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Spring phytoplankton blooms in the southern North Sea substantially contribute to

annual primary production and largely influence food web dynamics. Studying long-term

changes in spring bloom dynamics is therefore crucial for understanding future climate

responses and predicting implications on the marine ecosystem. This paper aims to

study long term changes in spring bloom dynamics in the Dutch coastal waters, using

historical coastal in-situ data and satellite observations as well as projected future solar

radiation and air temperature trajectories from regional climate models as driving forces

covering the twenty-first century. The main objective is to derive long-term trends and

quantify climate induced uncertainties in future coastal phytoplankton phenology. The

three main methodological steps to achieve this goal include (1) developing a data fusion

model to interlace coastal in-situ measurements and satellite chlorophyll-a observations

into a single multi-decadal signal; (2) applying a Bayesian structural time series model

to produce long-term projections of chlorophyll-a concentrations over the twenty-first

century; and (3) developing a feature extraction method to derive the cardinal dates

(beginning, peak, end) of the spring bloom to track the historical and the projected

changes in its dynamics. The data fusion model produced an enhanced chlorophyll-a

time series with improved accuracy by correcting the satellite observed signal with

in-situ observations. The applied structural time series model proved to have sufficient

goodness-of-fit to produce long term chlorophyll-a projections, and the feature extraction

method was found to be robust in detecting cardinal dates when spring blooms were

present. The main research findings indicate that at the study site location the spring

bloom characteristics are impacted by the changing climatic conditions. Our results

suggest that toward the end of the twenty-first century spring blooms will steadily shift

earlier, resulting in longer spring bloom duration. Spring bloom magnitudes are also

projected to increase with a 0.4% year−1 trend. Based on the ensemble simulation the

largest uncertainty lies in the timing of the spring bloom beginning and -end timing, while

the peak timing has less variation. Further studies would be required to link the findings

of this paper and ecosystem behavior to better understand possible consequences to

the ecosystem.

Keywords: regional climatemodel, climate change, uncertainty quantification, phytoplankton phenology, Bayesian

model, data fusion, non-parametric regression
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1. INTRODUCTION

Phytoplankton and their seasonally occurring blooms are vital to
marine ecosystems as they are a major source of energy input
for higher trophic levels (Smayda, 1997). Phytoplankton blooms
are natural phenomena occurring when phytoplankton growth
exceeds the losses (mortality, respiration, feeding, sinking, and
dispersive losses) and rapid accumulation takes place when
optimal abiotic and biotic conditions are present for the
growth. An early account of the bloom phenomenon is given
by Sverdrup (1953). Phytoplankton blooms can be identified
through chlorophyll-a concentration, which is an indicator for
algal biomass, though concerns were raised (Alvarez-Fernandez
and Riegman, 2014) about using chlorophyll as phytoplankton

biomass proxy in the North Sea. In the Dutch coastal zone,
phytoplankton mass seasonality is described by a prominent
spring bloom (diatom dominated) and a less pronounced late
summer bloom. This is partly driven by increased riverine
nutrient loads (melting snow and spring rains) and intensified
mixing by seasonal winds blowing over the shallow shelf sea.
The onset of spring blooms is usually initiated by correlated

changes in water temperature and the light availability (Winder
and Sommer, 2012) but coupled to and controlled by thermal
stratification, resource dynamics (e.g., nutrient availability) and
predator-prey interactions (e.g., grazing) (Behrenfeld and Boss,
2018). Temperate marine environments, such as the Dutch
coastal waters, are particularly sensitive to changes in spring

bloom initiation due to the fact that higher trophic levels
are greatly dependent on synchronized planktonic production
(Edwards and Richardson, 2004).

When studying the functioning of continental shelf
ecosystems, such as the southern North Sea, one should consider
various influencing elements. Regarding the hydrodynamics,
the southern North Sea is a tidally mixed region where tidal
fronts occur across the English Channel. The variability in
the tidal fronts influence stratification and mixing regimes
and have ecological consequences, or may even be the driving
force of regime shifts in the North Sea ecosystem (Longhurst,
2007). In addition to tidal fronts, along the Dutch coast,
other shallow water (e.g., Wadden Sea), coastal, and estuarine
fronts are impacting the system dynamics. These fronts are
characterized by turbidity and salinity gradients. Since the
study location is situated at the boundary of the North Sea
and the shallower Wadden Sea, in the Mardiep tidal inlet, the
coastal influence is an important factor. In the Dutch coastal
zone the observed gradients of phytoplankton biomass are
very steep and there is considerable natural variability in the
chlorophyll-a concentration. In these shallower coastal waters the
concentration of suspended inorganic matter, which influences
the extinction of light, is relatively high and dynamically varying.
According to Los and Blaas (2010) in Dutch coastal waters
25–75% of the light extinction is caused by suspended matter.
Further coastal influencing factor affecting the spring bloom
is the riverine nutrient loads. In the North Sea rivers provide
a significant portion of the total nitrogen and phosphorus
load (Los et al., 2014). Although the study site is not situated
at a river outflow, there are nine major rivers that affect the

Dutch coastal waters based on the nutrient composition matrix
derived by Los et al. (2014). The plumes of these major effluents,
especially the Rhine, are significant influencing factors to
phytoplankton dynamics.

Available climate models offer us a range of (atmospheric)
climate variables that could be considered as external drivers
influencing phytoplankton seasonality. The climate variables
include air temperature, precipitation, solar radiation, eastward
and northward wind, air pressure, humidity, and cloud cover.
In this study we focus on air temperature and solar radiation
that were found to be the most influential atmospheric variables
affecting coastal chlorophyll-a concentrations in the Dutch
coastal waters, along with wind speed (in shallow systems). This
conclusion was reached by applying various statistical techniques
to explore temporal, spatial, and functional correlations from
the historical atmospheric and chlorophyll-a time series at
this location.

In its recent comprehensive study of the Wadden Sea
eutrophication trends, van Beusekom et al. (2019) lists the
phytoplankton governing factors, both bottom-up (light,
nutrient) and top-down (grazing, filter feeding). Through the
review of various studies, it was concluded that light is the
dominating limiting factor, which is present all year long,
while nutrient limitation occurs during summer and toward
the end of the growth season. Moreover, a cross correlation
analysis was conducted by Blauw et al. (2018) in the North Sea
between environmental variables (tidal mixing, wind mixing,
solar radiation, air temperature, SST, salinity, turbidity) and
chlorophyll-a hourly time series, including various lags. At
the site with dynamics similar to our study area, the highest
correlations were found with solar radiation, air temperature,
turbidity, and tidal mixing. Additionally, Irwin and Finkel
(2008) reports that sea surface temperature is the best predictor
of chlorophyll-a concentration in the North Atlantic. In their
climate impact study, Richardson and Schoeman (2004) also
opted to use only mean annual sea surface temperature as an
environmental driver since it acts as a useful proxy for other
physical processes and influences seasonal and regional changes
in vertical stratification, nutrients, and winds. We should also
note that there is relationship between air temperature, solar
radiation, and mixing. Blauw et al. (2018) indicated that in
the North Sea air temperature and solar radiation influences
phytoplankton biomass through diurnal variation in convective
mixing and diurnal vertical migration of motile phytoplankton.
Supporting this, Van Haren et al. (1998) reported that the diurnal
variation in convective mixing is attributed to the sinking of
phytoplankton during daytime (thermal micro-stratification)
and resuspension at night (surface cooling). Irwin and Finkel
(2008) also confirmed that temperature is correlated with
stratification, mixed layer depth, and nutrient availability and
their temporal changes.

The thermal structure of the North Sea as a whole is
characterized by a well-developed thermocline during summer
and well-mixed water column during winter (Gräwe et al., 2014).
Nevertheless, there are important regional differences. In the
central North Sea the water column can be strongly stratified
and the tidal-induced mixing is less important. In these regions
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wind-driven mixing and convective cooling have a greater
impact on phytoplankton biomass (Blauw et al., 2018). This
seasonally stratified condition is in stark contrast with the highly
dynamic coastal systems where tidal mixing is themost dominant
physical factor. McQuatters-Gollop and Vermaat (2011) also
documented important differences between the offshore and
coastal North Sea regarding the impact of climatic conditions and
nutrient availability. It was found that inter-annual variability
in phytoplankton dynamics of the offshore regions was mainly
regulated by temperature, Atlantic inflow, as well as co-varying
wind stress and North Atlantic Oscillation (NAO). Contrarily,
in coastal waters solar radiation and sea surface temperature,
as well as Si availability was dominant (McQuatters-Gollop and
Vermaat, 2011). In addition to the regional differences, the
influence of environmental drivers of phytoplankton biomass
also differs at different temporal scales (Blauw et al., 2018). At
short time scales, the physical transport of phytoplankton cells
by wind-driven or tidal mixing is the dominant. On the other
hand, focusing on the seasonal time scales it is solar radiation
and air temperature, together with associated changes in thermal
stratification, nutrient availability and grazing, that dominate
phytoplankton dynamics (Sverdrup, 1953; Sommer et al., 2012;
Blauw et al., 2018). Finally, at longer inter-annual and decadal
time scales climatic variation and long-term human impacts on
the eutrophication status will become influential (Richardson
and Schoeman, 2004; Blauw et al., 2018). Consequently, we
acknowledge that in other regions physical processes play a
dominant role in coastal chlorophyll-a concentrations, especially
through the mixing (e.g., wind-driven) of nutrients into the
euphotic layer during stratified conditions. Although this is
particularly important in oligotrophic regions where solar energy
is abundant and phytoplankton dynamics is mainly limited
by nutrient availability (Yu et al., 2019), it is less influential
in our case.

