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Abstract—Several initiatives are developed to shift the current
paradigm in Air Traffic Management from the tactical-based
approach to more strategic-based coordination of flights. This
transformation of the ATM system relies on the improvement
of predictive models for the 4D flight trajectories. A variety of
performance-based and data-driven approaches are developed for
trajectory predictions. The accuracy of the predictions is often
deterministic and can be highly impacted by uncertainties that
occur in each flight. These uncertainties are commonly related to
the lack of detailed information concerning the flight intent, or
the inaccuracy of positional and weather-related data. To better
understand prediction errors and uncertainties in data-driven
predictions, this study proposes a novel two-stage Gaussian
Process Regression (GPR) approach. By combining historical
flight data and flown trajectory of a given flight, the predictive
distributions from the GPR allow us to study both prediction
errors and uncertainties. To evaluate the model, we applied the
method for flights arriving at the Amsterdam Airport Schiphol.
We also evaluate and quantify how flight-plan and meteorological
information help to reduce prediction error and uncertainty.

Index Terms—Trajectory prediction, Gaussian Process Regres-
sion, Prediction accuracy, Uncertainty quantification

I. INTRODUCTION

Trajectory Based Operations (TBO) have been identified as
a key enabler for future ATM [1]. Effective implementation
of such an approach relies on the accurate prediction of the
flight path. The quality of these predictions is often impacted
by uncertainties, which may vary during different phases of
the flight. Traditionally, TPs are modeled using deterministic
techniques and models which do not explicitly capture the
sources of uncertainty that affect the prediction accuracy [2].
Many of these models provide a single trajectory forecast
without the ability to express prediction uncertainties.

Modeling uncertainty in predictive analytics involves the
process of uncertainty quantification, which aims to describe
how the uncertainty in input parameters of a predictive model
affects the uncertainty of the predictions of the target variable.
This is commonly addressed by Monte Carlo simulations,
where performance parameters are expressed by Probability
Density Functions (PDF). And subsequently, the input un-
certainties are propagated through deterministic models to
identify the joint effect of the stochastic factors on the predic-
tions of the target variable [3], [4].

The increasing availability of trajectory data has given rise
to the popularity of data-driven techniques that apply machine
learning models to predict aircraft trajectories. Radar data and
Automatic Dependent Surveillance-Broadcast (ADS-B) data

are widely used sources [5]–[7]. Aircraft intent data is com-
monly derived from flight plans, which typically contain the
type of aircraft, cruising speed, cruising level, and waypoints
describing the intended route [8], [9].

The data-driven predictive models aim to exploit different
data sources to extract relevant trajectory features that could
be used to predict aircraft positions. A broad variety of
machine learning techniques are applied in the literature.
For example, [10] proposed statistical regression models that
assumed the aircraft position to be a function of a set of
dependent variables. The study concluded that the regression
model obtains more accurate predictions compared to the
performance model-based (e.g. BADA) approach. In [11],
Generalized Linear Models are employed to predict arrival
times of descending aircraft. This study identified the aircraft
type, initial altitude, and initial ground speed as the input
variables with the greatest statistical significance to predict the
arrival time. Also, Neural Networks have been widely adopted
in data-driven trajectory predictions globally, for example, in
[12]–[14], as well as in studies conducted by EUROCON-
TROL. [15], [16].

Other studies have identified the main sources of uncertainty
in aircraft trajectory predictions [17], [18]. These inaccuracies
come from errors in position and speed measurement, un-
known aircraft mass, and meteorological conditions [2]. The
lack of knowledge concerning the operational strategy of
the airline and deviation of common ATC practices are also
major sources of uncertainty [18], [19]. Another major source
of uncertainty occurs in the temporal domain, for example,
caused by the inaccurate take-off time prediction [16], [20].

The majority of these studies focus on the evaluation of
prediction accuracy, which could either be expressed by the
spatial-temporal errors between the prediction and actual tra-
jectory [8], [21]. In addition to quantifying the errors, quanti-
fication of prediction uncertainties remains to be a challenging
topic for trajectory predictions. How to properly make use of
historical flights and flown trajectory of an existing flight also
needs further research.

