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Abstract
The ability to track vortices spatially and temporally is of great interest for the study of complex and turbulent flows. A 
methodology to solve the problem of vortex tracking by the application of machine learning approaches is investigated. First 
a well-known vortex detection algorithm is applied to identify coherent structures. Hierarchical clustering is then conducted 
followed by a unique application of the Hungarian assignment algorithm. Application to a synthetic flowfield of merging 
Batchelor vortices results in robust vortex labelling even in a vortex merging event. A robotic PIV experimental dataset of 
a canonical Ahmed body is used to demonstrate the applicability of the method to three-dimensional flows.

Graphic abstract

1  Introduction

Many aerodynamic flow fields of both academic and practi-
cal engineering interest are dominated by macro-scale vor-
tex dynamics, which govern the evolution and interaction of 
coherent structures in turbulent flows (Lumley 1981). In the 
aircraft industry, understanding the vortex system produced 
by high-lift wing configurations is important for determining 
the minimum separation distance between aircraft during 
take-off and landing (e.g. de Bruin et al. 1996) and for iden-
tifying sources of airframe aerodynamic noise (e.g. Hardin 
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and Wang 2003). In the auto-racing industry, the charac-
terisation of complex vortex fields is key for enhancing car 
performance (e.g. Zhang et al. 2006).

Several studies have been dedicated to the definition and 
identification of vortices. In their seminal paper on the iden-
tification of a vortex, Jeong and Hussain (1995) define two 
requirements for a vortex core: 

1.	 It must have a net vorticity, hence a net circulation.
2.	 Its geometry must be Galilean invariant.

Several vortex identification schemes have been proposed, 
which are typically classified into local and non-local 
(Cucitore et al. 1999). The former identify a vortex based 
on the value of local flow quantities, such as the static 
pressure [local pressure minimum, (Kline and Robinson 
1990)] or the vorticity magnitude (Spalart 1988), or on the 
analysis of the velocity gradient tensor ∇� (second invari-
ant Q of ∇� , (Hunt et al. 1988); complex eigenvalues of ∇
� , (Chong et al. 1990); second eigenvalue, �2 of S2 + Ω2 , 
(Jeong and Hussain 1995); imaginary part �ci of the 
complex eigenvalue of ∇� (Zhou et al. 1999). Non-local 
schemes instead rely on the idea of vortices as structures, 
which occupy a finite portion of space. These schemes 
range from the simple detection (non-Galilean invariant) 
based on closed or spiral pathlines or streamlines (Lugt 
1979) to more advanced (Galilean invariant) approaches, 
relying on the tendency of two flow parcels to remain near 
each other (Cucitore et al. 1999). All these schemes enable 
the identification of vortical structures to some extent and 
have been proven successful under certain flow conditions. 
They do however present several limitations as discussed 
in detail in Jeong and Hussain (1995) and Cucitore et al. 
(1999), among others. Notably, those schemes have been 
devised mainly for isolated vortices and fail or are strongly 
intermittent in the presence of vortex interactions or small-
scale turbulence. To overcome these issues, Graftieaux 
et al. (2001) introduced a new non-local vortex identifi-
cation scheme, which enables determination of the cen-
tres and boundaries of vortex structures solely based on 
information from the topology of the velocity field and 
not its magnitude. The approach was proven for a turbu-
lent swirling flow in a circular duct, but the problem of 
unsteady interaction between vortices was not addressed 
by the authors.

Machine learning (ML) algorithms are increasingly 
used in fluid mechanics to extract information from data, as 
demonstrated by the recent review of Brunton et al. (2019). 
Clustering is an unsupervised machine learning technique 
that identifies similar groups or clusters in the data. A few 
applications of clustering to fluid mechanics are reported 
in the literature: Kaiser et al. (2014) introduced a cluster-
based reduced order modelling strategy for unsteady flows 

to identify physical mechanisms in an unsupervised manner; 
Amsallam et al. (2012) made use of clustering to partition 
the domain into regions, where local reduced-order bases 
were constructed. Deng et al. (2020) propose a method 
which first uses a normalised version of the Instantaneous 
Vorticity Deviation (IVD) metric of Haller et al. (2016) to 
describe vortex-like behaviour. They then use clustering to 
identify vortices. In this work, we propose the use of hier-
archical clustering (Xu and Wunsch 2008) in combination 
with the vortex identification method of Graftieaux et al. 
(2001) to identify and track coherent structures from 2D and 
3D PIV data even in the presence of unsteady interactions.

