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On the physical interpretation of the R-ratio effect and the LEFM parameters
used for fatigue crack growth in adhesive bonds

J.A. Pascoea,∗, R.C. Alderliestena, R. Benedictusa

aStructural Integrity & Composites group, Faculty of Aerospace Engineering, Delft University of Technology. P.O. Box 5058,
2600 GB Delft, The Netherlands

Abstract

The available models for the prediction of fatigue crack growth in adhesive bonds rely on the similitude
principle. In most cases, one of three similitude parameters based on the strain energy release rate (SERR)
is used; i.e. Gmax, (∆

√
G)2, or ∆G. In all cases it is usually observed that keeping the similitude parameter

constant, and changing the R-ratio, results in a different crack growth rate. In this paper it is shown that
this apparent ‘R-ratio’ effect is caused because the selected similitude parameter does not define a unique
load cycle; a single value of the similitude parameter could correspond to infinitely many load cycles. The
strain energy dissipation approach is used to show that the resistance to fatigue crack growth is related to the
maximum applied load. The amount of energy available for crack growth is shown to be related to the applied
cyclic work. With these relationships the R-ratio effects reported in literature can be qualitatively explained,
purely in terms of the actual applied load cycle. Although it is possible that the material behaviour also
depends on the R-ratio, the magnitude of these effects can only properly be determined if the applied load
cycle is correctly described first.
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1. Introduction10

Since the pioneering work of Roderick et al. [1, 2] and Mostovoy and Ripling [3], linear elastic fracture
mechanics (LEFM) has remained the main framework for thinking about fatigue crack growth (FCG) in
adhesive bonds. Although the use of LEFM has led to good prediction models for FCG, an understanding
of the underlying physics remains lacking. As a result, calibration of FCG prediction models requires large
and expensive test campaigns. Furthermore, the limits of the models’ validity are unclear.15
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Nomenclature

A Curve fit parameter (N/mm)

a Crack length (mm)

C Curve fit parameter

d Displacement (mm)

E Young’s modulus (MPa)

G Strain energy release rate (mJ/mm2,
N/mm)

∆G Strain energy release rate range
(mJ/mm2, N/mm)

G∗ Energy dissipation per unit crack growth
(mJ/mm2)

K Stress intensity factor (MPa
√

mm)

k Number of divisions

∆K Stress intensity factor range (MPa
√

mm)

N Cycle number

n Curve fit parameter

P Force (N)

R Load ratio

t Time (s)

U Strain energy (mJ)

w Width (mm)

w Weight factor

η Coefficient (mm2)

γ Mean stress sensitivity parameter

ν Poisson’s ratio

σs Interlaminar tensile strength

Subscripts

0 At zero force

c Critical

cc Closure

cyc Cyclic

d With respect to displacement

eff Effective

I Mode I

II Mode II

min Minimum

max Maximum

mon Monotonic

pl Plastic

p With respect to force

R With respect to R-ratio

th Threshold

tot Total

The reason for the lack of physical understanding is that the models for FCG prediction rely on the
similitude principle. While this is a very powerful principle for producing predictions, it does not neces-
sarily produce physical insight. For true insight it is not enough to identify that something is a similitude
parameter, it is also necessary to be able to explain why it is a similitude parameter. This paper will discuss
how misunderstanding the limitations of the similitude principle has led to misinterpretation of the R-ratio20

effect.
For the characterisation and prediction of FCG usually a parameter based on the strain energy release

rate (SERR) is selected as a similitude parameter, e.g: Gmax, ∆
√
G, or ∆G (as defined below). This paper

will discuss the physical interpretation of these parameters. Furthermore a new method of characterising
FCG will be introduced by measuring the change of strain energy in the system. It will be shown how this25

new view provides clues to the physical relevance of the LEFM similitude parameters.

