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Abstract

The ability to track vortices spatially and temporally is of great interest for the study of complex and turbulent flows. A
methodology to solve the problem of vortex tracking by the application of machine learning approaches is investigated. First
a well-known vortex detection algorithm is applied to identify coherent structures. Hierarchical clustering is then conducted
followed by a unique application of the Hungarian assignment algorithm. Application to a synthetic flowfield of merging
Batchelor vortices results in robust vortex labelling even in a vortex merging event. A robotic PIV experimental dataset of
a canonical Ahmed body is used to demonstrate the applicability of the method to three-dimensional flows.

Graphic abstract

Clustering + Hungarian Assignment

1 Introduction

Many aerodynamic flow fields of both academic and practi-
cal engineering interest are dominated by macro-scale vor-
tex dynamics, which govern the evolution and interaction of

04 P.R.R.J. Stevens coherent structures in turbulent flows (Lumley 1981). In the
robbie.stevens @cantab.net aircraft industry, understanding the vortex system produced
' Whiteways Technical Centre, Enstone, by high-lift wing configurations is important for determining
Oxfordshire OX7 4EE, UK the minimum separation distance between aircraft during
2 take-off and landing (e.g. de Bruin et al. 1996) and for iden-
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and Wang 2003). In the auto-racing industry, the charac-
terisation of complex vortex fields is key for enhancing car
performance (e.g. Zhang et al. 2006).

Several studies have been dedicated to the definition and
identification of vortices. In their seminal paper on the iden-
tification of a vortex, Jeong and Hussain (1995) define two
requirements for a vortex core:

1. It must have a net vorticity, hence a net circulation.
2. Its geometry must be Galilean invariant.

Several vortex identification schemes have been proposed,
which are typically classified into local and non-local
(Cucitore et al. 1999). The former identify a vortex based
on the value of local flow quantities, such as the static
pressure [local pressure minimum, (Kline and Robinson
1990)] or the vorticity magnitude (Spalart 1988), or on the
analysis of the velocity gradient tensor Vu (second invari-
ant Q of Vu, (Hunt et al. 1988); complex eigenvalues of V
u, (Chong et al. 1990); second eigenvalue, 4, of §? + Q2,
(Jeong and Hussain 1995); imaginary part A, of the
complex eigenvalue of Vu (Zhou et al. 1999). Non-local
schemes instead rely on the idea of vortices as structures,
which occupy a finite portion of space. These schemes
range from the simple detection (non-Galilean invariant)
based on closed or spiral pathlines or streamlines (Lugt
1979) to more advanced (Galilean invariant) approaches,
relying on the tendency of two flow parcels to remain near
each other (Cucitore et al. 1999). All these schemes enable
the identification of vortical structures to some extent and
have been proven successful under certain flow conditions.
They do however present several limitations as discussed
in detail in Jeong and Hussain (1995) and Cucitore et al.
(1999), among others. Notably, those schemes have been
devised mainly for isolated vortices and fail or are strongly
intermittent in the presence of vortex interactions or small-
scale turbulence. To overcome these issues, Graftieaux
et al. (2001) introduced a new non-local vortex identifi-
cation scheme, which enables determination of the cen-
tres and boundaries of vortex structures solely based on
information from the topology of the velocity field and
not its magnitude. The approach was proven for a turbu-
lent swirling flow in a circular duct, but the problem of
unsteady interaction between vortices was not addressed
by the authors.

Machine learning (ML) algorithms are increasingly
used in fluid mechanics to extract information from data, as
demonstrated by the recent review of Brunton et al. (2019).
Clustering is an unsupervised machine learning technique
that identifies similar groups or clusters in the data. A few
applications of clustering to fluid mechanics are reported
in the literature: Kaiser et al. (2014) introduced a cluster-
based reduced order modelling strategy for unsteady flows
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to identify physical mechanisms in an unsupervised manner;
Amsallam et al. (2012) made use of clustering to partition
the domain into regions, where local reduced-order bases
were constructed. Deng et al. (2020) propose a method
which first uses a normalised version of the Instantaneous
Vorticity Deviation (IVD) metric of Haller et al. (2016) to
describe vortex-like behaviour. They then use clustering to
identify vortices. In this work, we propose the use of hier-
archical clustering (Xu and Wunsch 2008) in combination
with the vortex identification method of Graftieaux et al.
(2001) to identify and track coherent structures from 2D and
3D PIV data even in the presence of unsteady interactions.

