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A B S T R A C T

This article presents a new turbulence closure based on the 𝑘-𝜔 SST model for predicting turbulent flows of
Herschel–Bulkley fluids, including Bingham and power-law fluids. The model has been calibrated with direct
numerical simulations (DNS) data for fully-developed pipe flow of shear-thinning and viscoplastic fluids. The
new model shows good agreement in the mean velocity, average viscosity, mean shear stress budget and friction
factor. The latter compares well also against correlations from the literature for a wide range of Reynolds
numbers. With the new model, improvements are also observed in the iterative convergence, which is often
difficult for calculations with yield-stress fluids. Additionally, three eddy-viscosity models for Newtonian fluids,
namely the 𝑘-𝜔 SST, 𝑘-

√

𝑘𝐿 and Spalart–Allmaras model, have been tested on turbulent Herschel–Bulkley
flows. Results show that (i) the new model produces the best prediction; (ii) the standard SST model may
be considered for simulations of weakly shear-thinning/viscoplastic fluids at high Reynolds numbers; (iii) the
𝑘-
√

𝑘𝐿 and the Spalart–Allmaras models appear to be unsuitable for turbulent Herschel–Bulkley flows. The
new model is simple and appealing for engineering applications concerned with turbulent wall-bounded flows
and is presented in a formulation that can be easily adapted to other generalised Newtonian fluids.
. Introduction

Numerical simulations of turbulent Herschel–Bulkley flows are of
reat interest for several industrial applications, such as open chan-
el flows of ore tailings in the mining industry or pipe flows of
rilling mud in the oil industry. Recently, numerical studies of tur-
ulent Herschel–Bulkley flows have become of interest even for the
aritime sector, with regard to the effects of muddy seabeds on marine

essels navigating in harbours and rivers [1,2].
The prohibitive costs of Direct Numerical Simulations (DNS) for pre-

icting turbulent flows makes turbulence modelling the only feasible
lternative for most engineering applications as it offers an accept-
ble compromise between cost and accuracy. The most widespread
odelling technique is the so-called Reynolds-averaging, which makes
se of the Reynolds-averaged Navier–Stokes (RANS) equations. These
odels are therefore usually referred to as RANS models.

For Newtonian fluids, several RANS models are typically available
n general-purpose Computational Fluid Dynamics (CFD) codes. On
he other hand, RANS models for Herschel–Bulkley fluids have not
et received enough recognition in the CFD community, thus CFD
ractitioners often apply Newtonian RANS models to non-Newtonian
luids, and this continued to happen until very recently (e.g., [1–5]).

The two main difficulties concerning the Reynolds-averaged mod-
lling for non-Newtonian fluids are the shear-dependent viscosity and

∗ Corresponding author.
E-mail address: s.l.lovato@tudelft.nl (S. Lovato).

the appearance of extra correlations in the governing equations as a
result of the fluctuating viscosity. These correlations are unknown a
priori and therefore require a closure.

Significant progress has been made for viscoelastic fluids in the past
twenty years. Pinho [6] derived a low Reynolds number formulation
based on the 𝑘-𝜖 model of Nagano and Hishida [7]. The formulation
included both a turbulence closure for some of the non-Newtonian
correlations and a model for the average viscosity that accounted for
fluctuations of the shear and strain rate. The model showed reason-
able agreement with experimental data [8] and it laid the foundation
for later advance in turbulence modelling for non-Newtonian fluids.
The model was improved [9] to include the cross-correlation between
the fluctuating viscosity and the fluctuating deformation rate tensor.
Subsequently, the model was extended to finitely extensible-nonlinear-
elastic fluids with Peterlin’s approximation (FENE-P) [10] and finally
improved [11] for better prediction at a higher level of drag reduction,
also using a 𝑘-𝜔 type closure [12].

One limitation of two-equation models is that they assume isotropic
turbulence. While this assumption is generally acceptable for Newto-
nian fluids, it is now known that the turbulence for non-Newtonian
fluids exhibits higher level of anisotropy (e.g. [13,14]). Iaccarino et al.
[15] developed a closure for FENE-P fluids based on the 𝑘-𝜖-𝑣2-𝑓 model
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of Durbin [16], which is able to reproduce the inviscid wall-blocking
of cross-stream velocity fluctuations without the need of damping
functions. An improved version was proposed by Masoudian et al. [17],
which extended the validity of the model of Iaccarino et al. [15] up to
the maximum drag reduction. Masoudian et al. [18] proposed a closure
for FENE-P fluids also based on the Reynolds-stress model (RSM).

Fewer studies have dealt with inelastic fluids such as power-law,
Bingham and Herschel–Bulkley. Firsts efforts date back to 1997,
when Malin [19,20] modified the damping function in the eddy vis-
cosity of the 𝑘-𝜖 model of Lam and Bremhorst [21]. The modification
accounted for the shear-thinning rheology and results showed fairly
good agreement against experimental data on the friction factor and
mean velocity profile of pipe flows. However, apart from the modified
damping function, results were obtained with a Newtonian RANS
model, hence no turbulence closure was used for the non-Newtonian
correlations. A similar approach was adopted by Bartosik [22,23],
who modified the damping function of the 𝑘-𝜖 model accounting for
the yield stress of Bingham and Herschel–Bulkley fluids. Recently, a
significant step forward has been made by Gavrilov and Rudyak [24],
who proposed a turbulence closure for power-law fluids, using the
𝑘-𝜖-𝑣2-𝑓 model of Durbin [16].

This work aims at developing a RANS model for Herschel–Bulkley
fluids that introduces the minimum amount of complexities while
capturing the relevant physics of interest for engineering applications
concerned with wall-bounded flows. In this article the turbulent closure
of Gavrilov and Rudyak [24] for power-law fluids is extended to
Herschel–Bulkley fluids and is presented in a general form that can be
easily extended to any generalised Newtonian (GN) fluid model. How-
ever, instead of using the 𝑘-𝜖-𝑣2-𝑓 model, the new model is developed
starting from the popular 𝑘-𝜔 SST model of Menter et al. [25]. The latter
was developed for Newtonian fluids and it was proved to be a robust
and accurate model for a large number of applications, including wall-
bounded flows with adverse pressure gradient, which makes it suitable
for turbulent flows of Newtonian fluids around bluff bodies. Being a
blending of the 𝑘-𝜖 [26] and 𝑘-𝜔 [27] models, the SST model inherits
their best features, i.e. the insensitivity to free-stream parameters of the
𝑘-𝜖 and the accuracy in the near-wall region of the 𝑘-𝜔 without using
damping functions.

The results obtained with the new model are compared against
recent DNS of Singh et al. [14,28,29] for fully-developed pipe flow and
against correlations for the friction factor, covering a wide range of
rheological parameters and Reynolds numbers.

An additional contribution of this work is the assessment of three
Newtonian RANS models when they are applied to turbulent flows
of Herschel–Bulkley fluids. The selected RANS models are: the 𝑘 − 𝜔
SST [25], the 𝑘 −

√

𝑘𝐿 [30] and the Spalart–Allmaras [31] models.
The rest of the paper is structured as follows. Section 2 describes

he governing equations and the Reynolds-averaged procedure. The
athematical derivation of the turbulence closure is given in Section 3.
n overview of the flow solver used in the present work is given in
ection 5. Section 6 discusses numerical errors. Results are reported
nd discussed in Section 7. Finally, Section 8 summarises the main
onclusions.

. Governing equations

The incompressible flow is governed by the following continu-
ty and momentum equations (the hat symbol denotes instantaneous
uantities):

⋅ 𝒖̂ = 0 , (1)

𝜕(𝜌𝒖̂)
+ ∇ ⋅ (𝜌𝒖̂ 𝒖̂) = ∇ ⋅ 𝝉̂ − ∇𝑝̂ , (2)
2

𝜕𝑡
here 𝒖̂(𝒙, 𝑡) is the velocity vector, 𝒙 is the position vector, 𝑡 is time,
𝑝̂ is pressure, 𝜌 is density, 𝝉̂ is the deviatoric stress tensor that, for GN
luids, reads

̂ ≡ 𝜏𝑖𝑗 = 2𝜇̂𝑺̂ , 𝑺̂ ≡ 𝑆̂𝑖𝑗 =
1
2

(

𝜕𝑢̂𝑖
𝜕𝑥𝑗

+
𝜕𝑢̂𝑗
𝜕𝑥𝑖

)

, (3)

where 𝑆̂𝑖𝑗 is the deformation rate tensor and 𝜇̂ is the apparent viscosity.
For Newtonian fluids, the apparent viscosity is simply a constant equal
to the molecular viscosity, whereas for GN fluids the apparent viscosity
is a function of the instantaneous shear rate ̇̂𝛾 =

√

2𝑆̂𝑖𝑗 𝑆̂𝑖𝑗 . In particular,
for Herschel–Bulkley fluids, the apparent viscosity reads (e.g. [32])

⎧

⎪

⎨

⎪

⎩

𝜇̂ =
𝜏0 +𝐾 ̇̂𝛾𝑛

̇̂𝛾
, 𝜏0 ≤ |𝝉̂| ,

𝜇̂ = ∞ , |𝝉̂| < 𝜏0 ,
(4)

here 𝜏0 is the yield stress, |𝝉̂| =
√

𝜏𝑖𝑗𝜏𝑖𝑗∕2 is the second invariant of
𝜏𝑖𝑗 , 𝑛 is the flow index and 𝐾 is the consistency parameter, which has
dimension of a viscosity for 𝑛 = 1. The infinite viscosity in Eq. (4) means
that the fluid does not deform (𝑺̂ = 0) when the stress level is below
the yield stress. The Herschel–Bulkley model reduces to Bingham or
power-law when 𝑛 = 1 or 𝜏0 = 0, respectively.