2. The similitude principle and its limitations

Above it was mentioned that the LEFM methods for prediction of FCG rely on the similitude principle.
It therefore seems appropriate to start with a brief summary of what the similitude principle is, and what
its limitations are.30
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Fundamentally, the similitude principle is a tool for making valid comparisons. When using the similitude
principle, a certain parameter is selected, e.g. stress. The assumption is then that if the similitude parameter
has the same value in two different cases, the material behaviour will be the same. For example, say a material
undergoes tensile failure at a certain value of stress during a tensile test on a laboratory specimen. Then
if in a full-scale structure the same value of the stress is reached somewhere in the structure, tensile failure35

will also occur there. Even if the external loads on the structure, and the geometry of the structure itself,
are completely different than during the laboratory test.

The important point here, is that the similitude principle is based on consistency, rather than on physical
understanding. As long as the same value of the chosen similitude parameter always results in the same
behaviour, it is a good similitude parameter. Whether the parameter actually has physical relevance is40

a secondary matter. Thus finding a good similitude parameter should not be confused with gaining an
understanding of the underlying physics. Returning to the example of tensile stress, that a material always
fails at a certain stress value makes stress a good similitude parameter. However it does not offer any
explanation as to why the material fails at that value of stress.

Due to a lack of a direct connection to the underlying physics, there may be limitations to the use45

of a similitude parameter that are not directly apparent. For example, the ultimate tensile stress will not
correctly predict failure for an object that contains cracks. This is true, even if one corrects for the reduction
in cross-sectional area and concentration of stress due to the presence of the cracks [4]. These limitations
are not necessarily a problem, as long as one is aware of them. However in order to understand when and
why a certain similitude parameter is no longer applicable, an understanding of the physics is necessary.50

Over the past 50 years, the similitude principle has been successfully employed to predict FCG rates.
However it is now time to move beyond those predictions into understanding why the selected similitude
parameters are appropriate, and to understand when and why they stop working.

3. Application of the similitude principle to fatigue crack growth

At their heart, most of the current approaches to fatigue crack growth prediction in adhesive bonds (and
fibre reinforced composites) are based on a correlation between a SERR parameter and the crack growth
rate [5], i.e:

da

dN
= Cf (G)

n (1)

where C and n are parameters determined by curve fitting, and f (G) is some function of the SERR. Usually55

one of the following is selected:

f (G) = Gmax (2)
f (G) = ∆

√
G =

√
Gmax −

√
Gmin (3)

f (G) = ∆G = Gmax −Gmin (4)

where Gmax is the SERR at maximum load and Gmin is the SERR at minimum load.
Equation 1 was selected based on the famous relationship found by Paris et al. [6–8] for crack growth in

metals:
da

dN
= C∆Kn (5)

where ∆K = Kmax −Kmin is the range of the stress intensity factor (SIF).
Paris et al. did not have a direct physical justification for selecting ∆K as a similitude parameter. ∆K

was selected because Paris et al. assumed that the material behaviour at the crack tip was governed by60

the crack-tip stress field, which can be characterised by K. While it indeed seems logical that the crack-tip
stress field governs the crack growth behaviour, it is a bit of a jump to go from this premise straight to
selecting ∆K as the similitude parameter. Why should it be the range of K, and only the range of K, that
is used as a similitude parameter? After all, ∆K by itself does not provide a unique description of a load
cycle. In fact there are an infinite number of different load cycles that all have the same ∆K, but will result65
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in different crack growth rates. Furthermore, how does using a time-independent parameter such as ∆K
explain why there is only a finite amount of crack growth within a single cycle?

These questions have gone largely unanswered (and perhaps even unasked) due to the simple fact that
∆K does work as a similitude parameter. That the same ∆K will give the same crack growth rate (as long
as the material and R-ratio are kept constant), for two different geometries and far-field applied load cycles,70

is not in question. What should be questioned is why this is so.
The lack of a clear physical justification for selecting ∆K is reflected in the uncertainty over which

similitude parameter to use for FCG in adhesive bonds and composites. Originally the form of equation
1 was selected based on the success of equation 5 at predicting FCG in metals. Because K is difficult to
compute for layered materials, K was replaced in equation 5 by a function of the SERR, which is allowed
given the equivalence between the SIF and the SERR established by Irwin [9]:

G =
K2

E′
(6)

where E′ is equal to the Young’s modulus (E) in the case of plane stress, and in case of plane strain is equal
to:

E′ =
E

1− ν2
(7)

with ν the material’s Poisson’s ratio.
As Rans et al. have pointed out [10], if one wishes to maintain the same similitude basis as Paris et al.,

(i.e. ∆K) then ∆
√
G should be selected as similitude parameter. Nevertheless, the most used similitude

parameters for crack growth in adhesives and composites are Gmax and ∆G. Although these parameters75

apparently are suitable similitude parameters, it is important to realise that they no longer rely on the same
basis for similitude as equation 5. Whereas ∆K, and thus ∆

√
G, takes the crack-tip stress amplitude as the

basis of similitude, Gmax relates to the maximum crack-tip stress, and ∆G relates to the externally applied
cyclic work.

Regardless of which similitude parameter is selected, in many cases an R-ratio effect is seen. That is80

to say, if the ratio between the minimum and maximum applied loading changes, then the resulting crack
growth rate will also change. This R-ratio effect was already considered in metals by Paris et al. [6, 7] and
in the work of Roderick et al. [2] on fibre reinforced polymers bonded to an aluminium sheet. Since then
an R-ratio effect has been reported by many researchers, e.g. [11–27].

It is a fact of mathematics that a single parameter cannot uniquely define a cycle. Therefore, whether one85

selects Gmax, ∆
√
G, or ∆G as similitude parameter, in every case there are an infinite number of load cycles

that each produce the same value for the chosen parameter. Thus keeping one of these parameters constant,
and then changing the R-ratio means applying a different load cycle to the object. That a different load
cycle results in a different crack growth rate does not seem very surprising. Nevertheless most approaches to
dealing with the R-ratio do not seem to approach the issue with this view. As will be discussed further below,90

many approaches to dealing with the R-ratio effect seem to assume that keeping the similitude parameter
constant means that the driving force for crack growth is constant. The R-ratio effect is then treated as a
change in response of the material to the applied load, rather than a change in the applied load itself.

In metals, the R-ratio effect is usually explained using the crack closure concept introduced by Elber
[25, 28], although some researchers question this concept [29–31]. Even though the mechanical behaviour
of adhesives and fibre reinforced polymer composites is different to that of metals, crack closure has been
reported in adhesives and composites by several researchers [32, 33]. In analogy to the approach used in
metals, Pirondi and Nicoletto accounted for a change in R-ratio by introducing an effective SERR range as
similitude parameter, defined as:

∆Geff = Gmax −Gcc (8)

where Gcc is the SERR value at which crack closure occurs. Using ∆Geff Pirondi and Nicoletto were able to
collapse the crack growth rate curves for crack growth in an aluminium / elastomer methacrylate adhesive95

bonds at two different R-ratios onto one curve. So far however this approach has not been followed by other
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researchers. This method also requires further investigation to verify whether indeed no R-ratio exists when
Gmin > Gcc, which is what the closure concept implies.

An older approach to taking the R-ratio into account can be found in the works of Hojo et al. [12, 14]
and Atodaria et al. [15–17]. Hojo et al. proposed the relationship [12, 14]:

da

dN
= C∆K(1−γ)nKγn

max (9)

where γ is an empirical mean stress sensitivity parameter. Atodaria et al. proposed the similar formulation
[15–17]:

da

dN
= C

[(√
G
)γ
average

(
∆
√
G
)1−γ]n

(10)

where
√
Gaverage is a weighted average, determined as:

√
Gaverage =

1

k

√
Gmax∑
√
Gth

(√
G
)w 1

w

(11)

with k the number of increments into which the range from
√
Gth to

√
Gmax is divided, and w an experimental

weight factor.100

Hojo et al. [12] based the formulation of equation 9 on the observation that for a constant da/dN value,
if ∆K was plotted against (1-R), a good fit through the data points was given by an equation of the form:

∆K = ∆KR=0 (1−R)
γ (12)

where ∆KR=0 is the value of ∆K extrapolated to R = 0. This is clearly a phenomenological approach, that
works to predict the crack growth rate, but does not offer an explanation of the R-ratio effect in terms of
the underlying physics.