Our study ismotivated by the fact that climate-induced regime
shifts reportedly took place in the North Sea (Alvarez-Fernandez
et al., 2012; Beaugrand et al., 2014). Consequently, seasonal
variability of phytoplankton biomass in relation to light and
temperature is particularly important aspect in the North West
Shelf Seas (Tulp et al., 2006; Llope et al., 2009). The interactive
effects of temperature and solar irradiance on phytoplankton
have been extensively studied without clear consensus. This
may be partly due to the fact that phytoplankton response
to temperature change greatly varies between individual and
aggregate level. Considering the individual level phytoplankton
responses to temperature are exponentially or linearly increasing
until the optimum, and declining above that (Edwards et al.,
2016). On the other hand, looking at the aggregate level,
species can replace one another along a temperature gradient via
competition resulting in monotonically increasing growth rates.
However, temperature also influences predator-prey interactions,
not only phytoplankton growth. The intensity of grazing (or
zooplankton ingestion) is partly determined by temperature,
along with the available phytoplankton biomass and the
zooplankton biomass (Townsend et al., 1994).

Due to the complex interactions of physical forcing
conditions with food web processes, phenological responses

of phytoplankton to climate change are not trivial to estimate.
Nevertheless, according to Rolinski et al. (2007), focusing
on the spring season may help to reduce the complexity. It
was suggested that in temperate marine systems the impact
of physical environment and the response of the biological
system can be best studied in spring. During spring, the physical
limiting factors like temperature, light availability, and mixing
are more prominent than the non-physical ones, such as trophic
interactions (e.g., grazing). While in the spring period trophic
interactions may not be limiting, later on in the year, they
become more important and may dominate over the physical
factors (Sommer et al., 1986, 2012). Thus, we acknowledge
the complexity of physical and trophic interactions and do
not dismiss their influence on the phytoplankton phenology.
Nevertheless, this study aims to focus on the physical drivers,
or more precisely on the climatic ones. Consequently, to limit
the masking effect of trophic interactions, as far as this may
be possible, we focus on the spring phytoplankton bloom to
study the impact of changing climatic conditions in the Dutch
coastal zone.

Changing climatic conditions directly affect the
photosynthetic metabolism of phytoplankton, but also indirectly
impact them by modifying their physical environment (D’Alelio
et al., 2020). Climate change impacts on phytoplankton are
manifested as shifts in seasonal dynamics, species composition,
and population size structure (Winder and Sommer, 2012). Since
in the current study we only use chlorophyll-a concentration as
response variable, we can only draw conclusions on the seasonal
dynamics of the aggregate level, not on species composition
or population structure. As an indicator of climate change
impacts on seasonal phytoplankton dynamics, we selected the
long term changes in spring bloom dynamics. There is, however,
no single definition of phytoplankton blooms in the literature
or in policies, for instance based on the rate of change or the
threshold of concentration, as this is highly dependent on
the type of ecosystems (e.g., inland or marine, local species,
climate, bathymetry). In this study we describe the spring bloom
dynamics by their cardinal dates (bloom initiation, -peak, and
-ending) using log-concave regression. Alternatives methods of
deriving cardinal dates and the benefits of using log-concave
regression are presented in the section 2.4.

A range of studies investigating climate change induced
shifts in phytoplankton bloom dynamics in the North Sea
already exist. Most of these studies derive their findings from
historical chlorophyll-a data, measured either by in-situ sensors
or remote sensing (Edwards and Richardson, 2004; Philippart
et al., 2010; Friedland et al., 2015; Hjerne et al., 2019; Desmit
et al., 2020), or from laboratory experiments (Lewandowska and
Sommer, 2010; Winder et al., 2012). Climate impact studies
which focus on future developments of phytoplankton bloom
dynamics generally use few climate change scenarios from global
or regional climate models and traditionally use physically-
based models (Friocourt et al., 2012; Holt et al., 2014, 2016;
Pushpadas et al., 2015; Schrum et al., 2016). We acknowledge
that previous papers already introduced ways to characterize
phytoplankton blooms (Rolinski et al., 2007; Wiltshire et al.,
2008; Lewandowska and Sommer, 2010; Philippart et al., 2010;
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Hjerne et al., 2019). Nevertheless, uncertainty quantification in
the shift of phytoplankton dynamics in these studies is not a
central topic.

There are, however, existing studies that address uncertainty
in bloom detection. Cole et al. (2012) investigates the impact of
missing data on phytoplankton phenology metrics (threshold-
based definition) using satellite observed chlorophyll-a; Ferreira
et al. (2014) compares the accuracy and precision of three bloom
metrics (biomass-based threshold method, cumulative biomass-
based threshold method, rate of change) on biogeochemical
model outputs and satellite observed chlorophyll-a; while
González Taboada and Anadón (2014) performs probabilistic
phytoplankton phenology characterization using Bayesian
harmonic regression and a threshold-based definition of
bloom metrics based on satellite observed chlorophyll-a. Major
advantage of these studies is the quantification of errors or
uncertainties in the computation of the bloom metrics. Our
research deviates from these studies in that we do not focus on
historical data but aim to quantify future projected uncertainties
in spring bloom dynamics. In fact, in our analysis the bloom
detection algorithm is the only step where “model uncertainties”
are not quantified and instead all other steps involve uncertainty
estimates. The reason for this is that in future climate change
studies the main source of uncertainty does not arise from the
derivation of the bloom metrics but from the climate forcings
and from the projection of the chlorophyll-a signal. Our method
does provide uncertainty ranges for the bloom metrics but
that is derived from the ensemble of generated chlorophyll-a
projections. The benefit of reconstructing a range (> 100) of
full seasonal cycles is therefore to obtain predictive uncertainty
estimates on bloommetrics from the input data rather than from
the bloom detection itself.

Considering the above, the novelty of our work lies in the
following features. In our research we make use of both in-
situ and satellite observations jointly by applying a data fusion
algorithm to get a more complete, more accurate, and longer
data record. While a range of possibilities already exist to
describe phytoplankton blooms, in our research we propose a
new way of extracting the cardinal dates of the phytoplankton
spring blooms. We use non-parametric shape constrained (log-
concave) regression, which provides a flexible formulation
without tuning parameters and assumptions on the distribution
patterns and can be directly applied on the annual bi-modal time
series without any pre-processing. Consequently, our proposed
method is less sensitive to bloom amplitude, missing data, and
observational noise.

Moreover, we augment existing climate change scenarios with
synthetically generated ones, thus supplying numerous (> 100)
trajectories for air temperature and solar radiation development.
In addition to this, our proposed method complements the
computationally expensive numerical models for chlorophyll-
a simulation with a data driven approach, using a Bayesian
structural time series model. Complementing physically-based
prediction models with statistical ones allows us to compute a
large number of simulations and achieve better characterization
of predictive uncertainties. These methodological advances
enable the combination of different chlorophyll-a data sources,

the incorporation of climate covariates and the propagation
of uncertainty from observations to nonlinear estimates of
projected changes in spring bloom metrics under an enriched
number of climate change scenarios (associated to future
development and emission pathways).

2. MATERIALS AND METHODS

In this chapter we describe the data sources and introduce the
main methods that were developed and/or applied within the
framework of this study. When new methods are proposed, such
as the data fusionmodel and the shape constraint model to derive
bloom metrics, we aim to sufficiently document those to allow
replication studies.

Figure 1 presents the methodological framework and
summarizes the connections between elements. Our research
aims to study changes in phytoplankton phenology based
on historical data and future climate projections. Given the
historical records of chlorophyll-a concentrations obtained
from various data sources, one can extract the cardinal dates
of the spring bloom for the past decades using the proposed
feature extraction technique. Furthermore, changes in the
spring blooms may be projected for the future by utilizing
the correlation between climatic factors, represented by air
temperature and solar radiation, and the ecological response,
indicated by the chlorophyll-a concentration. This correlation
can be inferred from past records since air temperature and
solar radiation were measured by field sensors for the past
decades. Though future chlorophyll-a concentrations are not
available to us, we attempt to make projections using the trends
and seasonality from historical observations and taking into
account the correlations with projected air temperature and
solar radiation, produced by regional climate models. While
this methodological framework allows us to investigate past and
projected spring bloom dynamics, we note that there are several
sources of uncertainties, both data and model related ones, which
are propagated through the steps. These uncertainty sources
(±U) are marked in Figure 1. In order to address this issue, we
aim to use transparent statistical approaches that allow us to
quantify intrinsic uncertainties. Noting that the projected trends
in bloommetrics constitute the main findings of the research, the
importance of the uncertainty quantification framework should
also be emphasized, which should always go hand-in-hand with
climate change impact studies.

2.1. Data Sources
This research is based on amultitude of data sources from sensors
and numerical models of various types. The environmental and
climate variables in this study are chlorophyll-a concentration,
air temperature, and solar radiation. In order to investigate
past trends and obtain the correlation between these variables,
we make use of historical measurements, whereas to anticipate
future climate change impacts, climate model outputs are used.

2.1.1. Chlorophyll-a Concentration Measurements
Available historical chlorophyll-a data includes field observations
at Marsdiep Noord station (see Figure 2), from the Dutch

Frontiers in Marine Science | www.frontiersin.org 4 August 2021 | Volume 8 | Article 669951

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mészáros et al. Uncertainties in Phytoplankton Bloom Dynamics

FIGURE 1 | Methodological framework including three main elements with causal and temporal relations: (1) climatic factors, (2) ecological response, and (3) spring

bloom dynamics.

FIGURE 2 | Location of the study area and the monitoring point together with the pixels of the matching Euro-CORDEX climate model output and CMEMS satellite

measured chlorophyll-a.
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FIGURE 3 | Overview of data sources. The description includes variable name, data type, data source, data frequency, and spatial resolution.

