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Hearing What You Cannot See: Acoustic Vehicle
Detection Around Corners

Yannick Schulz, Avinash Kini Mattar, Thomas M. Hehn , and Julian F. P. Kooij , Member, IEEE

Abstract�This work proposes to use passive acoustic percep-
tion as an additional sensing modality for intelligent vehicles. We
demonstrate that approaching vehicles behind blind corners can
be detected by sound before such vehicles enter in line-of-sight. We
have equipped a research vehicle with a roof-mounted microphone
array, and show on data collected with this sensor setup that wall
re�ections provide information on the presence and direction of
occluded approaching vehicles. A novel method is presented to clas-
sify if and from what direction a vehicle is approaching before it is
visible, using as input Direction-of-Arrival features that can be ef�-
ciently computed from the streaming microphone array data. Since
the local geometry around the ego-vehicle affects the perceived
patterns, we systematically study several environment types, and
investigate generalization across these environments. With a static
ego-vehicle, an accuracy of 0.92 is achieved on the hidden vehicle
classi�cation task. Compared to a state-of-the-art visual detector,
Faster R-CNN, our pipeline achieves the same accuracy more than
one second ahead, providing crucial reaction time for the situations
we study. While the ego-vehicle is driving, we demonstrate positive
results on acoustic detection, still achieving an accuracy of 0.84
within one environment type. We further study failure cases across
environments to identify future research directions.

Index Terms�Intelligent transportation systems, object
detection, robot audition, segmentation and categorization.

I. INTRODUCTION

H IGHLY automated and self-driving vehicles currently
rely on three complementary main sensors to identify

visible objects, namely camera, lidar, and radar. However, the
capabilities of these conventional sensors can be limited in
urban environments when sight is obstructed by narrow streets,
trees, parked vehicles, and other trafÞc. Approaching road users
may therefore remain undetected by the main sensors, resulting
in dangerous situations and last-moment emergency maneu-
vers [1]. While future wireless vehicle-to-everything commu-
nication (V2X) might mitigate this problem, creating a robust
omnipresent communication layer is still an open problem [2]
and excludes road users without wireless capabilities. Acoustic
perception does not rely on line-of-sight and provides a wide
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Fig. 1. When an intelligent vehicle approaches a narrow urban intersection,
(a) traditional line-of-sight sensors cannot detect approaching trafÞc due to
occlusion, while (b) acoustic cues can provide early warnings. (c) Real-time
beamforming reveals reßections of the acoustic signal on the walls, especially
salient on the side opposing the approaching vehicle. Learning to recognize these
patterns from data enables detection before line-of-sight.

range of complementary and important cues on nearby trafÞc:
There are salient sounds with speciÞed meanings, e.g. sirens,
car horns, and reverse driving warning beeps of trucks, but also
inadvertent sounds from tire-road contact and engine use.

In this work, we propose to use multiple cheap microphones
to capture sound as an auxiliary sensing modality for early
detection of approaching vehicles behind blind corners in urban
environments. Crucially, we show that a data-driven pattern
recognition approach can successfully identify such situations
from the acoustic reßection patterns on building walls and pro-
vide early warnings before conventional line-of-sight sensing
is able to (see Figure 1). While a vehicle should always exit
narrow streets cautiously, early warnings would reduce the risk
of a last-moment emergency brake.

II. RELATED WORKS

We here focus on passive acoustic sensing in mobile
robotics [3]—[5] to detect and localize nearby sounds, which we
distinguish from active acoustic sensing using self-generated
sound signals, e.g. [6]. While mobile robotic platforms in out-
door environments may suffer from vibrations and wind, various
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works have demonstrated detection and localization of salient
sounds on moving drones [7] and wheeled platforms [8], [9].

Although acoustic cues are known to be crucial for trafÞc
awareness by pedestrians and cyclist [10], only few works have
explored passive acoustic sensing as a sensor for Intelligent
Vehicles (IVs). [9], [11], [12] focus on detection and tracking in
direct line-of-sight. [13], [14] address detection behind corners
from a static observer. [13] only shows experiments without
directional estimation. [14] tries to accurately model wave re-
fractions, but experiments in an artiÞcial lab setup show limited
success. Both [13], [14] rely on strong modeling assumptions,
ignoring that other informative patterns could be present in
the acoustic data. Acoustic trafÞc perception is furthermore
used for road-side trafÞc monitoring, e.g. to count vehicles and
estimate trafÞc density [15], [16]. While the increase in Electric
Vehicles (EVs) may reduce overall trafÞc noise, [17] shows that
at 20-30 km/h the noise levels for EV and internal combustion
vehicles are already similar due to tire-road contact. [18] Þnds
that at lower speeds the difference is only about 4-5 dB, though
many EVs also suffer from audible narrow peaks in the spectrum.
As low speed EVs can impact acoustic awareness of humans
too [10], legal minimum sound requirements for EVs are being
proposed [19], [20].