Recently there have been some great developments in the
state-of-the-art methods used for vortex detection. Some sig-
nificant advances in the use of Deep Learning for vortex
identification are reported in Kim and Gunther (2019), Deng
et al. (2019), Wang et al. (2020). While these methods have
demonstrated exciting advances, there are concerns about
the use of so-called black-box ML strategies, especially in
the use of Deep Learning, where often the background pro-
cess is difficult to explain. In addition, many of these style
ML approaches are computationally very expensive and
require large training datasets. In this paper, a practical vor-
tex extraction and labelling/tracking procedure is proposed,
which is computationally inexpensive and does not require
training (unsupervised machine learning approach). While
variations on the proposal can be made (e.g. different vortex
extraction methods), the use of the Hungarian algorithm for
consistent vortex labelling is the unique contribution of this
work.

Gunther and Theisel (2017) summarise traditional vortex
extraction methods and distinguish them depending on refer-
ence frame invariance and whether they are region-based,
line-based, geometry-/integration-based and boundary
extraction approaches. The interested reader is referred to
their excellent discussion of the advantages and disadvan-
tages of the respective techniques. The technique described
in this paper is intended to be one effective way to reliably
track vortices and label them consistently when data is in
slice form. The approach as proposed can be summarised
as follows:

e Apply a Galilean-Invariant, region-based method (y, is
demonstrated) to extract vortex features present in 2D
slices of the flow (such slices can be in the spatial sense
or time instances).

e Deploy hierarchical clustering to help accurately deter-
mine vortex centres even under complicated flow phe-
nomena such as merging or imperfect vortex core bound-
ary definitions.

e Use Hungarian assignment to consistently label vortices
between slices while accounting for vortices merging or
disappearing/bursting.
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It is found that this approach is useful and practical when
used with experimental datasets. The consistent labelling
which is achieved by Hungarian assignment only requires
an input of the coordinates of a vortex centre and is not
therefore dependent upon the specific vortex detection or
vortex centre determination method.

2 Background of vortex identification
and machine learning

This section briefly discusses the theoretical background
of the vortex identification scheme, hierarchical cluster-
ing and Hungarian assignment. It should be noted that the
approaches described herein are considered at a macro-vor-
tex scale as might occur in the aforementioned applications;
however the techniques are independent of scale and could
equally be applied to different length scales.

2.1 Graftieaux’s method

Graftieaux et al. (2001) define a Galilean invariant, non-
local method which does not rely on Vu. This is immediately
advantageous when experimental data such as PIV is con-
cerned where any noise in the measurement can be amplified
by differentiating the flowfield. Graftieaux et al. showed that
for a 2D, incompressible, velocity field defined on a regular
grid space, an approximation of a vortex core boundary can
be found using the following relationship:

Z [PM/\U] z
[IPM][ - [T, ] M

In this notation U, = U,, — Up, where Uy, is the veloc-
ity vector at a given node M and f]p is the local advection
velocity at point P. PM is a radius vector and z is a unit
normal. N is the number of nodes inside a given area S. The
wedge product, PM A U, is a bi-vector which gives the area
an orientation and hence allows the sense of vortex rota-
tion to be extracted. Figure 1 shows the generalised vector
arrangement for a simple case. Contour nodes, m,, are coin-
cident with regular grid nodes. For an axi-symmetric vortex
it is trivial to show that for a given radial distance from the
vortex centre, PM= (PM, ) and U= (U, ), where n is the
number of grid nodes at a given radius. In more realistic
flow conditions, this assumption is generally not valid, due
to vortex asymmetry or shear instabilities for example.

There are a number of limitations to the applicability
of the y, method in the general case. Firstly the method as
defined in the bi-vector sense operates on a 2D, solenoidal
(divergence free) ‘slice’ of a fluid flow. Secondly the slice
direction can have a profound influence on the ability to cor-
rectly identify vortices. This is discussed more in Sect. 2.1.1.

Fig. 1 2D interpretation of y,

Thirdly, the y, method takes a 2 /7 contour level which repre-
sents a theoretical viscous vortex core, which may be imper-
fect when applied to finite and real experimental data. It
should be noted that, while the y, method is used as the input
to the clustering and Hungarian process here, the clustering
and Hungarian process could equally be applied to any other
method that extracts vortex centres.

2.1.1 Influence of slicing direction

To process a 3D flowfield with y,, it must be sliced. The
vortex identification can be influenced by the choice of slice
direction. Ideally the slice should be perpendicular to the
vortex axis. This however is not a very realistic expectation
for general flowfields where the vortex axis could be tilted
relative to the slice direction. In addition, if the flowfield
has several vortices, it is not realistic to expect that all the
vortices have an axis perpendicular to the vortex axis. Simp-
son et al. (2018) investigated this problem for stereo PIV
data by performing a numerical simulation on an isolated
Lamb-Oseen vortex. They first simulated a vortex with no
axial velocity then applied a Gaussian distribution of axial
velocity centred on the vortex axis to provide a more realistic
case. They indicate that in both cases the circulation curve is
stretched in the radial direction although ultimately asymp-
totes to the correct value and the apparent radius of the vor-
tex core is overestimated, leading to an enlargement of the
vortex core. It seems that these effects are relatively small,
even for large relative angles (between the slice and vortex
axis) of up to 40°. They do suggest however that if there is
vorticity associated with the axial flow distribution such as
when a Gaussian axial velocity distribution is applied then
there can be a sizeable error in the vortex centre location.
Simpson et al. (2018) showed that the positional error dis-
plays an approximately linear relationship with increasing
angle between the slice and the vortex axis in the range of
+40°. Their study showed that error can be as large as 10%
(of the core radius value) at a 20° angle. While it is not the
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Fig. 2 Hierarchical clustering (a)
(a) Input data with unclassified