To avoid numerical difficulties associated with the infinite viscosity,
he popular regularisation approach of Papanastasiou [33] is used.
hus, the apparent viscosity for the Herschel–Bulkley model given by
q. (4) is replaced by

̂ =
𝜏0(1 − 𝑒−𝑚 ̇̂𝛾 ) +𝐾 ̇̂𝛾𝑛

̇̂𝛾
, (5)

where 𝑚 is the regularisation parameter. In the limit of 𝑚 → ∞, Eq. (5)
ends to Eq. (4).

.1. Reynolds-averaged equations

Following the procedure originally proposed by Osborne Reynolds
1895), a generic instantaneous flow quantity 𝜙̂ can be expressed as the
um of a mean and a fluctuating part (Reynolds decomposition),

̂(𝒙, 𝑡) = 𝜙(𝒙, 𝑡) + 𝜙′(𝒙, 𝑡) . (6)

he mean value, 𝜙(𝒙, 𝑡), is here obtained from ensemble-averaging,1
hence

𝜙(𝒙, 𝑡) = 𝜙̂(𝒙, 𝑡) ≡ 1
𝑁

lim
𝑁→∞

𝑁
∑

𝑛=1
𝜙̂𝑛(𝒙, 𝑡) , (7)

with 𝑁 being the number of repeated observations of 𝜙̂𝑛(𝒙, 𝑡). This
operation is known as Reynolds-averaging and it will be indicated with
the overbar.

By applying the Reynolds-averaging to Eqs. (1) and (2), the
Reynolds-averaged continuity and momentum equations for GN fluids
are obtained:

∇ ⋅ 𝒖 = 0 , (8)

𝜌 𝜕𝒖
𝜕𝑡

+ 𝜌∇ ⋅ (𝒖 𝒖) = ∇ ⋅ 𝜏 − ∇𝑝 − 𝜌∇ ⋅ (𝒖′ 𝒖′) + ∇ ⋅ 𝜏𝑛𝑛𝑖𝑗 , (9)

where −𝜌𝒖′ 𝒖′ is the (unknown) Reynolds stress tensor and 𝜏 ≡ 𝜏𝑖𝑗 =
2𝜇𝑆𝑖𝑗 is the mean deviatoric stress tensor. As a result of the fluctuating
iscosity for non-Newtonian fluids, an additional term appears on the
ight-hand side of Eq. (9),
𝑛𝑛
𝑖𝑗 = 2𝜇′𝑆′

𝑖𝑗 . (10)

This term, hereafter referred to as non-Newtonian stress tensor, is a
priori unknown and it requires turbulent closure.

1 Contrary to 𝜙′(𝒙, 𝑡), the time dependency of 𝜙(𝒙, 𝑡) is relative to the
nonturbulent unsteadiness of the flow.
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2.2. Turbulence modelling

The turbulence model proposed in this article is based on the two-
equation 𝑘-𝜔 SST model of Menter et al. [25], which approximates the

eynolds stress tensor using the Boussinesq hypothesis,

𝜌𝑢′𝑖𝑢
′
𝑗 = 𝜇𝑡𝑆𝑖𝑗 −

2
3
𝜌𝛿𝑖𝑗𝑘 (11)

where 𝛿𝑖𝑗 is the Kronecker symbol, 𝑘 = 1
2
𝑢′𝑖𝑢

′
𝑖 is the turbulent kinetic

energy (TKE) and 𝜇𝑡 is the so-called eddy (or turbulent) viscosity. The
eddy viscosity is a function of 𝑘 and 𝜔, the latter being the specific
dissipation rate of TKE. The variation of 𝑘 and 𝜔 in the flow is modelled
by two respective transport equations.

The transport equation for the turbulent kinetic energy 𝑘 can be
derived from the transport equations of the Reynolds stress by sum-
mation over the diagonal components (see e.g. [34] for the complete
derivation), and it has the following expression:
𝐷(𝜌𝑘)
𝐷𝑡

= 𝑃 +𝛱 + 𝑇 +𝒟 − 𝜌𝜖 + 𝜉𝑛𝑛 + 𝜒𝑛𝑛 +𝒟 𝑛𝑛 . (12)

The first four terms on the right-hand side are:

- production: 𝑃 = −𝜌𝑢′𝑖𝑢
′
𝑗𝑆𝑖𝑗

- pressure diffusion: 𝛱 = −
𝜕𝑝′𝑢′𝑗
𝜕𝑥𝑗

- turbulent transport: 𝑇 = −
𝜕𝜌𝑢′𝑖𝑢

′
𝑖𝑢

′
𝑗

𝜕𝑥𝑗
- mean viscous transport:

𝒟 = 𝜕
𝜕𝑥𝑗

(

𝜇 𝜕𝑘
𝜕𝑥𝑗

+ 𝜇
𝜕𝑢′𝑖𝑢

′
𝑗

𝜕𝑥𝑖

)

- viscous dissipation:
𝜌𝜖 = 2𝜇𝑆′

𝑖𝑗𝑆
′
𝑖𝑗 + 2𝜇′𝑆′

𝑖𝑗𝑆
′
𝑖𝑗

The above terms are the same that are found in the equation for Newto-
nian fluids except for 𝜖, that now contains the non-Newtonian contribu-
tion due to the fluctuating viscosity. The last three terms in Eq. (12) are
non-Newtonian contributions and, adopting the terminology of Singh
et al. [28], they read:

- mean shear turbulent viscous dissipation:
𝜒𝑛𝑛 = −2𝜇′𝑆′

𝑖𝑗𝑆𝑖𝑗

- mean shear turbulent viscous transport:

𝜉𝑛𝑛 =
𝜕(2𝜇′𝑢′𝑖𝑆𝑖𝑗 )

𝜕𝑥𝑗
- turbulent viscous transport:

𝒟 𝑛𝑛 = 𝜕
𝜕𝑥𝑗

(

1
2
𝜇′

𝜕𝑢′𝑖𝑢
′
𝑖

𝜕𝑥𝑗
+ 𝜇′

𝜕𝑢′𝑖𝑢
′
𝑗

𝜕𝑥𝑖

)

ote that all the non-Newtonian contributions contain the fluctuating
iscosity 𝜇′, therefore they all vanish when the fluid is Newtonian.

The first five terms of Eq. (12) are modelled as in the standard 𝑘−𝜔
ST model (which is reported in Appendix A), hence:

𝐷(𝜌𝑘)
𝐷𝑡

=

𝑃
⏞⏞⏞
𝑃𝑘 +

𝒟+𝛱+𝑇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∇ ⋅
[

(𝜇 + 𝜎𝑘𝜇𝑡)∇𝑘
]

−𝜌

𝜖
⏞⏞⏞
𝛽∗𝑘𝜔 +𝜉𝑛𝑛 + 𝜒𝑛𝑛 +𝒟 𝑛𝑛 . (13)

𝑘̃ = min(𝜇𝑡𝑆2, 10𝛽∗𝜌𝑘𝜔)

here 𝑆2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 . Eq. (13) is thus equal to the equation of the
− 𝜔 SST model except for the shear-dependent viscosity 𝜇 and the
on-Newtonian contributions on the right-hand side that need to be
odelled.

The exact transport equation of 𝜔 for GN fluids is lengthy and it can
e derived from the exact transport equation of 𝜖 in [34]. Following
he approach of Gavrilov and Rudyak [24], in the present work we
3

onsider the same empirical equation of the 𝑘 − 𝜔 SST model, except
for an additional (not yet specified) non-Newtonian contribution (𝐸𝑛𝑛):

𝐷(𝜌𝜔)
𝐷𝑡

= 𝜌𝛼𝑆2 + ∇ ⋅

[

(𝜇 + 𝜎𝜔𝜇𝑡)∇𝜔

]

− 𝛽𝜌𝜔2

+ 2𝜌(1 − 𝐹1)
𝜎𝜔2
𝜔

∇𝑘 ⋅ ∇𝜔 + 𝐸𝑛𝑛 .