Direction-of-Arrival estimation is a key task for sound source
localization, and over the past decades many algorithms have
been proposed [3], [21], such as the Steered-Response Power
Phase Transform (SRP-PHAT) [22] which is well-suited for
reverberant environments with possibly distant unknown sound
sources. Still, in urban settings nearby walls, corners, and
surfaces distort sound signals through reßections and diffrac-
tion [23]. Accounting for such distortions has shown to improve
localization [8], [24], but only in controlled indoor environ-
ments where detailed knowledge of the surrounding geometry is
available.

Recently, data-driven methods have shown promising results
in challenging real-world conditions for various acoustic tasks.
For instance, learned sound models assist monaural source sep-
aration [25] and source localization from direction-dependent
attenuations by Þxed structures [26]. Increasingly, deep learning
is used for audio classiÞcation [27], [28], and localization [29]
of sources in line-of-sight, in which case visual detectors can
replace manual labeling [30], [31]. Analogous to our work, [32]
presents a Þrst deep learning method for sensing around corners
but with automotive radar. Thus, while the effect of occlusions
on sensor measurements is difÞcult to model [14], data-driven
approaches appear to be a good alternative.

This letter provides the following contributions: First, we
demonstrate in real-world outdoor conditions that a vehicle-
mounted microphone array can detect the sound of approach-
ing vehicles behind blind corners from reßections on nearby
surfaces before line-of-sight detection is feasible. This is a key
advantage for IVs, where passive acoustic sensing is still rela-
tively under-explored. Our experiments investigate the impact on
accuracy and detection time for various conditions, such as dif-
ferent acoustic environments, driving versus static ego-vehicle,
and compare to current visual and acoustic baselines.

Second, we propose a data-driven detection pipeline to
efÞciently address this task and show that it outperforms

model-driven acoustic signal processing. Unlike existing data-
driven approaches, we cannot use visual detectors for positional
labeling [30] or transfer learning [31], since our targets are
visually occluded. Instead, we cast the task as a multi-class
classiÞcation problem to identify if and from what corner a ve-
hicle is approaching. We demonstrate that Direction-of-Arrival
estimation can provide robust features to classify sound reßec-
tion patterns, even without end-to-end feature learning and large
amounts of data.

Third, for our experiments we collected a new audio-visual
dataset in real-world urban environments.1 To collect data, we
mounted a front-facing microphone array on our research vehi-
cle, which additionally has a front-facing camera. This prototype
setup facilitates qualitative and quantitative experimentation of
different acoustic perception tasks.

III. APPROACH

Ideally, an ego-vehicle driving through an area with occluding
structures is able to early predict if and from where another
vehicle is approaching, even if it is from behind a blind corner as
illustrated in Figure 1. Concretely, this work aims to distinguish
three situations as early as possible using ego-vehicle sensors
only:

� an occluded vehicle approaches from behind a corner on
the left, and only moves into view last-moment when the
ego-vehicle is about to reach the junction,

� same, but vehicle approaches behind a right corner,
� no vehicle is approaching.
We propose to consider this task an online classiÞcation

problem. As the ego-vehicle approaches a blind corner, the
acoustic measurements made over short time spans should be
assigned to one in a set of four classes, C = {left, front,
right, none}, where left/right indicates a still occluded
(i.e. not yet in direct line-of-sight) approaching vehicle behind
a corner on the left/right, front that the vehicle is already in
direct line-of-sight, and none that no vehicle is approaching.

In Section III-A we shall Þrst consider two line-of-sight
baseline approaches for detecting vehicles. Section III-B then
elaborates our proposed extension to acoustic non-line-of-sight
detection. Section III-C provides details of our vehicleÕs novel
acoustic sensor setup used for data collection.

A. Line-of-Sight Detection

We Þrst consider how the task would be addressed with line-
of-sight vehicle detection using either conventional cameras, or
using past work on acoustic vehicle detection.

a) Visual detection baseline: Cameras are currently one of the
de-facto choices for detecting vehicles and other objects within
line-of-sight. Data-driven Convolutional Neural Networks have
proven to be highly effective on images. However, visual detec-
tion can only detect vehicles that are already (partially) visible,
and thus only distinguishes between front and none. To
demonstrate this, we use Faster R-CNN [33], a state-of-the-art

1Code & data: https://github.com/tudelft-iv/occluded_vehicle_acoustic_
detection
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Fig. 2. Overview of our acoustic detection pipeline, see Section III-B for an explanation of the steps.