Directorate-General for Public Works and Water Management
(Rijkswaterstaat), covering more than 40 years from 1976 to
2018, but measured rather sparsely. To complement these
field measurements, processed, and validated satellite observed
chlorophyll-a concentration (extracted at the same location)
was used from the Copernicus Marine Environment Monitoring
Service (CMEMS) from 1997 to 2019 (see Figure 3). We should
note that satellite observation of phytoplankton biomass in the
Dutch coastal waters is complex since the chlorophyll-a signal
may be mixed with the relative distribution of suspended matter
andCDOM instead of phytoplankton biomass (Longhurst, 2007).

The specific product in use is the North
Atlantic Chlorophyll-a, daily interpolated and
reprocessed product with one km spatial resolution
(OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_
009_098). The satellite product is limited to the surface depth.
This chlorophyll-a product is produced using multiple sensors
(multi-sensor product), multiple chlorophyll-a algorithms and
a daily space-time interpolation scheme (Saulquin et al., 2019).
The interpolation scheme includes a combination of a water-
typed merge of chlorophyll-a estimates and kriging interpolation
method with regional anisotropic covariance models at the shore,
as described in Saulquin et al. (2019). This product uses the
Copernicus-GlobColor processor and it is obtained by merging
the following sensors: SeaWIFS, MODIS Aqua, MODIS Terra,
MERIS, VIIRS NPP, VIIRS-JPSS1 OLCIS3A, and S3B. For coastal
waters the product uses the standard OC3-OC4 (Antoine and
Morel, 1996; O’Reilly et al., 1998, 2000) and OC5 (Gohin et al.,
2002) algorithms. The latest product validation results against
in-situ measurements show an r2 of 0.73 with N = 11, 502 data

points (Garnesson et al., 2020). For a more in-depth description
of this satellite product the reader is referred to the QUality
Information Document (QUID) (Garnesson et al., 2020).

The chlorophyll-a concentration seasonality from in-
situ observation is shown in Figure 4A, and from satellite
observations in Figure 4B. Naturally these data sources have
different sampling methods and associated uncertainties. The in-
situ observations are point samples taken by the Dutch national
in-situmonitoring programme (MWTL) https://waterinfo-extra.
rws.nl/monitoring/. It should be noted that the samples are
taken close to the water surface, usually in the upper 3–5 m
of the water column. These observations are often considered
as ground truth and are the most reliable, however, in the case
of chlorophyll-a concentration the temporal frequency of the
observations is relatively low, around 10-20 observations per
year. This amount of field observations poses a limitation to
assess annual phytoplankton bloom cycles (Winder and Cloern,
2010). Thus, the more frequently sampled satellite images are
also used to complement the in-situ measurements for a better
assessments of bloom characteristics. This complementary data
source is used noting that satellite derived chlorophyll-a is
only available at the water surface (lack of vertical resolution),
has a coarse 1 km resolution and suffers from algorithmic
and interpolation errors, consequently having a higher level of
associated uncertainty.

Since the two types of chlorophyll-a measurements describe
the same underlying process, we propose a data fusion model to
combine them. This data fusion model interlaces the in-situ and
satellite observations into a single chlorophyll-a concentration
signal, which is more complete then the individual observations
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FIGURE 4 | Historical chlorophyll-a concentrations measured in the Dutch Wadden Sea using in-situ data between 1976 and 2018 (A) and satellite images between

1997 and 2019 (B). Climatological median (solid black line) per calendar is also shown.

and covers a longer time period. The data fusion model is
described in section 2.2.

2.1.2. Solar Radiation and Air Temperature

Measurements
The historical daily solar radiation and air temperature
records are obtained at the nearest weather station (De

Kooy) from the Royal Netherlands Meteorological Institute
(KNMI) for the matching period (1976–2019). Apart from
historical data, future projected values of air temperature

and solar radiation are acquired from the high resolution

0.11◦ (∼ 12.5 km) EURO-CORDEX Coordinated Regional

Downscaling Experiment (Jacob et al., 2014), which uses
the Swedish Meteorological and Hydrological Institute Rossby
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Centre regional atmospheric model (SMHI-RCA4). In order
to produce various regionally downscaled scenarios, EURO-
CORDEX applies a range of General Circulation Models
(GCMs) to drive the above mentioned Regional Climate Model
(RCM). In addition to the driving models, further scenarios
are obtained by considering different socio-economic changes
described in the Representative Concentration Pathways (RCPs).
RCPs are labeled according to their specific radiative forcing
pathway in 2100 relative to pre-industrial values. The EURO-
CORDEX scenario simulations use the RCPs defined for the Fifth
Assessment Report of the IPCC. In this study we include RCP8.5
(high), and RCP4.5 (medium-low) (van Vuuren et al., 2011) and
four driving GCMs.

In the upcoming Sixth Assessment Report new scenarios
and pathways will also be included, which are called Shared
Socioeconomic Pathways (SSPs) (Abram et al., 2019). SSPs
describe five alternative socioeconomic pathways (SSP1–
SSP5) for future society enhancing the existing RCPs with
socioeconomic challenges to adaptation and mitigation. Such
socioeconomic challenges are population, economic growth,
urbanization, or technological development for instance (O’Neill
et al., 2017). It should be emphasized that SSPs are not replacing
but complementing RCPs. In the Sixth Assessment Report the
RCP-based climate projections and SSP-based socioeconomic
scenarios are combined to achieve an integrative framework for
climate impact and policy analysis (Abram et al., 2019). From the
SSP scenarios SSP5-8.5 corresponds to RCP8.5 and represents
the high end of the range of future forcing pathways, while
SSP2-4.5 represents the medium part and corresponds to RCP4.5
(Abram et al., 2019).

Together the four different driving GCMs and two RCPs that
are applied in this study provide us with an ensemble of eight
future solar radiation and temperature trajectories. Since the
RCM simulations are subject to climate model structural error
and boundary errors from the driving GCMs (Navarro-Racines
et al., 2020), they should be bias corrected before applying them
in impact studies (Luo, 2016). For this reason, quantile mapping
bias correction (Amengual et al., 2012) was applied using the
RCM simulations for the reference period (1976–2005) and daily
historical field measurements from KNMI for the same period,
as described in Mészáros et al. (2021). The quantile-quantile
mapping transfer functions were established for the reference
period and separately for each RCM simulation. The transfer
functions were then applied for the bias correction of each future
projections (2006–2100) separately.

This ensemble of climate trajectories is used to simulate
a range of possible phytoplankton seasonality shifts and the
associated uncertainty described by the predictive distribution
of the phytoplankton bloom cardinal dates. It should be noted
that applying only eight climate projections reduces the ability
to adequately resolve the unknown predictive distribution that
one tries to estimate, hence, higher number of climate trajectories
providing sufficient resolution in terms of probabilities is
required (Leutbecher, 2019). Consequently, to better characterize
uncertainties, an enriched set of climate change projections
is employed. This set of air temperature and solar radiation
projections was produced using a Bayesian stochastic generator

(Mészáros et al., 2021), which builds on the above mentioned
Regional Climate Model scenarios provided by the EURO-
CORDEX experiment and generates further synthetic scenarios
using a hierarchical Bayesian model. The generated ensemble
of air temperature and solar radiation projections include 120
members and their statistical properties are similar to the input
projections. Both the EURO-CORDEX and synthetic projections
are shown for air temperature in Figure 5A and for solar
radiation in Figure 5B. At this specific location we can observe
a consistently increasing temperature trend over the twenty-
first century and a slightly decreasing solar radiation trend.
While increasing air temperatures are in line with expectations,
decreasing solar radiation trends may need further explanation.
The main cause of this negative trend is the fact that total cloud
cover at this site is projected by EURO-CORDEX to increase,
hence, limiting surface downwelling shortwave radiation. This
is a region specific feature, and the difficulty of projecting
cloud cover and solar radiation changes in coastal areas with
sea-land-atmosphere boundaries, such as the study site, has
been previously highlighted by Bartók et al. (2017), along with
discrepancy between RCMs and their driving GCMs in their solar
radiation projections over Europe.

2.2. Data Fusion of Chlorophyll-a
Measurements
2.2.1. Statistical Model
In order to describe the chlorophyll-a concentration, we assume
that there is a continuously evolving latent signal (Xt , t ∈ [0,T])
that satisfies the stochastic differential equation (sde)

dXt = −α(Xt − µ(t)) dt + σ dWt . (1)

The underlying idea is to model a stochastic process that is
mean reverting (with strength α) toward the deterministic signal
t 7→ µ(t). We will take µ to be periodic with period 1. We start
off from a continuous time description as in-situ measurements
are not collected at regular times. Observations can be of three
types

1. Yi ∼ N(Xti ,ψ1);
2. Yi ∼ N(Xti ,ψ2);

3. Yi ∼ N2

([

1
1

]

Xti ,

[

ψ1 0
0 ψ2

])

.

This reflects having two types of measurements (in-situ and
satellite) with different accuracies. Sometimes one measurement
is obtained, sometimes the other one, and sometimes both are
available. We take Yi to be the log of the measured concentration
(component-wise) to ensure the model only predicts non-
negative concentrations. While we acknowledge that there are
other mapping functions to achieve non-negativity, taking the
log of chlorophyll-a concentration is often used in practice
(Campbell, 1995).

