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Hearing What You Cannot See: Acoustic Vehicle
Detection Around Corners

Yannick Schulz, Avinash Kini Mattar, Thomas M. Hehn , and Julian F. P. Kooij , Member, IEEE

Abstract—This work proposes to use passive acoustic percep-
tion as an additional sensing modality for intelligent vehicles. We
demonstrate that approaching vehicles behind blind corners can
be detected by sound before such vehicles enter in line-of-sight. We
have equipped a research vehicle with a roof-mounted microphone
array, and show on data collected with this sensor setup that wall
reflections provide information on the presence and direction of
occluded approaching vehicles. A novel method is presented to clas-
sify if and from what direction a vehicle is approaching before it is
visible, using as input Direction-of-Arrival features that can be effi-
ciently computed from the streaming microphone array data. Since
the local geometry around the ego-vehicle affects the perceived
patterns, we systematically study several environment types, and
investigate generalization across these environments. With a static
ego-vehicle, an accuracy of 0.92 is achieved on the hidden vehicle
classification task. Compared to a state-of-the-art visual detector,
Faster R-CNN, our pipeline achieves the same accuracy more than
one second ahead, providing crucial reaction time for the situations
we study. While the ego-vehicle is driving, we demonstrate positive
results on acoustic detection, still achieving an accuracy of 0.84
within one environment type. We further study failure cases across
environments to identify future research directions.

Index Terms—Intelligent transportation systems, object
detection, robot audition, segmentation and categorization.

I. INTRODUCTION

H IGHLY automated and self-driving vehicles currently
rely on three complementary main sensors to identify

visible objects, namely camera, lidar, and radar. However, the
capabilities of these conventional sensors can be limited in
urban environments when sight is obstructed by narrow streets,
trees, parked vehicles, and other traffic. Approaching road users
may therefore remain undetected by the main sensors, resulting
in dangerous situations and last-moment emergency maneu-
vers [1]. While future wireless vehicle-to-everything commu-
nication (V2X) might mitigate this problem, creating a robust
omnipresent communication layer is still an open problem [2]
and excludes road users without wireless capabilities. Acoustic
perception does not rely on line-of-sight and provides a wide
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Fig. 1. When an intelligent vehicle approaches a narrow urban intersection,
(a) traditional line-of-sight sensors cannot detect approaching traffic due to
occlusion, while (b) acoustic cues can provide early warnings. (c) Real-time
beamforming reveals reflections of the acoustic signal on the walls, especially
salient on the side opposing the approaching vehicle. Learning to recognize these
patterns from data enables detection before line-of-sight.

range of complementary and important cues on nearby traffic:
There are salient sounds with specified meanings, e.g. sirens,
car horns, and reverse driving warning beeps of trucks, but also
inadvertent sounds from tire-road contact and engine use.

In this work, we propose to use multiple cheap microphones
to capture sound as an auxiliary sensing modality for early
detection of approaching vehicles behind blind corners in urban
environments. Crucially, we show that a data-driven pattern
recognition approach can successfully identify such situations
from the acoustic reflection patterns on building walls and pro-
vide early warnings before conventional line-of-sight sensing
is able to (see Figure 1). While a vehicle should always exit
narrow streets cautiously, early warnings would reduce the risk
of a last-moment emergency brake.

II. RELATED WORKS

We here focus on passive acoustic sensing in mobile
robotics [3]–[5] to detect and localize nearby sounds, which we
distinguish from active acoustic sensing using self-generated
sound signals, e.g. [6]. While mobile robotic platforms in out-
door environments may suffer from vibrations and wind, various
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works have demonstrated detection and localization of salient
sounds on moving drones [7] and wheeled platforms [8], [9].