visual object detector, on the ego-vehicleÕs front-facing camera
as a visual baseline.

b) Acoustic detection baseline: Next, we consider that the
ego-vehicle is equipped with an array of M microphones. As
limited training data hinders learning features (unlike [30], [31]),
we leverage beamforming to estimate the Direction-of-Arrival
(DoA) of tire and engine sounds originating from the approach-
ing vehicle. DoA estimation directly identiÞes the presence and
direction of such sound sources, and has been shown to work
robustly in unoccluded conditions [9], [11]. Since sounds can
be heard around corners, and low frequencies diffract (ÒbendÓ)
around corners [23], one might wonder: Does the DoA of the
sound of an occluded vehicle correctly identify from where the
vehicle is approaching? To test this hypothesis for our target
real-world application, our second baseline follows [9], [11] and
directly uses the most salient DoA angle estimate.

SpeciÞcally, the implementation uses the Steered-Response
Power-Phase Transform (SRP-PHAT) [22] for DoA estimation.
SRP-PHAT relates the spatial layout of sets of microphone pairs
and the temporal offsets of the corresponding audio signals
to their relative distance to the sound source. To apply SRP-
PHAT on M continuous synchronized signals, only the most
recent �t seconds are processed. On each signal, a Short-Time
Fourier Transform (STFT) is computed with a Hann windowing
function, and a frequency bandpass for the [fmin, fmax] Hz
range. Using the generalized cross-correlation of the M STFTs,
SRP-PHAT computes the DoA energy r(�) for any given az-
imuth angle � around the vehicle. Here � = �90�/0�/ + 90�
indicates an angle towards the left/front/right of the vehicle
respectively. If the hypothesis holds that the overall salient
sound direction �max = arg max r(�) remains intact due to
diffraction, one only needs to determine if �max is beyond some
sufÞcient threshold �th. The baseline thus assigns class left if
�max < ��th, front if ��th � �max � +�th, and right
if �max > +�th. We shall evaluate this baseline on the easier
task of only separating these three classes, and ignore the none
class.

B. Non-Line-of-Sight Acoustic Detection

We argue that in contrast to line-of-sight detection, DoA
estimation alone is unsuited for occluded vehicle detection (and
conÞrm this in Section IV-C). Salient sounds produce sound

wave reßections on surfaces, such as walls (see Figure 1(c)),
thus the DoA does not indicate the actual location of the source.
Modelling the sound propagation [8] while driving through
uncontrolled outdoor environments is challenging, especially as
accurate models of the local geometry are missing. Therefore, we
take a data-driven approach and treat the full energy distribution
from SRP-PHAT as robust features for our classiÞer that capture
all reßections.

An overview of the proposed processing pipeline is shown in
Figure 2. We again create M STFTs, using a temporal windows
of �t seconds, Hann windowing function and a frequency band-
pass of [fmin, fmax] Hz. Notably, we do not apply any other form
of noise Þltering or suppression. To capture temporal changes
in the reßection pattern, we split the STFTs along the temporal
dimension into L non-overlapping segments. For each segment,
we compute the DoA energy at multiple azimuth angles � in
front of the vehicle. The azimuth range [�90�,+90�] is divided
into B equal bins �1, . . . , �B . From the original M signals, we
thus obtain L response vectors rl = [rl(�1), . . . , rl(�B)]�. Fi-
nally, these are concatenated to a (L×B)-dimensional feature
vector x = [r1, . . . , rL]�, for which a Support Vector Machine
is trained to predict C. Note that increasing the temporal reso-
lution by having more segments L comes at the trade-off of a
increased Þnal feature vector size and reduced DoA estimation
quality due to shorter time windows.

C. Acoustic Perception Research Vehicle

To collect real-world data and demonstrate non-line-of-sight
detection, a custom microphone array was mounted on the
roof rack of our research vehicle [34], a hybrid electric Toyota
Prius. The microphone array hardware consists of 56 ADMP441
MEMS microphones, supports data acquisition at 48 kHz sam-
ple rate, 24 bits resolution, and synchronous sampling. It was
bought from CAE Software & Systems GmbH with a metal
frame. On this 0.8˜m× 0.7˜m frame the microphones are dis-
tributed semi-randomly while the microphone density remains
homogeneous. The general purpose layout was designed by the
company through stochastic optimization to have large variance
in inter-microphone distances and serve a wide range of acoustic
imaging tasks. The vehicle is also equipped with a front-facing
camera for data collection and processing. The center of the
microphone array is about 1.78 m above the ground, and 0.54 m
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Fig. 3. Sensor setup of our test vehicle. A: Center of the 56 MEMS acoustic
array. B: signal processing unit. C: front camera behind windscreen. Inset: the
diameter of a single MEMS microphone is only 12 mm.

above and 0.50 m behind the used front camera, see Figure 3.
As depicted in the FigureÕs inset, the microphones themselves
are only 12 mm wide. They cost about US$1 each.