Assuming successive observations are obtained closely in
time, i.e.,1i : = ti − ti−1 being small for all i, we have

Xti ≈ Xti−1 − α(Xti−1 − µ(ti−1))1i + σ
√

1iǫi,
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FIGURE 5 | Eight EURO-CORDEX (darker solid line) and 120 generated synthetic (shaded dashed line) climate change projections for solar radiation (A) and air

temperature (B), grouped by RCP scenarios (blue—RCP4.5, red—RCP8.5). Plot of the yearly averages based on the daily data.

where {ǫi}i is a sequence of independent standard Normal
random variables. Ignoring discretization error, the resulting
equation can be rewritten and combined with the observation
scheme:

Xi = (1− α1i)Xi−1 + αµ(ti−1)1i + σ
√

1iǫi

Yi = N(LiXi,ϒi),

where Xi ≡ Xti . For numerical stability, it is better to discretize
(1) using an implicit scheme on the deterministic part. This leads
to the dynamical system

Xi =
Xi−1 + αµ(ti)1i

1+ α1i
+ σ

√

1iǫi

Yi = N(HiXi,Ri),

We write the model in state-space form, sticking to the notation
in Särkkä (2013),

Xi = Ai−1Xi−1 + ai−1 + N(0,Qi−1)

Yi = HiXi + N(0,Ri)
(2)

Here

Ai−1 = (1+α1i)
−1 ai−1 =

α1i

1+ α1i
µ(ti) Qi−1 = σ 21i,

Ri =



















ψ1 if only in-situmeasurement

ψ2 if only satellite measurement
[

ψ1 0

0 ψ2

]

both in-situ and satellite measurements

and

Hi =







[

1
]

if only 1 measurement is available at time ti
[

1 1
]′

if both measurements are available at time ti
.

Note that (2) specifies a linear Gaussian state-space model. The
equation for Y is the observation equation, that for X the state-
equation. We will parameterize ψ1,ψ2 by taking

ψ1 = ηψ̄ψ ψ2 = ψ ,
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where η ∈ (0, 1) is fixed and ψ̄ will get assigned a prior
distribution supported on (0, 1). This reflects apriori knowledge
that the in-situ measurements are believed to be more accurate.
The in-situ chlorophyll-a observations are obtained from
sampling campaigns (bucket water samples from a sampling
jetty) and therefore considered as the true values (ground truth).
While the satellite product is calibrated with many in-situ
observations in the North Sea, it does not produce perfect match
with the in-situ observations at the study location. Moreover, the
number of satellite observations is much higher than the in-situ
observations. This over-representation is counter balanced by
the fusion model otherwise the reconstruction would be mostly
determined by the satellite measurements.
We model the mean trend using the series expansion of the form

µ(x) =
K
∑

k=1

ξkϕk(x),

where K is fixed, and ξ : = (ξ1, . . . , ξK) ∼ NK(0, σ
2
ξ I). This term

allows us to account for a varying shape of the seasonal cycle. The
functions ϕk are taken as follows: ϕ1 = 1[0,1] and for j ∈ {1, . . . , J}

ϕjk(x) = j−1ϕ0(2
j−1x− k), with k ∈ {0, . . . , 2j−1 − 1}.

We take

ϕ0(x) =
9

2
x21[0,1/3](x)+

(

3

4
− 9(x− 1/2)2

)

1[1/3,2/3](x)

+
9

2
(1− x)21[2/3,1](x),

which is the quadratic B-spline function scaled to have
support [0, 1]. Note that ϕ0 is continuously differentiable. The
hierarchical structure of the basis is exactly like the Schauder
basis, but uses a smoother basic element than the traditional
“hat”-function.

2.2.2. Inference
Let θ = (α, ξ , σ 2,ψ , ψ̄). Inference can be carried out by
initializing θ and iterating the following steps (Robert and
Casella, 2004):

1. conditional on θ ,Y1, . . . ,Yn, run the Forward Filtering
Backwards Sampling (FFBS)-algorithm (see Appendix) to
reconstruct X1, . . . ,Xn;

2. draw from the posterior of θ , conditional on X1, . . . ,Xn, and
Y1, . . . ,Yn (note that the likelihood is simple, once we know
the latent path X1, . . . ,Xn).

For updating parameters we use Gibbs sampling. Note that the
updates for ψ̄ and ψ only depend on Y1, . . . ,Yn, and updates for
all other parameters only depend on X1, . . . ,Xn.

• The updates steps for σ 2 and ψ are trivial when using
independent InverseGamma distributions as prior due to
partial conjugacy.

• For ψ̄ we assume the Unif (0, 1)-prior. A Metropolis-Hastings
step is implemented where we use random-walk type
proposals (Robert and Casella, 2004) of the form

log
ψ̄◦

1− ψ̄◦
: = log

ψ̄

1− ψ̄
+ N(0, τ 2

ψ̄
),

which implies that the proposal ratio equals

q(ψ̄ | ψ̄◦)

q(ψ̄◦ | ψ̄)
=
ψ̄◦(1− ψ̄◦)

ψ̄(1− ψ̄)
.

Note that ψ̄◦ = ψ̄/(ψ̄ + (1− ψ̄)τψ̄Z), where Z ∼ N(0, 1).
• For updating α we use a Metropolis-Hastings step of the form

logα◦ : = logα + N(0, τ 2α ).
• The “full” conditional density for ξ is proportional to

exp

(

−
1

2σ 2
ξ

‖ξ‖2 −
1

2σ 2

n
∑

i=2

1−1
i (Xi − Ai−1Xi−1

−
α1i

1+ α1i

K
∑

k=1

ξkϕk(ti)

)2




= exp



−
1

2σ 2
ξ

‖ξ‖2 −
1

2σ 2

n
∑

i=2

(

Ui − ᾱi
K
∑

k=1

ξkϕk(ti)

)2


 ,

where

Ui = 1
−1/2
i (Xi − Ai−1Xi−1) ᾱi =

α
√
1i

1+ α1i
.

This is proportional to

exp

((

−
1

2
ξ ′(σ−2V + σ−2

ξ IK)ξ + σ−2
v
′ξ

))

with

vk =
n
∑

i=2

Uiᾱiϕk(ti) Vkℓ =
n
∑

i=2

ᾱ2i ϕk(ti)ϕℓ(ti).

Hence, the update step for ξ boils down to sampling from a
multivariate normal distribution with precision σ−2V+σ−2

ξ IK

and potential vector σ−2
v (the potential vector is the product

of the precision matrix with the mean vector).

Details on the prior specification: for both σ 2 and ψ we
took (independently) InverseGamma priors, parameterized with
shape and scale, with both parameters equal to 0.1. For α we took
the Exponential distribution with mean 10. We took σ 2

ξ = 10
and tuned the step-sizes τψ and τα such that the corresponding
random-walk Metropolis-Hastings steps were accepted with
probability in between 25 and 50%. In the series expansion we
took a fixed value for K = 5. We took η = 658/8, 005, which is
the ratio of the in-situ and satellite measurements.
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2.3. Long Term Projection Using Bayesian
Structural Time Series Models
After the fused historical chlorophyll-a concentration signal has
been derived, it is used to train the time series model for
scenario analysis. It was previously argued that variability in the
spring bloom dynamics occur due to changing environmental
conditions. Consequently, apart from historical trends and
seasonality in the observed chlorophyll-a concentration time
series, projected solar radiation and air temperature are also used
to drive future chlorophyll-a concentration trajectories. These
simulated trajectories are then utilized to extract the bloom
characteristics applying the feature extraction methodology
described in section 2.4.

In this study an existing Bayesian structural time series
modeling framework is customized to our purpose, which is the
Prophet forecasting model (Taylor and Letham, 2017). This is
a decomposable time series model with trend, seasonality, and
additional regressor component, as well as error term as the main
model components:

y(t) = g(t)+ l(t)+ ǫ(t).

where, at time t, y(t) is the response variable (chlorophyll-
a concentration), g(t) is a piecewise linear trend model, l(t)
is a linear component representing seasonality and additional
regressors, and ǫ(t) is the error term (independent and identically
distributed noise). In order to avoid negatively predicted
values, the natural logarithm of the response variable was
taken in the model, and the prediction was then transformed
back to its original scale by using the exponential function.
An advantage of the Prophet model is that it can handle
irregular intervals, which is important as our fused chlorophyll-
a observations are not regularly spaced. Prohpet is similar to
other decomposition based approaches to time-series forecasting
except that it uses generalized additive models instead of a state-
space representation to describe each component. Using state
space models would offer a more generic model formulation,
whereas this approach explicitly models features common to
the chlorophyll-a time series at hand, such as multi-period
seasonality. The structural time series model could alternatively
be put into state-space format, but rewriting it into that form
would not alter the results.

Bayesian structural time series models possess further key
features for modeling time series data that are favorable for long-
term chlorophyll-a scenario analysis studies. The main feature
is uncertainty quantification, as they allows us to quantify the
posterior uncertainty of the individual components, control the
variance of the components, and impose prior beliefs on the
model. This is crucial as uncertainties increase over time in
the future, especially in long-term projections. The second key
feature is transparency, since the model is decomposed into
simple time series components, which can be visually inspected.
Moreover, they do not rely on differencing or moving averages,
which make them more transparent than other autoregressive
moving average models. The third key feature is the ability to
incorporate regressors (covariates) as explanatory variables in
the model. This feature is beneficial to include climate change

impacts on chlorophyll-a trajectories from solar radiation and
air temperature.

Here we briefly introduce the model without aiming
completeness; for the full model formulation the reader is
referred to Taylor and Letham (2017). We use a piecewise linear
model with a constant rate of growth and change points. Suppose
there are S change points, over a history of T points, at times
sj, j = 1, . . . , S. We define a vector of rate adjustments δ ∈ R

S,
where δj is the change in rate that occurs at time sj. The rate at any
time t is then the base rate k, plus all of the adjustments up to that
point, which is represented by a vector a(t) ∈ {0, 1}S such that

aj(t) =
{

1, if t ≥ sj,
0, otherwise.

The piecewise linear trend model with change points is then

g(t) =
(

k+ a(t)Tδ
)

t +
(

m+ a(t)Tγ
)

where k is the growth rate, a(t) is a change point indicator as
defined above, δ is the vector of rate adjustments, m is the offset
parameter, and tomake the function continuous, γj is set to−sjδj.
We employ the following prior on δ = (δ1, . . . , δS).