Although acoustic cues are known to be crucial for traffic
awareness by pedestrians and cyclist [10], only few works have
explored passive acoustic sensing as a sensor for Intelligent
Vehicles (IVs). [9], [11], [12] focus on detection and tracking in
direct line-of-sight. [13], [14] address detection behind corners
from a static observer. [13] only shows experiments without
directional estimation. [14] tries to accurately model wave re-
fractions, but experiments in an artificial lab setup show limited
success. Both [13], [14] rely on strong modeling assumptions,
ignoring that other informative patterns could be present in
the acoustic data. Acoustic traffic perception is furthermore
used for road-side traffic monitoring, e.g. to count vehicles and
estimate traffic density [15], [16]. While the increase in Electric
Vehicles (EVs) may reduce overall traffic noise, [17] shows that
at 20-30 km/h the noise levels for EV and internal combustion
vehicles are already similar due to tire-road contact. [18] finds
that at lower speeds the difference is only about 4-5 dB, though
many EVs also suffer from audible narrow peaks in the spectrum.
As low speed EVs can impact acoustic awareness of humans
too [10], legal minimum sound requirements for EVs are being
proposed [19], [20].

Direction-of-Arrival estimation is a key task for sound source
localization, and over the past decades many algorithms have
been proposed [3], [21], such as the Steered-Response Power
Phase Transform (SRP-PHAT) [22] which is well-suited for
reverberant environments with possibly distant unknown sound
sources. Still, in urban settings nearby walls, corners, and
surfaces distort sound signals through reflections and diffrac-
tion [23]. Accounting for such distortions has shown to improve
localization [8], [24], but only in controlled indoor environ-
ments where detailed knowledge of the surrounding geometry is
available.

Recently, data-driven methods have shown promising results
in challenging real-world conditions for various acoustic tasks.
For instance, learned sound models assist monaural source sep-
aration [25] and source localization from direction-dependent
attenuations by fixed structures [26]. Increasingly, deep learning
is used for audio classification [27], [28], and localization [29]
of sources in line-of-sight, in which case visual detectors can
replace manual labeling [30], [31]. Analogous to our work, [32]
presents a first deep learning method for sensing around corners
but with automotive radar. Thus, while the effect of occlusions
on sensor measurements is difficult to model [14], data-driven
approaches appear to be a good alternative.

This letter provides the following contributions: First, we
demonstrate in real-world outdoor conditions that a vehicle-
mounted microphone array can detect the sound of approach-
ing vehicles behind blind corners from reflections on nearby
surfaces before line-of-sight detection is feasible. This is a key
advantage for IVs, where passive acoustic sensing is still rela-
tively under-explored. Our experiments investigate the impact on
accuracy and detection time for various conditions, such as dif-
ferent acoustic environments, driving versus static ego-vehicle,
and compare to current visual and acoustic baselines.

Second, we propose a data-driven detection pipeline to
efficiently address this task and show that it outperforms

model-driven acoustic signal processing. Unlike existing data-
driven approaches, we cannot use visual detectors for positional
labeling [30] or transfer learning [31], since our targets are
visually occluded. Instead, we cast the task as a multi-class
classification problem to identify if and from what corner a ve-
hicle is approaching. We demonstrate that Direction-of-Arrival
estimation can provide robust features to classify sound reflec-
tion patterns, even without end-to-end feature learning and large
amounts of data.

Third, for our experiments we collected a new audio-visual
dataset in real-world urban environments.1 To collect data, we
mounted a front-facing microphone array on our research vehi-
cle, which additionally has a front-facing camera. This prototype
setup facilitates qualitative and quantitative experimentation of
different acoustic perception tasks.

III. APPROACH

Ideally, an ego-vehicle driving through an area with occluding
structures is able to early predict if and from where another
vehicle is approaching, even if it is from behind a blind corner as
illustrated in Figure 1. Concretely, this work aims to distinguish
three situations as early as possible using ego-vehicle sensors
only:
� an occluded vehicle approaches from behind a corner on

the left, and only moves into view last-moment when the
ego-vehicle is about to reach the junction,

� same, but vehicle approaches behind a right corner,
� no vehicle is approaching.
We propose to consider this task an online classification

problem. As the ego-vehicle approaches a blind corner, the
acoustic measurements made over short time spans should be
assigned to one in a set of four classes, C = {left, front,
right, none}, where left/right indicates a still occluded
(i.e. not yet in direct line-of-sight) approaching vehicle behind
a corner on the left/right, front that the vehicle is already in
direct line-of-sight, and none that no vehicle is approaching.