objects, (b) objects labelled +
numerically and (c) objects
with similar properties clustered
together 4

intent of the present study to investigate this phenomenon,
it is nevertheless recommended that when using y, the slice
direction should have a small angle relative to the vortex
axis or alternatively for the determination of the vortex cen-
tre, the vectors could be interpolated onto an inclined plane
in a similar way to that proposed by Simpson et al. (2018)
(assuming 3D vector information is available).

2.2 Hierarchical clustering

One of the most challenging parts of coherent structure
tracking and characterisation is concerned with occurrences
of vortex interaction. A simple example is when vortices
undergo a merging process. Clustering is one way to group
coherent structures together.

A simple example of the clustering philosophy is given
in Fig. 2. An input dataset of unclassified objects (Fig. 2a)
are labelled numerically (Fig. 2b) and objects with simi-
lar properties are clustered together (Fig. 2c). There are a
range of methods available to achieve this. The approach
discussed herein is a modified version of a basic single-
link hierarchical cluster analysis (Sibson 1972).

The single-link clustering used here is agglomerative
i.e. it seeks to combine objects with similar properties.
The objects used here are the centroids of the y, contours.
There must be some approach to decide which centroid
datapoints should be joined into a cluster. Here, a calcu-
lation of the squared Euclidean distance (Spencer 2013)
of each centroid coordinate point relative to all the oth-
ers is conducted first. The squared Euclidean distance is
chosen as it is generally accepted as a reliable distance
metric. This could however be defined in several alterna-
tive ways e.g. Euclidean distance, Manhattan distance or
Mahalanobis distance. There can be a difference in relative
distance extracted between these methods e.g. the Manhat-
tan distance will by definition always be greater than the
Euclidean distance.

The linkage criterion determines how close clusters of
7, contour centroids can be before they are classified as
part of the same cluster. This linkage distance D(A, B)
is described by the minimum between elements of each
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Fig.3 Linkage distance for single-link maximum cluster similarity.
Adapted from Manning et al. (2008)

cluster i.e. those with the maximum similarity. This is
depicted in Fig. 3 and described mathematically by Eq. 2.

b@A.B= min,dab) @)

In practice the user needs to set some distance threshold
for how close contour centroids can be to each other to be
considered as part of the same cluster. The choice of this
threshold is critical as you want it to be large enough to
allow robust distinction between clusters that represent
different vortices yet small enough to distinguish vorti-
ces from one another when they are in close proximity.
In practice the clusters which occur due to vortices are
relatively distinct and this threshold value does not seem
to be sensitive. It was found that clustering proceeded
effectively in the test cases when the product 0.6*average
distance of all the other points relative to a datapoint was
greater than the square root of the distance of the point
that is furthest away from the original. If the threshold was
exceeded then a new cluster gets formed and this proceeds
until no more new clusters are created.

Hierarchical clustering works well in 2D; however strong
changes in circulation or other vortex parameters in space
and time make the method difficult to handle in three dimen-
sions. The next section introduces the Hungarian assignment
approach which will later be used to allow robust temporal
tracking of vortices in 2D and the calculation of 3D vortex
trajectories.
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2.3 Hungarian assignment

The Hungarian algorithm was derived by Kuhn (1955) as
an approach to solving the Assignment Problem. The algo-
rithm attempts to optimise the assignment of tasks to work-
ers by minimising the total cost. The time complexity of the
algorithm was shown to be strongly polynomial by Dinits
(1970) and Edmonds and Karp (1972), making it ideal for
rapid computation of large numbers of assignments, such as
complex flows with many vortices.

