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A B S T R A C T

The increasing availability of condition monitoring data for aircraft components has incentivized the devel-
opment of Remaining Useful Life (RUL) prognostics in the past years. However, only few studies consider
the integration of such prognostics into maintenance planning. In this paper we propose a dynamic, predictive
maintenance scheduling framework for a fleet of aircraft taking into account imperfect RUL prognostics. These
prognostics are periodically updated. Based on the evolution of the prognostics over time, alarms are triggered.
The scheduling of maintenance tasks is initiated only after these alarms are triggered. Alarms ensure that
maintenance tasks are not rescheduled multiple times. A maintenance task is scheduled using a safety factor,
to account for potential errors in the RUL prognostics and thus avoid component failures. We illustrate our
approach for a fleet of 20 aircraft, each equipped with 2 turbofan engines. A Convolution Neural Network is
proposed to obtain RUL prognostics. An integer linear program is used to schedule aircraft for maintenance.
With our alarm-based maintenance framework, the costs with engine failures account for only 7.4% of the
total maintenance costs. In general, we provide a roadmap to integrate imperfect RUL prognostics into the
maintenance planning of a fleet of vehicles.
1. Introduction

The cost of aircraft maintenance is estimated to be 10.3% of the
total airline operating costs, with approximately 3.3 million dollars
spent on maintenance per aircraft in 2019 [1]. Striving to reduce
these costs, aircraft maintenance is shifting to data-driven, predictive
maintenance where on-board sensors are increasingly used to monitor
the health condition of the aircraft components. Based on these sensor
measurements, dedicated algorithms are developed to estimate the
Remaining Useful Life (RUL) of components. Using RUL prognostics,
the aim is to anticipate failures and optimize the deployment of mainte-
nance tasks. One of the main challenges in predictive maintenance is to
obtain reliable RUL prognostics and to integrate them into maintenance
planning [2].

Most existing studies focus solely on developing RUL prognostics,
using either a model-based or a machine learning approach [3]. Model-
based RUL prognostics assume that the degradation of components is
characterized by a stochastic process. For instance, in [4,5] the RUL
of aircraft Cooling Units is estimated using particle filtering with an
exponential degradation model and a Wiener linear process, respec-
tively. In [6], RUL prognostics for aircraft landing gear brakes are
obtained using a linear regression, while a Gamma process character-
izes the degradation of the brakes. Machine learning algorithms have

∗ Corresponding author.
E-mail address: i.i.depater@tudelft.nl (I. de Pater).

been proposed to estimate the RUL of, for instance, aircraft turbofan
engines [7–9] and bearings [10,11]. In [7–9], a Convolutional neural
network (CNN) is used to predict the RUL of turbofan engines. To
predict the RUL of rolling element bearings, a CNN with a residual
is proposed in [10], while a CNN with multi-scale feature extraction
is proposed in [11]. We refer to [3,12] for an extensive overview of
recent studies about RUL prognostics.

Several studies focus mainly on condition-based or predictive main-
tenance planning, where the RUL prognostics are based on simple,
generic probability distributions. In [13,14], maintenance is planned
for a railway network and a steel bridge structure respectively, using a
Markov Decision Process. In [15], a Large Neighborhood Search algo-
rithm is proposed for the maintenance planning of a fleet of aircraft.

Few studies develop RUL prognostics and subsequently integrate
these prognostics into maintenance planning [2,16]. Even so, these
studies focus on maintenance planning for one (multi-component) sys-
tem. In [16], multi-class RUL prognostics for aircraft turbofan engines
are generated using a Long Short-Term Memory neural network. Based
on these prognostics, engine replacements are planned and spare parts
are ordered. In [17], prognostics for aircraft airframe cracks are de-
veloped using an extended Kalman filter. These prognostics are further
used to determine which panels of a single aircraft are maintained, if
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any. In contrast to these studies, we consider the maintenance of a fleet
f aircraft, integrating data-driven RUL prognostics.

Even fewer studies develop RUL prognostics and subsequently in-
egrate these prognostics in the maintenance planning for multiple
ssets/systems. In [18], a particle filtering algorithm is used to deter-
ine RUL prognostics for aircraft cooling units. With these prognostics,
aintenance for a fleet of aircraft is planned using linear programming,

aking into account the availability of spare parts. In [19], the main-
enance of multiple aircraft brakes is considered. An aircraft brake is
eplaced as soon as the predicted RUL falls below a threshold. Multiple
bjectives, such as minimizing flight delays, minimizing the number
f unscheduled maintenance tasks and minimizing the total number
f maintenance tasks, are considered. In [20], maintenance is planned
or a fleet of vehicles using a multi-objective genetic algorithm. The
im is to minimize the total maintenance costs, the total workload,
he expected number of failures and the changes in the maintenance
chedule.

In general, these studies show that integrating RUL prognostics into
aintenance planning models leads to lower maintenance costs and
more efficient use of spare parts [16,18]. However, when planning
aintenance, the errors (e.g., RMSE, MAE, false negatives, false posi-

ives) of the RUL prognostics are not considered. To account for such
otential errors when planning maintenance, we propose a system of
larms to initiate maintenance task scheduling, together with a safety
argin that adjusts the moment when maintenance tasks are scheduled.

This paper proposes a dynamic, predictive maintenance planning
ramework for a fleet of aircraft that integrates machine-learning RUL
rognostics for aircraft components. These prognostics are periodically
pdated as more measurements become available. Alarms are triggered
ased on the evolution of the prognostics over time. Triggering an
larm for a component initiates the scheduling of a maintenance task
or this component. The ideal time to schedule such a task is determined
ased on the RUL prognostics and a safety margin, to account for
otential errors in the RUL prognostics. Once a maintenance task for
component is scheduled, we continue to periodically update the

UL prognostics of this component. Based on the evolution of the
rognostics over time, maintenance tasks may be rescheduled at a
igher cost.

The time when alarms are triggered is crucial. Triggering alarms
hen the predicted RUL is large may result in the initiated maintenance

ask being re-scheduled several times, as RUL prognostics are updated
ver time. Triggering alarms when the predicted RUL is small may
esult in component failures as there may not be enough time and
esources left to perform maintenance. Using a genetic algorithm, we
ptimize the parameters of our alarm policy (the frequency of alarms,
he threshold for triggering alarms and the safety margin).

We illustrate our approach for the maintenance planning of a fleet
f aircraft, each equipped with two turbofan engines. By employing our
larm-based maintenance framework, the costs with engine failures ac-
ount for only 7.4% of the total maintenance costs. Overall, our frame-
ork provides an end-to-end approach for maintenance scheduling of
ultiple components considering imperfect RUL prognostics.