(14)

In order to solve Eqs. (9), (13) and (14), the unknown
non-Newtonian contributions 𝜏𝑛𝑛𝑖𝑗 , 𝜉𝑛𝑛, 𝜒𝑛𝑛, 𝒟 𝑛𝑛, 𝜖𝑛𝑛 and 𝐸𝑛𝑛 require
turbulent closure. This is the topic of the next section.

3. Turbulence closure for the non-Newtonian terms

The closure is derived along the lines of Gavrilov and Rudyak [24].
The main difference is that in this work the closure is derived for the
𝑘-𝜔 SST model and in a general form that can be easily extended to any
GN model.

3.1. Average viscosity model

The average viscosity model proposed in [24] assumes that the
average viscosity is a function of the mean shear rate, i.e

̂( ̇̂𝛾) ≃ 𝜇( ̇̂𝛾) ≡ 𝜇(𝛾̇) . (15)

In turn, the mean shear rate (squared) reads:

𝛾̇2 = 2𝑆̂𝑖𝑗 𝑆̂𝑖𝑗 = 2𝑆𝑖𝑗𝑆𝑖𝑗 + 2𝑆′
𝑖𝑗𝑆

′
𝑖𝑗 , (16)

here the second term on the right-hand side can be estimated from
he total viscous dissipation rate of turbulent kinetic energy

𝜖 = 2𝜇𝑆′
𝑖𝑗𝑆

′
𝑖𝑗 + 2𝜇′𝑆′

𝑖𝑗𝑆
′
𝑖𝑗 . (17)

avrilov and Rudyak [24] assumed that since 𝜇′ can be either positive
r negative whereas 𝑆′

𝑖𝑗𝑆
′
𝑖𝑗 is always positive, the second term in

q. (17) will be small on average and therefore it can be neglected.
NS data of Singh et al. [28] confirm that such assumption is fairly
cceptable when 𝑛 < 1. On the other hand, for Bingham fluids (𝑛 = 1)
his assumption seems incorrect. Nevertheless, for lack of knowledge
f how to model such term we retain the assumption to be valid also
or Bingham fluids. The main message is that larger modelling errors
n the average viscosity should be expected for Bingham fluids.

In light on the above consideration, the second term of Eq. (16) can
e approximated using Eq. (17),

𝑆′
𝑖𝑗𝑆

′
𝑖𝑗 ≃

𝜌𝜖
𝜇

=
𝜌𝛽∗𝜔𝑘

𝜇
, (18)

nd substituting in Eq. (16) gives

𝛾̇2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 +
𝜌𝛽∗𝜔𝑘

𝜇
. (19)

ote that, in Eq. (15), 𝜇 is a function of 𝛾̇, which in turn is now a
unction of 𝜇 because of Eq. (19). In mathematical terms, 𝜇 = 𝑓 (𝜇),

where 𝑓 (𝜇) is the function obtained combining Eqs. (15) and (19). Since
the governing equations are solved using iterative solution methods,
the mean viscosity can be simply computed at each new outer itera-
tion using 𝜇 from the previous iteration. However, to avoid possible
numerical instabilities in the iterative solver due to the highly non-
linear nature of 𝜇 = 𝑓 (𝜇), it is advised to perform a few intermediate
iterations (e.g., using a simple fixed-point algorithm) before proceeding
to the next outer iteration.

3.2. Closure for the non-Newtonian stress tensor

DNS for shear-thinning fluids [14,29] showed that 𝜇′∕𝜇 does not ex-
ceed 30%. Thus, assuming small viscosity fluctuations, it is reasonable
to relate 𝜇′ to the fluctuations of the deformation rate tensor as

𝜇′ ≈
𝜕𝜇

𝑆′
𝑖𝑗 =

𝜕𝜇 𝜕𝛾̇
𝑆′
𝑖𝑗 =

𝜕𝜇 2𝑆𝑖𝑗 𝑆′
𝑖𝑗 , (20)
𝜕𝑆𝑖𝑗 𝜕𝛾̇ 𝜕𝑆𝑖𝑗 𝜕𝛾̇ 𝛾̇
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whence,

𝜏𝑛𝑛𝑖𝑗 = 2𝜇′𝑆′
𝑖𝑗 = 2

𝜕𝜇
𝜕𝛾̇

𝑆𝑖𝑗

𝛾̇
2𝑆′

𝑖𝑗𝑆
′
𝑖𝑗 , (21)

nd by virtue of Eq. (18),

𝑛𝑛
𝑖𝑗 = 2

𝜕𝜇
𝜕𝛾̇

𝑆𝑖𝑗

𝛾̇
𝜌𝛽∗𝜔𝑘

𝜇
. (22)

he expression above can be rearranged in a more convenient form:

𝑛𝑛
𝑖𝑗 = 2𝜇𝑛𝑛𝑆𝑖𝑗 , 𝜇𝑛𝑛 =

𝜕𝜇
𝜕𝛾̇

𝜌𝛽∗𝜔𝑘
𝜇𝛾̇

, (23)

where 𝜇𝑛𝑛 can thus be interpreted as a turbulent non-Newtonian vis-
osity. For shear-thinning fluids 𝜇𝑛𝑛 is always negative, thus it acts to
educe the turbulent transport of momentum.

.3. Closure for the turbulence transport equations

The remaining terms that need to be modelled are 𝜒𝑛𝑛, 𝒟 𝑛𝑛, 𝜉𝑛𝑛 and
𝑛𝑛.

The first term is easily modelled by virtue of Eq. (20) as
𝑛𝑛 = −2𝜇′𝑆′

𝑖𝑗𝑆𝑖𝑗 = −𝜇𝑛𝑛𝑆2 . (24)

For shear-thinning fluids this term is always positive and therefore
it acts as a production term (see also Appendix B), even though it
originates from the viscous term.

The second term, 𝒟 𝑛𝑛, can be neglected since it is identical to the
ean viscous transport term 𝒟 but with the fluctuating viscosity in-

stead of the mean viscosity. The smallness of this term is also confirmed
by DNS [14,28].

Following the approach in [24], 𝜉𝑛𝑛 is modelled assuming that in the
boundary layer the following approximations hold: |𝒖| ≈ 𝑢1, 𝑆𝑖𝑗 ≈ 𝑆12

and 𝑘 ≈ 𝑢′21 ∕2, where 1 and 2 indicate the stream and cross-stream
irections, respectively. Hence,

𝑛𝑛 =
𝜕(2𝜇′𝑢′𝑖𝑆𝑖𝑗 )

𝜕𝑥𝑗
≈ 𝜕

𝜕𝑥𝑗

(

2
𝜕𝜇
𝜕𝛾̇

2𝑆𝑘𝑙
𝛾̇

𝑆′
𝑘𝑙𝑢

′
𝑖𝑆𝑖𝑗

)

≈ 𝜕
𝜕𝑥2

(

2
𝜕𝜇
𝜕𝛾̇

2𝑆2
12
𝛾̇

𝑆′
12𝑢

′
1

)

= 𝜕
𝜕𝑥2

[

𝜕𝜇
𝜕𝛾̇

2𝑆2
12
𝛾̇

(

𝑢′1
𝜕𝑢′1
𝜕𝑥2

+ 𝑢′1
𝜕𝑢′2
𝜕𝑥1

)

]

≈ 𝜕
𝜕𝑥2

(

𝜕𝜇
𝜕𝛾̇

2𝑆2
12
𝛾̇

𝜕𝑢′1𝑢
′
1∕2

𝜕𝑥2

)

≈ 𝜕
𝜕𝑥2

(

𝜕𝜇
𝜕𝛾̇

2𝑆2
12
𝛾̇

𝜕𝑘
𝜕𝑥2

)

,

(25)

and in its general form:

𝜉𝑛𝑛 = ∇ ⋅

(

𝜕𝜇
𝜕𝛾̇

𝑆2

𝛾̇
∇𝑘

)

. (26)

or shear-thinning fluids, the quantity that multiplies ∇𝑘 is negative,
hus acting as a reduction of the turbulent diffusion of 𝑘.

Finally, the last term that needs to be modelled is the
on-Newtonian contribution to the transport equation of 𝜔, 𝐸𝑛𝑛. Since

the 𝜔-equation is empirical, this term is simply treated in analogy with
the production term of the 𝜔 equation for the SST model, i.e.

𝐸𝑛𝑛 =
𝜌𝛼
𝜇𝑡

(𝜉𝑛𝑛 + 𝜒𝑛𝑛) , (27)

where 𝛼 is a closure coefficient of the 𝑘-𝜔 SST model (see Appendix A).