Recently there have been some great developments in the 
state-of-the-art methods used for vortex detection. Some sig-
nificant advances in the use of Deep Learning for vortex 
identification are reported in Kim and Gunther (2019), Deng 
et al. (2019), Wang et al. (2020). While these methods have 
demonstrated exciting advances, there are concerns about 
the use of so-called black-box ML strategies, especially in 
the use of Deep Learning, where often the background pro-
cess is difficult to explain. In addition, many of these style 
ML approaches are computationally very expensive and 
require large training datasets. In this paper, a practical vor-
tex extraction and labelling/tracking procedure is proposed, 
which is computationally inexpensive and does not require 
training (unsupervised machine learning approach). While 
variations on the proposal can be made (e.g. different vortex 
extraction methods), the use of the Hungarian algorithm for 
consistent vortex labelling is the unique contribution of this 
work.

Gunther and Theisel (2017) summarise traditional vortex 
extraction methods and distinguish them depending on refer-
ence frame invariance and whether they are region-based, 
line-based, geometry-/integration-based and boundary 
extraction approaches. The interested reader is referred to 
their excellent discussion of the advantages and disadvan-
tages of the respective techniques. The technique described 
in this paper is intended to be one effective way to reliably 
track vortices and label them consistently when data is in 
slice form. The approach as proposed can be summarised 
as follows:

•	 Apply a Galilean-Invariant, region-based method ( �2 is 
demonstrated) to extract vortex features present in 2D 
slices of the flow (such slices can be in the spatial sense 
or time instances).

•	 Deploy hierarchical clustering to help accurately deter-
mine vortex centres even under complicated flow phe-
nomena such as merging or imperfect vortex core bound-
ary definitions.

•	 Use Hungarian assignment to consistently label vortices 
between slices while accounting for vortices merging or 
disappearing/bursting.
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It is found that this approach is useful and practical when 
used with experimental datasets. The consistent labelling 
which is achieved by Hungarian assignment only requires 
an input of the coordinates of a vortex centre and is not 
therefore dependent upon the specific vortex detection or 
vortex centre determination method.

2 � Background of vortex identification 
and machine learning

This section briefly discusses the theoretical background 
of the vortex identification scheme, hierarchical cluster-
ing and Hungarian assignment. It should be noted that the 
approaches described herein are considered at a macro-vor-
tex scale as might occur in the aforementioned applications; 
however the techniques are independent of scale and could 
equally be applied to different length scales.

2.1 � Graftieaux’s method

Graftieaux et al. (2001) define a Galilean invariant, non-
local method which does not rely on ∇� . This is immediately 
advantageous when experimental data such as PIV is con-
cerned where any noise in the measurement can be amplified 
by differentiating the flowfield. Graftieaux et al. showed that 
for a 2D, incompressible, velocity field defined on a regular 
grid space, an approximation of a vortex core boundary can 
be found using the following relationship:

In this notation �
�
= UM − ŨP , where �

�
 is the veloc-

ity vector at a given node � and Ũ
�
 is the local advection 

velocity at point � . �� is a radius vector and � is a unit 
normal. N is the number of nodes inside a given area S. The 
wedge product, 𝐏𝐌 ∧ 𝐔

𝐜
 is a bi-vector which gives the area 

an orientation and hence allows the sense of vortex rota-
tion to be extracted. Figure 1 shows the generalised vector 
arrangement for a simple case. Contour nodes, mn are coin-
cident with regular grid nodes. For an axi-symmetric vortex 
it is trivial to show that for a given radial distance from the 
vortex centre, ��= ⟨��

�
⟩ and �

�
= ⟨Ucn

⟩ , where n is the 
number of grid nodes at a given radius. In more realistic 
flow conditions, this assumption is generally not valid, due 
to vortex asymmetry or shear instabilities for example.

There are a number of limitations to the applicability 
of the �2 method in the general case. Firstly the method as 
defined in the bi-vector sense operates on a 2D, solenoidal 
(divergence free) ‘slice’ of a fluid flow. Secondly the slice 
direction can have a profound influence on the ability to cor-
rectly identify vortices. This is discussed more in Sect. 2.1.1. 