Here the algorithm is applied to the problem of vortex
trajectory tracking. Consider first the 2D position change
of a system of n vortices in time. A simple system of four
vortices in time is shown in Fig. 4. The problem is how
to create an automatic coupling of these vortices as they
advect temporally. A Hungarian assignment formulation
based on that of Munkres (1957) can be applied. It must
first be assumed that at both time ¢ and ¢+ the locations of
the vortices are known a priori. The a priori determination
of vortex position can be achieved using the aforemen-
tioned y, method in combination with hierarchical clus-
tering. It is also helpful if the vortices are labelled. Here
the vortices are labelled as set, { = {A, B, C, D} at time ¢
and in paired order {’ = {F, H, G, E} at time t+1. A cost
matrix must then be defined. To define the cost matrix any
vortex at time ¢ can be selected as a hub. The Euclidean
distance relative to the hub coordinate of each remaining
vortex is calculated. For example if the hub is defined as
vortex A then the Euclidean distance is calculated to the
elements F, H, G and E, respectively, that make up the set

10 - T —
O Vortices at time ¢
9 - A B Vortices at time ¢+/ |
\F
8
H
7
6
zZ 5 B
4 1
C E
3- 1
2
G
1
D
0
0 1 2 3 4 5 6 7 8 9 10
y

Fig.4 Temporal advection of hypothetical four vortex system in 2D
space

¢’. A maximum hub distance threshold can optionally be
employed to help prevent erroneous assignment of vorti-
ces that are far apart. The hub is then changed to the next
vortex and the process repeated until each vortex has acted
as a hub at least once. For this example, the resultant cost
matrix, M becomes:

3

4
\/§ €]

This reduces to:

E F G H
AW -v2 0 B-v2 (vV29-12)
M =| B (V13-15 (V18-V5 (v32-V5 0
c 6-V5) 5-V5 0 (VR-v5
D 0 (V85-2) 5 (V40 -2)
®)
Each of the vortices in set ¢’ are assigned to the correspond-
ing vortices in set { with the pairing indicated by the index
locations of the null elements of the matrix M’; as a result,
A pairs with F, B pairs with H, etc.

In this example there are only four vortices so the assign-
ment is relatively intuitive and could even be conducted
manually with a full Hungarian assignment, { € ¢’. In an
arbitrary vortex system however, the number of possible
assignment combinations is n/, so with even a relatively
small number of vortices, it becomes an untenable task to
track vortex positions temporally or spatially by manual
means.

The main assumption of the above approach is that the
time step considered, At is selected such that no vortex trav-
els more than half the minimum Euclidean distance between
it and the nearest influencing vortex, § /2. This is shown in
Fig. 5 for a simple case. If I C { and I represents a set of all
possible positions of vortex [ at time ¢ + At, and /] represents
a set of all possible positions of vortex /I at time ¢ + At, then
it follows that At is selected such that:

I1¢Il (6)

@ Springer
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Fig.5 Vortex separation limit. Here §/2 is the minimum Euclidean
separation distance between vortices / and /. The radii ; and r; tend
towards infinity and represent the possible range of motion of the vor-
tex given infinite time

One way to enforce satisfaction of a unique assignment
condition based on the A selection is to iteratively reduce
the timestep until a unique set of assignments occurs. This
requires the data to be sufficiently temporally resolved. In
addition, to be considered as valid, the Euclidean vortex dis-
placement measure must be above the noise level of the vor-
tex spatial determination. In general, it is also the case that
fluid physics has an effect on the minimum vortex separation
as there is a limit to how close two initially separate vortices
can be relative to one another before they are strongly influ-
encing one another (considered merged for example), which
is also linked to the vortex identification criterion used.

A real flow will experience phenomena such as vortex burst
or vortex creation and there is also the possibility of vortices
entering or leaving the field of view of interest. This is tackled
simply by modifying the cost matrix accordingly. For example,
consider the next step in time, 7+2 of the four vortex system.
Here we assume that vortex F bursts such that F & ¢’. We use
the cost matrix to automatically label the burst vortex before
continuing with the normal steps of the Hungarian Algorithm.
Clearly if ¢ = @ then no Hungarian assignment can be carried
out. The same process for 3D trajectory labelling is followed

@ Springer

x+1

Fig.6 Vortex advection in space

with the exception that slices of the flowfield in space (shown
in Fig. 6) are used as opposed to slices in time.

3 Temporal vortex tracking example in 2D

Initial testing of the hierarchical clustering and Hungarian
assignment algorithm in combination with the method of
(Graftieaux et al. 2001) has been conducted on a synthetic,
temporally evolving flowfield. This test flowfield is not repre-
sentative of any physical flowfield. A merging phenomenon
between two co-rotating vortices is induced after a short time.
The flowfield is constructed from three Batchelor vortices
advecting in a 2D plane. Each Batchelor vortex is defined as
having an azimuthal velocity distribution according to the rela-
tionship (Batchelor 1964) (Fig. 7):

ue=qu<1—exr> <r%>> %

In this notation g is the swirl ratio, W, is the velocity scale
defined as the delta between the vortex core axial velocity and
the freestream and r is defined as the radius of a point from the
centre of the vortex. The axial velocity profile is defined as:

14

core

2
Uyyial = Uy + Wy - exp <—L> (8)

The vortex properties defined at 7 = 0 s are summarised in
Table 1. The vortex advection continues until = 5.6 s. The
freestream velocity is U, = 2 ms~! and dynamic viscosity
u=181e>kgm! s

Consider two vortices in relatively close proximity to
one another undergoing a merging phenomenon (such
a phenomenon is seen in the time sequence of merging
Batchelor vortices in Fig. 8). Non-local y, contours are
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> Input: V={V, ., Viegy eee s Vicmar) <]

Calculate 7 y, contours

Calculate centroids of y, contours:

C = {ey(1), ey5(2), ..., cy,(D))

Cluster set of centroids C using single-link clustering

Label p clusters of centroids as vortices:

C= (Vort,—y, Vort,—s, ..., VOrt,ypupn}

where, Vort,c C

Assign vortex labels numerically ascending
or sort according to some criterion e.g. I

if yes: n=n+1

Check for empty sets (i.e. no vortices):

GEDV (. 0

Calculate cost matrix M:

M‘_(Cn: Z;n-l)

Perform Hungarian assignment

|

Label unassigned vortices:
if present in n-1 but not n = vortex burst

if present in n but not n-1 = new vortex

yes_ ¢/ Output:
Labelled vortices

Fig.7 Summary of proposed vortex tracking algorithm

i/ no: n=n+1

calculated according to the approach outlined in 2.1. The
axis of rotation of each vortex needs to be determined
individually.

At time ¢ = (0.2 the centroids of the y, contours that
define each vortex are approximately coincident and a
mean of each cluster of centroid positions can be taken as
a reasonably reliable indicator of the axis of vortex rota-
tion. At time ¢ = 1.0, the vortices labelled Vortex I and
Vortex 3 are in close proximity and the y, contours define
a larger all encompassing merged vortex. This is not a big
problem here since the vortices are of similar strengths
but if not then this causes an erroneous bias in the vortex
centroid position since the vortices have not fully merged.
In this latter instance, the vortex centres can be much bet-
ter defined as the mean centroids of the contours that are
clustered together. This is discussed more in the next sec-
tion but in this example it is clear that a paradox is formed,
which can cause the calculation to essentially define three
vortices, namely the original pair and one which encom-
passes both.

3.1 Vortex core centroid determination

The theoretical boundary of the vortex core is at y, =2/#
(Graftieaux et al. 2001). This is considered as a purely theo-
retical definition i.e. the contour level that corresponds to
the peak azimuthal velocity. In an ideal vortex (e.g. theo-
retical isolated vortex), the centroids of all the y, contour
levels would be coincident. In practice with experimental
data, the determination of the core level contour centroid
can be a little noisy (especially between slices and if there
are noisy artefacts in the data). It was thus found that to
mitigate intra-slice centroid noise, one approach which gave
more consistent results was to extract a range of y, con-
tours around each vortex, find the centroid of each and then
deploy the clustering algorithm to identify vortex structures
as represented by clusters of centroid data points. The effec-
tive vortex centre is then taken as the mean of the clustered
points. This doesn’t have an explicit physical meaning in
itself; however in a merging event for example, a change
in what datapoints constitute a cluster could manifest as a
shift in the subsequent mean centroid position. This could
be interpreted as an indicator of a physical merging event.

4 Experimental assessment
This section demonstrates an approach to constructing three-

dimensional vortex trajectories by using the y, method and
hierarchical clustering to identify vortices in 2D planes and

Table 1 Batchelor vortex

properties Vortex X y Tcore MF)/ Uoo uaxial/ Uoo uadv/ Uoo vadv/ Uoo
1 0.45 0.6 0.09 15 5 0.0 -25
2 0.2 0.3 0.09 —15 5 7.5 2.5
3 0.7 0.5 0.09 15 -175 0.0

@ Springer
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Fig.8 Synthetic flowfield of _ T2 . Y2
Batchelor vortices merging. t =02 0.8 t=1.0 los
Anti-clockwise rotation is blue f 06 I 06
and clockwise is green. The y, HT Ihhe
core is 2/z according to Graft- 1110.4 1[10.4
ieaux et al. (2001
(2001) 02 1 10.2
z H 0 z L4 0
0.2 ; [4-0.2
([ Nortex #2 Nortex #2 L
(& 0.4 1-0.4
0.6 114-0.6
7I—0.8 I 0.8
0+ ; 0
0 1 0
y y
1 12 1 T2
t =3.0 10.8 t =4.0 108
10.6 10.6
0.4 0.4
10.2 10.2
V4 10 z | 0
1-0.2 1-0.2
‘ Vortex #2 Vortex #2
= 1-04 1-0.4
1-0.6 1-0.6
I‘-o.g I-0-8
0 ‘ ‘ 0
0 i 0
y y

then Hungarian assignment to link vortices on upstream and
downstream planes. The method is tested with a volumetric,
experimental dataset, namely robotic PIV data of the vortex
system on an Ahmed body (Fig. 9).