In this paper, we propose a two-stage Gaussian Process
Regression (GPR) approach for estimating trajectory predic-
tion errors and uncertainties. One GPR model is designed to
consider historical flights with similar flight patterns, while
another to incorporate the partially flown trajectories of a
flight. Finally, the GPR models provide predictive distributions
for quantifying the uncertainties.



II. CORE METHODOLOGY

A. Trajectory clustering

Clustering is used in this study to extract historical flights
that have similar flight tracks. We make use of the common
DBSCAN method [22] that generates clusters based on density
of the sampled flight trajectories. For situations where main
flight patterns are known (e.g., in terminal maneuvering area),
k-means methods are used in combination with DBSCAN to
further refine the clusters according to Standard Instrument
Departure Routes and Standard Arrival Routes. We also ad-
opted the simple Euclidean distance metric for the trajectory
clustering.

B. The general Gaussian Process regression

Gaussian Processes can be used to represent a collection
of random variables that are temporally and spatially related.
Any finite set of those variables is assumed to form a mul-
tivariate normal distribution. The random variables express the
evaluation of a function f(x) at a possibly multidimensional
input location x. With training data, GPR learns the underlying
distribution, which could be fitted by potentially infinitely
many functions. GPR provides an elegant approach to assign a
probability to each of these functions [23], where the mean of
this distribution represents the most probable regression model
of the data.

We can formulate the GPR as mean function m(x) and
covariance function k(xi, xj).

For simplicity, the mean function m(x) is often assumed
to be zero. The characteristics of f(x) are fully specified by
a combination of covariance functions (or kernels) K(X,X),
which essentially specifies the correlation between different
data points.

A variety of kernels are discussed in literature [23], [24].
Once the covariance function is selected and the hyperpara-
meters are learned from training data, GPR can be applied
to estimate the value of a function evaluated at any set of
new inputs X∗. The joint distribution of (possibly noisy)
observations y and predicted values y∗ is expressed as a
multivariate normal distribution. The predictive distribution y∗,
conditional on the training data (X, y) and the provided test
data X∗, is then represented as follows:

y∗ | X∗, X, y ∼ N (µ,Σ) (1)

where µ and Σ can be calculated as:

µ = K (X∗,X) K(X,X)−1y

Σ = K (X∗,X∗)−K (X∗,X) K(X,X)−1 K (X,X∗)
(2)

Here, parameters X , y, and X∗ are obtained from trajectory
data. The choice of kernel(s) K is described in the next section.

C. A two-stage GPR approach for trajectory prediction

Three main building blocks are required to train two GPR
models, which are training data, kernel functions, and hyper-
parameters.

Firstly, A training dataset is constructed that contained
both the target variables (position and altitude) and predictor
variables. We tested three different models that are trained with
different predictors (Table II).

Secondly, a covariance function (kernel) is selected. This
function highly influences the shape of the predicted trajectory.
Several kernels are commonly available for modeling these re-
latively smooth functions. They include Radial Basis Function
(RBF) kernel, RBF kernel, Rational Quadratic Function kernel,
and the Matérn kernel. These kernels are combined with a
linear kernel, which accounts for modeling straight segments.

Thirdly, the alpha parameter is specified to prevent nu-
merical issues during fitting and could be interpreted as the
additional variance on the training data.

Table I: Three different GPR models trained on different sets of
predictor variables.

GPR Model Predictor variables

Model-A ADS-B data only
Model-B ADS-B and Flight Plan data
Model-C ADS-B, Flight Plan, and ERA5 data

The first stage aims to develop a History GPR model (GH )
based on the training data from historical trajectories for each
cluster. To limit the processing time, the number of data points
that form each trajectory is reduced with the Ramer-Douglas-
Peucker (RDP) algorithm [25], which simplifies a curve con-
nected by points, by representing that curve with fewer points.
We make use of k-fold cross-validation to identify the best-
fitted kernel and its corresponding hyperparameters. The final
GH model is a stochastic regression model that allows us to
sample flight data points from a cluster based on the predictive
distributions of GPR models.

Next, we develop another Predictive GPR model (GP ),
which is to be trained on a specifically constructed set of data
for each flight. Such dataset is constructed as follows:

• We extract the current flight data up to the prediction
horizon T0.