(1)�2 =
1

N

∑
S

[�� ∧ Uc] ⋅ z

||��|| ⋅ ||Uc||

Thirdly, the �2 method takes a 2∕� contour level which repre-
sents a theoretical viscous vortex core, which may be imper-
fect when applied to finite and real experimental data. It 
should be noted that, while the �2 method is used as the input 
to the clustering and Hungarian process here, the clustering 
and Hungarian process could equally be applied to any other 
method that extracts vortex centres.

2.1.1 � Influence of slicing direction

To process a 3D flowfield with �2 , it must be sliced. The 
vortex identification can be influenced by the choice of slice 
direction. Ideally the slice should be perpendicular to the 
vortex axis. This however is not a very realistic expectation 
for general flowfields where the vortex axis could be tilted 
relative to the slice direction. In addition, if the flowfield 
has several vortices, it is not realistic to expect that all the 
vortices have an axis perpendicular to the vortex axis. Simp-
son et al. (2018) investigated this problem for stereo PIV 
data by performing a numerical simulation on an isolated 
Lamb-Oseen vortex. They first simulated a vortex with no 
axial velocity then applied a Gaussian distribution of axial 
velocity centred on the vortex axis to provide a more realistic 
case. They indicate that in both cases the circulation curve is 
stretched in the radial direction although ultimately asymp-
totes to the correct value and the apparent radius of the vor-
tex core is overestimated, leading to an enlargement of the 
vortex core. It seems that these effects are relatively small, 
even for large relative angles (between the slice and vortex 
axis) of up to 40◦ . They do suggest however that if there is 
vorticity associated with the axial flow distribution such as 
when a Gaussian axial velocity distribution is applied then 
there can be a sizeable error in the vortex centre location. 
Simpson et al. (2018) showed that the positional error dis-
plays an approximately linear relationship with increasing 
angle between the slice and the vortex axis in the range of 
±40◦ . Their study showed that error can be as large as 10% 
(of the core radius value) at a 20◦ angle. While it is not the 

Fig. 1   2D interpretation of �
2
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intent of the present study to investigate this phenomenon, 
it is nevertheless recommended that when using �2 the slice 
direction should have a small angle relative to the vortex 
axis or alternatively for the determination of the vortex cen-
tre, the vectors could be interpolated onto an inclined plane 
in a similar way to that proposed by Simpson et al. (2018) 
(assuming 3D vector information is available).

2.2 � Hierarchical clustering

One of the most challenging parts of coherent structure 
tracking and characterisation is concerned with occurrences 
of vortex interaction. A simple example is when vortices 
undergo a merging process. Clustering is one way to group 
coherent structures together.

A simple example of the clustering philosophy is given 
in Fig. 2. An input dataset of unclassified objects (Fig. 2a) 
are labelled numerically (Fig. 2b) and objects with simi-
lar properties are clustered together (Fig. 2c). There are a 
range of methods available to achieve this. The approach 
discussed herein is a modified version of a basic single-
link hierarchical cluster analysis (Sibson 1972).

The single-link clustering used here is agglomerative 
i.e. it seeks to combine objects with similar properties. 
The objects used here are the centroids of the �2 contours. 
There must be some approach to decide which centroid 
datapoints should be joined into a cluster. Here, a calcu-
lation of the squared Euclidean distance (Spencer 2013) 
of each centroid coordinate point relative to all the oth-
ers is conducted first. The squared Euclidean distance is 
chosen as it is generally accepted as a reliable distance 
metric. This could however be defined in several alterna-
tive ways e.g. Euclidean distance, Manhattan distance or 
Mahalanobis distance. There can be a difference in relative 
distance extracted between these methods e.g. the Manhat-
tan distance will by definition always be greater than the 
Euclidean distance.

The linkage criterion determines how close clusters of 
�2 contour centroids can be before they are classified as 
part of the same cluster. This linkage distance D(A, B) 
is described by the minimum between elements of each 

cluster i.e. those with the maximum similarity. This is 
depicted in Fig. 3 and described mathematically by Eq. 2.