4.1 Experimental method

The proposed approach for vortex identification and track-
ing is assessed using the experimental data of the flow
in the near wake of an Ahmed reference model (Ahmed
et al. 1984). The experiments were conducted in the Open
Jet Facility (OJF) of the TU Delft Aerodynamics Labora-
tories. The OJF is an open-jet closed-loop tunnel with an
octagonal test section of 2.85 x 2.85 m?, where a maximum
free-stream velocity of 35 ms~! can be reached with 0.5%
turbulence intensity (Lignarolo et al. 2015). The model
is a1 : 2 replica of the original Ahmed reference model
(Ahmed et al. 1984) with 25° slant angle; its dimensions
are L X W x H = 522 X 194.5 x 144 mm?. The experiments
were performed at free-stream velocity of 12 ms™!, yielding
a Reynolds number of 115,000 based on the model’s height.

The flow velocity measurements were carried out with
the robotic volumetric PTV technique introduced by Jux
et al. (2018), which makes use of a Coaxial Volumetric

@ Springer

Velocimeter (Schneiders et al. 2018) manipulated by a
UR5 collaborative robotic arm from Universal Robots.
The flow was seeded with sub-millimetre neutrally buoy-
ant Helium-Filled Soap Bubble (HFSB) flow tracers

Fig.9 Ahmed Body wake vortices represented as iso-surfaces of
v, = 2/x. Blue iso-surfaces represent counter-clockwise vortex rota-
tion and green iso-surfaces represent clockwise vortex rotation when
viewed from downstream
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Table 2 Experimental
parameters of the Ahmed body
experiment

Seeding
Illumination

Imaging device

Imaging parameters
Measurement volume
Acquisition frequency
Nominal magnification factor
Number of images

Neutrally buoyant HFSB, ~ 300 pm diameter

Quantronix Darwin-Duo Nd:YLF laser (2 X
25 mJ @ 1 kHz)

LaVision MiniShaker S
4 X CMOS cameras
800x600 pixels @ 511Hz
4.6 pm pixel pitch
f=4mm, f#=28

200 x 200 x 450 mm?>
Jacqg =700Hz

=~ 0.01 @40 cm distance
8, 000

(Scarano et al. 2015), and the illumination was provided
by a Quantronix Darwin Duo Nd:YLF laser and delivered
by an optical fibre. The most relevant parameters of the
experimental setup are summarised in Table 2; further
details are reported in Sciacchitano and Giaquinta (2019).
Image acquisition and processing was conducted with the
LaVision DaVis 8 software.

The raw images were pre-processed with a frequency
high-pass filter (Sciacchitano and Scarano 2014) to reduce
the effects of the unwanted laser light reflections. The pre-
processed images were then analysed via the Shake-the-Box
algorithm (Schanz et al. 2016). The tracks velocity informa-
tion was successively averaged within Gaussian-weighted
cubic bins of 20 x 20 x 20 mm? to retrieve the time-averaged
flow velocity, following the approach proposed by Agiiera
et al. (2016). Finally, a solenoidal filter (Azijli and Dwight
2015) was applied to the time-average velocity field to
impose conservation of mass for incompressible flows, thus
reducing the contribution of measurement noise.

4.2 Experimental results

The Ahmed body with iso-surfaces of y, = 2/x super-
imposed is shown in Fig. 9. Blue iso-surfaces represent
counter-clockwise vortex rotation and green iso-surfaces
represent clockwise vortex rotation when viewed from
downstream. A representation of the labelled vortex trajec-
tories is shown in Fig. 10. A numeric label is assigned to
each vortex. The two dominant wake vortices are labelled
as vortex I and vortex 2. Additional vortices in the near-
body region of the wake are also identified. While the
primary vortices are well-recognised for an Ahmed body,
the authors acknowledge that different vortex detection
schemes may result in different numbers of vortices being
detected in the flowfield. Here we have demonstrated that
despite the complex nature of the near-body vortex system,

the Hungarian assignment ensures robust demarcation and
labelling.

Slices of the y, fields are compared in Fig. 11. Vortex
centres are shown as the centroid of the smallest contour
of each vortex. A limitation in the y, method is appar-
ent when studying the contours in these slices. Clipping
of the lower part of the dominant vortices is observed at
x/h =0.818, x/h = 0.951 and x/h = 1.262. This is due to
the windowing that the y, method uses. The amount of
clipping here amounts to approximately z/H = 0.1 from
the edge of the data domain.