The remainder of this paper is organized as follows. In Section 2 we
ropose a CNN to obtain RUL prognostics for turbofan engines. In Sec-
ion 3, we develop an alarm-based maintenance planning framework
hat integrates RUL prognostics in the maintenance schedule. These
rognostics are updated over time. In Section 4 we illustrate our CNN
or RUL prognostics together with our alarm-based maintenance frame-
ork for a fleet of aircraft equipped with turbofan engines. Conclusions
re provided in Section 5.

. Remaining useful life prognostics using a convolutional neural
etwork

In this section, we develop RUL prognostics for turbofan engines us-
2

ng Convolutional neural networks (CNNs) and the C-MAPSS turbofan 𝑛
Table 1
C-MAPSS datasets for turbofan engines [21].

FD FD FD FD
001 002 003 004

Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

engine degradation dataset [21]. CNNs have successfully been applied
for RUL prognostics for turbofan engines in, for instance, [7–9].

The C-MAPSS dataset consists of simulated data on the degradation
of turbofan engines. This data was generated by NASA using the
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS).
The dataset contains multi-variate temporal data of 21 sensors. There
are 4 data subsets, FD001, FD002, FD003 and FD004, each with specific
operating and fault conditions. Each subset has one training set where
measurements are recorded until the failure of the engine (run-to-
failure instances), and one test set. In the test set, the sensor recordings
are terminated somewhere before failure, and the aim is to predict the
RUL at that moment. In all cases, each engine has a different level
of initial wear. Over time, the condition of an engine degrades as it
approaches failure. A description of the 4 subsets is given in Table 1.

From the 21 sensors considered, 7 sensors have constant values over
time. As such, we select the remaining 14 sensors with non-constant
measurements for the input of the CNNs. We normalize the sensor
measurements with min–max normalization [7] with respect to the
operating condition [8] in each subset as follows:

̂ 𝑖𝑗 =
2(𝑚𝑘

𝑖𝑗 − 𝑚min
𝑗𝑘 )

𝑚max
𝑗𝑘 − 𝑚min

𝑗𝑘

− 1, (1)

ith 𝑚𝑘
𝑖𝑗 the sensor measurement of sensor 𝑗 during flight 𝑖, where flight

was performed under operating condition 𝑘, 𝑚min
𝑗𝑘 and 𝑚max

𝑗𝑘 the mini-
um and maximum value in the training set of sensor 𝑗 under operating

ondition 𝑘 respectively, and 𝑚̂𝑖𝑗 the normalized measurement of sensor
during flight 𝑖.

.1. Architecture of the CNN

As input for the CNN, we consider multi-dimensional data samples
:

= [𝑥1, 𝑥2,… , 𝑥𝑁 ], (2)

here 𝑁 is the number of flights included. For each flight 𝑖 ∈
1, 2,… , 𝑁}, 𝑥𝑖 contains the sensor measurements obtained during the
light and history of the operating conditions at that flight:

𝑖 = [𝑚̂𝑖1, 𝑚̂𝑖2,… , 𝑚̂𝑖𝑀 , 𝑜𝑖1, 𝑜𝑖2,… , 𝑜𝑖𝑂], (3)

with 𝑚̂𝑖𝑗 the normalized measurement of the 𝑗th sensor during flight 𝑖,
𝑀 the total number of sensors considered, 𝑜𝑖𝑟 the history of operating
condition 𝑟 at flight 𝑖, and 𝑂 the number of operating conditions of
the considered subset. The history of operating condition 𝑟 denotes the
number of flights, since the first flight of the considered engine up to
flight 𝑖, an engine has performed in operating condition 𝑟 [8].

Fig. 1 shows the architecture of the proposed CNN. We consider 𝐿
convolutional layers. The first 𝐿−1 convolutional layers each have 𝐾𝑓
ernels, and thus generates 𝐾𝑓 feature maps. Each kernel has a size
f 𝐾𝑠 × 1. We thus use one-dimensional kernels [7]. The convolutional
peration in the 𝑙th convolutional layer for the 𝑛th kernel 𝑘𝑙𝑛 is [22]:

𝑙
𝑛 = 𝜎(𝑘𝑙𝑛 ∗ 𝑧𝑙−1 + 𝑏𝑙𝑛) (4)

here 𝑧𝑙𝑛 is the 𝑛th feature map of layer 𝑙, * is the convolutional
perator, 𝑧𝑙−1 are the feature maps in layer 𝑙 − 1, 𝑏𝑙𝑛 is the bias of the
th feature map of layer 𝑙, and 𝜎(⋅) is the activation function of the
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Fig. 1. Schematic overview of the CNN.
convolutional layer. The 𝐿th convolutional layer has one kernel with a
size of 𝐾 ′

𝑠×1, combining all the 𝐾𝑓 feature maps into one single feature
map.

Using the extracted features of the convolutional layers, the CNN
predicts the RUL. The 2-dimensional, final feature map of the last
convolutional layer is flattened. In this layer, we apply a drop-out rate
𝜌 to prevent overfitting. The flatten layer is connected with a fully
connected layer, where each neuron is connected to all neurons in the
flatten layer. Let 𝑧fl be the output of the flatten layer, and let 𝑤𝑓 be
the weights of the fully connected layer. The output 𝑧𝑓 of the fully
connected layer is then [22]:

𝑧𝑓 = 𝜎(𝑤𝑓 𝑧fl + 𝑏𝑓 ), (5)

where 𝑏𝑓 is the bias of the fully connected layer, and 𝜎(⋅) is the
activation function of this layer. Last, the final layer with one neuron
outputs a RUL prediction using a linear activation function.

Following a grid-search hyper-parameter tuning, with the hyper-
parameters of [7] as starting point, we consider 𝐿 = 5 convolutional
layers. The first 4 convolutional layers contain 𝐾𝑓 = 10 kernels, each
with a size of 𝐾𝑠 = 10 × 1, while the last convolutional layer contains
1 kernel with a size of 𝐾 ′

𝑠 = 3 × 1. Same padding is implemented in all
convolutional layers to ensure that the feature maps have a constant
dimension. In the flatten layer, we apply a drop-out rate of 𝜌 = 0.5
during training. Finally, the fully connected layer contains 100 neurons.
All layers apply a hyperbolic tangent activation (tanh) function.

We optimize the weights of the CNN using the Adam optimizer [23]
with a batch size of 256 samples, and a maximum of 250 training
epochs. The initial learning rate is 0.001, which is multiplied by 0.6
after 10 consecutive epochs without improvement, for a stable conver-
gence of the weights. We use a window size of 30 flights for subsets
FD001 and FD003, and of 21 and 19 flights for subsets FD002 and
FD004 respectively, i.e., the number of flights available for the shortest
test instance in the test sets of FD002 and FD004.