3.4. Final mathematical model

The complete mathematical model reads:

∇ ⋅ 𝒖 = 0 , (28)

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 𝒖) = ∇ ⋅
[

2(𝜇 + 𝜇𝑡 + 𝐶𝜏𝜇
𝑛𝑛)𝑺

]

− ∇(𝑝 + 2
3
𝑘) , (29)

𝐷(𝜌𝑘)
= 𝑃 +𝐷 − 𝜌𝜖 + 𝜉𝑛𝑛 + 𝜒𝑛𝑛 , (30)
4

𝐷𝑡 𝑘
𝐷(𝜌𝜔)
𝐷𝑡

= 𝜌𝛼𝑆2 + ∇ ⋅

[

(𝜇 + 𝜎𝜔𝜇𝑡)∇𝜔

]

− 𝛽𝜌𝜔2

+ 2𝜌(1 − 𝐹1)
𝜎𝜔2
𝜔

∇𝑘 ⋅ ∇𝜔 + 𝐸𝑛𝑛 .

(31)

𝐷 ≡ ∇ ⋅

[

(𝜇 + 𝜎𝑘𝜇𝑡)∇𝑘

]

, (32)

𝜖 = 𝛽∗𝜔𝑘 , (33)

𝛾̇2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 +
𝜌𝐶𝛽𝜖
𝜇

, (34)

𝜇𝑛𝑛 =
𝜕𝜇
𝜕𝛾̇

𝜌𝐶𝛽𝜖
𝜇𝛾̇

, (35)

𝜒𝑛𝑛 = −𝐶𝜒𝜇
𝑛𝑛𝑆2 , (36)

𝑛𝑛 = 𝐶𝜉∇ ⋅

(

𝜕𝜇
𝜕𝛾̇

𝑆2

𝛾̇
∇𝑘

)

, (37)

𝐸𝑛𝑛 = 𝐶𝐸
𝜌𝛼
𝜇𝑡

(𝜉𝑛𝑛 + 𝜒𝑛𝑛) . (38)

The original SST model and its closure coefficients are reported in
Appendix A, whereas the closure coefficients relative to the new model
(𝐶𝛽 , 𝐶𝜏 , 𝐶𝜒 , 𝐶𝜉 and 𝐶𝐸) are given in Section 7.1.

The quantity 𝜕𝜇∕𝜕𝛾̇ depends on the rheological model at hand. For
he Herschel–Bulkley model with the Papanastasiou regularisation it
eads:
𝜕𝜇
𝜕𝛾̇

=
(𝑛 − 1)𝐾𝛾̇𝑛 − 𝜏0(1 − 𝑒−𝑚𝛾̇ ) + 𝑚𝛾̇𝜏0𝑒−𝑚𝛾̇

𝛾̇2
. (39)

Finally, for the boundary conditions on perfectly smooth walls, the
same conditions of the standard SST model can be applied because all
the non-Newtonian contributions (𝜇𝑛𝑛, 𝜒𝑛𝑛, 𝜉𝑛𝑛 and 𝐸𝑛𝑛) are zero at the
wall (for 𝜒𝑛𝑛 and 𝜉𝑛𝑛, see Appendix B).

4. Pipe flow simulations: test cases, computational domain and
boundary conditions

The new model, hereafter labelled as ‘SST-HB’, has been calibrated
on DNS data [14,28,29] for fully-developed flows in smooth pipes
of power-law (PL), Bingham (Bn) and Herschel–Bulkley (HB) fluids.
Furthermore, as anticipated in the introduction, the performance of
three Newtonian eddy-viscosity models is investigated. The selected
models are the 𝑘 − 𝜔 SST [25], the 𝑘-

√

𝑘𝐿 [30] and the Spalart–
Allmaras [31] models. These will be hereafter referred to as SST, KSKL
and SA, respectively.

4.1. Test cases

The definition of the Reynolds number for Herschel–Bulkley fluids
is difficult because the choice of the viscosity is not univocal. For pipe
flows, a standard choice is to use the wall kinematic viscosity, that for
Herschel–Bulkley fluids reads

𝜈𝑤 =
𝜏𝑤
𝜌

(

𝐾
𝜏𝑤 − 𝜏0

)1∕𝑛

, (40)

where 𝜏𝑤 is the shear stress at the wall. For a pipe having diameter
𝐷 = 2𝑅, with the Cartesian axes at centre of the pipe and with the 𝑧-
xis aligned with the flow, 𝜏𝑤 is related to the pressure gradient 𝜕𝑝∕𝜕𝑧

inside the pipe as

𝜏𝑤 = 𝑅
2
𝜕𝑝
𝜕𝑧

. (41)

From the wall viscosity, the Reynolds number can be thus defined as

𝑅𝑒𝑤 =
𝑈𝑏𝐷 , (42)

𝜈𝑤
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Table 1
Summary of the considered test cases. Calculations were performed for each possible
combination of rheology, Reynolds number and RANS model listed in the table.

Case 𝑛 𝜏0∕𝜏𝑤 (%) 𝑅𝑒𝜏 𝑅𝑒𝑤 (Nwt) RANS model

Nwt 1.0 0 323 ∼ 10 000 New model (SST-HB)
PL08 0.8 0 500 ∼ 17 000 𝑘 − 𝜔 SST-2003 (SST)
PL06 0.6 0 750 ∼ 27 000 Spalart–Allmaras (SA)
PL04 0.4 0 1000 ∼ 37 000 𝑘 −

√

𝑘𝐿 (KSKL)
Bn5 1.0 5 1250 ∼ 48 000
Bn10 1.0 10 1500 ∼ 59 000
Bn20 1.0 20 2000 ∼ 82 000
Bn30 1.0 30 2500 ∼ 105 000
HB10 0.8 10

Fig. 1. One quarter of the coarsest and finest grid.

where 𝑈𝑏 is the bulk velocity. The problem with this definition is that
𝑅𝑒𝑤 cannot be determined a priori because either 𝑈𝑏 or 𝜈𝑤 is unknown
before the simulation, depending on whether the pressure gradient or
the flow rate is imposed. It is thus useful to introduce the friction
Reynolds number,

𝑅𝑒𝜏 = 𝑢𝜏𝑅∕𝜈𝑤 , (43)

with 𝑢𝜏 =
√

𝜏𝑤∕𝜌 being the friction velocity. The latter is also used to
define 𝑢+ = 𝑢∕𝑢𝜏 , 𝑘+ = 𝑘∕𝑢2𝜏 and the wall unit 𝑦+ = (𝑅 − 𝑟)𝑢𝜏∕𝜈𝑤, with
𝑟 =

√

𝑥2 + 𝑦2.
The wall viscosity was chosen as 𝜈𝑤 = 1∕𝑅𝑒𝜏 and the non di-

mensional pressure gradient (𝜕𝑝∕𝜕𝑧)𝑅∕𝜏𝑤 was set equal to 2. From
these non-dimensional parameters the fluid properties for each test case
(Table 1) can be uniquely determined.

4.2. Computational domain and boundary conditions

The full pipe was discretised using four structured grids (Fig. 1)
covering a refinement ratio of 2, with the finest grid made of about
86 000 cells (232 and 212 cells in the radial and azimuthal direction,
respectively). The grid resolution at the pipe wall was chosen such
that 𝑦+ ≲ 0.1 for all the considered test cases to ensure low levels of
numerical uncertainty [35] (see Section 6).

Since the flow is fully developed, only one layer of cells was
considered in the flow direction, and periodic boundary conditions
were applied stream-wise. At the pipe wall (𝑥2 + 𝑦2 = 𝑅2), the
impermeable/no-slip boundary conditions for the velocity (𝒖 = 0) and
the Neumann condition for pressure (𝜕𝑝∕𝜕𝑛 = 0) were applied. All the
turbulence quantities except 𝜔 are set to zero at the wall. For 𝜔, the
following value is imposed at the first cell-centre away from the wall,

𝜔 =
6𝜇

𝜌𝛽1𝑑2
, (44)

where 𝑑 is the distance from the wall and 𝛽1 = 3∕40. The value of 𝜔 at
the wall surface is set to ten times the value given by Eq. (44), as in
the original SST model [36].
5

Table 2
Numerical uncertainty in the friction factor 𝑓 for the finest grid in percentage of the
simulated data.