Atodaria et al. [15–17] recognised that fatigue crack growth may occur at more points in the cycle than
just at maximum load. Hence the use of the average SERR Gaverage. Furthermore they noticed opposite105

R-ratio effects depending on whether Gaverage or ∆G was kept constant when varying the R-ratio. This
was also seen in the present data, as will be discussed further below. As a result of these opposite R-ratio
effects Atodaria et al. decided on an equation that multiplied

√
Gaverage and

√
∆G. Again, this is a

phenomenological relationship, rather than one based on an underlying physical theory.
Allegri et al [34] propose the model:

da

dN
= C

(
GIImax

GIIc

) n
(1−R)2

(13)

Allegri et al. do not explain why this equation was chosen, but its similarity to the model proposed by
Andersons et al [18] suggests it may be based on a similar line of reasoning. Andersons et al. propose the
equation:

da

dN
= CI

(
KI

KIc

)nI

(14)

where

CI =
nI

2π (nI − 2)

(
KIc

σs

)2

(15)

where σs is the static interlaminar tensile strength. The R-ratio was taken into account by modifying the110

coefficient CI and exponent nI according to:

nR = nI

1−R (16)

CR = nI−2
nI−2(1−R)nI (17)
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These expressions were derived by assuming the validity of the Goodman relationship, describing the fatigue
strength at a given R-ratio as a function of the fatigue strength for R = 0.

Based on fractographic observations Khan [26] proposed a model superimposing a monotonic contribu-
tion, related to Gmax, and a cyclic contribution related to ∆G, which resulted in the equation:

da

dN
= C1G

n1
max + C2∆Gn2 (18)

A final approach to including the R-ratio effect is formulating a Hartman-Schijve [35] / Priddle [36] type
equation, such as done by Andersons et al. [19], and Jones, Kinloch, et al. [37–41]. Jones et al. propose the
equation:

da

dN
= C

∆
√
G−∆

√
Gth√

1−
√
Gmax√
A

n (19)

where C, n, and A are parameters that are determined by curve fitting. ∆
√
Gth is the threshold value of

∆
√
G, defined as the value of ∆

√
G for which da/dN = 10−7 mm/cycle, and determined separately for each115

experiment. Thus, apart from including both ∆
√
G and Gmax in the equation, Jones et al. also account for

the R-ratio by assuming that ∆
√
Gth is a function of R.

Khan [26] attempted to base his model on features of the fracture surface, and Pirondi and Nicoletto
[33] based their model on crack closure measurements. In the other cases the form of the model was chosen
purely based on the form of the da/dN curve, rather than on an underlying conceptual model of the physics120

involved in the problem. All these models are based on at least two parameters that describe the load cycle
(e.g. Gmax and R, or Gmax and ∆

√
G). Nevertheless, none of the authors involved explicitly state that

two parameters are required because it is impossible to uniquely define the applied load cycle with only one
parameter.

This can be most clearly seen in the latest work of Jones et al. [41]. Jones et al. claim that in equation125

19 ∆
√
G represents the crack driving force. The basis for this claim is that the R-ratio effect that is seen

when using ∆
√
G as a similitude parameter, is the same as that which is seen when using ∆K as a similitude

parameter. I.e. keeping ∆
√
G or ∆K constant and increasing R, increases the crack growth rate. Of course

given equation 6, ∆
√
G and ∆K are equivalent parameters (see also [10]). The observation that the R-ratio

effect is the same for both parameters is then somewhat redundant.130

Apart from that, Jones et al.’s interpretation of ∆
√
G as crack driving force rests on the assumption

that ∆K can be considered to be the crack driving force. However, as was pointed out above, the similitude
principle relies solely on consistency. Thus the mere fact that ∆

√
G or ∆K perform well as similitude

parameters for predicting crack growth rate, does not prove that interpreting these parameters as the crack
driving force is valid.135

It is also clear from examining equation 19 that in order for the crack growth rate to be the same in two
different cases, it is not ∆