2.1.1. RUL prognostics for aircraft engines
We apply our CNN to each of the 4 test data subsets FD001, FD002,

FD003 and FD004. We evaluate the obtained RUL prognostics by means
of the Root Mean Square Error (RMSE) metric:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑤=1
𝑒𝑤2, (6)

where 𝑛 is the number of testing instances in the considered data
subset and 𝑒𝑤 is the RUL prediction error (in flights) for an engine 𝑤,
𝑒𝑤 = RULactual

𝑤 −RULpredicted
𝑤 . Moreover, we use a piece-wise linear RUL

target function [7,9,24] with 𝑅early = 125 flights, i.e, when the actual
RUL is larger than 𝑅early = 125 flights, the target RUL of the neural
network is 𝑅 = 125 flights.
3

early
Table 2
RMSE for the RUL prognostics using C-MAPSS and a (variant of) a CNN.

𝑅early FD FD FD FD
001 002 003 004

Our approach 125 12.22 15.07 12.72 18.10
CNN [7] 125 12.61 22.36 12.64 23.31
MS-DCNN [9] 125 11.44 19.35 11.67 22.22
CNN with pooling [8] Varies 18.45 30.29 19.82 29.16
CNN with pyramid pooling [25] – 12.64 25.92 12.39 26.84

Table 3
RMSE for RUL prognostics using C-MAPSS and various machine learning algorithms.

𝑅early FD FD FD FD
001 002 003 004

Our approach 125 12.22 15.07 12.72 18.10
LSTM-MLSA [24] 125 11.57 14.02 12.13 17.21
CNN-LSTM [26] 125 11.17 – 9.99 –
HAGCN [27] 130 11.93 15.05 11.53 15.74
HDNN [28] 125 13.02 15.24 12.22 18.17
Semi-supervised [29] 130 12.56 22.73 12.10 22.66
CapsNets [30] 125 12.58 16.30 11.71 18.96

Table 2 shows the RMSE for each of the 4 test data subsets of C-
MAPSS. The RMSE is highest for subsets FD002 and FD004, where the
engines are subject to multiple operating conditions. Fig. 2 shows the
RUL prognostic versus the actual RUL for the individual engines in the 4
test data subsets. As expected, the results show that the RUL prognostics
are indeed imperfect with non-zero errors.

Table 2 also compares the performance of our RUL prognostic model
with existing studies that employ CNNs for RUL prognostics as well.
The results show that we obtain a lower RMSE for subsets FD002 and
FD004 compared to [7–9,25]. A more advanced CNN in [9] results in a
lower RMSE for subsets FD001 and FD003. Overall, our results are com-
parable to the best existing results for this dataset when using a CNN.
Table 3 gives an overview of the performance of RUL prognostic models
for the C-MAPSS dataset when considering various machine learning
algorithms. A more extensive overview of such models can be found
in [24,31]. The lowest RMSE is obtained when using a LSTM neural
network with multi-layer self-attention [24], or a hierarchical attention
graph convolutional network [27]. Also here, the performance of our
RUL prognostic method is comparable with existing methods.

In the next section, we integrate these imperfect RUL prognostics
into a predictive maintenance scheduling model for a fleet of aircraft.

3. Maintenance scheduling with imperfect RUL prognostics

In this section, we propose a generic, alarm-based maintenance
planning framework for a fleet of aircraft where imperfect RUL prog-
nostics are available for aircraft components.
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Fig. 2. RUL predictions of the engines in the four C-MAPSS data subsets. The engines
are sorted in an increasing order of their actual RUL.
4

Fig. 3. Illustration of two sequential time windows of the rolling horizon approach
with 𝜏 = 7, 𝑘 = 7 and 𝑙 = 63 days.

3.1. Problem description

Fleet of aircraft with degrading components
Let 𝐴 denote a fleet of aircraft. Each aircraft 𝑎 ∈ 𝐴 is equipped

with a set 𝑉𝑎 of identical components. The health of each component
degrades over time. A RUL prognostic for each component 𝑣 ∈ 𝑉𝑎 is
obtained every day.

Maintenance slots
Each aircraft 𝑎 ∈ 𝐴 has allocated a set of maintenance slots 𝑆𝑎 dur-

ing which the aircraft is on the ground and maintenance is performed.
These slots are scheduled months in advance. During these slots, pe-
riodic maintenance tasks and inspections are scheduled in advance as
well, as described in the maintenance manuals of the aircraft [32]. Let
𝑑𝑠 denote the day during which a maintenance slot 𝑠 ∈ 𝑆𝑎 is planned.

Additional maintenance tasks driven by RUL prognostics
During a maintenance slot, additional maintenance tasks may be

scheduled based on RUL prognostics, in anticipation of a failure. Per-
forming an additional maintenance task for a component 𝑣 ∈ 𝑉𝑎 costs
𝑐𝑝. We assume that at most ℎ additional maintenance tasks can be
performed every day, due to the limited availability of the maintenance
engineers, specialized tools and equipment.

When a component 𝑣 ∈ 𝑉𝑎 fails, we assume that an unscheduled
maintenance task for this component is immediately performed at a
cost 𝑐𝑓 > 𝑐𝑝.

Rolling horizon approach and rescheduling additional maintenance tasks
We assume a discrete-time problem with time steps of 1 day. Addi-

tional maintenance tasks are planned using a rolling horizon approach
with time windows. At current day 𝑑0, we consider a scheduling time
window 𝐷𝑑0 = [𝑑0 + 𝑘, 𝑑0 + 𝑘 + 𝑙), where 𝑘 is the minimum number
of days required to prepare an additional maintenance task and 𝑘 + 𝑙
is the moment in time up to which maintenance slots are known. At
day 𝑑0, additional maintenance tasks may be scheduled within this time
window 𝐷𝑑0 based on the available RUL prognostics. We then advance
to the next moment of maintenance scheduling at day 𝑑0 + 𝜏 (new
current day) with time window 𝐷𝑑0+𝜏 = [𝑑0 + 𝜏 + 𝑘, 𝑑0 + 𝜏 + 𝑘 + 𝑙) for
which new, updated RUL prognostics are generated. Again, additional
maintenance tasks may be scheduled in time window 𝐷𝑑0+𝜏 , based on
the updated RUL prognostics. This process is repeated for future time
windows.

Fig. 3 shows an example of a sequence of two maintenance schedul-
ing time windows with 𝜏 = 7, 𝑘 = 7 and 𝑙 = 63 days. At current day
𝑑0 = 0, we schedule additional maintenance tasks for the time window
[𝑑0 + 𝑘, 𝑑0 + 𝑘 + 𝑙) = [7, 70). We fix all additional tasks scheduled up to
day 𝑑 +𝜏+𝑘 = 14, and advance in time to a new current day 𝑑 +𝜏 = 7.
0 0
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Fig. 4. Example — Maintaining 2 aircraft in one time window of the rolling horizon
approach, with RUL prognostics.