In practice the user needs to set some distance threshold 
for how close contour centroids can be to each other to be 
considered as part of the same cluster. The choice of this 
threshold is critical as you want it to be large enough to 
allow robust distinction between clusters that represent 
different vortices yet small enough to distinguish vorti-
ces from one another when they are in close proximity. 
In practice the clusters which occur due to vortices are 
relatively distinct and this threshold value does not seem 
to be sensitive. It was found that clustering proceeded 
effectively in the test cases when the product 0.6*average 
distance of all the other points relative to a datapoint was 
greater than the square root of the distance of the point 
that is furthest away from the original. If the threshold was 
exceeded then a new cluster gets formed and this proceeds 
until no more new clusters are created.

Hierarchical clustering works well in 2D; however strong 
changes in circulation or other vortex parameters in space 
and time make the method difficult to handle in three dimen-
sions. The next section introduces the Hungarian assignment 
approach which will later be used to allow robust temporal 
tracking of vortices in 2D and the calculation of 3D vortex 
trajectories.

(2)D(A,B) = min
a∈A,b∈B

d(a, b)

Fig. 3   Linkage distance for single-link maximum cluster similarity. 
Adapted from Manning et al. (2008)

Fig. 2   Hierarchical clustering 
(a) Input data with unclassified 
objects, (b) objects labelled 
numerically and (c) objects 
with similar properties clustered 
together

(a) (b) (c)
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2.3 � Hungarian assignment

The Hungarian algorithm was derived by Kuhn (1955) as 
an approach to solving the Assignment Problem. The algo-
rithm attempts to optimise the assignment of tasks to work-
ers by minimising the total cost. The time complexity of the 
algorithm was shown to be strongly polynomial by Dinits 
(1970) and Edmonds and Karp (1972), making it ideal for 
rapid computation of large numbers of assignments, such as 
complex flows with many vortices.

Here the algorithm is applied to the problem of vortex 
trajectory tracking. Consider first the 2D position change 
of a system of n vortices in time. A simple system of four 
vortices in time is shown in Fig. 4. The problem is how 
to create an automatic coupling of these vortices as they 
advect temporally. A Hungarian assignment formulation 
based on that of Munkres (1957) can be applied. It must 
first be assumed that at both time t and t+1 the locations of 
the vortices are known a priori. The a priori determination 
of vortex position can be achieved using the aforemen-
tioned �2 method in combination with hierarchical clus-
tering. It is also helpful if the vortices are labelled. Here 
the vortices are labelled as set, � = {A, B, C, D} at time t 
and in paired order � ′ = {F, H, G, E} at time t+1. A cost 
matrix must then be defined. To define the cost matrix any 
vortex at time t can be selected as a hub. The Euclidean 
distance relative to the hub coordinate of each remaining 
vortex is calculated. For example if the hub is defined as 
vortex A then the Euclidean distance is calculated to the 
elements F, H, G and E, respectively, that make up the set 

� ′ . A maximum hub distance threshold can optionally be 
employed to help prevent erroneous assignment of vorti-
ces that are far apart. The hub is then changed to the next 
vortex and the process repeated until each vortex has acted 
as a hub at least once. For this example, the resultant cost 
matrix, M becomes:

The next step is to subtract the row minima:

This reduces to:

Each of the vortices in set � ′ are assigned to the correspond-
ing vortices in set � with the pairing indicated by the index 
locations of the null elements of the matrix M′ ; as a result, 
A pairs with F, B pairs with H, etc.

In this example there are only four vortices so the assign-
ment is relatively intuitive and could even be conducted 
manually with a full Hungarian assignment, � ∈ � � . In an 
arbitrary vortex system however, the number of possible 
assignment combinations is n!, so with even a relatively 
small number of vortices, it becomes an untenable task to 
track vortex positions temporally or spatially by manual 
means.

The main assumption of the above approach is that the 
time step considered, Δt is selected such that no vortex trav-
els more than half the minimum Euclidean distance between 
it and the nearest influencing vortex, �∕2 . This is shown in 
Fig. 5 for a simple case. If I ⊆ 𝜁 and I represents a set of all 
possible positions of vortex I at time t + Δt , and II represents 
a set of all possible positions of vortex II at time t + Δt , then 
it follows that Δt is selected such that:

(3)� =

⎡
⎢⎢⎢⎢⎢⎢⎣

E F G H

A
√
85

√
2 8

√
29

B
√
13

√
18

√
32

√
5

C 6 5
√
5

√
32

D 2
√
85 7

√
40

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)�
� =

⎡⎢⎢⎢⎢⎣

√
85

√
2 8

√
29√

13
√
18

√
32

√
5

6 5
√
5

√
32

2
√
85 7

√
40

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣

√
2√
5√
5

2

⎤⎥⎥⎥⎥⎦

(5)