In Section III-A we shall first consider two line-of-sight
baseline approaches for detecting vehicles. Section III-B then
elaborates our proposed extension to acoustic non-line-of-sight
detection. Section III-C provides details of our vehicle’s novel
acoustic sensor setup used for data collection.

A. Line-of-Sight Detection

We first consider how the task would be addressed with line-
of-sight vehicle detection using either conventional cameras, or
using past work on acoustic vehicle detection.

a) Visual detection baseline: Cameras are currently one of the
de-facto choices for detecting vehicles and other objects within
line-of-sight. Data-driven Convolutional Neural Networks have
proven to be highly effective on images. However, visual detec-
tion can only detect vehicles that are already (partially) visible,
and thus only distinguishes between front and none. To
demonstrate this, we use Faster R-CNN [33], a state-of-the-art

1Code & data: https://github.com/tudelft-iv/occluded_vehicle_acoustic_
detection
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Fig. 2. Overview of our acoustic detection pipeline, see Section III-B for an explanation of the steps.

visual object detector, on the ego-vehicle’s front-facing camera
as a visual baseline.

b) Acoustic detection baseline: Next, we consider that the
ego-vehicle is equipped with an array of M microphones. As
limited training data hinders learning features (unlike [30], [31]),
we leverage beamforming to estimate the Direction-of-Arrival
(DoA) of tire and engine sounds originating from the approach-
ing vehicle. DoA estimation directly identifies the presence and
direction of such sound sources, and has been shown to work
robustly in unoccluded conditions [9], [11]. Since sounds can
be heard around corners, and low frequencies diffract (“bend”)
around corners [23], one might wonder: Does the DoA of the
sound of an occluded vehicle correctly identify from where the
vehicle is approaching? To test this hypothesis for our target
real-world application, our second baseline follows [9], [11] and
directly uses the most salient DoA angle estimate.

Specifically, the implementation uses the Steered-Response
Power-Phase Transform (SRP-PHAT) [22] for DoA estimation.
SRP-PHAT relates the spatial layout of sets of microphone pairs
and the temporal offsets of the corresponding audio signals
to their relative distance to the sound source. To apply SRP-
PHAT on M continuous synchronized signals, only the most
recent δt seconds are processed. On each signal, a Short-Time
Fourier Transform (STFT) is computed with a Hann windowing
function, and a frequency bandpass for the [fmin, fmax] Hz
range. Using the generalized cross-correlation of the M STFTs,
SRP-PHAT computes the DoA energy r(α) for any given az-
imuth angle α around the vehicle. Here α = −90◦/0◦/+ 90◦

indicates an angle towards the left/front/right of the vehicle
respectively. If the hypothesis holds that the overall salient
sound direction αmax = argmax r(α) remains intact due to
diffraction, one only needs to determine if αmax is beyond some
sufficient threshold αth. The baseline thus assigns class left if
αmax < −αth, front if −αth ≤ αmax ≤ +αth, and right
if αmax > +αth. We shall evaluate this baseline on the easier
task of only separating these three classes, and ignore the none
class.

B. Non-Line-of-Sight Acoustic Detection

We argue that in contrast to line-of-sight detection, DoA
estimation alone is unsuited for occluded vehicle detection (and
confirm this in Section IV-C). Salient sounds produce sound

wave reflections on surfaces, such as walls (see Figure 1(c)),
thus the DoA does not indicate the actual location of the source.
Modelling the sound propagation [8] while driving through
uncontrolled outdoor environments is challenging, especially as
accurate models of the local geometry are missing. Therefore, we
take a data-driven approach and treat the full energy distribution
from SRP-PHAT as robust features for our classifier that capture
all reflections.

An overview of the proposed processing pipeline is shown in
Figure 2. We again create M STFTs, using a temporal windows
of δt seconds, Hann windowing function and a frequency band-
pass of [fmin, fmax]Hz. Notably, we do not apply any other form
of noise filtering or suppression. To capture temporal changes
in the reflection pattern, we split the STFTs along the temporal
dimension into L non-overlapping segments. For each segment,
we compute the DoA energy at multiple azimuth angles α in
front of the vehicle. The azimuth range [−90◦,+90◦] is divided
into B equal bins α1, . . . , αB . From the original M signals, we
thus obtain L response vectors rl = [rl(α1), . . . , rl(αB)]

�. Fi-
nally, these are concatenated to a (L×B)-dimensional feature
vector x = [r1, . . . , rL]

�, for which a Support Vector Machine
is trained to predict C. Note that increasing the temporal reso-
lution by having more segments L comes at the trade-off of a
increased final feature vector size and reduced DoA estimation
quality due to shorter time windows.