√
G that must be the same, but the entire term between the square brackets. In

other words, in equation 19, ∆
√
G is not a similitude parameter. Rather the similitude parameter is:

Similitude parameter =
∆
√
G−∆

√
Gth√

1−
√
Gmax√
A

(20)

since any combination of ∆
√
G and Gmax that results in the same value of equation 20, will result in the

same crack growth rate.
In [41] Jones et al. not only identify ∆

√
G as the crack driving force, they also give an overview of the

different R-ratio effects that are seen in literature when using the different possible SERR-based similitude
parameters. They show that when using Gmax or ∆G as the similitude parameter, increasing the R-ratio140

results in a decrease of the crack growth rate. They then label this effect as ’incorrect’, because they claim
that increasing R should result in an increase of the crack growth rate, based on the behaviour seen when
∆K is used as a similitude parameter. More specifically, Jones et al. argue that an increase in the mean
load, should result in an increase of the crack growth rate.
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In fact, whether using Gmax, ∆
√
G, or ∆G as similitude parameters, the R-ratio effect can be explained145

in each case if one simply considers the crack growth rate to be a function of the entire load cycle, which
cannot be uniquely described by only one parameter. This will be further elaborated in the following sections
of the paper.

Griffith already identified the concept of an energy balance in crack growth [4]. Extending these ideas to
fatigue, the amount of crack growth in a cycle must be related to 1) how much energy is required per unit
of crack growth and 2) how much energy is available for crack growth during the entire fatigue cycle. For
fatigue crack growth in metals, this idea was formulated by Bodner [42] as:

da

dN
=

da

dUpl

dUpl
dN

(21)

where dUpl/ dN is the total amount of plastic dissipation in the cycle (which is a measure of the available
energy), and da/dUpl is the amount of crack growth created per unit of plastic energy dissipation. Inverting150

da/dUpl, gives dUpl/ da, the amount of energy dissipation per unit of crack growth. This is the amount of
energy required for crack growth, which provides a measure of the resistance to crack growth.

In adhesive bonds, the amount of plasticity is likely limited when compared to crack growth in metals.
Therefore rather than just using the plastic energy dissipation dUpl/ dN it is more appropriate to use the
total energy dissipation dU/ dN . This will be further discussed in the following sections. Furthermore, a set155

of data from fatigue crack growth experiments conducted by the authors [43, 44] will be used to illustrate
the relationship between the SERR similitude parameters on the one hand, and the required and available
energy on the other.

4. Test set-up and data analysis

The fatigue crack growth experiments were performed on double cantilever beam (DCB) specimens,160

consisting of two aluminium 2024-T3 arms, bonded with Cytec FM94 epoxy adhesive. The nominal specimen
width was 25 mm. The specimens were manufactured by bonding two aluminium plates according to the
cure cycle specified by the adhesive manufacturer (1 hour at 120 ℃and 6 bar (0.6 MPa)). As this is an
industry standard cure cycle it was assumed that following this cure cycle would produce a 100% curing of
the adhesive, but this was not checked. After curing the plates were cut into strips, which were then milled165

to the desired dimensions. One side of the specimens was coated with diluted typewriter correction fluid in
order to enhance visibility of the crack.

4.1. Test procedure
Testing was conducted on an MTS 10 kN fatigue testing machine, under displacement control and at

a frequency of 5 Hz. Force and displacement were measured by the fatigue testing machine and crack170

length was measured using a camera aimed at the side of the specimen. At the last calibration, the error
in the force measurement was found to be 0.64% of the true value at 100 N force, and the error in the
displacement was found to be 0.02% of the true value at 5 mm displacement. The resolution of the images
taken by the camera varied slightly from test to test, depending on the exact distance between camera and
specimen. Nevertheless, for all tests it was on the order of 20 pixels/mm, i.e. 0.05 mm/pixel. The scale175

of the photographs was determined by attaching a piece of graphing paper to the specimens, which was
included in the photograph. The paper was graduated in 1 mm squares.

