. Moreover, two out of seven under-voltage
risk grids already suffer from under-voltage problems in
winter even without EV charging and clearly, excessive EV
demand does not help with the situation.

B. DURATION AND SCALE OF THE GRID CONGESTION
To study the duration and scale of the congestion issues,
Fig. 13ii and 14 are displayed. In Fig. 13ii, the ratio of
overloaded energy (Eol,xmer) and overloaded time (tol,xmer)
are presented and how they are calculated is explained in
Fig. 13i. Two SUB grids experience up to 30% of transformer
overloading duration as well as overloaded energy, which
indicates these two grids request immediate attention, for
example, charging scheduling or grid facility upgrades with
even low EV penetration levels. Similarly, the scale of
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FIGURE 13. Duration and quantity of transformer overloading visualisation.

FIGURE 14. Heat map of grid congestion scale in Winter. For both figures: (a) 0% EV (b) 20% EV (c) 50% EV (d) 80% EV.

line congestion and node under voltage is presented in the
format of percentage length of overloaded lines (Lol,line)
and percentage number of under-voltage nodes (Nuv,node)
respectively.

Lol,line =

Mtot,l∑
i=1

li,ol

Mtot,l∑
i=1

li

, li,ol =


li if line i

is overloaded
0 otherwise

(3)

Nuv,node =

Ntot,n∑
i=1

ni,uv

Ntot,n
, ni,uv =


1 if node i

under-voltage
0 otherwise

(4)

How Lol,line and Nuv,node are calculated are described
by Eq. 3 and Eq. 4 respectively, where Mtot,l is the total
number of lines, Ntot,n is the total number of nodes and li is

the length of line i. The variation of Lol,line and Nuv,node
versus time is shown in Fig. 14 with an ascending order in
y axis.

A maximum less than 3% Lol,line value reveals the scale
of line overloading is rather small that it only occurs
at several featured lines. These lines are either central
lines connected close to the transformer or local lines
connected to high consumption loads. On the contrary,
AT-SUB1 and AT-SUB4 have significantly high Nuv,node
values. Especially for AT-SUB4, at least one-fifth of the
grid is having under-voltage problems during almost half of
the simulation time in 80% EV penetration scenario. This
outcome pinpoints again that voltage drop is a fierce issue that
needs to be solved in distribution grids. A small improvement
on the facility, for example, a reconfiguration of the tap
positions of the transformer, might already help with the
situation.
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TABLE 3. Summary of grid performance.

TABLE 4. Summary of all grids’ characteristics.

C. KEY TAKEAWAY
With the in-depth index comparison and analysis, it can be
concluded that the majority of the grids do not face major
congestion when penetrated with 50% EVs. Most of the
problematic grids have a small scale and short duration of
grid limit breaching. However, under-voltage is a problem
worthy of attention, not only because more grids have higher
magnitude, longer duration and bigger scale of voltage drop,
but also because the voltage drop has a high vacillation
rate on many occasions. Besides, a study [44] found that
upgrade grid facilities, for example, the transformer capacity
has very limited improvement on the voltage drop caused
by a large amount of EV charging. That leaves less option
for accommodating massive EV charging in LV grids, but
on the other hand, it opens the opportunity to look into
alternative methods, for example, smart charging scheduling,
apart from the grid facility upgrades. It is an interesting aspect
to research in future work.

V. CONCLUSION AND RECOMMENDATION
In this research work, the performance of 21 grids from
three countries (Austria, Germany, Netherlands) with four

EV penetration levels (0, 20, 50, 80%) in two seasons
(Winter, Summer) are analysed and several interesting points
are discussed. This paper focuses on the grid performance
comparison along with EV penetration levels, between
countries, and of different grid types. The other impact
factors including seasons, time of the week (weekdays or
weekends) and charger accessibility are also studied. Several
key indicators of the magnitude, duration and scale of the
grid congestion aree examined. The overall performance of
all grids is summarised in Table. 3.