While y, is used in this demonstration as it is a popular
vortex identification technique for slice data, it is empha-
sised that the Hungarian labelling and tracking approach
could equally be applied in combination with several other
vortex identification schemes.

z/H

Fig. 10 Ahmed body wake vortices represented as labelled trajecto-
ries of y, contour centroids
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Fig. 11 Near-body wake slices

of Ahmed body showing y, x/H =0.241

contours and consistent vortex 12
labels

#5

0.6

z/H

1 2 1.4 . . t 0 ‘ t : Z 2
08 x/H =0.419 08
0.6 12 [ {os
04 1 Ll H04

0.2

H#2
o8 © #  #6

0.6 r
-0.2 -0.2

z/H

0

#3
g
0.4 04 04 Ci% #3 — 04
02 [| {-06 02 [| {-06
I 0.8 I 0.8
0 ! : | | 0 | , -
06 04 02 0 02 04 06 06 04 02 0 02 04 06
y/H v/H
o Y2 B R ¢
r |
x/H =0.596 08 x/H =0.818 08
12 0.6 12 0.6
1 04 1 04
02 02
0.8 0.8
2
= @E =
S v 0 N #2 i 0
0.6 0.6 / |
0.2 0.2
0.4 0.4 0.4 rl 1-04
0a 0.6 0a 0.6
I -0.8 I -0.8
0 . : ] L 0 . . . ] : | 1 L
0.6 -04 -02 0 02 04 06 0.6  -04  -02 0 02 04 06
yH yH
. 12 B ¢
. . . m
x/H =0.951 08 x/H =1.262 08
12 06 12 06
1 0.4 1 0.4
0. 0.
0.8 0.8
g 0 g 0
B S
0.6 #2 0.6 N r
d 0a a \\ 02
% I
0.4 0.4 04 Q:/ Y -04
02 || 4-06 02 [l 4-06
I 08 I 08
0 - - 0 : :
0.6 04 02 0 02 04 06 0.6 04 02 0 02 04 06

wH

5 Conclusions

A novel machine learning inspired approach has been
introduced to tackle the problem of temporal and spatial
coherent structure (vortex) tracking. The algorithm is
capable of tracking multiple coherent structures robustly.

The y, vortex detection approach described by Graft-
ieaux et al. (2001) is first used to identify bounding con-
tours around vortices in planar slices of a given flow-
field. A single-link cluster method is then applied to
group centroids of y, contours together providing robust

@ Springer

vortex centre determination. Hungarian assignment is then
uniquely applied as a way to produce consistently labelled
vortices.

The approach has been used to successfully demon-
strate temporal and spatial vortex labelling and tracking.
An example of the algorithm’s ability to robustly handle
a vortex merging phenomenon is demonstrated using a
synthetic flowfield of Batchelor vortices. A volumetric,
robotic PIV dataset of the flow in the wake of an Ahmed
body is used to demonstrate the ability of the algorithm
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to handle complex three-dimensional flowfields where the
vortices have 3D trajectories.

Acknowledgements The authors would like to acknowledge Edoardo
Saredi from TU Delft for processing the Ahmed body data. Nicholas
Chester, Dirk De Beer and Simon Hine are also thanked for supporting
the publication of this work.

References

Agiiera N, Cafiero G, Astarita T, Discetti S (2016) Ensemble 3d
PTV for high resolution turbulent statistics. Meas Sci Technol
27(12):1240111

Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the
time-averaged ground vehicle wake. SAE Tech 840300

Amsallam D, Zahr MJ, Farhat C (2012) Nonlinear model order
reduction based on local reduced-order bases. Int ] Numer Meth
Eng 10:891-916

Azijli I, Dwight RP (2015) Solenoidal filtering of volumetric velocity
measurements using gaussian process regression. Exp Fluids
56:198

Batchelor GK (1964) Axial flow in trailing line vortices. J Fluid
Mech 20(4):645-658

de Bruin AC, Hegen GH, Rohne PB, Spalart PR (1996) Flow field
survey in trailing vortex system behind a civil aircraft model at
high lift. Technical report NLR TP 96284, National Aerospace
Laboratory, NLR

Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning
for fluid mechanics. Annu Rev Fluid Mech 52:1-31

Chong MS, Perry AE, Cantwell BJ (1990) A general classification
of three-dimensional flow fields. Phys Fluids A 2(5):765-777

Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and
limitations of local criteria for the identification of a vortex. Eur
J Mech B Fluids 18:261-282

Deng L, Wang Y, Chen C, Liu Y, Wang F, Liu J (2020) A clustering-
based approach to vortex extraction. J Vis 1-16

Deng L, Wang Y, Liu Y, Wang F, Li S, Liu J (2019) A CNN-based
vortex identification method. J Vis 22(1):65-78