Prior to each test the specimen was loaded quasi-statically with a displacement rate of 1 mm/min until
a maximum in the force and visual onset of crack growth were observed. Then the load was removed.
From this quasi-static test the critical displacement dc was determined, at which the force was maximum.
The maximum displacement for the fatigue test was set to be equal to or slightly smaller than dc. The
minimum displacement was then set in order to obtain the desired R-ratio. The initial set of experiments
had been aimed at obtaining certain values of ∆G/Gmax and four different Rp ratios were obtained, i.e.
Rp = 0.036; 0.29; 0.61 and Rp = 0.86, where:

Rp =
Pmax

Pmin
(22)
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for subsequent tests Rd was set to one of these four values, where:

Rd =
dmax

dmin
(23)

Table 1: Mean values and standard deviation of the measured Rp and Rd for the tests performed as part of this research. The
grouping used in presentation of the data is also shown.

Rd Rp
Experiment Mean Standard deviation Mean Standard deviation Group

B-001-II 0.10 4.0 · 10−4 0.036 0.0060 R = 0.036
B-002-I 0.88 4.6 · 10−4 0.86 0.0015 R = 0.86
B-002-II 0.74 3.5 · 10−4 0.61 0.015 R = 0.61
C-001-I 0.33 0.0010 0.29 0.0047 R = 0.29
C-002-D 0.67 0.0087 0.61 0.010 R = 0.61

D-002-I 0.29 2.8597 · 10−4 0.29 0.0017 R = 0.29
E-001-I 0.29 0.012 0.24 0.012 R = 0.29
E-001-II 0.29 3.6 · 10−4 0.27 0.0021 R = 0.29
E-002-I 2.3 · 10−4 6.3 · 10−4 -0.022 0.0056 R = 0.036
E-002-II −9.3 · 10−5 4.5 · 10−4 0.014 0.0047 R = 0.036
E-003-I 0.61 7.6 · 10−4 0.60 0.0029 R = 0.61
E-003-II 0.61 3.94 · 10−4 0.62 0.0027 R = 0.61

Since the force-displacement curve did not go exactly through the origin, for the experiments, Rd 6= Rp.
Table 1 shows the measured mean value and standard deviation of Rp and Rd for the experiments in this
paper. For clarity of presentation the data was divided into 4 groups, corresponding to the obtained R-180

ratios. This is also indicated in table 1. Due to the low crack growth rates obtained at R = 0.86 only one
specimen was tested at this R-ratio, after which it was decided to focus on testing at lower R-ratios. More
details on the experimental procedure can be found in [45]. The measured specimen dimensions, as well as
the raw data, are available online: [43, 44].

4.2. Crack length measurement185

Photographs were taken at regular intervals of once every 100 cycles at the start of the test, which was
increased to once every 1000 cycles once the crack growth was determined to have slowed sufficiently. The
photographs were taken while the specimen was held at maximum displacement. As mentioned above, the
resolution of the images was roughly 0.05 mm/pixel.

After the test the photographs were analysed to find the crack length as a function of the number of190

cycles. A power-law curve was fit through these data points and then the derivative was taken in order to
find the crack growth rate da/dN . As a measure of the goodness of fit, table 2 shows the root mean square
error (RMSE) values. An error propagation analysis was performed in order to estimate the error in the
calculated da/dN values, which is also shown in table 2. This was based on the 95% confidence interval for
the fitting parameters of the a vs N fit, assuming a normal distribution.195

4.3. Strain energy release rate calculation
Strain energy release rates were calculated according to the compliance calibration (CC) method de-

scribed in ASTM standard D5528-01 [46], i.e.

G =
nPd

2wa
(24)
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Table 2: Root mean square error (RMSE) for the fit of crack length a as a function of number of cycles N , and the maximum
propagated error in da/dN based on the 95% confidence interval of the fitting parameters.