The grids from all three countries share a few similarities.
First, the loading of transformer and lines, as well as minimal
node voltage, share similar trends and the extra loading
contributed by EV uncontrolled charging are predominantly
added on top of the existing peaks. This phenomenon is rather
apparent as most of charging events occur when the users
come to work (morning peak) or get back home (evening
peak). Secondly, the SUB grids in all three countries tend
to endure more congestion issues in comparison to other
grid types. This is because all SUB grids in the simulation
have the highest household numbers as well as a relatively
high car ownership ratio. This leads to a higher baseload
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FIGURE 15. Loading of rural grids in summer.

FIGURE 16. Loading of suburban grids in summer.

consumption as well as an increased number of EVs which
causes a higher total demand in comparison to RR and
UB grids. Thirdly, partial loading of the grid shifts from
early morning and evening towards the middle of the day
on weekends. Even though some grids like AT-RR2 do
encounter a slightly reduced loading during the weekends,
the disparity of congestion level between weekdays and
weekends is insignificant. Finally, all grids have fewer
overloading issues in the summer compared to the winter
because of a lower baseload consumption while receiving a
higher PV generation.

The grid performance in each country also has its own
characteristics. All simulated DE grids are designed with
higher redundant capacities, therefore none of them had
any issue in all the simulations. AT grids have the highest
incidence of congestion problems. Apart fromSUBgrids, AT-
RR grids which have both transformer and lines operating
well within the safe range still confront the risk of voltage
drop below 0.9 p.u., with even 20% EV penetration, due to
their excessively long longest feeder’s length. NL-SUB1 grid
has the highest transformer and line peak loading problem
not only because of the grid features and the EV penetration
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FIGURE 17. Loading of urban grids in summer.

FIGURE 18. Heat map of grid congestion scale in summer. For both figures: (a) 0% EV (b) 20% EV (c) 50% EV (d) 80% EV.

level but also related to how the EV charging demand were
modelled. The difference in simulation results due to two
EV charging session modelling approaches regarding ‘‘EV
penetration versus the available number of charging points
in the grid’’ inspires future research ideas. Whether charging
points should be installed or not and how many are in view of
increasing EV penetrations is critical to investigate further.

Thirteen out of twenty-one simulated grids encounter no
congestion in any form even with an 80% EV penetration
level. Most of the congestion has a relatively short duration
on a small scale, where smart charging scheduling is needed,
and a good result can be expected. However, one NL-SUB
grid and two AT-SUB grids showed massive transformer

loading and voltage drop problems in both amplitude and
scale manner, indicating a possible hard violation on the
grid facility upper limit. Regarding the severe problematic
grids, two possible solutions are desirable to investigate in
future work. One is to develop a smart charging method to
reschedule the crowded charging process and optimise the
grid capacity usage. Another one is to identify the most
susceptible point in the grid and upgrade the related facility.

Even though this uncontrolled EV charging impact study
advocate a rather optimistic outcome regarding distribution
grids integrated with high EV penetration levels, there are a
few things shall be noted. All the baseloads implemented in
the study are standardised load profiles, which are averaged
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and smoothed from real measurements. These standardised
load profiles do not contain high-frequency power spikes
and therefore do not accurately reflect the real baseload
fluctuations. Because of this, grids might face the risk of
higher congestion in situ, especially since short moments
of grid limits breach might occur more readily when the
same level of EV penetration as in the simulations is
accommodated. Besides, all the EV penetration calculations
were based on the car ownership registration but not the
actual car parking information. In reality, the location of
car registration might be far removed from regular charging
spots. Therefore, the EV commute and how the commute
alters the EV distribution between different LV grids are
worth investigating in the future.

Despite the simplification during the modelling and the
data pre-processing, this paper provides an insight into the
uncontrolled EV influenced grid performance from different
angles. The results of this study reflect what degree the EV
uncontrolled charging overburdened the grids and what are
the relevant impact factors, thus offering a valuable reference
concerning future planning for DSOs.

APPENDIX A
GRID CHARACTERISTICS
See Table 4.

APPENDIX B
SUMMER RESULTS
See Figures 15–18.
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