δj ∼ Laplace (0, τ)

where τ controls the flexibility of the model in alternating its rate.
While the model automatically detects change points and allows
the trend to adapt appropriately, we have control over the trend
flexibility by adjusting the strength of the sparse prior using the
change point prior scale τ . In this application trend flexibility is
significantly reduced by decreasing the change point prior scale
to one fifth of its default value. The value was fined tuned by
balancing between the training error (which is lower with more
flexibility) and the prediction error, while keeping the width of
the projected uncertainty interval reasonable.

When themodel is used for forecasting, the trend has constant
rate and the uncertainty in the forecast trend is estimated. Future
rate changes are simulated that emulate those of the past. In a
fully Bayesian framework this can be done with a hierarchical
prior on τ to obtain its posterior. In long-term projections,
which is our purpose, one of the most influential factors is the
uncertainty in the future trend. In this model, the uncertainty in
the forecast trend is estimated by assuming that in the future the
same average frequency andmagnitude of rate changes will occur
as observed in the past:

for all j > T,

{

δj = 0 with probability T−S
T

δj ∼ Laplace (0, λ) with probability S
T .

Once λ has been inferred from the data, we use this model
to simulate possible future trends and to compute uncertainty
intervals. Due to the assumptions in the trend forecasting
(matching historical frequency and magnitude) the trend
intervals may not be exact, nevertheless they provide an
indication of the level of uncertainty and also reveals trend
model overfitting.
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In the seasonality model we approximate seasonal effects with
a standard Fourier series expansion with chosen periodicity P,
and Fourier order n. The seasonality model is:

s(t) =
N
∑

n=1

(

an cos

(

2πnt

P

)

+ bn sin

(

2πnt

P

))

.

In this model the following periods are used, P = 3652.5 for
decadal periodicity, P = 365.25 for yearly periodicity, P =
182.625 for half-yearly periodicity, and P = 91.3125 for quarterly
periodicity (in days). The Fourier order was chosen as N = 10
after tuning such that under-fitting and over-fitting is avoided by
minimizing the test error. The linear component then becomes

l(t) = X(t)β

where X(t) = [cos
(

2π1t
P

)

, sin
(

2π1t
P

)

, . . . , cos
(

2πNt
P

)

,

sin
(

2πNt
P

)

,R1(t), . . . ,RJ(t)] is a matrix of seasonal
components s(t) and additional vectors of regressors, while

β =
[

a1, b1, . . . , aN , bN , r1, . . . , rJ
]T

includes the 2N parameters
of the Fourier series expansion and theR regression coefficients of
the additional explanatory variables. The following β ∼ N(0, σ 2)
prior is imposed independently on each component of β . By
default the linear component of the model only contains features
for modeling seasonality but through specifying covariates
(“regressors”) we can include additional arbitrary vectors to
X(t) whose regression coefficients will be inferred. Combining
the trend, seasonality, and error components the final model
becomes:

y(t) m, δ,β , σ ∼ N
(

g(t)+ l(t), σ
)

In order to construct an appropriate structural time series model,
the selection of model components was facilitated by exploratory
analysis steps, such as seasonal shape extraction, investigating
the correlation of explanatory and response variables (Figure 6),
produce periodogram and wavelet analysis to explore periodicity,
and perform time series decomposition. Apart from chlorophyll-
a, the solar radiation regressor data is also log transformed,
since that produces a correlation structure to log chlorophyll,
which is closer to linearity (see Figure 6). The temperature data
could not be log transformed as it contains negative values.
The continuous wavelet power spectrum revealed a persistent
12-month periodicity, which explained the largest amount of
variability over the sampling period, while the rest of the
variability is attributed to 6 and 3 month periodicity. This is in
line with previous research findings of wavelet analysis for the
same observation station (Winder and Cloern, 2010).

In the current structural time series model implementation
the following components are used. Linear trend with
change points (change point prior scale is defined), multi-
period seasonality: decadal, yearly, half-yearly, and quarterly
(periodicity, Fourier order, and prior scale are defined), as
well as four additional regressors (air temperature, solar
radiation, and their lag1). It should be noted, that adding
more than lag1 of the regressors did not improve the
prediction further. The parameter inference can be either

done by optimization, using Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS) to find a
maximum a posteriori estimate, or through full posterior
inference to include model parameter uncertainty in the
forecast uncertainty.

2.4. Tracking Phytoplankton Spring Bloom
Dynamics
In order to track phytoplankton spring bloom dynamics, the last
step of the methodological framework focuses on deriving spring
bloom metrics obtained from the chlorophyll-a concentration
time series. We must emphasize that uncertainty in the previous
methodological steps (data fusion and long term projection) is
being propagated to the estimates of cardinal dates and bloom
magnitude. Although efforts have been dedicated to quantify
these uncertainties, propagated uncertainty carries implications
for the accuracy of the calculated cardinal dates.

Several existing methods are available to characterize
phytoplankton blooms. Ji et al. (2010) provides an exhaustive
list of timing indices for quantifying phytoplankton phenology
with advantages and disadvantages. These can be classified
as biomass-based threshold methods, rate of change methods,
and cumulative biomass-based threshold methods (Brody et al.,
2013). One might use the number of consecutive days that
exceed a given threshold (elevated assessment level) defined
by the literature. In the case of Dutch coastal waters this is
around 12–15 and 22–24 mg/m3 for the Wadden Sea (Peters
et al., 2005). Alternatively, a low-pass method could be used
for determining the start of the bloom (Wiltshire et al., 2008),
which is a temporal averaging algorithm acting as a low-pass
filter, reducing the short-term fluctuations. Philippart et al.
(2010) suggested using the date of the maximum and minimum
values of daily change rates in the interpolated chlorophyll-a
concentrations for the timing of the annual onset and breakdown
of the phytoplankton bloom. The timing of the bloom can
also be represented by another quantity, the center of gravity
(COG) of the carbon content within the typical spring bloom
period (Hjerne et al., 2019). Another possibility to characterize
the spring bloom is to derive the cardinal dates of the mass
development (Rolinski et al., 2007). The cardinal dates are the
beginning of the spring phytoplankton mass development, the
maximum of the spring bloom (bloom peak), and the end
of the spring mass development. Mathematical methods of
describing cardinal dates were proposed by Rolinski et al. (2007),
such as finding the points of inflexion in the smoothed, log
transformed, and differenced (1-week lag) data, deriving them
from four linear segments (constant–increasing–decreasing–
constant) fitted to the logarithmic values, or extracting the
cardinal dates from the quantiles of a fitted parametric function
(Weibull function). Similarly, Lewandowska and Sommer (2010)
transformed phytoplankton biomass according to standard
normal variation and took the first and third quartiles as
cardinal dates, the beginning and the end of the spring
bloom, respectively.

Several of the above mentioned methods (or listed by
Ji et al., 2010) cannot properly deal with bi-modal data
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FIGURE 6 | Pair plots of the log transformed response variable (fused chlorophyll-a), and the explanatory variables (log transformed radiation and temperature).

Scatter plots are shown together with Kernel Density Estimates (black) and linear regression (red).

(require separation of the spring bloom) or large fluctuations in
amplitude, some methods need parametric fitting (e.g., Vargas
et al., 2009), and most methods cannot deal with noisy data,
hence require smoothing to pre-process the seasonal data before
deriving the cardinal dates. As summarized by Ji et al. (2010)
if the seasonal time series is uni-modal, from densely sampled
and without noise, most methods will perform well. This is
rarely the case, unless the data is interpolated and denoised.
If that is not the case, more flexible approaches perform

better which use less assumption on distribution patterns.
For this reason to track long term changes in phytoplankton
spring blooms we propose to derive the cardinal dates using
a non-parametric shape constrained method, namely log-
concave regression (Groeneboom et al., 2001; Groeneboom and
Jongbloed, 2014; Doss, 2019). Log-concave regression meets
this flexibility requirement as it does not require any tuning
parameters and can be directly applied on the annual bi-
modal time series without any pre-processing. Consequently, our
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proposed method is less sensitive to bloom amplitude, missing
data, and observational noise.

In summary, determining a mode of a unimodal (part of a)
function, sometimes called “bump hunting” is classically done
using smoothing techniques, assuming some level of smoothness
(which is reasonable) of the function. The advantage of using log-
concave regression compared to techniques based on smoothing,
is that it does not require tuning parameters (such as bandwidths)
that heavily influence the outcome of the analysis. An alternative
method one could use, would be unimodal regression, where no
smoothness is used at all, resulting in discontinuous unimodal
step functions as estimate of the regression function. The large
class of log-concave functions contains unimodal functions that
are continuous. Moreover, estimation of these can be done in a
stable manner.

In order to track long term changes in phytoplankton
spring blooms we propose to derive the cardinal dates
using a non-parametric shape constrained method, namely
concave regression (Groeneboom et al., 2001; Groeneboom and
Jongbloed, 2014; Doss, 2019). The concave or convex regression
setup for a data set of size {n :(xi, yi) : i = 1, . . . , n} where x1 <
x2 < . . . < xn is the following:

Yi = r0(xi)+ ǫi

for a concave function r0 on R, where {ǫi : i = 1, . . . , n} are
independent and identically distributed random variables and Yi

is the log chlorophyll-a concentration. Then, we apply concave
regression on the log chlorophyll-a concentration data. We
assume that the target of the estimation, r0 :R → R, is concave.
WritingK for the set of concave functions onR, the least squares
estimate of r0 is

argmin
r∈K

8(r), where 8(r) =
1

2

n
∑

i=1

(

yi − r(xi)
)2

Utilizing this concave regression setup, the following two
methodological steps are taken to identify the spring bloom
cardinal dates (see Figure 7). The cardinal dates are the spring
bloom beginning (B), -peak (P), and -end (E) dates expressed as
the day of the year.