• We sample from GH specific to the cluster a set of
data with flight parameters beyond T0, represented by
historical data.

• The means of the samples are aggregated with the par-
tially flown trajectory.

Figure 1 provides an example of the construction of training
data, which shows both the historical observations (< T0) as
well as the GH samples (> T0). In this paper, we use the time
when the trajectory reached FL250.

The final dataset (represented by the solid and empty dots
in Figure 1) is used to develop GP using the same procedure
for training GH . Finally, the variance of the samples beyond
T0 from GH helps to identify the hyperparameters parameter
on the training data.

In Figure 2, we can see the sample data from GH model
(in gray), prediction of trajectory from GP model (in red),
and actual flight trajectory (in green). We can also observe
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Figure 1: Data for constructing GP , based on flown trajectory and
samples from historical GPR model GH .

that the horizontal ground track profile has a large error when
compared to the altitude profile.

Figure 2: An Example of a predicted flight trajectory

From GP model, we can also construct the prediction
confidence interval based on the predictive distributions, as
shown in Figure 3,

D. Error and uncertainty metrics

Based on posterior distributions of GRP models, both pre-
diction uncertainty and accuracy can be studied. The mean of
the predictive distribution is considered as the most probable
prediction and thus used to compute the accuracy metrics. The
accuracy of the predictions is considered as the spatial and

Figure 3: Obtain 95% confidence interval from predictive GPR mode
GP .

temporal errors between the actual and predicted trajectory.
The errors are:

• Horizontal errors: They rely on the flat earth approxim-
ation base on relatively small distances that are covered.
Specifically, the along-track error (ATE) and the cross-
track error (CTE) are used.

• Vertical error: It is the difference in altitude between
the predicted and actual trajectory, with a negative error
indicating that the predicted position is lower than the
actual aircraft position.

• Temporal error: It is measured at FL100 (initial ap-
proach fix) and indicates the difference in time when the
predicted- and actual trajectory have reached this altitude.

The uncertainty is quantified by computing the standard
deviation (σ) of the sampled predictions of the 3D-position,
indicating the spread of the predicted position of the aircraft.

Horizontal errors, vertical errors, and uncertainty measures
are evaluated at every 1000 feet starting from the start of
the prediction horizon at T0. Besides, different look-ahead
times are evaluated to analyze the progression of the predictive
metrics over time.

III. EXPERIMENT

A. ADS-B and aircraft data

The ADS-B data provide the basis for the flight trajectories
in the final dataset. This data is gathered by a Mode S
receiver located at TU Delft, with a coverage of approximately
400 kilometers radius. Positions and velocities are decoded
and aircraft are identified by their unique 24-bit Mode S
transponder code. Individual flights are extracted from the
decoded ADS-B data [26], and we select the ones approaching
Amsterdam Airport Schiphol (EHAM) for the experiments.

In addition, we use the aircraft database from the OpenSky
network, to provide additional information about the aircraft.
Based on the ICAO transponder code, information like aircraft
type code, registration, and operator are aggregated to each
flight.

With this dataset, we also aggregate the Wake Turbulence
Category (WTC), which are heavy, medium, and light. ICAO
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specifies the WTC based on the Maximum Take-Off Weight
(MTOW) of the aircraft.

Based on the airline information, we also identified the
operation type of the flight, including cargo, business aviation,
unscheduled (e.g. charter), low-cost flight, or traditional flight.

B. Flight plan and intent data

The aircraft intent is expressed using information extracted
from flight plans from the Eurocontrol R&D data archive
[27]. Each ADS-B observation is aggregated with its corres-
ponding ECTRL ID using the ICAO registration and rounded
timestamps of the actual flight points.