�
� =

⎡
⎢⎢⎢⎢⎢⎢⎣

E F G H

A (
√
85 −

√
2 0 (8 −

√
2) (

√
29 −

√
2)

B (
√
13 −

√
5) (

√
18 −

√
5) (

√
32 −

√
5) 0

C (6 −
√
5) (5 −

√
5) 0 (

√
32 −

√
5)

D 0 (
√
85 − 2) 5 (

√
40 − 2)

⎤⎥⎥⎥⎥⎥⎥⎦

(6)I ⊄ II
Fig. 4   Temporal advection of hypothetical four vortex system in 2D 
space
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One way to enforce satisfaction of a unique assignment 
condition based on the Δt selection is to iteratively reduce 
the timestep until a unique set of assignments occurs. This 
requires the data to be sufficiently temporally resolved. In 
addition, to be considered as valid, the Euclidean vortex dis-
placement measure must be above the noise level of the vor-
tex spatial determination. In general, it is also the case that 
fluid physics has an effect on the minimum vortex separation 
as there is a limit to how close two initially separate vortices 
can be relative to one another before they are strongly influ-
encing one another (considered merged for example), which 
is also linked to the vortex identification criterion used.

A real flow will experience phenomena such as vortex burst 
or vortex creation and there is also the possibility of vortices 
entering or leaving the field of view of interest. This is tackled 
simply by modifying the cost matrix accordingly. For example, 
consider the next step in time, t+2 of the four vortex system. 
Here we assume that vortex F bursts such that F ∉ � � . We use 
the cost matrix to automatically label the burst vortex before 
continuing with the normal steps of the Hungarian Algorithm. 
Clearly if � = � then no Hungarian assignment can be carried 
out. The same process for 3D trajectory labelling is followed 

with the exception that slices of the flowfield in space (shown 
in Fig. 6) are used as opposed to slices in time.

3 � Temporal vortex tracking example in 2D

Initial testing of the hierarchical clustering and Hungarian 
assignment algorithm in combination with the method of 
(Graftieaux et al. 2001) has been conducted on a synthetic, 
temporally evolving flowfield. This test flowfield is not repre-
sentative of any physical flowfield. A merging phenomenon 
between two co-rotating vortices is induced after a short time. 
The flowfield is constructed from three Batchelor vortices 
advecting in a 2D plane. Each Batchelor vortex is defined as 
having an azimuthal velocity distribution according to the rela-
tionship (Batchelor 1964) (Fig. 7):

In this notation q is the swirl ratio, W0 is the velocity scale 
defined as the delta between the vortex core axial velocity and 
the freestream and r is defined as the radius of a point from the 
centre of the vortex. The axial velocity profile is defined as:

The vortex properties defined at t = 0 s are summarised in 
Table 1. The vortex advection continues until t = 5.6 s. The 
freestream velocity is U∞ = 2 ms−1 and dynamic viscosity 
� = 1.81 e−5 kg m−1 s−1.

Consider two vortices in relatively close proximity to 
one another undergoing a merging phenomenon (such 
a phenomenon is seen in the time sequence of merging 
Batchelor vortices in Fig. 8). Non-local �2 contours are 

(7)u� = qW0

(
1 − exp

(
r

r2
core

))

(8)uaxial = U∞ +W0 ⋅ exp

(
−

r

rcore

)2

Fig. 6   Vortex advection in space

Fig. 5   Vortex separation limit. Here �∕2 is the minimum Euclidean 
separation distance between vortices I and II. The radii r

I
 and r

II
 tend 

towards infinity and represent the possible range of motion of the vor-
tex given infinite time
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calculated according to the approach outlined in 2.1. The 
axis of rotation of each vortex needs to be determined 
individually.

At time t = 0.2 the centroids of the �2 contours that 
define each vortex are approximately coincident and a 
mean of each cluster of centroid positions can be taken as 
a reasonably reliable indicator of the axis of vortex rota-
tion. At time t = 1.0, the vortices labelled Vortex 1 and 
Vortex 3 are in close proximity and the �2 contours define 
a larger all encompassing merged vortex. This is not a big 
problem here since the vortices are of similar strengths 
but if not then this causes an erroneous bias in the vortex 
centroid position since the vortices have not fully merged. 
In this latter instance, the vortex centres can be much bet-
ter defined as the mean centroids of the contours that are 
clustered together. This is discussed more in the next sec-
tion but in this example it is clear that a paradox is formed, 
which can cause the calculation to essentially define three 
vortices, namely the original pair and one which encom-
passes both.