SST-HB SST SA KSKL

𝑅𝑒𝜏 = 323 (𝑦+max = 0.016)
Nwt 0.21 0.21 0.04 0.08
PL04 0.17 0.19 0.02 0.03
Bn20 0.19 0.21 0.03 0.07
HB10 0.28 0.21 0.05 0.11
𝑅𝑒𝜏 = 2500 (𝑦+max = 0.125)
Nwt 1.37 1.37 0.03 0.30
PL04 1.21 1.33 0.07 0.01
Bn20 1.26 1.33 0.02 0.03
HB10 1.28 1.35 0.02 0.07

5. Flow solver

The CFD code used for the present work is ReFRESCO [37], a
viscous-flow code currently being developed and verified for mar-
itime purposes by the Maritime Research Institute of the Netherlands
(MARIN) in collaboration with several non-profit organisations around
the world. The code solves incompressible Reynolds-averaged momen-
tum and continuity equations in combination with transport equations
for turbulence quantities. A number of other features such as mul-
tiphase and cavitation models are also included but they are not
considered in the present work. Originally developed for Newtonian
fluids, ReFRESCO has been recently extended and verified [38] for flow
simulations of Herschel–Bulkley fluids.

Equations are discretised in strong-conservation form with a second-
order finite-volume method for unstructured mesh with cell-centred
co-located variables. Mass conservation is ensured with a pressure-
correction equation based on a SIMPLE-like algorithm [39]. The con-
vective fluxes of all transport equations are linearised with the Picard
method and discretised with the Harmonic scheme [40].

6. Numerical uncertainties

For a meaningful comparison with data from the literature, it is
important to ensure that the numerical errors/uncertainties are suffi-
ciently small.

For statistically steady flows, it is commonly accepted to divide
numerical errors in three categories: discretisation, iterative and round-
off errors. Round-off errors are due to the finite precision of computers
and they can be safely neglected for the present work by using double
precision. Iterative errors are due to the use of iterative methods to
find the solution of the discretised equations. These can be neglected
by reducing residuals to machine accuracy, although less strict criteria
are usually sufficient for practical applications. For the present work,
calculations were stopped when the 𝐿2 norm of the normalised residu-
als was below 2 × 10−10, which was observed to be sufficient to safely
neglect the contribution of iterative errors. We have thus assumed that
the numerical uncertainties are only due to discretisation errors.

The discretisation uncertainties in the friction factor 𝑓 = 2𝜏𝑤∕(𝜌𝑈2
𝑏 )

were estimated using the method of Eça and Hoekstra [41] and they
are reported in Table 2 for the lowest and highest Reynolds numbers
considered in this work. Among the three Newtonian eddy-viscosity
models, the SST model has clearly the largest uncertainties, confirming
the observations made in [35]. Overall, the discretisation uncertainties
never exceed 1.4%, and they are only slightly affected by the fluid
rheology.

It is anticipated that, for Bingham and Herschel–Bulkley fluids,
the Newtonian RANS models incorrectly predict a plug region (see
Sections 7.2 and 7.4), i.e. a region with 𝛾̇ = 0. This means that the
regularisation is activated and the choice of the regularisation parame-
ter, 𝑚, influences the numerical solution. In general, the regularisation
parameter must be chosen large enough to avoid large regularisation
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Fig. 2. Mean velocity profiles on the coarsest and finest grids for Newtonian fluids
using the SST model.

errors, but not too large to compromise the convergence of the iterative
solver. For the present calculations, the regularisation parameter was
chosen such that 𝑀 ≡ 𝜏0𝑚∕(𝜌𝜈𝑤) ≈ 2000. The sensitivity of the friction
factor due to the regularisation parameter was assessed by varying 𝑀
from 2000 to 500, and the maximum difference in the friction factor
among all the test cases never exceeded 0.1%. With the new model, on
the other hand, the average shear rate was actually never low enough
to activate the regularisation (thanks to the second term in Eq. (34)).
Therefore, both the solution and the iterative convergence were totally
unaffected by the choice of 𝑚.2 In summary, it is reasonable to consider
he numerical uncertainty to be within 1.4% of the friction factor.

For the mean velocity profiles, only small differences between the
olution on the coarsest and finest grids were observed, and mainly in
he viscous sublayer at high Reynolds numbers (see Fig. 2). Thus, in
onclusion, the numerical uncertainties are sufficiently small to allow
meaningful comparison with data from the literature.

. Results and discussion

.1. Model calibration

In order to achieve a wide range of applicability for the new model,
he closure coefficients were chosen to provide satisfactory agreement
ith DNS data [14,28,29], for a total of 10 test cases. Furthermore,

ittle adjustments in the closure coefficients were made to improve
he agreement with correlations from the literature for the friction
actor [42,43] at higher Reynolds numbers. The final selected closure
oefficients are:

- 𝐶𝛽 = 0.667, 𝐶𝜏 = 0.6, 𝐶𝜒 = 0.6, 𝐶𝜉 = 0.4
- 𝐶𝐸 = 𝐶𝐸1𝐹𝐸 (𝑛) + 𝐶𝐸2(1 − 𝐹𝐸 (𝑛))
- 𝐶𝐸1 = 2.5, 𝐶𝐸2 = 1.85
- 𝐹𝐸 (𝑛) = 0.5 tanh

[

8(𝑛 − 0.75)
]

+ 0.5

Among the large number of combinations of closure coefficients that
provided satisfactory agreement with data from the literature, the set
with the lower coefficients was favoured. In this way, the modification
of the SST model is minimised, and so is the impact of the additional
terms on the iterative solver.

It was also decided to use a blending function, 𝐹𝐸 , such that 𝐶𝐸
ields values from 𝐶𝐸1 to 𝐶𝐸2 when the flow index 𝑛 goes from 1 to

0.4. The reason for this is that 𝐶𝐸1 was observed to be optimal as long
as 0.8 ≤ 𝑛 ≤ 1, whereas for 𝑛 < 0.8 the effect of 𝐸𝑛𝑛 on the numerical

2 This is true as long as 𝑚 is sufficiently large; too low values may still
nfluence the solution. Also, for external flows, the region outside the boundary
ayer is typically undeformed, so the iterative solver may still be affected by
he use of large regularisation parameters.
6

Fig. 3. Mean velocity profiles for 𝑅𝑒𝜏 = 323.
Source: DNS data are from [28] and do not
include the case Bn30.

solution became excessive, especially at high Reynolds numbers. 𝐹𝐸
was thus devised to reduce 𝐸𝑛𝑛 for 𝑛 < 1. In practice, since 𝐸𝑛𝑛 > 0
for the tested rheologies, 𝐹𝐸 reduces the extra production of 𝜔 for low
values of the flow index.

It is finally remarked that the blending functions 𝐹1 and 𝐹2 stem-
ming from the original SST model (see also Appendix A) have not
been modified for the new model. However, these functions contain
the molecular viscosity and, since they were originally designed for
Newtonian fluids, they may not always work as intended when using
non-Newtonian fluids. For pipe flows, these functions are virtually
constant (equal to one) across the pipe section, thus no issues were
encountered. On the other hand, further research is needed to verify
this on more complex wall-bounded flows, for example with adverse
pressure gradient and flow separation.

7.2. Mean velocity

The mean velocity profiles for 𝑅𝑒𝜏 = 323 are shown in Fig. 3. For
Newtonian fluids (Fig. 3 top), the SST and SST-HB produce identical
results, as expected, and the SA shows the best agreement with DNS,
even in the buffer layer (5 < 𝑦+ < 30).
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Fig. 4. Mean velocity profiles for PL06 at 𝑅𝑒𝜏 = 323, 500, 750.
Source: DNS data are from [29].

For the non-Newtonian cases, the new model produces the best
greement with DNS, although some discrepancies are noticeable
round 𝑦+ = 30. However, such discrepancies occur also for Newtonian
luids, so they are not strictly related to the non-Newtonian closure.

The Newtonian RANS models KSKL and SA tend to overpredict the
ean velocity, meaning higher flow rates and lower friction factors,
hereas the SST model seems rather insensitive to the non-Newtonian

haracter of the fluid, which results in an underprediction of the mean
elocity profile. Interestingly, for Bingham and Herschel–Bulkley fluids,
he Newtonian RANS models incorrectly predict flat velocity profiles
ear the centreline (especially visible for Bn20 and Bn30), which indi-
ates the presence of an unyielded region, or ‘plug’. This plug is caused
y the very large viscosity in the core region (see also Section 7.3) and
t characterised by zero mean shear rate.3 Unyielded plugs are typical of
aminar flows of yield-stress fluids in pipes and channels. For turbulent
lows, both DNS [13,28] and experimental data [44,45] suggest that the
olid plug at the core is broken once the flow becomes turbulent. For
iscoplastic fluids with truly time-independent rheology, plugs smaller
han the Kolmogorov scales may still exist where the instantaneous
hear rate is zero.

Unfortunately, DNS data for 𝑅𝑒𝜏 > 323 are only available for power-
aw fluids. Nevertheless, the agreement of the SST-HB model with the
NS appears to slightly improve for 𝑅𝑒𝜏 = 750 (Fig. 4), whereas
o discernible improvements are observed for the SST, SA and KSKL
odels.