Fig. 5. Example — RUL-based alarm for a component 𝑣.

For this new current day, we now consider the scheduling time window
[14, 77).

A rescheduling of an additional maintenance task occurs when this
task has been assigned at day 𝑑0 to a slot 𝑠 in time window 𝐷𝑑0 , and
the same task is re-assigned at day 𝑑0 + 𝜏 to another slot 𝑠′ ≠ 𝑠 in
a subsequent time window 𝐷𝑑0+𝜏 . Rescheduling additional tasks may
occur due to updated RUL prognostics or due to exceeding the limit
ℎ of additional tasks per day. Rescheduling an additional maintenance
task costs 𝑐𝑟 < 𝑐𝑝.

Fig. 4 shows an example of maintenance for two aircraft in one
time window of the rolling horizon approach, when considering RUL
prognostics. We consider the maintenance planning for aircraft 1, com-
ponent 1 (1 − 1), and aircraft 2, component 1 (2 − 1). Our time window
consists of 20 days. For aircraft 1, there are two maintenance slots in
which we can plan an additional maintenance task for component 1: at
day 2, and at day 13. Aircraft 2 has only one maintenance slot, at day
13. Component 1 of aircraft 1 is expected to fail at day 14. However,
the actual failure time of this component is day 19. The RUL is thus
underestimated. Component 1 of aircraft 2 is expected to fail at day
17, while it actually fails at day 10. The RUL is thus overestimated.

3.2. Maintenance scheduling for a fleet of aircraft using RUL-based alarms

We propose to schedule maintenance for a fleet of aircraft using
RUL-based alarms. A schematic overview of this framework is given in
Fig. 5. Every day, the RUL prognostic for a component 𝑣 is updated.
In case the predicted RUL falls below an alarm threshold 𝑇 for 𝑛
consecutive days (i.e., 𝑛 days in a row), an alarm is triggered. We refer
to this component as an alarmed component. At the next maintenance
scheduling moment in the rolling horizon approach, an additional
maintenance task is scheduled for this component.

We require the RUL prognostic to fall below the alarm threshold 𝑇
for 𝑛 consecutive days due to the non-monotonic trend of the prognos-
tics. As a result, the times at which the RUL prognostic falls below an
alarm threshold can be far apart (false positives). Acting on these false
positives would lead to unnecessary maintenance and costs. We define
𝑛 to identify a consistent behavior of degradation in a short period of
time instead.

Consider current day 𝑑0 when a RUL prognostic RUL𝑣,𝑑0 for an
alarmed component 𝑣 is available. Ideally, we would schedule mainte-
nance at day 𝑑0+RUL𝑣,𝑑0 to minimize the wasted life of the component,
while avoiding a failure. However, since we consider imperfect RUL
5

prognostics, we assume a safety factor 𝛽, 0 ≤ 𝛽 ≤ 1, such that we aim
to schedule maintenance before a target day instead:

𝑑target
𝑣,𝑑0

= 𝑑0 + 𝛽 ⋅ RUL𝑣,𝑑0 .

Scheduling maintenance for alarmed components: one time window
Given an alarm threshold 𝑇 , an 𝑛 number of times the RUL prog-

nostic falls below 𝑇 before an alarm is triggered, and a safety factor 𝛽,
we propose the following maintenance scheduling model for a fleet of
aircraft. The objective is to minimize the total maintenance costs. This
model is applied for each time window of the rolling horizon approach.

Let 𝑉 alarm denote the set of alarmed components in the fleet of
aircraft at current day 𝑑0, i.e., the set of components for which we
should schedule maintenance. Let 𝑆𝑎,𝐷𝑑0

⊆ 𝑆𝑎 denote the set of all
available maintenance slots for aircraft 𝑎 ∈ 𝐴 such that the slot is within
the scheduling time window 𝐷𝑑0 , i.e., 𝑑𝑠 ∈ 𝐷𝑑0 , ∀𝑠 ∈ 𝑆𝑎,𝐷𝑑0

.
Due to the limited capacity ℎ and the limited number of mainte-

nance slots, it may be that not all alarmed components 𝑣 ∈ 𝑉 alarm

can be maintained in the scheduling time window 𝐷𝑑0 . In this case,
we assume that a buffer, generic slot is available to maintain the
aircraft [18]. Let 𝑠gen be a generic slot at day 𝑑𝑠gen = 𝑑0. When using
this generic slot, a very high cost 𝑐𝑔 ≫ 𝑐𝑓 is incurred. This slot does
not have capacity constraints. All aircraft may be maintained in this
generic slot. The set of slots 𝑆𝑎,𝐷𝑑0

available for each aircraft 𝑎 ∈ 𝐴
thus includes this generic slot.

We consider the following integer linear program to schedule ad-
ditional maintenance tasks at day 𝑑0 in the scheduling time window
𝐷𝑑0 :

Decision variable. The decision variable is defined as follows:

𝑥𝑎𝑣𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, component v ∈ 𝑉𝑎 ∩ 𝑉 alarm of
aircraft 𝑎 ∈ 𝐴 is maintained in
slot𝑠 ∈ 𝑆𝑎,𝐷𝑑0

,

0, otherwise,

(7)

Objective function. Let 𝑐𝑎𝑣𝑠 denote the costs of scheduling an additional
maintenance task for component 𝑣 ∈ 𝑉𝑎∩𝑉 alarm of aircraft 𝑎 ∈ 𝐴 during
slot 𝑠 ∈ 𝑆𝑎,𝐷𝑑0

. We define 𝑐𝑎𝑣𝑠 as:

𝑐𝑎𝑣𝑠 = 𝑝late(𝑑𝑠 − 𝑑target
𝑣,𝑑0

)+ + 𝑝early(𝑑target
𝑣,𝑑0

− 𝑑𝑠)+

+ 𝑝res𝐼 res
𝑣 + 𝑝gen𝐼gen

𝑠 ,

where 𝑝late is a penalty for each day an additional maintenance task
is scheduled after the target day 𝑑target

𝑣,𝑑0
, 𝑝early is a penalty for each

day an additional maintenance task is scheduled before the target day
𝑑target
𝑣,𝑑0

(wasting component life), 𝑝res is a penalty for rescheduling an
additional maintenance task for a component 𝑣 to a new slot and
𝑝gen ≫ 𝑝late, 𝑝early, 𝑝res is the penalty for using the generic slot 𝑠gen. Last,
𝐼 res
𝑣 and 𝐼gen

𝑠 are indicator functions:

𝐼 res
𝑣 =

⎧

⎪

⎨

⎪

⎩

1, additional maintenance task for
component 𝑣 is rescheduled,

0, otherwise,

𝐼gen
𝑠 =

{

1, slot 𝑠 ∈ 𝑆𝑎,𝐷𝑑0 is the generic slot 𝑠gen

0, otherwise.