The aircraft intent is expressed as three next waypoints at
each location in the ADS-B dataset. To identify these three
waypoints, the distance from departure airport is computed to
establish a variable that describes the progress of the flight.
Based on this variable, the next three waypoints are selected
from the filed flight points. Each waypoint comprises the
latitude, longitude, and altitude of the aircraft together with
a time component:

∆twp = tplan − tactual (3)

which expresses the difference in total flight time up till the
specific waypoint (tplan) and the actual flight time since take-
off as observed from the ADS-B record (tactual)

C. Meteorological data

Meteorological forecasts are extracted from the ERA5 data-
base. This database provides estimates of a large variety of
meteorological parameters on an hourly basis. The data is
formatted in a grid with a spatial resolution of 30 kilometers
and divides the atmosphere into 137 different pressure levels
up to a height of 80 kilometers.

For this study, the wind speeds in three dimensions and
the temperature are extracted from the database. Since the
available ADS-B data covers a sub-region of Europe, the
extraction of meteorological data is limited to this region
with longitudes ranging from -10 to 30 degrees and latitudes
ranging from 30 to 70 degrees.

A simple linear interpolation model is developed to express
the parameters as a function of the four dimensions (latitude,
longitude, altitude, and time). This function is evaluated at the
given ADS-B records, such that each observation would be
aggregated with the meteorological forecasts.

D. Data preparation

As observed from Figure 4, a variety of preparation steps
are executed to construct the final dataset. These steps are
described below.

1) We first extract only the descent trajectory using the
fuzzy logic identification process proposed by [28].

2) Common data cleaning and filtering tasks are applied.
The final dataset comprised partial descent trajectories
whose initial data point is found above 25,000 feet
(FL250), while the final data point at the arrival airport.

Aggregation

4D interpolation

Cleaning and Clustering

Data
Collection 

Prediction
Preparation 

ADS-B Aircraft
data 

Flight
plans ERA-5

Initial
dataset 

Final
dataset 

Figure 4: Process overview of the collection and preparation of data.

3) Latitude and longitude are transformed to Cartesian
coordinate. All categorical features are converted to
numeric variables using one-hot encoding.

An overview of the features that are used as predictors to
the predictive models is found in Table II.

Table II: Features used in trajectory prediction models.
ADS-B FP1 ERA5 Other
rate of climb [ft/min] xi [m] wind x [m/s] WTC [-]
ground speed [kts] yi [m] wind y [m/s] Market [-]
track [deg] alti [ft] wind z [Pa/s]

ti [s] temp. [K]
1 The upcoming three waypoints are included (i ∈ {1,2,3})

IV. RESULTS

The final dataset comprises around 10 thousand arrival
trajectories at EHAM Airport in June 2018. Based on the
aforementioned clustering approach, we have identified seven
clusters of arrival trajectories, which are shown in Figure
5. For the analysis in the rest of this section, the GPR
predictive models are applied to all trajectories. Error metrics
are obtained for each cluster separately.

A. GPR prediction errors and uncertainties

Figure 6 summarizes the errors and uncertainty for each
clusters. The results visualize the distribution of the median
value for each metric evaluated over each individual predicted
trajectory from a cluster. Three different GPR models with an
increasing number of predictors are evaluated (see Table I).

The mean vertical error is found to be centered around zero
for all clusters and models. However, Model-A consistently
shows the largest spread of vertical errors. Especially in
clusters 0 till 4, Model-A provides the largest ATE, while
Model-B and Model-C show comparable results. The distribu-
tion of CTE shows smaller order of magnitudes compared to
the ATE, with negligible differences among the three models.

The predictive uncertainties for position predictions are
visualized in Figure 7. The contours in the plot show the
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Figure 5: Clusters of arrival flights at EHAM. Labels shows the
cluster name and number of flights.
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Figure 6: Predictive metrics of all clusters showing the predictive
errors (top row) and the standard deviation of the predictive distribu-
tions (bottom row).

average standard deviations in each cluster’s position predic-
tions. The uncertainties are much higher in the direction of
along-track than the cross-track directions for each cluster.
We can also qualify the reduction in prediction uncertainty by
introducing flight intent information in the prediction (bottom
plot).