2.4.1. Isolating the Spring Bloom
We take yearly time series of log chlorophyll-a concentrations
(yt), and assume that it is bi-modal separated by a boundary point
tb. In order to reduce computation time of the first step, we omit
the first 2 months (t1 = 60) and last 2 months (t2 = 300) of the
dataset since we know that the boundary that separates the spring
and summer bloom will not be found there. It should be noted
that omitting a portion of the yearly time series is only done in
the first step during the identification of the boundary point. In
the latter step, during the derivation of the spring bloom cardinal
dates all dates on the “left side” of the boundary point are used

[0, t
opt

b
]. Omitting a portion of the yearly time series is optional.

Then we fit8(t) on the data:

8(t) =
{

ϕtb (t) t ≤ tb

ϕ̃tb (t) t > tb

where ϕtb (t) is the concave regression of (xi, yi) : xi ≤ tb on
[t1, tb], the “left side,” and ϕ̃tb (t) is the concave regression of
(xi, yi) : xi > tb on [tb + 1, t2], the “right side.” Therefore, both

ϕtb (t) and ϕ̃tb (t) are concave. The optimal boundary t
opt

b
is found

where the mean squared error of8(t) is minimal:

t
opt

b
→ argmin

tb

MSEtb + ˜MSEtb

MSEtb =
1

tb

tb
∑

j=t1

(

yj − ϕtb (tj)
)2

˜MSEtb =
1

t2 − tb

t2
∑

j=tb+1

(

yj − ϕ̃tb (tj)
)2

This process of determining the boundary of spring and summer
bloom is visually depicted in Figures 7A,B.

2.4.2. Derive Cardinal Dates of the Spring Bloom

After finding the boundary (t
opt

b
) only the spring bloom (“left

side”) of the data is considered for further analysis where t ∈
[0, t

opt

b
]. Then we take a continuous function 8∗(t) which is

defined as follows:

8∗(t) =











cl = mean
(

yt : t ∈ [0, tl]
)

t ≤ tl

ϕ(t) tl < t ≤ tr

cr = mean
(

yt : t > tr
)

t > tr

where cl and cr are constant and ϕ(t) is the concave regression of
(xi, yi) : tl < xi ≤ tr . The points where the left constant function
ends and the right constant function starts (tl and tr) will become
the beginning and the end of the bloom (cardinal dates B and
E). The third cardinal date, the peak of the bloom, is where ϕ(t)
takes its maximum. The points tl and tr are foundwhere themean
squared error of8∗(t) is minimal:

(tl, tr) → argmin
tl ,tr

MSEcl +MSEcr +MSEϕ

MSEcl =
1

tl

tl
∑

j=0

(

yj − cl(tj)
)2

MSEcr =
1

tJ − tr

tJ
∑

j=tr

(

yj − cr(tj)
)2

MSEϕ =
1

tr − tl

tr
∑

j=tl

(

yj − ϕ(tj)
)2

This final methodological step to identify tl and tr is shown
in Figures 7C,D. Finally, the cardinal dates together with
the concave regression and the chlorophyll-a time series
(transformed back to original values by taking their exponential
function) are depicted in Figure 7E.
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FIGURE 7 | Steps to derive the cardinal dates of phytoplankton spring blooms: (1) Determining the boundary (tb) for isolating the spring bloom (A,B), and (2) concave

regression to spring bloom (C,D). The cardinal dates of the spring bloom are shown in (E).

3. RESULTS

3.1. Fused Chlorophyll-a Concentration
Signal
The fused chlorophyll-a concentration signal, together with

satellite observations, is depicted in Figure 8A and with in-situ

observations in Figure 8B. One can observe that the fused signal
almost perfectly follows the in-situ (“water”) observations over
the period in which only that type of measurements are available.
From the moment that both in-situ and satellite date are available
(1998), the fused signal lies between the two types but being closer
to the in-situ observations according to the model formulation,
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FIGURE 8 | Data fusion results. The mean fused chlorophyll-a concentration signal (green) with uncertainty (gray) compared with satellite observations (blue) in (A),

and in-situ “water” observations (red) in (B). Quantile-quantile plot of the fused signal compared to both in-situ and satellite observations in (C) and scatter plot in (D).

since we have higher confidence in the field data. This is also
reflected in the quantile-quantile plot and scatter plot of the
fused signal compared to the in-situ data in Figures 8C,D, which
lies almost perfectly on the diagonal, whereas the plot of the
fused signal against the satellite observations deviates more from
the diagonal. This enhancement of the historical chlorophyll-a
signal has benefits for the projection step. Since the long-term

projection is largely based on the observed correlations, if the
input chlorophyll-a concentration time series is less accurate the
statistical model will misrepresent the processes.

3.2. Long Term Chlorophyll-a Projection
The Bayesian structural time series model (introduced in section
2.3) was trained (1976–2010) and tested (2010–2018) on the fused
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FIGURE 9 | Time series forecasting validation against fused observations. Model fit between 1976 and 2010 (blue) and forecast between 2010 and 2018 (red).

Predictive uncertainties in shaded area.

FIGURE 10 | Scatter plot of predicted chlorophyll-a concentration against

fused observations. Model forecast between 2010 and 2018 with N = 3,287

data points.

chlorophyll-a concentration signal and the historical measured
solar radiation and air temperature data. Figure 9 visually depicts
the validation of the in-sample forecast (1976–2010) and the
forecast (2010–2018) against the fused data. The figure shows that
most measurements (75%) lie within the predictive uncertainty
band, indicating the model’s reliability. The scatter plot of
predictions is shown in Figure 10 whereas the performance
metrics can be found in Table 1.

While long-term data driven chlorophyll-a concentration
prediction for climate impact assessment is not widespread,
there have been few studies conducted on both inland water
systems (Cho et al., 2018; Keller et al., 2018; Liu et al., 2019;
Luo et al., 2019) and marine systems (Irwin and Finkel, 2008;

Blauw et al., 2018; Krasnopolsky et al., 2018; de Amorim
et al., 2021) that performed short term predictions. Blauw et al.
(2018) predicted chlorophyll-a in the North Sea at different sites
applying Generalized Additive Models (GAMs) with accuracies
(R2 values) ranging from 0.25 to 0.51 for hourly time scale,
0.15–0.22 for daily time scale, and 0.27–0.63 for bi-weekly
time scale. Higher accuracy (R2 = 0.83) was obtained in
the North Atlantic, using a spatial GAM to predict month-to-
month variation (Irwin and Finkel, 2008) or in a recent study
by de Amorim et al. (2021) where an R2 value of more than
0.7 was achieved for a longer-term prediction (multi-year) with
three different algorithms: Support Vector Machine Regressor
(SVR), Random Forest, and Multi-layer Perceptron Regressor
(MLP). SVR performed the best (R2 = 0.78) with 17 predictor
variables. Similar accuracies (R2 values) were achieved in short-
term prediction studies for lakes or reservoirs using Random
Forest algorithm on monthly (0.2–0.6) and daily (0.6–0.8) data
(Liu et al., 2019), as well as using Multiple-Layer Perceptron
Neural Network (MLPNN) and Adaptive Network-based Fuzzy
Inference System (ANFIS) 0.52–0.85 (Luo et al., 2019). In
comparison with these studies, we conclude that our model has
acceptable accuracy, especially considering that we predict on
a daily scale and 8 years ahead, while most of the cited work
focuses on much shorter prediction time frame. It should be
noted that model comparability with other studies is hampered
not only by the differences in ecosystem types (fresh water or
open ocean instead of coastal waters) but also due to the fact that
the predictor variables differ, and so as the experimental setup
such as data splitting strategies, and prediction time frames.

After the calibration of hyperparameters and initial validation,
the time series model was retrained using the entire historical
period (1976–2018), to better capture historical trends, and used
for long-term chlorophyll-a concentration projection (2019–
2089). Since the model contains log transformed solar radiation
and air temperature as regressors, they need to be provided
for the entire projection period. Consequently, after 2019 the
bias corrected climate change projections are applied instead of
the field observations. Given the numerous generated climate
change projections (120 were used), the same number of
future chlorophyll-a concentration trajectories were simulated,
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TABLE 1 | Time series forecasting validation metrics against fused observations.

Performance metric Value

N 3287.00

MAPE 0.38

RMSE 3.78

R2 0.51

% of obs in uncertainty band 75.63

Model forecast between 2010 and 2018 with N = 3,287 data points.

as shown in Figure 11. One can observe that the predictive
uncertainty increases over time as we get farther from the
projection start date. This predictive uncertainty originates from
the trend component as explained in section 2.3, and the
modeling choices (e.g., changepoint prior scale) will influence
it. We should emphasize that such long term projection is only
a simplified approximation of the future chlorophyll-a signal,
which follows a piecewise linear trend and continues to repeat
its multi-seasonal behavior, learnt from the past data, moreover
includes linear effects of the two climate variables. These
assumptions guarantee fast computation time, thus allowing
numerous simulations for uncertainty quantification, which is
the objective of this study. Nonetheless, it does not replace
complex physically-based numerical models that are capable of
simulating a wide range of ecological processes.