The objective is to minimize the total cost of scheduling additional
maintenance tasks:

min.
∑

𝑎∈𝐴

∑

𝑣∈𝑉𝑎∩𝑉 alarm

∑

𝑠∈𝑆𝑎,𝐷𝑑0

𝑐𝑎𝑣𝑠𝑥𝑎𝑣𝑠. (8)

Constraints. We consider the following constraints:
∑

𝑠∈𝑆
𝑥𝑎𝑣𝑠 = 1, ∀𝑎 ∈ 𝐴, ∀𝑣 ∈ 𝑉𝑎 ∩ 𝑉 alarm (9)
𝑎,𝐷𝑑0
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∑

𝑎∈𝐴

∑

𝑣∈𝑉𝑎∩𝑉 alarm

∑

𝑠∈𝑆𝑎,𝐷𝑑0
⧵{𝑠gen}∶𝑑𝑠=𝑑

𝑥𝑎𝑣𝑠 ≤ ℎ, ∀𝑑 ∈ 𝐷𝑑0 (10)

Constraint (9) ensures that an additional maintenance task is sched-
uled for each alarmed component 𝑣 ∈ 𝑉 alarm. Constraint (10) ensures
that at most ℎ additional tasks are scheduled every day, aside from the
generic slot.

This model assumes known values for 𝑇 , 𝑛 and 𝛽. We next determine
these values.

3.3. Defining an alarm policy (𝑇 , 𝑛, 𝛽) using a genetic algorithm

We now optimize the alarm threshold 𝑇 , the number of times 𝑛 that
the RUL prognostic falls below 𝑇 before an alarm is triggered, and the
safety factor 𝛽 of our maintenance planning framework using a genetic
algorithm (GA) [33]. The aim is to minimize the long-term maintenance
costs.

Agent chromosomes and initialization. Let 𝛩𝑖 be the population of |𝛩𝑖| =
𝑁 agents in iteration 𝑖 of the GA. Let 𝜃𝑝 be the chromosome with the
parameters of agent 𝜃 ∈ 𝛩𝑖:

𝜃𝑝 = (𝑇 𝜃 , 𝑛𝜃 , 𝛽𝜃), (11)

with 𝑇 𝜃 the alarm threshold, 𝑛𝜃 the number of times the RUL prognostic
falls below 𝑇 before an alarm is triggered, and 𝛽𝜃 the safety factor.
These parameters define agent 𝜃 ∈ 𝛩𝑖. We initialize 𝑇 𝜃 with a random
integer in [𝑘, 𝑙], 𝑛𝜃 with a random integer in [1, 5] and 𝛽𝜃 with a random
value from [0.01, 0.02,… , 1.00] for all agents in the initial generation 𝛩0.

Selection of the parents. Let 𝜃𝑓 denote the fitness of agent 𝜃 ∈ 𝛩𝑖 of iter-
ation 𝑖. We select 𝑁 parents for the population of the 𝑖+1th generation
with tournament selection: For each parent, we first randomly select 𝑟
individual agents from 𝛩𝑖. Then, the agent with the highest fitness 𝜃𝑓
of these 𝑟 agents is selected as a parent.

Reproduction: crossover and mutation. Each pair of 2 parents selected
from 𝛩𝑖 generates 2 new child agents, that become part of the pop-
ulation 𝛩𝑖+1 of generation 𝑖 + 1. We use one-point crossover [33]
to generate the two new child agents. We mutate each element of
the new child agent chromosome with probability 𝑝̃ using random
resetting [33].

Termination. The GA is terminated after 𝑀 generations. The agent with
the highest fitness across all generations is selected as the final agent.

Monte Carlo simulation to evaluate the fitness of a GA agent
We evaluate the fitness 𝜃𝑓 of an agent 𝜃 with parameters 𝜃𝑝 =

(𝑇 𝜃 , 𝑛𝜃 , 𝛽𝜃) by calculating the expected maintenance costs over a period
of 10 years using Monte Carlo simulation.

We perform 100 Monte Carlo simulation runs (iterations). For each
iteration 𝑖 ∈ {1, 2,… , 100}, we generate a maintenance planning over a
period of 10 years using the rolling horizon approach (see Section 3.1).
At the beginning of each scheduling time window 𝐷𝑑0 in the rolling
horizon approach, we update the RUL prognostics. With these RUL
prognostics and the alarm threshold 𝑇 𝜃 and 𝑛𝜃 of the agent 𝜃 under
consideration, we determine the set of alarmed components 𝑉 alarm. We
also determine the target day to maintain each alarmed component
using the safety factor 𝛽𝜃 and the updated RUL prognostics. We then
assign each alarmed component to exactly one maintenance slot in the
scheduling time window 𝐷𝑑0 (see Eqs. (7)–(10)).

After each iteration 𝑖, we calculate the costs 𝜃𝑐,𝑖 of the generated
maintenance planning using 𝑐𝑓 , the costs of an engine failure, 𝑐𝑝, the
costs of an additional maintenance task, 𝑐𝑟, the costs of rescheduling a
maintenance task and 𝑐𝑔 , the costs of using a generic slot. We define
the fitness of agent 𝜃 as:

𝜃𝑓 = 1
1

100
∑100

𝑖=1 𝜃𝑐,𝑖
, (12)

i.e., the higher the expected costs, the lower the fitness of the agent.
6

Fig. 6. RMSE of the RUL predictions over time for the engines in 𝐸, splitted over the
four C-MAPSS subsets.

4. Case study — engine maintenance scheduling for a fleet of
aircraft

We apply our maintenance planning framework in Section 3 to
the engines in the C-MAPSS data set [21]. Since in the test set of C-
MAPSS the sensor measurements terminate at some time before engine
failure, RUL prognostics cannot be generated after every flight until
failure. Therefore, we apply our maintenance framework for 14% of
the training instances of C-MAPSS, which are run-to-failure instances.
A similar approach has been taken in [16]. The 14% instances are ran-
domly selected from the C-MAPSS training subsets, i.e., we randomly
select 14% of the engines from subset FD001, resulting in 14 engines
selected, 14% of the engines from subset FD002, resulting in 37 engines
selected, 14% of the engines from subset FD003, resulting in 14 engines
selected, and 14% of the engines from subset FD004, resulting in 35
engines selected. In total, we select 100 engines for which we apply our
proposed maintenance framework. For these 100 instances, we obtain
RUL prognostics using CNNs, as discussed in Section 2. For this, we do
not use any knowledge about the actual failure times of these engines.
The remaining 86% of the training instances of each subset are used to
train the CNNs.