A signal processing unit receives the analog microphone
signals, and sends the data over Ethernet to a PC running the
Robot Operating System (ROS). Using ROS, the synchronized
microphone signals are collected together with other vehicle
sensor data. Processing is done in python, using pyroomacous-
tics [21] for acoustic feature extraction, and scikit-learn [35] for
classiÞer training.

We emphasize that this setup is not intended as a production
prototype, but provides research beneÞts: The 2D planar ar-
rangement provides both horizontal and vertical high-resolution
DoA responses, which can be overlaid as 2D heatmaps [36]
on the front camera image to visually study the salient sources
(Section IV-A). By testing subsets of microphones, we can assess
the impact of the number of microphones and their relative
placement (Section IV-G). In the future, the array should only
use a few microphones at various locations around the vehicle.

IV. EXPERIMENTS

To validate our method, we created a novel dataset with
our acoustic research vehicle in real-world urban environments.
We Þrst illustrate the quality of acoustic beamforming in such
conditions before turning to our main experiments.

A. Line-of-Sight Localization – Qualitative Results

As explained in Section III-C, the heatmaps of the 2D DoA
results can be overlaid with the camera images. Figure 4 shows
some interesting qualitative Þndings in real urban conditions.
The examples highlight that beamforming can indeed pick up
various important acoustic events for autonomous driving in
line-of-sight, such as the presence of vehicles and some vul-
nerable road users (e.g. strollers). Remarkably, even electric
scooters and oncoming trafÞc while the ego-vehicle is driving
are recognized as salient sound sources. A key observation from
Figure 1(c) is that sounds originating behind corners reßect in

particular patterns on nearby walls. Overall, these results show
the feasibility of acoustic detection of (occluded) trafÞc.

B. Non-Line-of-Sight Dataset and Evaluation Metrics

The quantitative experiments are designed to separately con-
trol and study various factors that could inßuence acoustic
perception. We collected multiple recordings of the situations
explained in Section III at Þve T-junction locations with blind
corners in the inner city of Delft. The locations are categorized
into two types of walled acoustical environments, namely types
A and B (see Figure 5). At these locations common background
noise, such as construction sites and other trafÞc, was present
at various volumes. For safety and control, we did not record in
the presence of other motorized trafÞc on the roads at the target
junction.

The recordings can further be divided into Static data, made
while is the ego-vehicle in front of the junction but not moving,
and more challenging Dynamic data where the ego-vehicle
reaches the junction at�15 km/h (see the supplementary video).
Static data is easily collected, and ensures that the main source
of variance is the approaching vehicleÕs changing position.

For the static case, the ego-vehicle was positioned such that
the building corners are still visible in the camera and occlude
the view onto the intersecting road (on average a distance of
�7-10 m from the intersection). Different types of passing
vehicles were recorded, although in most recordings the ap-
proaching vehicle was a °koda Fabia 1.2 TSI (2010) driven by
one of the authors. For the Dynamic case, coordinated recordings
with the °koda Fabia were conducted to ensure that encounters
were relevant and executed in a safe manner. Situations with
left/right/none approaching vehicles were performed in
arbitrary order to prevent undesirable correlation of background
noise to some class labels. In�70% of the total Dynamic record-
ings and�19.5% of the total Static recordings, the ego-vehicleÕs
noisy internal combustion engine was running to charge its
battery.

a) Sample extraction: For each Static recording with an
approaching target vehicle, the time t0 is manually annotated
as the moment when the approaching vehicle enters direct
line-of-sight. Since the quality of our t0 estimate is bounded by
the ego-vehicleÕs camera frame rate (10 Hz), we conservatively
regard the last image before the incoming vehicle is visible
as t0. Thus, there is no line-of-sight at t � t0. At t > t0 the
vehicle is considered visible, even though it might only be a
fraction of the body. For the Dynamic data, this annotation is not
feasible as the approaching car may be in direct line-of-sight,
yet outside the limited Þeld-of-view of the front-facing camera
as the ego-vehicle has advanced onto the intersection. Thus,
annotating t0 based on the camera images is not representative
for line-of-sight detection. To still compare our results across
locations, we manually annotate the time �0, the moment when
the ego-vehicle is at the same position as in the correspond-
ing Static recordings. All Dynamic recordings are aligned to
that time as it represents the moment where the ego-vehicle
should make a classiÞcation decision, irrespective if an ap-
proaching vehicle is about to enter line-of-sight or still further
away.
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