3.3. Changes in Phytoplankton Bloom
Dynamics
The feature extraction step to derive the spring bloom cardinal
dates (see section 2.4) is first applied to the mean fused
chlorophyll-a data to obtain the historical changes in spring
bloom dynamics. Unfortunately, the cardinal dates could only
be derived starting from 1998. This is due to the fact that
between 1976 and 1998 only in-situmeasurements were available
which had a sparse temporal sampling frequency (10–20 per
year). As previously argued, this number of yearly data points
is insufficient to extract the cardinal dates. The historical
phytoplankton bloom dynamics from 1998 to 2018 is depicted
in Figure 12. The figure displays the three cardinal dates
(beginning—green, peak—red, end—blue), the bloom duration
(shaded blue area), and the bloom duration anomaly from the
long-term mean bloom duration (bar chart). It can be observed
that for certain years (2002, 2012, 2013) the bloom peak and
bloom end cardinal dates lie very close to each other. These
instances were visually confirmed. It was found that for 2002
and 2012 the feature extraction algorithm was accurate as a fast
decay followed the bloom peak. On the other hand, in 2013 there
was visibly no spring bloom observed, only a dominant summer
bloom. This led the algorithm to falsely identify the spring bloom
peak and end. This finding suggests that years where no spring
bloom is observed should be removed from the dataset prior
to applying the spring bloom cardinal detection algorithm. A
possible extension of the method could be to report the type of
seasonality (spring bloom, summer bloom, bi-modal, no bloom)
(González Taboada and Anadón, 2014) since changes in the type

of seasonality are of interest, nevertheless, this is not part of the
current implementation.

The feature extraction steps are then repeated on the projected
future chlorophyll-a concentration between 2019 and 2089. The
projected future spring bloom cardinal dates are depicted as
boxplots in Figure 13A and as histograms in Figure 13B. The
results indicate a relatively small variation, ∼ 6 days, in the
projected bloom peak timing (see Figure 14B), while a much
higher level of uncertainty is observed for the bloom beginning,
∼ 25 days, (see Figure 14A) and end timing, ∼ 20 days
(see Figure 14C). Bloom beginning and -peak resemble normal
distributions, in the case of the bloom peak with a lower
variance (higher peakedness). On the other hand, the bloom end
resembles a right skewed log-normal distribution with relatively
heavy tale due to the high number of outliers.

The bloom beginning is projected to slightly but consistently
shift earlier, resulting in longer bloom duration toward the end
of the century (see Figure 15A). The earlier spring bloom as
an effect of climate change is in line with previous findings
by Lewandowska and Sommer (2010) and Winder et al. (2012)
in laboratory trials (mesocosm experiments), by Desmit et al.
(2020), Hjerne et al. (2019), Philippart et al. (2010), and Edwards
and Richardson (2004) using historical data, or by Friocourt
et al. (2012) using numerical (hydrodynamic and ecological)
prediction models forced by future climate change scenarios.
Many of these studies found an even higher rate of spring bloom
forward shift but in our case the accelerating effect of temperature
rise might be moderated by the decreasing solar radiation trend.
Despite the considerable uncertainty in the bloom end timing,
no apparent trend can be observed. We emphasize that the
actual day of the year of the derived cardinal dates may not be
comparable to other findings in literature, since we used another
method to obtain these cardinal dates. Thus, the projected trends
and uncertainties carry the most value. We should also point
out that the projected earlier spring blooms may not be a
simple climatic response but could be the result of complex
processes (physical and non-physical). Further investigation of
these processes is necessary to fully understand the underlying
mechanisms causing shifts in phytoplankton dynamics (Hjerne
et al., 2019).

Apart from the cardinal dates, the chlorophyll-a concentration
magnitude was also investigated. As Figure 15B shows, at the
end of the twenty-first century higher spring bloom peak
magnitude can be expected. Considering the ensemble mean
values, a 0.4%year−1 trend is projected. This trend magnitude is
comparable with the latest findings on chlorophyll-a historical
trends in the North-West Shelf regions (0.4–0.96% year−1)
Hammond et al. (2020), noting that this estimate was considering
offshore marine waters, not coastal zones. It is also comparable to
Xu et al. (2020) who found nearly 20–30% chlorophyll increase in
the same study area between 1987 and 2012. Various numerical
studies using climate models also project moderate increase in
daily mean net primary production between 1980–1999 and
2080–2099 in the shallower southern North Sea (Holt et al.,
2014, 2016; Pushpadas et al., 2015). We must emphasize that
increasing chlorophyll concentration due to climate change is
highly region specific (only occurring in some coastal areas) and
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FIGURE 11 | Long term chlorophyll-a concentration time series projection with radiation and temperature explanatory variables from generated climate projections

(based on EURO-CORDEX). One hundred and twenty solar radiation and air temperature projection scenarios were used to produce the 120 chlorophyll-a

trajectories. Model fit between 1976 and 2018 (blue) and projection between 2019 and 289 (red). Predictive uncertainty in shaded area.

FIGURE 12 | Historical spring bloom cardinal dates (beginning—green, peak—red, end—blue) and bloom duration (shaded blue area). The bar chart shows the yearly

deviation (anomaly) from the long-term mean bloom duration.

very much debated (Xu et al., 2020). In fact, some studies only
report shift in spring bloom timing and species composition, but
not in magnitude. In our study the projected positive trend is
most probably driven by the linear trend component of the time
series model and the rising air temperature as regressor, which
have positive correlation to chlorophyll, based on the historical
data. It should be noted, that in reality the correlation between
air temperature and chlorophyll-a is non-linear and seasonally

varying, moreover, it is different on a species or aggregate
level. As the time series model could not incorporate non-linear
correlations, it is assumed linear, hence, simulated interactions
are only approximations of the real conditions. Nevertheless, in
the season of interest (spring), when air temperature and solar
radiation values did not reach their peak, this correlation is
positive and the linearity assumption is a good approximation
(see Figure 6). Furthermore, with chlorophyll-a concentration
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FIGURE 13 | Range of projected future bloom cardinal dates (A) and their distributions (B) under 120 generated radiation and temperature projections (based

EURO-CORDEX) (2019–2089). The statistics are grouped based on the generated projections corresponding to RCP scenarios (G-RCP4.5 and G-RCP8.5).

as a proxy we aim to describe aggregate level response, rather
than species level response. We also emphasize that bloom
magnitude is heavily influenced by nutrient concentration in the
mixed layer depth (Sverdrup, 1953; Behrenfeld, 2010). Although
nutrient concentration was not used as an explanatory variable
in this study we may expect that the correlation between air
temperature and chlorophyll-a captured in historical data may
include indirect effects such as thermal stratification, which
influences nutrient availability in the mix layer depth.

The projected cardinal dates in Figures 13–15 are also
grouped based on the generated projections corresponding to
RCP scenarios. One observed difference is that in the last
two decades bloom peak magnitudes are somewhat higher
for RCP8.5. Perhaps counter intuitively, no other structural
differences are visible between the RCP scenarios. The similarity

between projected cardinal dates corresponding to RCP scenarios
could be attributed to few reasons. Firstly, we must investigate
the differences in solar radiation and air temperature projections
between the RCP scenarios from Euro-CORDEX. As Figure 5

depicts, these differences for solar radiation are not apparent.
For air temperature projections we see similar behavior until
the end of the century and differences in the last two decades
become more articulate (RCP8.5 being higher), although few
GCMS from both RCPs remain entangled and only one GCM
from the RCP8.5 scenarios presents more extreme behavior. This
leads us to the second reason which might explain the lack
of difference in cardinal dates between RCPs. The generated
scenarios have been produced with a Bayesian stochastic
generator introduced in Mészáros et al. (2021). This model
assumes that Euro-CORDEX scenarios are exchangeable rather
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FIGURE 14 | Projected future phytoplankton spring bloom beginning (A), peak timing (B), and end (C) under generated (G) radiation and temperature projections

(based EURO-CORDEX) (2019–2089). The cardinal dates are grouped based on all generated projections (G), and generated projections corresponding to RCP

scenarios (G-RCP4.5 and G-RCP8.5).
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than independent, due to the fact that they originate from a
common genealogy (Steinschneider et al., 2015). Consequently,
the model formulation induces the phenomenon of “borrowing
strength” where estimates for parameters over different scenarios
are combined (“pooled”). This can correct outlier-like behavior
and makes the estimates statistically more robust (Gamerman
and Lopes, 2006; Gelman and Hill, 2006). Thus, synthetic
projections from this stochastic generator relax some of the
distinct characteristics that input Euro-CORDEX RCP scenarios
had. Although, new synthetic scenarios are generated per
Euro-CORDEX scenario, due to the intentionally propagated
uncertainty, the differences between synthetic scenarios of
different RCP “families” may be less prominent. Additionally,
the lack of clear response to the evident temperature difference
increase in the past two decades may be attributed to a delayed
feedback caused by ecosystem resilience (Atkinson et al., 2015).
Finally, and perhaps most importantly, it should be emphasized
that generated scenarios serve as input into the structural time
series model, which then feeds into log-concave regression step to
derive the bloom metrics. As mentioned above, this adds further
layers of uncertainties and the impacts of the various non-linear
transformations may not be easily explained.

4. DISCUSSION

This paper presents an approach to study observed past and
projected future marine phytoplankton phenology making use
of statistical techniques, rather than physically-based models.
The Bayesian setup in the data fusion and time series
prediction models offer flexibility in model formulation and
allow characterization of predictive uncertainties, which is
crucial in climate change impact studies. In addition, for
the extraction of phytoplankton cardinal dates we proposed
a non-parametric regression model under shape constraints
which has not been used before for such purposes, to our
knowledge. Regarding the applied data, we aimed to make best
use of the cross-disciplinary and multi-sourced measurements,
covering marine biogeochemistry and atmospheric variables
from field measurements, satellite imagery, numerical models,
and synthetic generated scenarios.

We acknowledge the various sources of uncertainties in the
data andmodels, which are considered and statistically quantified
where possible. Firstly, uncertainty in the fusion of chlorophyll-a
observations is quantified by the posterior distributions obtained
through Bayesian parameter inference. Secondly, uncertainties in
the climate projections are addressed using a large ensemble of
generated stochastic scenarios, which cover numerous possible
trajectories. Thirdly, in the Bayesian time series model we
quantify uncertainties in two ways. On the one hand, uncertainty
intervals of the future trend are computed individually for
each projection, and on the other hand, this is repeated for a
large number of projections, resulting in predictive uncertainty
bands for each trajectory and for the entire ensemble. Lastly,
uncertainty quantification in the feature extraction step is not
possible explicitly, nevertheless, thanks to the ensemble approach

a range of potential phytoplankton phenologies are simulated
over the course of the twenty-first century.