3.1 � Vortex core centroid determination

The theoretical boundary of the vortex core is at �2 = 2∕� 
(Graftieaux et al. 2001). This is considered as a purely theo-
retical definition i.e. the contour level that corresponds to 
the peak azimuthal velocity. In an ideal vortex (e.g. theo-
retical isolated vortex), the centroids of all the �2 contour 
levels would be coincident. In practice with experimental 
data, the determination of the core level contour centroid 
can be a little noisy (especially between slices and if there 
are noisy artefacts in the data). It was thus found that to 
mitigate intra-slice centroid noise, one approach which gave 
more consistent results was to extract a range of �2 con-
tours around each vortex, find the centroid of each and then 
deploy the clustering algorithm to identify vortex structures 
as represented by clusters of centroid data points. The effec-
tive vortex centre is then taken as the mean of the clustered 
points. This doesn’t have an explicit physical meaning in 
itself; however in a merging event for example, a change 
in what datapoints constitute a cluster could manifest as a 
shift in the subsequent mean centroid position. This could 
be interpreted as an indicator of a physical merging event.

4 � Experimental assessment

This section demonstrates an approach to constructing three-
dimensional vortex trajectories by using the �2 method and 
hierarchical clustering to identify vortices in 2D planes and 

Table 1   Batchelor vortex 
properties

Vortex x y r
core

u�∕U∞ u
axial

∕U∞ u
adv

∕U∞ v
adv

∕U∞

  1  0.45   0.6    0.09   15 5  0.0  − 2.5 
  2  0.2    0.3    0.09  − 15 5  7.5   2.5 
  3  0.7    0.5    0.09   15 5 − 7.5   0.0 

Fig. 7   Summary of proposed vortex tracking algorithm
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then Hungarian assignment to link vortices on upstream and 
downstream planes. The method is tested with a volumetric, 
experimental dataset, namely robotic PIV data of the vortex 
system on an Ahmed body (Fig. 9).

4.1 � Experimental method

The proposed approach for vortex identification and track-
ing is assessed using the experimental data of the flow 
in the near wake of an Ahmed reference model (Ahmed 
et al. 1984). The experiments were conducted in the Open 
Jet Facility (OJF) of the TU Delft Aerodynamics Labora-
tories. The OJF is an open-jet closed-loop tunnel with an 
octagonal test section of 2.85 × 2.85 m2 , where a maximum 
free-stream velocity of 35 ms−1 can be reached with 0.5% 
turbulence intensity (Lignarolo et al. 2015). The model 
is a 1 : 2 replica of the original Ahmed reference model 
(Ahmed et al. 1984) with 25◦ slant angle; its dimensions 
are L ×W × H = 522 × 194.5 × 144 mm2 . The experiments 
were performed at free-stream velocity of 12 ms−1 , yielding 
a Reynolds number of 115,000 based on the model’s height.

The flow velocity measurements were carried out with 
the robotic volumetric PTV technique introduced by Jux 
et al. (2018), which makes use of a Coaxial Volumetric 

Velocimeter (Schneiders et al. 2018) manipulated by a 
UR5 collaborative robotic arm from Universal Robots. 
The flow was seeded with sub-millimetre neutrally buoy-
ant Helium-Filled Soap Bubble (HFSB) flow tracers 

Fig. 9   Ahmed Body wake vortices represented as iso-surfaces of 
�
2
= 2∕� . Blue iso-surfaces represent counter-clockwise vortex rota-

tion and green iso-surfaces represent clockwise vortex rotation when 
viewed from downstream

Fig. 8   Synthetic flowfield of 
Batchelor vortices merging. 
Anti-clockwise rotation is blue 
and clockwise is green. The �

2
 

core is 2∕� according to Graft-
ieaux et al. (2001)
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(Scarano et al. 2015), and the illumination was provided 
by a Quantronix Darwin Duo Nd:YLF laser and delivered 
by an optical fibre. The most relevant parameters of the 
experimental setup are summarised in Table 2; further 
details are reported in Sciacchitano and Giaquinta (2019). 
Image acquisition and processing was conducted with the 
LaVision DaVis 8 software.