Let 𝐸 denote the set of the selected 100 turbofan engines. These
engines have an average lifespan of 204 flights, with a minimum
lifespan of 110 flights, and a maximum lifespan of 430 flights.

4.1. Imperfect remaining useful life prognostics for turbofan engines

Using the CNN as discussed in Section 2, we obtain a RUL prognostic
after every flight for each engine in the set 𝐸. Fig. 7 shows the obtained
RUL predictions up to 𝑅early = 125 flights before failure for each engine
in 𝐸. Fig. 6 shows the RMSE for the obtained prognostics up to 125
flights before failure. The accuracy of the RUL prognostics varies over
time and across the 4 subsets of the C-MAPSS dataset.

We evaluate the obtained series of RUL prognostics using the RMSE,
the Cumulative Relative Accuracy (CRA) and the Convergence of the
RMSE metrics [34]. The CRA𝜆 is defined as follows [34]:

CRA𝜆 = 1
𝑛

𝑛
∑

𝑤=1
1 −

|RULactual
𝑤,𝜆 − RULpredicted

𝑤,𝜆 |

RULactual
𝑤,𝜆

,

where 𝑛 is the number of components in the considered data subset,
RULactual

𝑤,𝜆 is the actual RUL of engine 𝑤 at 𝜆 percent of its lifetime
(i.e., 𝜆 = 0.5 gives the actual RUL of engine 𝑤 halfway its lifetime,
and 𝜆 = 0.9 gives the actual RUL of engine 𝑤 at 90% of its lifetime),
and RULpredicted

𝑤,𝜆 is the predicted RUL of engine 𝑤 at 𝜆 percent of its
lifetime.

The convergence of the RMSE metric [34] quantifies how fast the
RMSE metric converges over time to its minimum value, assuming that
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Fig. 7. RUL predictions over time for the engines in 𝐸, splitted over the four C-MAPSS
subsets.

the RUL predictions improve over time. The convergence of the RMSE

is defined as:

Convergence =
√

(𝑥 − 𝑅 )2 + 𝑦2,
7

𝑐 early 𝑐
Table 4
RMSE, Cumulative Relative Accuracy (CRA), and Convergence of the
RMSE, for the RUL prognostics results for the run-to-failure data of the
engines in set 𝐸.

FD FD FD FD
001 002 003 004

RMSE 14.35 17.98 12.05 15.15
CRA0.5 0.79 0.74 0.79 0.80
CRA0.9 0.93 0.97 0.97 0.98
Convergence (flights) 64.64 51.96 52.07 51.00

where (𝑥𝑐 , 𝑦𝑐 ) is the centroid of the area under the RMSE curve in Fig. 6.
Notice that this curve starts only at 𝑅early = 125 flights before failure.
The lower the convergence, the faster the RMSE converges.

Table 4 shows the RMSE, the CRA𝜆, 𝜆 ∈ {0.5, 0.9} and the Con-
vergence of the RMSE, obtained for the engines in the set 𝐸. The
results show that CRA𝜆 improves with increasing 𝜆, i.e., the RUL
prognostics improve as the engines approach the actual time of failure.
The Convergence of the RMSE ranges between 51.00 and 64.64, and the
highest Convergence of the RMSE is obtained for data subset FD001.

4.2. Results — alarm-based maintenance scheduling for aircraft engines

We consider a fleet of |𝐴| = 20 aircraft, each equipped with |𝑉𝑎| = 2
engines. The engines are randomly selected from 𝐸. For each aircraft
𝑎 ∈ 𝐴, we label the two engines as 𝑎− 1 (first engine of aircraft 𝑎) and
𝑎 − 2 (second engine of aircraft 𝑎).

For each aircraft, we consider maintenance slots with a frequency
of 10–20 days, reflecting a realistic maintenance slots frequency [32].
Moreover, an additional maintenance task can be scheduled for only
ℎ = 1 engine per day, and at least 𝑘 = 7 days (one week) are
needed to prepare an additional maintenance task. Also, the available
maintenance slots are known up to 𝑘 + 𝑙 = 70 days (10 weeks) in
advance, and the maintenance schedule is updated every 𝜏 = 7 days
(one week). We assume that each aircraft performs one flight per day.

We assume a cost 𝑐𝑟 = 5000 for rescheduling an additional main-
tenance task, 𝑐𝑝 = 10,000 for performing an additional maintenance
task, 𝑐𝑓 = 50,000 for an engine failure and 𝑐𝑔 = 106 for using a
generic slot. For the objective function of the integer linear program in
Section 3.2, we consider the maintenance penalties 𝑝early = 1 for every
day maintenance is scheduled earlier than the target day, 𝑝res = 100 for
rescheduling an additional maintenance task, 𝑝late = 1000 for every day
maintenance is scheduled after the target day and 𝑝gen = 106 for using
a generic slot.

With these penalties, we thus consider the target day of a main-
tenance task as a strict deadline; performing maintenance far before
the target day is preferred over performing maintenance just after the
target day.

To determine the alarm policy (𝑇 , 𝑛, 𝛽) using the GA in Section 3.3,
we consider 𝑁 = 30 agents per population, 𝑀 = 20 generations, 𝑟 = 5
participants in each tournament and a mutation probability 𝑝̃ = 1∕3. As
result, we obtain the alarm threshold 𝑇 = 49 days, 𝑛 = 1 and the safety
factor 𝛽 = 0.44.

Fig. 8 shows the maintenance schedule with this alarm policy for
two sequential time windows of the rolling horizon approach, at day
𝑑0 = 259 and day 𝑑0 = 266. Here, from the total of 40 engines, we
only show the alarmed engines. At day 𝑑0, the beginning of scheduling
window 𝐷𝑑0 , we update the RUL prognostics of the engines. With these
updated RUL prognostics, the alarm threshold 𝑇 = 49 days, 𝑛 = 1
and the safety factor 𝛽 = 0.44, we then determine the alarmed engines
and the corresponding target days. These target days and the available
maintenance slots are the input of the integer linear program in . An
alarmed engine is assigned to exactly one maintenance slot by this
integer linear program.

For example, aircraft 17, engine 2 (17-2) has four maintenance slots
in Fig. 8: at days 268, 285, 304 and 322. The predicted failure time of
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Fig. 8. Maintenance schedule in 2 sequential time windows of the rolling horizon approach, at day 𝑑0 = 259 and day 𝑑0 = 266.
engine 17-2 is at day 290, while the actual failure time is at day 292. A
maintenance task for engine 17-2 is scheduled at day 268, well before
the target day at day 273.