C. Acoustic Perception Research Vehicle

To collect real-world data and demonstrate non-line-of-sight
detection, a custom microphone array was mounted on the
roof rack of our research vehicle [34], a hybrid electric Toyota
Prius. The microphone array hardware consists of 56 ADMP441
MEMS microphones, supports data acquisition at 48 kHz sam-
ple rate, 24 bits resolution, and synchronous sampling. It was
bought from CAE Software & Systems GmbH with a metal
frame. On this 0.8˜m× 0.7˜m frame the microphones are dis-
tributed semi-randomly while the microphone density remains
homogeneous. The general purpose layout was designed by the
company through stochastic optimization to have large variance
in inter-microphone distances and serve a wide range of acoustic
imaging tasks. The vehicle is also equipped with a front-facing
camera for data collection and processing. The center of the
microphone array is about 1.78 m above the ground, and 0.54 m

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:13:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Sensor setup of our test vehicle. A: Center of the 56 MEMS acoustic
array. B: signal processing unit. C: front camera behind windscreen. Inset: the
diameter of a single MEMS microphone is only 12 mm.

above and 0.50 m behind the used front camera, see Figure 3.
As depicted in the Figure’s inset, the microphones themselves
are only 12 mm wide. They cost about US$1 each.

A signal processing unit receives the analog microphone
signals, and sends the data over Ethernet to a PC running the
Robot Operating System (ROS). Using ROS, the synchronized
microphone signals are collected together with other vehicle
sensor data. Processing is done in python, using pyroomacous-
tics [21] for acoustic feature extraction, and scikit-learn [35] for
classifier training.

We emphasize that this setup is not intended as a production
prototype, but provides research benefits: The 2D planar ar-
rangement provides both horizontal and vertical high-resolution
DoA responses, which can be overlaid as 2D heatmaps [36]
on the front camera image to visually study the salient sources
(Section IV-A). By testing subsets of microphones, we can assess
the impact of the number of microphones and their relative
placement (Section IV-G). In the future, the array should only
use a few microphones at various locations around the vehicle.

IV. EXPERIMENTS

To validate our method, we created a novel dataset with
our acoustic research vehicle in real-world urban environments.
We first illustrate the quality of acoustic beamforming in such
conditions before turning to our main experiments.

A. Line-of-Sight Localization – Qualitative Results

As explained in Section III-C, the heatmaps of the 2D DoA
results can be overlaid with the camera images. Figure 4 shows
some interesting qualitative findings in real urban conditions.
The examples highlight that beamforming can indeed pick up
various important acoustic events for autonomous driving in
line-of-sight, such as the presence of vehicles and some vul-
nerable road users (e.g. strollers). Remarkably, even electric
scooters and oncoming traffic while the ego-vehicle is driving
are recognized as salient sound sources. A key observation from
Figure 1(c) is that sounds originating behind corners reflect in

particular patterns on nearby walls. Overall, these results show
the feasibility of acoustic detection of (occluded) traffic.

B. Non-Line-of-Sight Dataset and Evaluation Metrics

The quantitative experiments are designed to separately con-
trol and study various factors that could influence acoustic
perception. We collected multiple recordings of the situations
explained in Section III at five T-junction locations with blind
corners in the inner city of Delft. The locations are categorized
into two types of walled acoustical environments, namely types
A and B (see Figure 5). At these locations common background
noise, such as construction sites and other traffic, was present
at various volumes. For safety and control, we did not record in
the presence of other motorized traffic on the roads at the target
junction.

The recordings can further be divided into Static data, made
while is the ego-vehicle in front of the junction but not moving,
and more challenging Dynamic data where the ego-vehicle
reaches the junction at∼15 km/h (see the supplementary video).
Static data is easily collected, and ensures that the main source
of variance is the approaching vehicle’s changing position.