Vertical uncertainties can be more easily visualized. In
Figure 8, the error bars illustrate the variation in the confidence
intervals that are obtained by GPR models for all trajectories,
grouped by cluster number.
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Figure 7: Contour plot showing the average standard deviations of
the prediction of the horizontal position for each cluster obtained
from model Model-A and Model-B. Outer line of each contours
corresponding to 5% of the probability mass.
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Figure 8: Vertical prediction uncertainties obtained based on 95%
confidence intervals

B. Errors at different flight levels

To further analyze the accuracy and uncertainty of the
predictions at different flight levels, we now focus on the
results for one cluster (cluster 3). The predictive metrics are
evaluated at different flight levels to analyze the progression
of the predictive capability over the descent profile (Figure 9).

Until FL070, the distribution of vertical errors is centered
around zero with Model-C showing the smallest variance in
predictive errors. During the final stage of the descent, below
FL070, all models tend to overestimate the altitude of the
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Figure 9: Predictive metrics of cluster 3 showing the predictive errors (top row) and the standard deviation of the predictive distributions
(bottom row) for a variety of flight levels.

aircraft. Initially, at FL240, the ATE does not deviate in each
model. Hereafter, Model-B and Model-C produce signific-
antly smaller errors. Below FL070, the three models produce
comparable results in terms of the ATE. While Model-B and
Model-C improve the spatial accuracy along the flight track in
the initial stage of the prediction horizon, the CTE does not
differ among the different models. The CTE remains constant
in the initial stage of the descent but rapidly increases once the
altitude drops below FL070. Eventually, the errors decrease
again once the aircraft gets closer to its final destination. It
is worth noting that at FL040, the cross-track error increases
drastically due to the vectoring procedures frequently executed
in EHAM.

C. Errors and uncertainties at different look-ahead time

Figure 10 shows the accuracy metrics for all models eval-
uated at different look-ahead times for flights from cluster 3.
It can be seen that after 5 minutes, the vertical and along-
track errors remain at a similar level for all three models.
However, the cross-track errors do increase with a longer look-
ahead time. This is likely to the vectoring procedure, which
is commonly practiced at EHAM.

Figure 11 shows the prediction uncertainties at different
look ahead intervals. Similarly, we can see that the uncer-
tainties also remain at the same level for each model after 5
minutes.

D. Effect of aircraft and airline type

In this study, we also analyze the effects of the aircraft
and airline type in the prediction models. This is evaluated by
extending model Model-C with training data that incorporated
predictor variables describing the WTC category and the
airline market segment.

Half of the flights are operated with medium WTC, while
the other half is operated by heavy WTC. The vast majority of
airlines operate in the traditional scheduled market segment.
The indices of the predictive metrics, relative to model Model-
C, are presented in Table III to show the relative difference
between the models. A comparison of both models shows that
the standard deviation of the predicted 3D-position increases
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Figure 10: Comparison of predictive accuracy with the GPR models
for increasing look-ahead times (cluster 3)

by 33%, while the horizontal and vertical errors of the predic-
tions are comparable (Table III). This has shown that aircraft
WTC and operation information do not bring significant im-
provement in accuracy, while largely increasing the prediction
uncertainties due to the increased dimensionalities in features.

Table III: Comparison between model Model-C and an extended
model including aircraft and airline data

Model HTE VE σx σy σalt

Model-C 100 100 100 100 100
Model-C (extended) 104 98 133 133 133
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V. DISCUSSION

Three different GPR models with varying sets of predictor
variables are trained based on the different clusters of tra-
jectories according to arrival patterns. The results showed that
the predictive accuracy could be improved when incorporating
flight plan data and meteorological data when training the GPR
models. Generally, the distribution of the results obtained from
Model-C shows smaller variances, which indicates that this
model obtains more consistent results compared to Model-
A. The major improvements are observed in clusters 0 up
till 4, which showed significant reductions in the ATE. The
differences in spatial accuracy between the models in clusters
5 and 6 are less distinct. These clusters are less distinctive as
both show a larger spread in trajectory shapes. The effect of
including more predictor variables diminishes when the model
is trained on less distinct clusters. This proves the importance
of the effective clustering of trajectories before training the
data-driven models.

The results also showed that the predictive uncertainty,
expressed by the standard deviation of the predictions, of
Model-A is considerably higher compared to Model-B and
Model-C. Together with the improvement in accuracy, this
proves the benefits of including aircraft intent in data-driven
trajectory prediction. However, in contrast to our initial hypo-
thesis, further extending the model with meteorological data
does not result in further improvement (at least for our test
case).