At day 𝑑0 = 259, aircraft 10, 11, 14, 16 and 17 each have one
alarmed engine. For each alarmed engine, an additional maintenance
task is scheduled in the first maintenance slot available. For the alarmed
engines of aircraft 11, 16 and 17, this maintenance slot is before the
target day, while for the alarmed engines of aircraft 10 and 14, this
maintenance slot is after the target day.

At day 𝑑0 = 266, the additional maintenance tasks for aircraft
14 and 17 are fixed from the previous time window. However, the
additional maintenance tasks for aircraft 10, 11 and 16 may still be
rescheduled. Moreover, aircraft 1, 2 and 18 also have an alarmed
engine now. For aircraft 10 and 16, the additional maintenance task
remains planned at day 278 and day 274 respectively, as in the previous
time window. However, the additional maintenance task for aircraft 11
is rescheduled from day 279 to day 291. This reschedule is because
only ℎ = 1 additional maintenance task can be planned per day,
and at day 279 an additional maintenance task is now scheduled for
engine 1-1. Moreover, the maintenance task of engine 13-2 is only
planned at day 298, 22 days after its target day and also after its
failure time. This is because the only maintenance slot available for this
aircraft before day 298 is at day 278, when maintenance for engine
10-2 is already scheduled. At the next maintenance opportunity for
engine 10-2, maintenance for engine 18-1 is already scheduled. If we
maintain engine 13-2 at day 278, we would thus have to reschedule
the maintenance for engine 10-2 to day 304.

Table 5 shows the alarmed engines at day 𝑑0 = 259 and day 𝑑0 =
266. At the moment of the alarm, the predicted RUL is between 39
and 48 days, while the actual RUL is between 30 to 70 days. The RUL
prediction error at the moment of the alarm has an error between −22
days (underestimation of the failure time) to 14 days (overestimation
of the failure time). The error in the RUL prognostics underlines the
need for a safety factor 𝛽, with which a target day is determined.

The computational time to solve the maintenance schedule for the
first and second time window using the integer linear program in
Section 3.2 is 0.012 s and 0.022 s respectively, on a computer with
an Intel Core i7 processor at 2.11 GHz and 8Gb RAM. The integer
linear program is solved using the optimizer Gurobi version 9.0.2 with
standard settings, implemented in Python.
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Table 5
The day of the alarm, and the predicted and actual RUL at the moment
of the alarm, for all engines that are alarmed at day 𝑑0 = 259 and day
𝑑0 = 266.
Engine Day of Predicted RUL Actual RUL
(𝑎 − 1, 𝑎 − 2) alarm at alarm at alarm

(days) (days)

1-1 265 46 64
2-1 261 44 58
10-2 259 41 53
11-1 257 48 70
13-2 263 39 28
14-2 243 47 42
16-1 259 44 30
17-2 254 42 38
18-1 262 48 52

Table 6
Failures occurring in 10 years of operations for a fleet of 20 aircraft using the
maintenance framework. The day of the alarm is calculated since the beginning of
the simulation, i.e., since day 0.

Engine Day of Predicted Actual Actual Target
(𝑎 − 1, 𝑎 − 2) alarm RUL at alarm RUL at alarm failure day day 𝑑target

(days) (days) at alarm

13-1 103 45 21 124 122
11-2 229 48 25 254 250
12-1 227 48 28 255 248
13-2 263 40 28 291 280
6-2 358 45 35 393 377
4-1 1188 37 29 1217 1204
10-1 1859 48 25 1884 1880
1-2 2175 48 28 2203 2196
16-1 2531 44 23 2554 2550
20-1 2683 44 33 2716 2702
17-2 3143 48 28 3171 3164
1-1 3193 46 42 3235 3213

4.2.1. Engine failures under the proposed alarm-based maintenance frame-
work

In this section, we analyze the engine failures that occur during a
period of 10 years when applying our maintenance framework for a
fleet of |𝐴| = 20 aircraft with |𝑉𝑎| = 2 engines.

A total of 12 engine failures occur in the considered time period of
10 years. These failures are described in Table 6. At the day of the
alarm, the RUL is overestimated by 4–24 days. Using our proposed
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Table 7
Long-term expected performance when considering imperfect and perfect RUL prog-
nostics. The results are obtained with 95% confidence intervals that have a maximum
width of 0.6 engine failures, 1.4 rescheduled maintenance tasks and 1.2 additional
maintenance tasks, respectively.

Imperfect Perfect
RUL prognostics RUL prognostics

Engine failures 13.61 0.10
Rescheduled maintenance tasks 67.26 2.15
Additional maintenance tasks 819.7 739.0

safety factor 𝛽 = 0.44, the target day is 2–22 days before the actual
failure time at the day of the alarm. Should additional maintenance
tasks for these 12 engines have been scheduled before or at the initial
target day, then these engines would thus not have failed.

However, the maintenance tasks are scheduled after the initial
target day. For 6 out of the 12 engine failures, this is because no
maintenance slot is available before the target day, i.e., there is a lack of
maintenance slots. For the other failures, a maintenance slot is available
before the target day. However, an additional maintenance task for
another engine is already scheduled during the day of this maintenance
slot, whereas at most ℎ = 1 additional tasks can be scheduled per
day. Increasing the number of maintenance slots or the maintenance
capacity would thus help to decrease the number of engine failures and
increase the reliability of the aircraft.

4.3. Maintenance with perfect RUL prognostics vs. imperfect RUL prognos-
tics

We evaluate the performance of our proposed maintenance frame-
work for a fleet of |𝐴| = 20 aircraft, each equipped with |𝑉𝑎| = 2
engines, over a period of 10 years using Monte Carlo simulation. We
compare the performance of our framework when considering perfect
and imperfect RUL prognostics.

Predictive maintenance planning with perfect RUL prognostics

We apply our maintenance framework in Section 3.2 together with
perfect RUL prognostics, i.e., the RUL predictions equal the actual RUL
of the engines. As we have perfect RUL prognostics, we set the safety
factor 𝛽 = 1. Moreover, we do not postpone planning maintenance to
obtain more accurate RUL prognostics or avoid reschedulements due to
updated RUL prognostics. Instead, we define that an engine becomes
alarmed as soon as its RUL prediction is below an alarm threshold
𝑇 = 𝑘 + 𝑙 = 70 days, for 𝑛 = 1 day in a row. Here, 𝑘 + 𝑙 is the period of
time up to which maintenance slots are known.