For the static case, the ego-vehicle was positioned such that
the building corners are still visible in the camera and occlude
the view onto the intersecting road (on average a distance of
∼7-10 m from the intersection). Different types of passing
vehicles were recorded, although in most recordings the ap-
proaching vehicle was a Škoda Fabia 1.2 TSI (2010) driven by
one of the authors. For the Dynamic case, coordinated recordings
with the Škoda Fabia were conducted to ensure that encounters
were relevant and executed in a safe manner. Situations with
left/right/none approaching vehicles were performed in
arbitrary order to prevent undesirable correlation of background
noise to some class labels. In∼70% of the total Dynamic record-
ings and∼19.5% of the total Static recordings, the ego-vehicle’s
noisy internal combustion engine was running to charge its
battery.

a) Sample extraction: For each Static recording with an
approaching target vehicle, the time t0 is manually annotated
as the moment when the approaching vehicle enters direct
line-of-sight. Since the quality of our t0 estimate is bounded by
the ego-vehicle’s camera frame rate (10 Hz), we conservatively
regard the last image before the incoming vehicle is visible
as t0. Thus, there is no line-of-sight at t ≤ t0. At t > t0 the
vehicle is considered visible, even though it might only be a
fraction of the body. For the Dynamic data, this annotation is not
feasible as the approaching car may be in direct line-of-sight,
yet outside the limited field-of-view of the front-facing camera
as the ego-vehicle has advanced onto the intersection. Thus,
annotating t0 based on the camera images is not representative
for line-of-sight detection. To still compare our results across
locations, we manually annotate the time τ0, the moment when
the ego-vehicle is at the same position as in the correspond-
ing Static recordings. All Dynamic recordings are aligned to
that time as it represents the moment where the ego-vehicle
should make a classification decision, irrespective if an ap-
proaching vehicle is about to enter line-of-sight or still further
away.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:13:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Qualitative examples of 2D Direction-of-Arrival estimation overlaid on the camera image (zoomed). (a): Stroller wheels are picked up even at a distance.
(b), (c): Both conventional and more quiet electric scooters are detected. (b): The loudest sound of a passing vehicle is typically the road contact of the individual
tires. (e): Even when the ego-vehicle drives at ∼ 30 km/h, oncoming moving vehicles are still registered as salient sound sources.

Fig. 5. Schematics of considered environment types. The ego-vehicle ap-
proaches the junction from the bottom. Another vehicle might approach behind
the left or right blind corner. Dashed lines indicate the camera FoV.

TABLE I
SAMPLES PER SUBSET. IN THE ID, S/D INDICATES STATIC/DYNAMIC

EGO-VEHICLE, A/B THE ENVIRONMENT TYPE (SEE FIGURE 5)

From the recordings, short δt = 1s audio samples are ex-
tracted. Let te, the end of the time window [te − 1s, te], de-
note a sample’s time stamp at which a prediction could be
made. For Static left and right recordings, samples with
the corresponding class label are extracted at te = t0. For Dy-
namic recordings, left and right samples are extracted at
te = τ0 + 0.5s. This ensures that during the 1s window the
ego-vehicle is on average close to its position in the Static record-
ings. In both types of recordings, front samples are extracted
1.5 s after the left/right samples, e.g. te = t0 + 1.5s. Class
none samples were from recordings with no approaching ve-
hicles. Table I lists statistics of the extracted samples at each
recording location.

b) Data augmentation: Table I shows that the data acquisition
scheme produced imbalanced class ratios, with about half the
samples for left, right compared to front, none. Our
experiments therefore explore data augmentation. By exploiting
the symmetry of the angular DoA bins, augmentation will double
theright andleft class samples by reversing the azimuth bin
order in all rl, resulting in new features for the opposite label,

TABLE II
BASELINE COMPARISON AND HYPERPARAMETER STUDY W.R.T. OUR

REFERENCE CONFIGURATION: SVM λ = 1, δt = 1, L = 2, DATA

AUGMENTATION. RESULTS ON STATIC DATA. * DENOTES OUR PIPELINE

i.e. as if additional data was collected at mirrored locations.
Augmentation is a training strategy only, and thus not applied to
test data to keep results comparable, and distinct for left and
right.

c) Metrics: We report the overall accuracy, and the per-class
Jaccard index (a.k.a. Intersection-over-Union) as a robust mea-
sure of one-vs-all performance. First, for each class c the True
Positives/Negatives (TPc/TNc), and False Positives/Negatives
(FPc/FNc) are computed, treating target class c as positive
and the other three classes jointly as negative. Given the to-
tal number of test samples N , the overall accuracy is then
(
∑

c∈C TPc)/N and the per-class Jaccard index is Jc = TPc/
(TPc + FPc + FNc).