The standard deviation of the predicted x- and y-position

is largely dependent on the direction of the flight track. Tra-
jectories oriented in either a Northerly or Southerly direction
(Cluster 2, 3, 4) showed larger deviations in the prediction y-
coordinate, while the opposite effect is found for trajectories
flying in either an Easterly or Westerly direction (Cluster 0, 1).
To better describe the uncertainty, along-track and cross-track
should also be used. However, constructing such uncertainty
metrics is less obvious than error metrics.

The predictive metrics are evaluated for different flight
levels to investigate the progression of the predictive capability
of the models along with the descent profile. Above FL100,
the effect of including aircraft intent and meteorological data
results in the reduction of the ATE compared to model Model-
A. However, the results showed the difficulty of predicting
the final stage of the descent trajectory below FL040, where
both the vertical error and the CTE increase significantly for
all models. During this final stage, the flights are subjected
to ATC commands that guide the aircraft to the appointed
runway. This causes the flight tracks, within a single cluster,
to diverge in this final stage of the flight as aircraft are assigned
to different approach tracks. This complicates the training of
the models and results in larger predictive errors, with large
increases in the CTE. Also, the number of waypoints in a
filed FP below FL100 is sparse. Generally, only two or three
waypoints describe the aircraft’s intent in this final stage. This
causes the effect of FP data to diminish in this final stage.
The initial stage of the descent, between the top of descent
and FL100, is usually represented by more waypoints.

The uncertainty of the predictions, quantified by the GPR
models, initially increases right after the start of the prediction
horizon. Hereafter, the standard deviation gradually decreases
until FL100 is reached. The Initial Approach Fix (IAF) is
located at this flight level. The aircraft proceeds from the en-
route segment to the IAF to start the initial segment of the
instrument approach. Therefore, many routes will converge to
the IAF, which is captured by the GPR models as shown by
the decreasing uncertainty until FL100 is reached.

In this study, we also found that the multivariate GPR
in the common GPR implementation (Scikit-Learn) does not
consider the correlation among different predictors. Most GPR
implementations found in the literature treated the multidimen-
sional case by modeling each response variable individually
without considering the correlation between the variables [24].
The key challenge in modeling multivariate response variables
in GPR is the specification of a covariance function that both
incorporates the correlation between data points as well as
the correlation among target variables [29]. This could be
improved in future research.

VI. CONCLUSION

In this paper, the Gaussian Process Regression is proposed
for quantifying data-driven trajectory accuracies and uncer-
tainties. At first, the trajectories of flights arriving at Schiphol
Airport are clustered. Flights in each cluster are then treated
with a two-stage GPR approach to study the predictability.
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GPR is a pure data-driven prediction approach. This has the
advantage that it does not require explicit knowledge of source
uncertainty to study the prediction errors and uncertainties.
The quantification of the predictive uncertainty can also con-
tribute to the improvement of the prediction and management
of 4D-trajectories. The two-stage GPR method is able to
utilize both information from all historical flights and the past
trajectory data from the flight of interest.

Based on the GPR models, we confirm that uncertainty of
the descent trajectory predictions could be reduced by incor-
porating flight plan data when training the models. Additional
meteorological data does not result in a significant reduction
of prediction uncertainty but do show an improvement in
predictive accuracy.

The main improvements are observed throughout the initial
stage of the descent. The uncertainty of the GPR predictions
decreased until FL100 is reached, which is the effect caused
by the IAF that represents the position where the aircraft
trajectories are merged to initiate the approach segment. In
the final stage of the descent, the predictive errors increase
due to the complex dynamics of arrival procedure and ATC
commands that guide the aircraft to the appointed runway.

This study evaluated the predictive models on the descent
segment of the flight. Additional research could be performed
to apply the probabilistic predictive models to different phases
of the flight, like the climb and cruise phases. Also, this
study focused on the prediction of single trajectories without
considering the interactions with other aircraft. A collaborative
trajectory predictor that fuses the predicted trajectories of
multiple aircraft has the potential to further improve the
predictive accuracy.
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