The main findings regarding phytoplankton phenology, the
projected uncertainties in the beginning and the end of the
spring bloom, as well as the prolonged bloom duration, increased
peak magnitude and its forward shift (earlier bloom), may have
repercussions on the marine food web. Friedland et al. (2015)
found the same trends and attributed them to phenological
mismatch between bloom timing and grazing pressure. When
grazing pressure is shifted and predator-prey interactions are
perturbed the phytoplankton loss by grazing is reduced resulting
in higher bloom magnitude (van Beusekom et al., 2009). The
forward shift in phytoplankton bloom phenology may also be
explained by several other factors. These include increased early
spring temperatures that accelerate phytoplankton cell division
rates (Beaugrand and Reid, 2003; Tulp et al., 2006; Hunter-Cevera
et al., 2016), change in stratification driven by temperature and/or
wind trends, or change in the underwater light climate. Although,
in our study slightly negative radiation trends are projected light
availability can also be influenced by turbidity.

A consequence of these projected trends could be that
energy transfer to higher trophic levels is disrupted as there
is a tight coupling between the plankton trophic levels in
marine pelagic ecosystems (Richardson and Schoeman, 2004).
Such consequences are often described with the trophic match-
mismatch hypothesis of Cushing (1990). Based on this hypothesis
the reproductive success of higher trophic levels will be best
when the phytoplankton phenology matches their requirements.
Phenological shifts may therefore cause a temporal mismatch
between zooplankton consumption (grazing) and phytoplankton
production peak leading to higher mortality of the zooplankton,
causing cascading effects toward the higher members of the food
web (Richardson and Schoeman, 2004; Tulp et al., 2006; Sommer
et al., 2012; Blauw et al., 2018). This has been documented in the
North Sea (Beaugrand et al., 2003), and other parts of the North
Atlantic (Platt et al., 2003; Koeller et al., 2009). The severity of
these adverse effects in temperate productive systems is, however,
debated (Atkinson et al., 2015). Due to already high natural
variability in the timing of predator consumption and its prey
in temperate marine systems, compensating mechanisms may
exist that could potentially reduce the impact of the projected
planktonic phenological shift (Atkinson et al., 2015; Desmit et al.,
2020).

Our study aimed to quantify how uncertainty in
environmental forcing, that influences the formation mechanism
of spring blooms (through thermal stratification, mixed-layer
temperatures, phytoplankton metabolic rates, and grazing)
will impact the uncertainty in spring blooms dynamics. Since
uncertainties in the spring bloom dynamics (especially timing;
Townsend et al., 1994) are closely tied to uncertainties in
secondary production, in the survival of larval populations, and
ultimately in the recruitment to the adult stock (Longhurst,
2007), our results can inform further studies that attempt to
propagate phytoplankton phenology related uncertainties to
ecosystem response in higher trophic levels. An enhanced
understanding of the variability of phytoplankton blooms
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FIGURE 15 | Projected future phytoplankton spring bloom duration (A) and peak magnitude (B) under generated radiation and temperature projections (based

EURO-CORDEX) (2019–2089).

is therefore a crucial step to estimate the impact on marine
ecosystem functioning (Winder and Cloern, 2010).

For future research the authors recommend to merge three
components of the methodological framework into a single
model. Integrating the Bayesian stochastic climate generator, the

Bayesian data fusion model, and the Bayesian structural time
series model would provide a consistent Bayesian hierarchical
model that eliminates redundancies and offers a more elegant
solution. It is worth noting that this integrated solution would
be harder to re-use for researchers who are interested to take
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advantage of only a part of the model (stochastic generator,
data fusion, or projection) rather than the full chain. A further
recommendation is to extend the approach to include spatial
correlations, since currently only one location is considered.
Extending the methodology in this way would allow us to make
better use of the multi-dimensional data structure and include
spatial gradients from coast to offshore locations.

As previously mentioned, chlorophyll-a concentration
may not be an accurate proxy of phytoplankton biomass in
the Southern North Sea (Alvarez-Fernandez and Riegman,
2014). In order to address this shortcoming, a potential
avenue would be to apply novel satellite-derived products
that consider phytoplankton functional types (Xi et al.,
2020) or use phytoplankton carbon (Bellacicco et al., 2020)
instead of chorophyll-a. Although less frequently measured
phytoplankton historical in-situ data is available in the North
Sea, that could complement satellite derived indicators. In
future research it should be evaluated if these indicators could
better assess phytoplankton response to climate change.
Another natural extension of the research is to further
propagate uncertainties in spring bloom metrics to ecosystem
behavior. This could be achieved using statistical techniques
or numerical models for predictive habitat distribution
modeling (e.g., artificial neural networks, classification, and
regression trees).

An important limitation of the study is to only use air
temperature and solar radiation as environmental covariates.
Even though we confirmed that air temperature and solar
radiation are the most dominant predictors for the study area
and for the targeted temporal scale, inclusion of additional
environmental factors impacting vertical mixing and bloom
formation, such as nutrients, wind, salinity, dissolved oxygen, or
mixed layer depth could improve the scenario analysis. Noting
that the availability of long-term climate projections of any
additional covariate is a prerequisite. Precipitation as a process
related to ocean salinity has not been included for the following
reason. According to van Aken (2008) the salinity in theWadden
Sea is determined by fresh water input and its mixing with
the North Sea and the influence of local climatic variations
in precipitation can be ignored. Long-term variability of the
salinity in our study area is in fact due to climatic variations
in the precipitation over the river catchment areas (particularly
the river Rhine) along with other human induced changes and
operation of waterways and sluices. Therefore, precipitation data
at this site was not considered. Nevertheless, the air temperature
and solar radiation variables indirectly impact ocean salinity
through evaporation rates. Excluding vertical mixing processes
such as wind can also be justified. While vertical mixing
indeed affect nutrient conditions for phytoplankton blooms,
the impacts depend on whether the area is already stratified
(Tulp et al., 2006). According to Groeskamp et al. (2011),
at the study location the water column is usually vertically
well-mixed due to strong tidal mixing processes (strong flood
and ebb currents) and persistent wind, which is a common
feature here. This makes wind less relevant at this particular
location. This was confirmed by both literature and our own
data analysis.

Along with these points, we should also mention another
important source of uncertainty in future climate studies
focusing on the coastal zone, which is the role of anthropogenic
interventions. Such interventions in the southern North Sea
include coastal zone management efforts, aquaculture activities,
sand mining, oil drilling, or fishing. Especially, large dredging
and replenishment activities, like the major extension of
the Port of Rotterdam (Maasvlakte 2) cause resuspension of
buried inorganic nutrients into the water column and alter
phytoplankton seasonality. In shallow coastal locations these
uncertainties from anthropogenic impacts may outweigh the
climate change induced ones, while moving toward transitional
and offshore waters the effects are less prominent. Nonetheless,
in this research human impacts are not addressed, only
climatic ones.

Finally and most importantly, we recognize that our results
related to climate change impacts on spring bloom dynamics
will not resolve the ongoing debate on the complex and
often contradictory findings. Especially, given the fact that
the proposed data driven approach neglects the complicated
and often non-linear ecological processes on species level.
We reduced the marine biogeochemical response to climate
change into a simple cause-effect relationship between two
climate variables and chlorophyll-a concentration. As a
consequence, our results are only an extrapolation of the
observed correlations given projected changes in the climate
using statistical models and giving appropriate attention to
uncertainty quantification.

Despite the limitations, we believe that our proposed approach
contributes to an integrated understanding of ecological
responses to variable climate change through expressing future
likelihoods of projected spring bloom dynamics and through the
enhanced characterization of uncertainties associated to data and
statistical methods.
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5. APPENDIX

The Forward Filtering Backwards Sampling (FFBS)-algorithm
steps (Carter and Kohn, 1994; Särkkä, 2013) are defined as
follows, where the dynamic and measurement models are:

xk = Ak−1xk−1 + ak−1 + N(0,Qk−1)

yk = Hkxk + N(0,Rk)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement,
N(0,Qk−1) is the process noise, N(0,Rk) is the measurement
noise, Ak−1 is the transition matrix of the dynamic model, Hk

is the measurement model matrix, and the prior Gaussian x0 ∼
N(m0, P0). The model can be written in probabilistic terms:

p(xk xk−1) = N(xk Ak−1xk−1 + ak−1,Qk−1)

p(yk xk) = N(yk Hkxk,Rk).

This implies that there exist vectorsm−
k
andmk, andmatrices P−

k
,

Pk, S
−
k
such that

p(xk y1 : k−1) = N(xk m−
k
, P−

k
)

p(xk y1 : k) = N(xk mk, Pk)

p(yk y1 : k−1) = N(yk Hkm
−
k
, S−

k
)

Then the prediction and update steps are the
following, where the the recursion is started
from the prior mean m0 and covariance
P0.

For k ≥ 1 Prediction steps

m−
k
= Ak−1mk−1 + ak−1

P−
k
= Ak−1Pk−1A

T
k−1 + Qk−1

Update steps

vk = yk −Hkm
−
k

Sk = HkP
−
k
HT
k + Rk

Kk = P−
k
HT
k S

−1
k

mk = m−
k
+ Kkvk

Pk = P−
k
− KkSkK

T
k

Backward sampling:

Gk = PkA
T
k [P

−
k+1

]−1

ms
k = mk + Gk[yk+1 −m−

k+1
]

Psk = Pk − GkP
−
k+1

GT
k
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