.3. Average viscosity

The average viscosity predicted by the SST-HB model compares well
ith DNS, although the agreement seems to deteriorate for yield stress

luids (see Fig. 5). In the core region, the SST-HB clearly outperforms
he other models. In particular, the Newtonian turbulence models pre-
ict a very large viscosity near the centreline of the pipe, as a result of
he (nearly) zero mean shear rate. Remarkably, for Bn20 and 𝑦+ < 200,

3 For the present calculations, the mean shear rate is actually close to zero
ut not exactly zero because of the use of the regularisation.
7

Fig. 5. Average viscosity for 𝑅𝑒𝜏 = 323.
Source: DNS data are from [28].

the SA model agrees very well with DNS. However, this seems rather
a fortuity since such good agreement is not observed in the other test
cases.

While the new model produces the best agreement among the
considered eddy-viscosity models, a clear discrepancy is noticeable for
20 < 𝑦+ < 200 for Bn20 and HB10. This could be explained by looking
at the two main assumptions underlying the average viscosity model.

The first assumption is Eq. (15). From the mathematical standpoint,
this assumption is exact when the viscosity is either a constant or a
linear function of the instantaneous shear rate ̇̂𝛾. For power-law fluids,
the viscosity is proportional to ̇̂𝛾𝑛−1, therefore the lower the flow index
𝑛 the more the assumption becomes weak. In the limit of 𝑛 = 0, the
iscosity is proportional to ̇̂𝛾−1, as for Bingham fluids. This means
hat for Bingham fluids this assumption is always weaker than for
ower-law fluids. The second assumption concerns the mean shear rate

𝛾̇2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 + 2𝑆′
𝑖𝑗𝑆

′
𝑖𝑗 . The last term was approximated using the mean

issipation rate of TKE, assuming that 𝜇′𝑆′
𝑖𝑗𝑆

′
𝑖𝑗 ≈ 0. DNS [28] showed

that the latter term is not negligible for Bingham fluids, especially for
20 < 𝑦+ < 200. In light of these considerations, it is plausible that the
average viscosity model performs less well for Bingham fluids and for
20 < 𝑦+ < 200.

It is finally remarked that viscosity is especially important near the
wall, where the viscous stresses are dominant. Thus, outside the wall
region (𝑦+ > 10), the small viscosity errors just mentioned above do not
influence the mean velocity profile [46].

Fig. 6 shows that, for power-law fluids, the agreement of the SST-HB
model with DNS is qualitatively the same for all Reynolds numbers,
suggesting that the average viscosity model of Gavrilov and Rudyak
[24] may be suitable also for calculations at higher Reynolds numbers.

To summarise, the new SST-HB model well predict the average
viscosity for power-law fluids, also at different Reynolds numbers. For
Bingham and Herschel–Bulkley fluids, the viscosity predicted by the
SST-HB model shows some discrepancies with DNS, but these discrep-
ancies are small and outside the wall region, thus they do not affect
the mean flow. The main benefit of the new model is the significant
reduction of large viscosity errors in the core region. This prevents
the formation of unphysical plugs for yield-stress fluids, with positive

effects also on iterative convergence (see Appendix C).
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Fig. 6. Average viscosity for PL06 at different Reynolds numbers.
Source: DNS data are from [29].

7.4. Mean shear stress budget

The total mean shear stress written in cylindrical coordinates reads:

𝜏𝑡𝑜𝑡𝑧𝑟 = 𝜇
𝑑𝑢𝑧
𝑑𝑟

− 𝑢′𝑟𝑢′𝑧 + 𝜇′𝑆′
𝑧𝑟 , (45)

here 𝑧 and 𝑟 indicate the axial and radial direction, respectively, and
he terms on the right-hand side are the viscous, turbulent and non-
ewtonian stresses. For the SST-HB model, the total mean shear stress

s modelled as (subscripts are omitted)

𝑡𝑜𝑡 = 𝜇
𝑑𝑢𝑧
𝑑𝑟

+ 𝜇𝑡
𝑑𝑢𝑧
𝑑𝑟

+ 𝜇𝑛𝑛 𝑑𝑢𝑧
𝑑𝑟

≡ 𝜏𝑣 + 𝜏𝑡 + 𝜏𝑛𝑛, (46)

hereas for the Newtonian eddy-viscosity models the last component
s zero. Integrating in the radial direction of the momentum equation
n the axial direction and using the non-dimensional wall coordinates
eads to

𝑡𝑜𝑡+ = 1 −
𝑦+

𝑅𝑒𝜏
. (47)

This means that the distribution of the mean viscous, turbulent and
non-Newtonian shear stresses can be a function of the fluid rheology,
but the total shear stress must always vary linearly across the pipe
diameter. The total mean shear stress and its components are plotted
in Fig. 7 for 𝑅𝑒𝜏 = 323.

For Newtonian fluids, all models produce a fairly good prediction
f 𝜏𝑣 and 𝜏𝑡, with some loss of accuracy in the buffer layer (5 < 𝑦+ <

30). For non-Newtonian fluids, the SST, SA and KSKL models poorly
predict all the shear stress components. In particular, for Bingham and
Herschel–Bulkley fluids, the viscous stress predicted by these models
has an unexpected local peak (at 𝑦+ ≈ 250 for Bn20, see Fig. 7 c), which
alters the correct linear distribution of the total stress over the pipe
diameter. The position of this incorrect peak is in proximity of the plug,
where the velocity gradient and the viscosity have a steep variation in a
relative short distance, causing large discretisation errors. These errors
could be reduced by locally refining the grid around the plug, but note
that results would still be physically incorrect.

The SST-HB has clearly the best agreement with DNS for all the
shear stress components, and the total stress follows the expected linear
behaviour for all test cases. Furthermore, the non-Newtonian shear
stresses, 𝜏𝑛𝑛𝑖𝑗 , are very well captured by the SST-HB model, except in

𝑛𝑛
8

the viscous sublayer. This is because 𝜇 ∝ 𝜔𝑘 (see Eq. (35)) and the
turbulent kinetic energy is set to zero at the wall. In any case, in the
viscous sublayer the total stress is completely dominated by the viscous
component, therefore the effects of this deficiency on the numerical
solution are expected to be small.

7.5. Turbulent kinetic energy

All eddy-viscosity models are clearly unable to accurately predict
the distribution of TKE (Fig. 8), even for Newtonian fluids.4 According
to DNS for shear-thinning and viscoplastic fluids, the peak of 𝑘 should
ncrease. However, the SST, SA and KSKL models predict a decrease
f 𝑘. While the new SST-HB is also unable to capture the peak of 𝑘, it
s capable, at least, of maintaining a higher level of turbulent kinetic
nergy compared to the other turbulence models. This is possible
hanks to the 𝜒𝑛𝑛 term in the 𝑘-equation, which acts as a production
f turbulent kinetic energy (see Appendix B).

The poor prediction of 𝑘 is an expected limitation of two-equation
urbulence models. In fact, for increasing shear-thinning effects, 𝑘
ncreases and 𝜇𝑡 decreases, whereas two-equation models imply direct
roportionality between 𝜇𝑡 and 𝑘. Nevertheless, the accurate prediction
f 𝑘 is often not of importance for many engineering applications,
hich are usually interested in the mean velocity and pressure profiles
nd in the friction factor.

Finally, the incorrect plug region already discussed in the previous
ections is visible also in Fig. 8(c) for the SA and KSKL models, showing
ero turbulent kinetic energy for 𝑦+ ≳ 250. Despite that the plug
as predicted also by the SST model, the turbulent kinetic energy is
owever not zero for this model, which is physically inconsistent.

In summary, the SST-HB always predict a higher level of 𝑘 among
he considered turbulence models, and its accuracy is unsatisfactory yet
omparable with that of the SST model when the latter is applied to
ewtonian fluids.

.6. Friction factor

The friction factor, 𝑓 , is often one or even the only quantity of
nterest for many engineering applications. It is therefore an important
uantity to assess the performance of the new model.

The comparison of the friction factor, 𝑓 , with DNS is reported in
able 3. The difference 𝛥𝑓 reflects the predictions of the mean velocity
rofiles already observed in Section 7.2: SA and KSKL under predict 𝑓
𝑈𝑏 is larger), vice-versa for SST.

The SST-HB model undoubtedly provides the best prediction for all
he test cases, especially at the higher Reynolds numbers. While the
ifference of 14.3% for PL04 is considerable, it is still the smallest
mong all turbulence models. Such difference could be easily reduced
y increasing, for example, the calibration coefficient 𝐶𝐸2 (see Sec-
ion 7.1) from 1.85 to 2.0. By doing so, however, the accuracy for
ower-law fluids at higher 𝑅𝑒𝜏 would deteriorate. It was thus decided
o sacrifice some accuracy at 𝑅𝑒𝜏 = 323 in favour of more consistent
ccuracy for a wide range of Reynolds numbers.