C. Training and Impact of Classifier and Features

First, the overall system performance and hyperparameters
are evaluated on all Static data from both type A and B locations
(i.e. subset ID ‘SAB’) using 5-fold cross-validation. The folds
are fixed once for all experiments, with the training samples of
each class equally distributed among folds.

We fix the frequency range to fmin = 50Hz, fmax = 1500Hz,
and the number of azimuth bins to B = 30 (Section III-B).
For efficiency and robustness, a linear Support Vector Machine
(SVM) is used with l2−regularization weighted by hyperpa-
rameter λ. Other hyperparameters to explore include the sample
length δt ∈ {0.5s, 1s}, the segment count L ∈ {1, 2, 3, 4}, and
using/not using data augmentation.

Our final choice and reference is the SVM with λ = 1, δt =
1s, L = 2, and data augmentation. Table II shows the results
for changing these parameter choices. The overall accuracy
for all these hyperparameters choices is mostly similar, though

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:13:57 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. DoA energy over time for the recording shown in Figure 1(c). When
the approaching vehicle is not in line-of-sight (NLOS), e.g. at t0, the main peak
is a reflection on the wall (αmax < −30◦) opposite of that vehicle.

per-class performance does differ. Our reference achieves top
accuracy, while also performing well on bothleft andright.
We keep its hyperparameters for all following experiments.

The table also shows the results of the DoA-only baseline
explained in Section III-A using αth = 50◦, which was found
through a grid search in the range [0◦, 90◦]. As expected, the
DoA-only baseline [9], [11] shows weak performance for all
metrics. While the sound source is occluded, the most salient
sound direction does not represent its origin, but its reflection
on the opposite wall (see Figure 1). The temporal evolution of the
full DoA energy for a car approaching from theright is shown
in Figure 6. When it is still occluded at t0, there are multiple
peaks and the most salient one is a reflection on the left (αmax ≈
−40◦). Only once the car is in line-of-sight (t0 + 1.5s) the main
mode clearly represents its true direction (αmax ≈ +25◦). The
left and right image in Figure 1(c) also show such peaks at t0
and t0 + 1.5s, respectively.

The bottom row of the table shows the visual baseline, a Faster
R-CNN R50-C4 model trained on the COCO dataset [37]. To
avoid false positive detections, we set the score threshold of 75%
and additionally required a bounding box height of 100 pixels to
ignore cars far away in the background, which were not of inter-
est. Generally this threshold is already exceeded once the hood of
the approaching car is visible. While performing well onfront
and none, this visual baseline shows poor overall accuracy as
it is physically incapable of classifying left and right.

D. Detection Time Before Appearance

Ultimately, the goal is to know whether our acoustic method
can detect approaching vehicles earlier than the state-of-the-art
visual baseline. For this purpose, their online performance is
compared next.

The static recordings are divided into a fixed training (328
recordings) and test (83 recordings) split, stratified to adequately
represent labels and locations. The training was conducted as
in Section IV-C with left and right samples extracted at
te = t0. The visual baseline is evaluated on every camera frame
(10 Hz). Our detector is evaluated on a sliding window of 1˜s
across the 83 test recordings. To account for the transition period
when the car may still be partly occluded, front predictions
by both methods are accepted as correct starting at t = t0.
For recordings of classes left and right, these classes are
accepted until t = t0 + 1.5s, allowing for temporal overlap with
front.

Figure 7 illustrates the accuracy on the test recordings for
different evaluation times te. The overlap region is indicated by

Fig. 7. Accuracy over test time te of our acoustic and the visual baseline on
83 Static recordings. Gray region indicates the other vehicle is half-occluded
and two labels, front and either left or right, are considered correct.

