

Increasing computing performance of ADCS subsystems in small satellites for earth observation

Johan Carvajal-Godínez, Morteza Haghayegh, Allan Granados, Jaan Viru and Jian Guo

Space Engineering Department Faculty of Aerospace Engineering Delft University of Technology

Outline

- Introduction
- ADCS challenges
- "Y model" approach for ADCS
- DelFFi ADCS modeling and simulation
- OBC Hardware selection
- ADCS software integration
- Conclusions

What does Earth Observation and Formation Flying have in common?

Challenging ADCS subsystem

- ✓ Multiple attitude modes
- High pointing accuracy
- Precise three axis control algorithms
- ✓ High resolution data types from sensors
- ✓ Onboard sensor calibration
- ✓ Fault detection and correction
- ✓ onboard functions for autonomous operation

More complex software → improving OBC capabilities for ADCS

DelFFi Mission Statement

"The DelFFi mission shall demonstrate **autonomous** formation flying and provide enhanced scientific return within QB50 from 2016 onwards, by utilizing two identical triple-unit **Cubesats** of TU Delft which further advance the Delfi-n3Xt platform."

Source: SSE TU Delft

DelFFi ADCS software development

DelFFi ADCS software development

DelFFi ADCS simulation model

DelFFi ADCS input requirements

ADCS Modes	Threshold	Control Objective	Sensor	Actuator
Detumbling	>1°/s	1°/s	Magnetometer	Magnetorquer
Nadir pointing	<1°/s	<1°/s; <10°	Magnetometer, Sun Sensors	Magnetorquer
Sun Pointing	Command	<1°/s; <10°	Magnetometer, Sun Sensors	Magnetorquer
Thrust Vector Control (VP)	Command	<1°/s; <2°	Magnetometer, Sun Sensors	Magnetorquer, Reaction Wheel
Manuevering	Command	None	Magnetometer	Magnetorquer, Reaction Wheel
Safe	Command	None	Magnetometer	None

VP: Velocity pointing

ADCS software architecture (initial)

10

DelFFi ADCS simulation model

ADCS model profiling

Goal: Identifying the most demanding blocks inside the ADCS model by measuring relative CPU time utilization during simulation, for later code acceleration with digital signal processor (DSP)

Process Steps:

- Implement ADCS simulation model in Simulink
- Setup up the Matlab profiler to collect model performance data
- Setup up the simulation environment for ADCS model
- Run the model profiler
- Analyze ADCS model performance data
- Select most demanding model block for code acceleration with DSP

Simulation environment setup

Parameter	Value	Unit
Initial quaternion	0.378 -0.378 0.756 0.378	[-]
Orbit type	Circular	
Eccentricity	0	[-]
Inclination	98.6	degree
Right ascension of the ascending node	-15	degree
Argument of perigee	0	degree
Initial mean anomaly	0	degree
Satellite inertia	0.017 0 0 0 0.055 0	kg·m ²
Satellite dimensions	$\begin{bmatrix} 0 & 0 & 0.055 \end{bmatrix}$	m
Center of pressure offset from center of gravity	0.005 0.005 0.005	m
Drag coefficient	2.2	[-]
Maximum magnetic torquer dipole moment	$\begin{bmatrix} 0.4 & 0.4 & 0.4 \end{bmatrix}^{T}$	A·m ²
Residual magnetic dipole moment	0.005 0.005 0.005	$A \cdot m^2$
Magnetometer bias	500	nT
Magnetometer noise standard deviation	170	nT
Sun sensor bias	< 3	degree
Sun sensor noise standard deviation	0.4	degree

ADCS model profiling results

Block Function	Number of calls	Percentage of relative CPU time usage during simulation
Attitude estimation (EKF)	110 000	52%
Velocity Pointing mode	110 000	14%
Other OBC functions	110 000	34%

Other functions include:

- Environment initialization
- ADCS Mode determination algorithm
- Other attitude modes (Safe and De-Tumbling)
- Simulation Termination

DelFFi OBC selection

OBC architecture trade off

OBC Requirements:

- Code acceleration support
- Build system support from open embedded community
- I2C, SPI and UART support
- Power efficient floating point unit performance w.r.t. FPGA
- COTS available
- Open hardware and software

Hardware Test bed

Beagleboard XM:

- COTS and open hardware/software platform
- TI DM3730 SoC (ARM processor + Digital Signal Processor)
- Build system support from embedded community (Yocto project)
- Continuous integration support (Jenkins)

ADCS software build system

The Yocto Project Development Environment

Results on services and drivers support

Operating system size with all driver support is **18 MB**

DelFFi ADCS software development

DelFFi ADCS architecture (final)

Non Accelerated blocks

Accelerated block

Communication inside ADCS application

Optimized buffer size for EKF requirements

Integration Results

- EKF execution speedup of 5-10 times (based on baseline performance for FFT)
- ADCS software footprint size is less than 20 MB (regular footprint is 100-200 MB)
- Memory size for data exchange between ARM-DSP was reduced to 64MB (initially 128 MB)
- Fully automated operating system image generation with Yocto project + Jenkins

Conclusions

- "Y approach " was introduced and implemented for DelFFi ADCS software architecture exploration
- Model profiling technique helped to identify and quantify computing demand for ADCS attitude estimation algorithm.
- Using a build system (Yocto project) and continuous integration tools improved software productivity problem

Further Work

- Continue the work in the porting of Simulink model to BeagleBoard XM board
- Compare ADCS performance with results from Flight Model OBC (Benchmark)
- Continue to investigate on code acceleration in space software applications with heterogeneous onboard processors

Thank You for your attention!!! j.carvajalgodinez@tudelft.nl