In order to assess the new model also for 𝑅𝑒𝜏 > 750, the friction
actor has been compared against correlations from the literature. For
ower-law fluids, two correlations were considered. The first [42] reads

=

(

0.102 − 0.033𝑛 + 0.01
𝑛

)

1

𝑅𝑒
1

2(𝑛+1)
𝑀𝑅

, (48)

where 𝑅𝑒𝑀𝑅 is the Reynolds number defined by Metzner and Reed
48],

𝑒𝑀𝑅 =
8𝜌𝑈2−𝑛

𝑏 𝐷𝑛

𝐾(6 + 2∕𝑛)𝑛
, (49)

4 This was already observed by Wilcox [47] for the 𝑘 − 𝜔 model. Despite
he poor prediction of 𝑘 (and 𝜖), Wilcox showed that the velocity profile and

the skin friction were well predicted for both external and internal flows.
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Fig. 7. Mean shear stress budget at 𝑅𝑒𝜏 = 323 obtained with the four eddy-viscosity models and from DNS [14,28]. The total mean shear stress 𝜏𝑡𝑜𝑡 is relative to the SST-HB
odel.
Fig. 8. Turbulent kinetic energy for 𝑅𝑒𝜏 = 323.
Source: DNS data are from [28].
lso called Metzner–Reed Reynolds number. Note that, for a particular
heology, higher 𝑅𝑒𝑀𝑅 means also higher 𝑅𝑒𝜏 , thus the following dis-
ussion is valid for both Reynolds numbers. The second correlation [43]
eads

= 0.079
[𝑅𝑒𝑀𝑅

8
(6 + 2∕𝑛)𝑛

]
−1

2(𝑛+1) . (50)
9

Both correlations are plotted in Fig. 9, together with DNS (open
symbols) and RANS data (filled symbols). The maximum difference
between DNS and the correlations is about −3.5%, which can be seen
as a coarse indication of the correlation’s uncertainty.

The new model (Fig. 9 d) well predicts 𝑓 for power-law fluids also
at high Reynolds numbers. At 𝑅𝑒𝜏 = 2500, the maximum difference
relative to the first and second correlations is −2.7% and −6.1%,
respectively. Compared to SST, the benefits of using the new model are
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Table 3
Friction factor 𝑓 = 2𝜏𝑤∕(𝜌𝑈 2

𝑏 ) from DNS [14,28,29] and from eddy-viscosity models of the present work. The difference 𝛥𝑓 is relative to DNS.

Case DNS SST-HB SST SA KSKL

𝑓 × 103 𝑓 × 103 𝛥𝑓 (%) 𝑓 × 103 𝛥𝑓 (%) 𝑓 × 103 𝛥𝑓 (%) 𝑓 × 103 𝛥𝑓 (%)

𝑅𝑒𝜏 = 323 Nwt 7.88 8.264 4.9 8.264 4.9 7.819 −0.8 7.203 −8.6
PL08 7.36 7.831 6.5 8.219 11.7 6.786 −7.7 6.291 −14.5
PL06 6.74 7.422 10.2 8.134 20.7 5.734 −14.9 5.227 −22.4
PL04 5.95 6.797 14.3 7.982 34.2 4.971 −16.4 4.710 −20.8
Bn5 7.70 8.120 5.5 8.176 6.2 7.055 −8.3 6.378 −17.1
Bn10 7.36 7.879 7.1 8.092 10.0 6.390 −13.1 5.597 −23.9
Bn20 6.74 7.270 7.9 7.942 17.9 5.499 −18.4 4.694 −30.3
HB10 6.88 7.381 7.3 8.062 17.2 5.789 −15.9 5.089 −26.0

𝑅𝑒𝜏 = 500 Nwt 6.89 7.108 3.2 7.108 3.2 6.889 0.0 6.279 −8.8
PL06 5.86 6.332 8.0 6.981 19.1 4.965 −15.3 4.456 −24.0

𝑅𝑒𝜏 = 750 Nwt 6.15 6.256 1.8 6.256 1.8 6.163 0.3 5.598 −8.9
PL06 5.28 5.553 5.3 6.122 16.0 4.443 −15.8 3.941 −25.3
Fig. 9. Friction factor versus 𝑅𝑒𝑀𝑅 for power-law fluids from present work (filled symbols), from DNS [14,29] (open symbols) and from the correlations of Anbarlooei et al. [42]
solid lines, Eq. (48)) and of Anbarlooei et al. [43] (dashed lines, Eq. (50)). The 8 points for each rheology correspond to 𝑅𝑒𝜏 = 323, 500, 750, 1000, 1250, 1500, 2000, 2500.
m

more evident for highly shear-thinning fluids. In fact, the accuracy of
SST may be actually considered acceptable for moderate shear-thinning
fluids, especially at high Reynolds numbers, where non-Newtonian
effects become less important. To some extent, this is also true for the
SA model (Fig. 9a), whereas it is clearly not true for the KSKL model
(Fig. 9b), which significantly under predicts the friction coefficients
for all 𝑅𝑒𝑀𝑅. Actually, KSKL appears to be rather inaccurate also for
Newtonian fluids. This is surprising as KSKL proved to perform well
for external wall bounded flows of Newtonian fluids (e.g. [49,50]).
Fig. 9(b) suggests that KSKL may perform better at higher Reynolds
numbers.

For Bingham fluids, two correlations [43,51] were considered, both
having the following form

𝑓 = 0.316

4
√

2

√

√

√

√

√

𝐻𝑒2

𝑅𝑒4𝐺
+ 4

𝑅𝑒𝐺
+ 𝐻𝑒

𝑅𝑒2𝐺
− 𝐶 𝐻𝑒

𝑅𝑒2𝐺
, (51)

where 𝑅𝑒𝐺 = 𝜌𝑈𝑏𝐷∕𝐾 is the generalised Reynolds number and 𝐻𝑒 =
𝜌𝜏0𝐷2∕𝐾2, the latter being the Hedstrom number. The correlation
reduces to the Blasius formula for 𝐻𝑒 = 0, i.e. for zero yield stress.
10
In the earlier version [51] the coefficient 𝐶 is equal to 2, whereas
the later version [43] does not include the last term (𝐶 = 0). When
these correlations were compared with the DNS data of Singh et al.
[28], the maximum difference using 𝐶 = 2 was around +10%, whereas
with 𝐶 = 0 the maximum difference was about –10%. We have thus
deliberately opted for the middle way, i.e. 𝐶 = 1, which has decreased
the maximum difference down to 1.7% (see Table 4). This has increased
the confidence in the correlation as being a more reliable representation
of DNS data, nonetheless the comparison must be interpreted with the
due caution.

Keeping the above considerations in mind, Table 4 shows the com-
parison of the present results against Eq. (51) with 𝐶 = 1. The SST

odel appears to be suitable for weakly non-Newtonian fluids (𝜏0∕𝜏𝑤 =
10%) and for high Reynolds numbers, whereas the SA and KSKL models
seem to perform poorly for Bingham fluids, at any flow regime.

The new model, on the other hand, seems to well predict 𝑓 at
all Reynolds numbers. However, the important finding here is that,
for 𝑅𝑒𝜏 > 323, the new model appear to maintain approximately the
same level of accuracy, without any marked change in 𝛥𝑓 (%). This

suggests that the model may be suitable for viscoplastic flows for a
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Table 4
Difference 𝛥𝑓 (%) of the friction factor relative to Eq. (51) with 𝐶 = 1. DNS data are
rom [28].

DNS SST-HB SST SA KSKL

𝑅𝑒𝜏 = 323 Nwt 0.5 4.7 4.7 −0.2 −7.1
Bn5 1.7 6.7 7.3 −5.9 −14.0
Bn10 1.0 7.5 10.2 −11.1 −21.2
Bn20 −0.1 7.4 16.8 −17.5 −28.8
Bn30 – 6.16 24.94 −19.48 −28.68

𝑅𝑒𝜏 = 750 Nwt −0.2 1.3 1.3 0.0 −8.0
Bn5 – 2.5 3.4 −6.3 −15.7
Bn10 – 2.5 5.6 −13.9 −25.4
Bn20 – 1.4 10.9 −24.1 −37.5
Bn30 – −0.78 17.45 −29.10 −41.11

𝑅𝑒𝜏 = 1500 Nwt – 1.3 1.3 1.8 −6.4
Bn5 – 2.1 3.0 −4.3 −14.6
Bn10 – 1.8 4.9 −13.4 −25.8
Bn20 – 0.2 9.2 −26.2 −40.9
Bn30 – −2.73 14.64 −32.91 −46.37

𝑅𝑒𝜏 = 2500 Nwt – 2.3 2.3 3.9 −4.2
Bn5 – 2.9 3.8 −1.9 −12.7
Bn10 – 2.5 5.3 −11.9 −25.1
Bn20 – 0.5 9.1 −26.5 −42.0
Bn30 – −2.96 13.78 −34.34 −48.68

wide range of Reynolds numbers. For a more compelling validation,
however, DNS data for Bingham and Herschel–Bulkley fluids at high
Reynolds numbers and with higher level of yield stress are needed. This
is an important issue for future research.