TABLE III
CROSS-VALIDATION RESULTS PER ENVIRONMENT ON DYNAMIC DATA

the gray area after te = t0 and its beginning thus marks when
a car enters the field of view. At te = t0, just before entering
the view of the camera, the approaching car can be detected
with 0.94 accuracy by our method. This accuracy is achieved
more than one second ahead of the visual baseline, showing that
our acoustic detection gives the ego-vehicle additional reaction
time. After 1.5 s a decreasing accuracy is reported, since the
leaving vehicle is not annotated and only front predictions
are considered true positives. The acoustic detector sometimes
still predicts left, or right once the car crossed over. The
Faster R-CNN accuracy also decreases: after 2 s the car is often
completely occluded again.

Figure 8 shows the per-class probabilities as a function of
extraction time te on the test set, separated by recording situa-
tions. The SVM class probabilities are obtained with the method
in [38]. The probabilities for left show that on average the
model initially predicts that no car is approaching. Towards t0,
the none class becomes less likely and the model increasingly
favors the correct left class. A short time after t0, the predic-
tion flips to the front class, and eventually switches to right
as the car leaves line-of-sight. Similar (mirrored) behavior is ob-
served for vehicles approaching from the right. The probabilities
of left/right rise until the approaching vehicle is almost in
line-of-sight, which corresponds to the extraction time of the
training samples. The none class is constantly predicted as
likeliest when no vehicle is approaching. Overall, the prediction
matches the events of the recorded situations remarkably well.

E. Impact of the Moving Ego-Vehicle

Next, our classifier is evaluated by cross-validation per en-
vironment subset, as well as on the full Dynamic data. As for
the Static data, 5-fold cross-validation is applied to each subset,
keeping the class distribution balanced across folds.

Table III lists the corresponding metrics for each subset. On
the full Dynamic data (DAB), the accuracy indicates decent
performance, but the metrics for left and right classes are
much worse compared to the Static results in Table II. Separating
subsets DA and DB reveals that the performance is highly depen-
dent on the environment type. In fact, even with limited training
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Fig. 8. Mean and std. dev. of predicted class probabilities at different times te on test set recordings of the Static data (blue is front, green is left, red is
right, and black is none). Each figure shows recordings of a different situation. The approaching vehicle appears in view just after te − t0 = 0.

Fig. 9. Mean and std. dev. of predicted class probabilities at different times te
on left and right test set recordings of the Dynamic data. The ego-vehicle
reached the location of training data when te − τ0 = 0.5s.

data and large data variance from a driving ego-vehicle, we ob-
tain decent classification performance on type A environments,
and we notice that low left and right performance mainly
results from type B environments. We hypothesize that the more
confined type A environments reflect more target sounds and are
better shielded from potential noise sources.

We also analyze the temporal behavior of our method on Dy-
namic data. Unfortunately, a fair comparison with a visual base-
line is not possible: the ego-vehicle often reaches the intersection
early, and the approaching vehicle is within line-of-sight but still
outside the front-facing camera’s field of view (cf. τ0 extraction
in Section IV-B). Yet, the evolution of the predicted probabilities
can be compared to those on the Static data in Section IV-D.
Figure 9 illustrates the average predicted probabilities over 59
Dynamic test set recordings from all locations, after training on
samples from the remaining 233 recordings. The classifier on av-
erage correctly predicts right samples (Figure 9(b)), between
te = τ0 to te = τ0 + 0.5s. Of the left recordings at these
times, many are falsely predicted asnone, only few are confused
with right. Furthermore, the changing ego-perspective of the
vehicle results in alternating DoA-energy directions and thus
class predictions, compared to the Static results in Figure 8. This
indicates that it might help to include the ego-vehicle’s relative
position as an additional feature, and obtain more varied training
data to cover the positional variations.