Dinits EA (1970) Algorithm for solution on a problem on maximum
flow in a network with power estimation. Sov Math Doclady
11:1277-1280

Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic
efficiency for network flow problems. ] ACM 19:248-264

Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, pod and
vortex identification algorithms for the study of unsteady turbulent
swirling flows. Meas Sci Technol 12:1422-1429

Gunther T, Theisel H (2017) The state of the art in vortex extraction.
Comput Graph Forum 1981:1-24

Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining
coherent vortices objectively from the vorticity. J Fluid Mech
795:136-173

Hardin JC, Wang FY (2003) Sound generation by aircraft wake vorti-
ces. Technical report CR-2003-212674, NASA

Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence
zones in turbulent flows. Technical Report N89-24555, NASA
Center for Turbulence Research

Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid
Mech 285:69-94

Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic
volumetric PIV of a full-scale cyclist. Exp Fluids 74:1-15

Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Niven
RK (2014) Cluster-based reduced-order modelling of a mixing
layer. J Fluid Mech 754:365—414

Kim B, Gunther T (2019) Robust reference frame extraction from
unsteady 2d vector fields with convolutional neural networks.
Comput Graph Forum 38(3):285-295

Kline SJ, Robinson SK (1990) Turbulent boundary layer structure:
progress, status and challenges. Struct Turbulen Drag Reduct 3-32

Kuhn HW (1955) The Hungarian method for the assignment problem.
Naval Res Logist Q 2:83-97

Lignarolo LEM, Ragni D, Scarano F, Ferreira CJS, van Bussel GIW
(2015) Tip-vortex instability and turbulent mixing in wind-turbine
wakes. J Fluid Mech 781:467—493

Lugt HJ (1979) The dilemma of defining a vortex. In: Muller U,
Roesner KG, Schmidt B (eds) In recent developments in theoreti-
cal and experimental fluid mechanics. Springer, New York, pp
113-138

Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE
(ed) Transition and turbulence. Academic Press Inc., Canvridge,
pp 215-242

Manning CD, Raghaven P, Schiitze H (2008) In: Introduction to infor-
mation retrieval. Cambridge University Press

Munkres J (1957) Algorithms for the assignment and transportation
problems. J Soc Ind Appl Math 5:32-38

Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciac-
chitano A (2015) On the use of helium-filled soap bubbles for
large-scale tomographic PIV in wind tunnel experiments. Exp
Fluids 56(2):42

Schanz D, Gesemann S, Schroder A (2016) Shake-the-box: Lagran-
gian particle tracking at high particle image densities. Exp Fluids
57(5):1-27

Schneiders JFG, Scarano F, Jux C, Sciacchitano A (2018) Coaxial volu-
metric velocimetry. Meas Sci Technol 29(6):065201

Sciacchitano A, Giaquinta D (2019) Investigation of the ahmed body
cross-wind flow topology by robotic volumetric PIV. In: Proceed-
ings of the 13th international symposium on particle image veloci-
metry: 22-27 July, Munich, Germany, vol 13, pp 311-320

Sciacchitano A, Scarano F (2014) Elimination of PIV light reflections
via a temporal high pass filter. Meas Sci Technol 25(8):084009

Sibson R (1972) An optimally efficient algorithm for the single-link
cluster method. Comput J 16(1):30-34

Simpson CE, Babinsky H, Harvey JK, Corkery S (2018) Detecting
vortices within unsteady flows when using single-shot PIV. Exp
Fluids 59:125

Spalart PR (1988) Direct simulation of a turbulent boundary layer up
to rtheta = 1410. J Fluid Mech 187:61-98

Spencer NH (2013) In: Essentials of multivariate data analysis. CRC
Press, Boca Raton FL, pp 91-95

Wang Y, Deng L, Yang Z, Zhao D, Wang F (2021) A rapid vortex iden-
tification method using fully convolutional segmentation network.
Vis Comput 37:261-273

Xu R, Wunsch D (2008) Clustering, vol 10. Wiley, New York, pp
1-358

Zhang X, Toet W, Zerihan J (2006) Ground effect aerodynamics of race
cars. Appl Mech Rev 59(1):33-49

Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for
generating coherent packets of hairpin vortices in channel flow. J
Fluid Mech 387:353-396

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer



	Application of clustering and the Hungarian algorithm to the problem of consistent vortex tracking in incompressible flowfields
	Abstract
	Graphic abstract

	1 Introduction
	2 Background of vortex identification and machine learning
	2.1 Graftieaux’s method
	2.1.1 Influence of slicing direction

	2.2 Hierarchical clustering
	2.3 Hungarian assignment

	3 Temporal vortex tracking example in 2D
	3.1 Vortex core centroid determination

	4 Experimental assessment
	4.1 Experimental method
	4.2 Experimental results

	5 Conclusions
	Acknowledgements 
	References