The raw images were pre-processed with a frequency 
high-pass filter (Sciacchitano and Scarano 2014) to reduce 
the effects of the unwanted laser light reflections. The pre-
processed images were then analysed via the Shake-the-Box 
algorithm (Schanz et al. 2016). The tracks velocity informa-
tion was successively averaged within Gaussian-weighted 
cubic bins of 20 × 20 × 20 mm3 to retrieve the time-averaged 
flow velocity, following the approach proposed by Agüera 
et al. (2016). Finally, a solenoidal filter (Azijli and Dwight 
2015) was applied to the time-average velocity field to 
impose conservation of mass for incompressible flows, thus 
reducing the contribution of measurement noise.

4.2 � Experimental results

The Ahmed body with iso-surfaces of �2 = 2∕� super-
imposed is shown in Fig. 9. Blue iso-surfaces represent 
counter-clockwise vortex rotation and green iso-surfaces 
represent clockwise vortex rotation when viewed from 
downstream. A representation of the labelled vortex trajec-
tories is shown in Fig. 10. A numeric label is assigned to 
each vortex. The two dominant wake vortices are labelled 
as vortex 1 and vortex 2. Additional vortices in the near-
body region of the wake are also identified. While the 
primary vortices are well-recognised for an Ahmed body, 
the authors acknowledge that different vortex detection 
schemes may result in different numbers of vortices being 
detected in the flowfield. Here we have demonstrated that 
despite the complex nature of the near-body vortex system, 

the Hungarian assignment ensures robust demarcation and 
labelling.

Slices of the �2 fields are compared in Fig. 11. Vortex 
centres are shown as the centroid of the smallest contour 
of each vortex. A limitation in the �2 method is appar-
ent when studying the contours in these slices. Clipping 
of the lower part of the dominant vortices is observed at 
x∕h = 0.818 , x∕h = 0.951 and x∕h = 1.262 . This is due to 
the windowing that the �2 method uses. The amount of 
clipping here amounts to approximately z∕H = 0.1 from 
the edge of the data domain.

While �2 is used in this demonstration as it is a popular 
vortex identification technique for slice data, it is empha-
sised that the Hungarian labelling and tracking approach 
could equally be applied in combination with several other 
vortex identification schemes.

Fig. 10   Ahmed body wake vortices represented as labelled trajecto-
ries of �

2
 contour centroids

Table 2   Experimental 
parameters of the Ahmed body 
experiment

Seeding Neutrally buoyant HFSB, ≈ 300 μm diameter
Illumination Quantronix Darwin-Duo Nd:YLF laser (2 × 

25 mJ @ 1 kHz)
Imaging device LaVision MiniShaker S

4 × CMOS cameras
800x600 pixels @ 511Hz
4.6 μ m pixel pitch

Imaging parameters f = 4mm , f# = 8

Measurement volume 200 × 200 × 450 mm3

Acquisition frequency facq = 700Hz

Nominal magnification factor ≈ 0.01@40 cm distance
Number of images 8, 000
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5 � Conclusions

A novel machine learning inspired approach has been 
introduced to tackle the problem of temporal and spatial 
coherent structure (vortex) tracking. The algorithm is 
capable of tracking multiple coherent structures robustly.

The �2 vortex detection approach described by Graft-
ieaux et al. (2001) is first used to identify bounding con-
tours around vortices in planar slices of a given flow-
field. A single-link cluster method is then applied to 
group centroids of �2 contours together providing robust 

vortex centre determination. Hungarian assignment is then 
uniquely applied as a way to produce consistently labelled 
vortices.

The approach has been used to successfully demon-
strate temporal and spatial vortex labelling and tracking. 
An example of the algorithm’s ability to robustly handle 
a vortex merging phenomenon is demonstrated using a 
synthetic flowfield of Batchelor vortices. A volumetric, 
robotic PIV dataset of the flow in the wake of an Ahmed 
body is used to demonstrate the ability of the algorithm 

Fig. 11   Near-body wake slices 
of Ahmed body showing �

2
 

contours and consistent vortex 
labels
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to handle complex three-dimensional flowfields where the 
vortices have 3D trajectories.
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