F. Generalization Across Acoustic Environments

We here study how the performance is affected when the
classifier is trained on all samples from one environment type
and evaluated on all samples of the other type. In Table IV,

TABLE IV
GENERALIZATION ACROSS LOCATIONS AND ENVIRONMENTS

combinations of training and test sets are listed. Compared to
the results for Static and Dynamic data (see Tables II and III),
the reported results in the table show a general trend: If the
classifier is trained on one environment and tested on the other,
it performs worse than when samples of the same location are
used. In particular, the classifier trained on SB and tested on SA
is not able to correctly classify samples of left and right
while inverse training and testing performs much better. On
the Dynamic data, such pronounced effects are not visible, but
overall the accuracy decreases compared to the Static data. In
summary, the reflection patterns vary from one environment to
another, yet at some locations the patterns appear more distinct
and robust than those at others.

G. Microphone Array Configuration

Our array with 56 microphones enables evaluation of different
spatial configurations with M < 56. For various subsets of M
microphones, we randomly sample 100 out of

(
56
M

)
possible

microphone configurations, and cross-validate on the Static
data. Interestingly, the best configuration with M = 7 already
achieves similar accuracy as with M = 56. With M = 2/3 the
accuracy is already 0.82/0.89, but with worse performance on
left and right. Large variance between samples highlights
the importance of a thorough search of spatial configurations.
Reducing M also leads to faster inference time, specifically
0.24/0.14/0.04 s for M = 56/28/14 using our unoptimized
implementation.

V. CONCLUSIONS

We showed that a vehicle mounted microphone array can be
used to acoustically detect approaching vehicles behind blind
corners from their wall reflections. In our experimental setup,
our method achieved an accuracy of 0.92 on the 4-class hidden
car classification task for a static ego-vehicle, and up to 0.84 in
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some environments while driving. An approaching vehicle was
detected with the same accuracy as our visual baseline already
more than one second ahead, a crucial advantage in such critical
situations.

While these initial findings are encouraging, our results have
several limitations. The experiments included only few locations
and few different oncoming vehicles, and while our method
performed well on one environment, it had difficulties on the
other, and did not perform reliably in unseen test environments.
To expand the applicability, we expect that more representative
data is needed to capture a broad variety of environments,
vehicle positions and velocities, and the presence of multiple
sound sources. Rather than generalizing across environments,
additional input from map data or other sensor measurements
could help to discriminate acoustic environments and to classify
the reflection patterns accordingly. More data also enables end-
to-end learning of low-level features, potentially capturing cues
our DoA-based approach currently ignores (e.g. Doppler, sound
volume), and perform multi-source detection and classification
in one pass [30]. Ideally a suitable self-supervised learning
scheme is developed [31], though a key challenge is that actual
occluded sources cannot immediately be visually detected.

REFERENCES

[1] C. G. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe, and D. M. Gavrila, “Active
pedestrian safety by automatic braking and evasive steering,” IEEE T-ITS,
vol. 12, no. 4, pp. 1292–1304, Dec. 2011.

[2] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2X access tech-
nologies: Regulation, research, and remaining challenges,” IEEE Comm.
Surveys Tut., vol. 20, no. 3, pp. 1858–1877, thirdquarter 2018.

[3] S. Argentieri, P. Danes, and P. Souéres, “A survey on sound source local-
ization in robotics: From binaural to array processing methods,” Comput.
Speech Lang., vol. 34, no. 1, pp. 87–112, 2015.

[4] C. Rascon and I. Meza, “Localization of sound sources in robotics: A
review,” Robot. Auton. Syst., vol. 96, pp. 184–210, 2017.

[5] L. Wang and A. Cavallaro, “Acoustic sensing from a multi-rotor drone,”
IEEE Sensors J., vol. 18, no. 11, pp. 4570–4582, 2018.

[6] D. B. Lindell, G. Wetzstein, and V. Koltun, “Acoustic non-line-of-sight
imaging,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6780–6789.

[7] K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai, “Outdoor au-
ditory scene analysis using a moving microphone array embedded in a
quadrocopter,” in Proc. IEEE/RSJ Int. Conf. Intelli. Robot. Syst., 2012,
pp. 3288–3293.

[8] I. An, M. Son, D. Manocha, and S.-e. Yoon, “Reflection-Aware sound
source localization,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 66–73.

[9] Y. Jang, J. Kim, and J. Kim, “The development of the vehicle sound
source localization system,” in Proc. IEEE Asia-Pacific Signal Inf. Process.
Association Annu. Summit Conf., 2015, pp. 1241–1244.
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