8. Conclusions

A new turbulence model for Herschel–Bulkley fluids (and their spe-
cial cases, i.e. Bingham and power-law) has been derived by modifying
the popular 𝑘 − 𝜔 SST model. The derivation was carried out along
the lines of Gavrilov and Rudyak [24], who developed a turbulence
closure for power-law fluids. The calibration coefficients were chosen
to ensure satisfactory agreement with DNS data and with correlations
for shear-thinning and yield-stress fluids for a wide range of Reynolds
numbers. Furthermore, we have assessed three widely-used RANS mod-
els for Newtonian fluids, namely the SST, the Spalart–Allmaras (SA)
and the 𝑘−

√

𝑘𝐿 (KSKL) models. The main conclusions of this work are
summarised as follows:

• The new model showed good agreement in the mean velocity,
average viscosity, mean shear stress budget and friction factors
as compared to DNS data. Furthermore, the new model appears
to be always more accurate than the standard SST model.

• The new model is inadequate for applications that require and
accurate prediction of the TKE. Nonetheless, the accuracy of
the prediction is comparable to that of the other selected RANS
models when applied to Newtonian flows.

• The friction factor predicted by the new model agrees well with
both DNS and correlations for power-law and Bingham fluids.

• Among the three Newtonian RANS models, the SST proved to
be most suitable for weakly non-Newtonian fluids (𝑛 ≥ 0.8 and
𝜏0∕𝜏𝑤 ≤ 10%) and for high Reynolds numbers (𝑅𝑒𝜏 > 750).
The SST model tends to underpredict the mean velocity and to
overpredict the friction factor. Vice-versa for SA and KSKL, with
the latter giving the worst agreement for all test cases.

• For yield-stress fluids, the three Newtonian RANS models in-
correctly predict a plug. This is not only physically incorrect,
as proved by previous studies, but it may also lead to large
discretisation errors and difficult iterative convergence. With the
new model, on the other hand, no plugs were predicted and the it-
erative convergence did not show any difficulty (see Appendix C).
This last feature can be particularly appreciated for viscoplastic
fluids in complex geometries, where the combination of large
11
yield stresses and the slowly converging SIMPLE-like algorithms
could easily lead to stagnating/diverging iterative convergence.

Finally, a number of important limitations need to be considered.
irst, while only one new empirical function (𝐹𝐸 (𝑛)) was needed in
he SST-HB model to produce good agreement with DNS for pipe
lows, further empirical modifications of the original SST model may
till be required for complex applications, such as those with adverse
ressure gradient and flow separation both in external and internal
low configurations. In this regard, further research is recommended
o verify the accuracy and robustness of the new model in more
omplex flows. Second, the current study was limited to 𝑅𝑒𝜏 > 323,

and the accuracy of the new model is expected to decrease at lower
Reynolds numbers. Third, DNS data are also affected by numerical
errors/uncertainties which, unfortunately, could not be found. It was
thus implicitly assumed that these errors were small compared to the
modelling errors. In order to overcome this aspect, it is recommended
for future DNS to provide uncertainty estimates. Fourth, it remains
a question whether the new model is suitable for fluids with high
yield stress, both because no validation data is available and because
the flow may become transitional/laminar in the core of the pipe,
especially at lower Reynolds numbers. Nevertheless, the new model
may be more robust than the other Newtonian RANS models tested
in this work, if anything, because of the better iterative convergence.
Further DNS investigations at 𝑅𝑒𝜏 > 323 and with higher yield stress
levels will be of great help to develop and improve turbulence models
for Herschel–Bulkley fluids.

The new model is simple and appealing for engineering applications
concerned with turbulent wall-bounded flows of Herschel–Bulkley flu-
ids, and its formulation can be easily adapted to other GN fluid models
by modifying the expression of 𝜕𝜇∕𝜕𝛾̇.
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Appendix A. 𝒌− 𝝎 SST (2003)

The 𝑘−𝜔 SST model of Menter et al. [25] that is used as a baseline
or the derivation of the new turbulence model is reported below.

𝐷(𝜌𝑘)
𝐷𝑡

= 𝑃𝑘 + ∇ ⋅
[

(𝜇 + 𝜎𝑘𝜇𝑡)∇𝑘
]

− 𝜌

𝜖
⏞⏞⏞
𝛽∗𝑘𝜔 (A.1)

𝐷(𝜌𝜔)
𝐷𝑡

= 𝜌𝛼𝑆2 + ∇ ⋅

[

(𝜇 + 𝜎𝜔𝜇𝑡)∇𝜔

]

− 𝛽𝜌𝜔2

+ 2𝜌(1 − 𝐹1)
𝜎𝜔2
𝜔

∇𝑘 ⋅ ∇𝜔

(A.2)

1 = tanh

{

min

[

max

(
√

𝑘
𝛽∗𝜔𝑑

, 500𝜈
𝑑2𝜔

)

,
4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑑2

]4}

(A.3)

𝑑 is the distance to the wall boundary.

𝐶𝐷𝑘𝜔 = max

(

2𝜌𝜎𝜔2
1 ∇𝑘 ⋅ ∇𝜔, 10−10

)

(A.4)

𝜔

https://www.tudelft.nl/mudnet/
https://www.tudelft.nl/mudnet/
https://www.tudelft.nl/mudnet/
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Fig. B.10. Production (𝑃𝑘
+), dissipation (𝜖+) and transport (𝐷+) of TKE (top) and

on-Newtonian contributions (bottom) (𝑅𝑒𝜏 = 323). The non-dimensional terms were
obtained by dividing the dimensional terms by 𝜌𝑢4𝜏∕𝜈𝑤.

𝜈𝑡 =
𝑎1𝑘

max(𝑎1𝜔,𝑆𝐹2)
, 𝑎1 = 0.31 (A.5)

𝐹2 = tanh

{[

max

(

2
√

𝑘
𝛽∗𝜔𝑑

, 500𝜈
𝑑2𝜔

)]2}

(A.6)

𝑃𝑘 = min(𝜇𝑡𝑆2, 10𝛽∗𝜌𝑘𝜔) , 𝛽∗ = 0.09 (A.7)

𝛼 = 𝛼1𝐹1 + (1 − 𝐹1)𝛼2, 𝛽 = 𝛽1𝐹1 + (1 − 𝐹1)𝛽2,

𝜎𝑘 = 𝜎𝑘1𝐹1 + (1 − 𝐹1)𝜎𝑘2, 𝜎𝜔 = 𝜎𝜔1𝐹1 + (1 − 𝐹1)𝜎𝜔2,

𝛼1 = 5∕9, 𝛽1 = 3∕40, 𝜎𝑘1 = 0.85, 𝜎𝜔1 = 0.5,

𝛼2 = 0.44, 𝛽2 = 0.0828, 𝜎𝑘2 = 1, 𝜎𝜔2 = 0.856.

Appendix B. Non-Newtonian contributions in the TKE budget

In order to give an indication of the magnitude of the
non-Newtonian contributions 𝜒𝑛𝑛 and 𝜉𝑛𝑛 in the TKE equation, their
distribution is plotted in Fig. B.10 together with the production, dis-
sipation and transport terms (see also Eq. (30)). For non-Newtonian
fluids, the difference between production and dissipation is absorbed by
the non-Newtonian contributions, making the transport term 𝐷+ nearly
insensitive to the fluid rheology, in line with DNS data (Figs. 10 and
15 in [28]). The sum the non-Newtonian contributions is positive and
appears to be larger for power-law fluids.

Appendix C. Iterative convergence

Fig. C.11 shows the iterative convergence of the residuals (top
graph) with the new SST-HB and the standard SST model for Bn30
(most difficult case for iterative convergence), together with the es-
timated iterative error for the wall shear stress (bottom graph). The
latter can be estimated since the pressure gradient is imposed and thus
12

the exact wall shear stress is known. The wall shear stress requires
Fig. C.11. Iterative convergence of the 𝐿∞ norm of the residuals (top) and wall shear
stress error in percentage for the case 𝑅𝑒𝜏 = 323, Bn30 (bottom).

bout 7000 iterations to convergence with the new model, whereas
he standard SST (similarly for the SA and KSKL model) requires about
0 000 SIMPLE iterations. The better iterative convergence of the new
odel is simply due to the fact that the viscosity does not reach very

arge values in the core of the pipe, contrary to the other selected RANS
odels, which show an incorrect asymptote in the viscosity typical of

aminar flows (see also Section 7.3), making the momentum equations
tiffer and more difficult to solve.
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