Using perfect RUL prognostics, more than 99.9% of the maintenance
tasks are scheduled before the target day (see Fig. 9(b)). This is possible
since an engine becomes alarmed 𝑘 + 𝑙 = 70 days before its target
day. There are thus multiple possible maintenance slots in which the
additional maintenance task can be scheduled. The expected number of
engine failures is therefore nearly zero (see Table 7). In contrast, 11% of
the additional maintenance tasks are planned after the target day when
considering imperfect RUL prognostics (see Fig. 9(a)). This is because
an engine becomes alarmed when the predicted RUL equals 𝑇 = 49 days
or less. Once a component becomes alarmed, only 𝛽 ⋅ predicted RUL ≤
0.44 ⋅ 49 = 21 days or less are thus available before the target day.
There is, therefore, a smaller time window to schedule an additional
maintenance task. This leads, in combination with the imperfect RUL
prognostics, to a larger expected number of engine failures and thus
to less reliable aircraft (see Table 7). We note that the generic slot is
never used in our case study, showing that the slots were sufficient to
perform the required maintenance tasks.

When using imperfect RUL prognostics, the expected number of
rescheduled maintenance tasks equals 67.26, while it equals only 2.15
9

Fig. 9. Expected number of days an additional maintenance task is scheduled before
(negative number) or after (positive number) the final target day, using perfect and
imperfect RUL prognostics.

when considering perfect RUL prognostics (see Table 7). For imperfect
RUL prognostics, the number of rescheduled maintenance tasks is
higher since, (i) the target day changes over time due to updated RUL
prognostics and (ii) the engines become alarmed 𝛽 ⋅ predicted RUL ≤
0.44 ⋅ 49 = 21 days or less before their target day, resulting in a
smaller time window to find an optimal maintenance moment for
each engine. When considering imperfect RUL prognostics, more engine
life is wasted as well due to the safety factor 𝛽 (see Fig. 10). As a
consequence, more additional maintenance tasks are performed than
when considering perfect RUL prognostics (see Table 7).

The total expected costs when performing maintenance using im-
perfect RUL prognostics is 24.3% higher than when using perfect RUL
prognostics (see Fig. 11). In both cases, most of the costs are driven
by the costs of performing additional maintenance tasks: 89.7% of
the costs come from performing additional maintenance tasks when
using imperfect RUL prognostics, while 99.8% of the costs come from
performing additional maintenance tasks when using perfect RUL prog-
nostics. When considering imperfect RUL prognostics, 7.4% from the
costs are due to engine failures. Also, only 3.7% of the costs are a result
of rescheduling maintenance tasks.

4.4. Sensitivity analysis — hyperparameters of the genetic algorithm

We perform a sensitivity analysis to evaluate the influence of the
hyperparameters on the GA in Section 3.3. We consider the number
of agents 𝑁 ∈ {10, 30, 50}, the mutation probability 𝑝̃ ∈ {0.1, 1∕3, 0.5},
the number of participants in the tournament selection 𝑟 ∈ {5, 10} and
𝑀 = 50 generations. Table 8 shows the fitness 𝜃𝑓 , the mean costs of the
generated maintenance planning (see Eq. (12)), and iteration 𝑖 of the
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Fig. 10. Expected engine wasted life, using perfect and imperfect prognostics.

Fig. 11. Expected costs over a period of 10 years, using imperfect and perfect RUL
prognostics.

GA when the best agent is found first. The fitness 𝜃𝑓 of the final agents
𝜃 ranges from 1.100⋅10−7 to 1.106⋅10−7, with a corresponding mean cost
per iteration of the Monte Carlo simulation run between 9.043 to 9.092
million, i.e., a difference of 0.5%. The performance of the GA is thus
robust: a similar solution is found with all considered combinations of
the hyperparameters.

The final agent with the maximum fitness of 1.106 ⋅ 10−7, and
the corresponding costs of 9.043 million, is consistently found with a
mutation probability of 𝑝̃ = 1

3 and 𝑁 = 30 or 𝑁 = 50 agents. With
𝑝̃ = 1

3 , 𝑁 = 30 and 𝑟 ∈ {5, 10}, the best fitness is obtained in just 9 and
8 iterations of the GA, respectively.
10
Table 8
Sensitivity analysis — hyperparameters of the GA. The best agent is first
found in iteration 𝑖.
𝑝̃ 𝑁 𝑟 Iteration 𝑖 𝜃𝑓 ⋅ 107 Mean cost

(millions)

0.1

10 5 12 1.103 9.068

30 5 24 1.105 9.047
10 15 1.103 9.067

50 5 5 1.106 9.043
10 48 1.105 9.047

1
3

10 5 43 1.100 9.092

30 5 9 1.106 9.043
10 8 1.106 9.043

50 5 33 1.106 9.043
10 6 1.106 9.043

0.5

10 5 22 1.101 9.085

30 5 6 1.106 9.043
10 43 1.104 9.058

50 5 30 1.103 9.067
10 18 1.105 9.047

5. Conclusions

We have proposed a dynamic maintenance framework for a fleet
of aircraft where component RUL prognostics are updated periodically.
Maintenance task scheduling is initiated as soon as an alarm is trig-
gered. These alarms are based on the evolution of the RUL prognostics
over time. Tasks are scheduled using a rolling horizon approach with
time windows. In each time window, an integer linear program spec-
ifies the slots in which maintenance is scheduled. The ideal time to
schedule a task is determined based on the RUL prognostics and a
safety factor, to account for potential errors in the RUL prognostics.
The parameters of the maintenance framework are obtained using a
genetic algorithm.

We illustrate our maintenance framework for a fleet of 20 aircraft,
each equipped with 2 turbofan engines. RUL prognostics of the turbofan
engines are obtained using a CNN. These prognostics are updated every
day. The results show that, using our maintenance framework, alarms
are triggered early enough to enable the scheduling of additional tasks
such that failures are prevented. The total cost savings with failure
prevention outweigh the costs with potential task rescheduling due to
an early alarm. The results also show that engine failures still occur due
to the limited availability of maintenance slots or due to the limited
number of maintenance tasks that can be performed per day. The long-
term results show that the costs due to engine failures account for
only 7.4% of the total maintenance costs. When comparing with the
ideal case of perfect RUL prognostics, the maintenance costs are 24.4%
higher.

The proposed maintenance planning framework is readily appli-
cable to other aircraft components and systems as well. Of course,
the costs considered should be adjusted accordingly. For example, the
costs of a component failure 𝑐𝑓 and the corresponding penalty 𝑝late for
planning a maintenance task after the target day may be lowered if a
component is non-safety critical, or if many redundant components are
present in a system.

In general, we can apply the proposed maintenance planning frame-
work to generic, condition-monitored assets from other industries as
well, e.g., fleet of trains, fleet of (electric) busses and fleet of ships. Ad-
ditional industry-specific constraints may be considered for the main-
tenance of these assets.
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