Experiment Absolute RMSE (mm) RMSE relative to lowest a value Maximum error in da/dN

B-001-II 0.41 0.34% 0.59%
B-002-I 0.77 1.25% 2.81%
B-002-II 0.85 0.95% 1.65%
C-001-I 0.61 0.99% 0.77%
C-002-D 1.1 1.24% 3.29%
D-002-I 0.38 0.40% 20.2%
E-001-I 0.16 0.28% 2.11%
E-001-II 0.87 0.83% 70.7%
E-002-I 0.44 0.67% 24.6%
E-002-II 0.57 0.46% 24.9%
E-003-I 0.50 0.88% 23.3%
E-003-II 0.30 0.37% 21.4%

Figure 1: Test set-up showing the position of the crack growth camera with insert showing the loading block attachment (a),
and definition of load application and crack length a (b).
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Table 3: CC Correction parameters.
Specimen n
B-001-II 3.267
B-002-I 1.863
B-002-II 3.936
C-001-I 3.198
C-002-D 2.741
D-002-I 3.122
E-001-I 2.832
E-001-II 3.769
E-002-I 3.060
E-002-II 3.868
E-003-I 3.160
E-003-II 3.635

where P is the force, d is the displacement, w is the specimen width, a is the crack length, and n is a
correction coefficient. This coefficient is equal to the slope of a line through the log(compliance) versus log
(crack length) data [46]. A correction coefficient was determined for each specimen individually, as shown
in table 3.200

ASTM standard D5528-01 provides three methods for the calculation of the SERR. As the resulting G
values were found to not differ much [43], the CC method was selected due to its ease of use.

Based on the accuracy of the force and displacement measurements, the 95% confidence bound of the
curve fit used to calculate n, and estimating the error in the crack length measurements to be on the order
of 5 pixels, the error in the calculated G values is estimated to be less than 2%.205

4.4. Energy dissipation
Every 100 cycles the minimum and maximum displacement and force was recorded by the fatigue ma-

chine. By assuming linear elastic behaviour the entire force-displacement curve could then be reconstructed.
The assumption of linear elasticity was verified with one specimen by applying 10 load cycles at a displace-
ment rate of 1 mm/min at intervals of 10,000 cycles and recording the full force-displacement curve [47].
With the force-displacement curve, the amount of strain energy in the system, U , can be determined as the
area under this curve, i.e. assuming linear elasticity:

U =
1

2
P (d− d0) (25)

where d0 is the displacement for which the force is zero. Based on the accuracy of the force and displacement
measurements, the error in the calculated U value is estimated to be 0.64%.

As shown in figure 2 the amount of strain energy in the system will decrease as the test progresses and
the crack grows, as the specimen is loaded in displacement control. Thus by fitting a function through210

the data for strain energy vs number of cycles and then taking the derivative, one can obtain dU/ dN , the
change in strain energy per cycle. As a measure of the goodness of these fitting functions, table 4 shows the
resulting RMSE values. Table 4 also shows the estimated maximum error in dU/ dN , based on on an error
propagation analysis of the 95% confidence interval for the fitting parameters of the U vs N fit.

dU/ dN is a measure for the amount of energy dissipated by any mechanism that increases the spec-215

imen’s compliance, e.g. crack growth or plastic deformation. If a dissipative mechanism doesn’t change
the compliance from cycle to cycle (e.g. friction) the dissipated energy will be ‘replenished’ by the fatigue
machine in the next load cycle. Thus it can not be measured by calculating dU/ dN . Therefore dU/ dN
is not necessarily equal to the total energy dissipation, but it does measure the energy dissipation due to
mechanisms that are relevant to fatigue crack growth.220
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Table 4: Root mean square error (RMSE) for the fit of strain energy Utot as a function of number of cycles N , and the maximum
propagated error in dU/ dN based on the 95% confidence interval of the fitting parameters.

Experiment Absolute RMSE (mJ) RMSE relative to lowest Utot value Maximum error in dU/ dN

B-001-II 3.0 0.92% 0.09%
B-002-I 9.0 1.4% 0.88%
B-002-II 2.1 1.2% 0.14%
C-001-I 2.1 0.87 0.11%
C-002-D 2.5 0.71% 0.10%
D-002-I 0.81 0.21% 0.03%
E-001-I 1.0 0.52% 0.15%
E-001-II 1.2 0.36% 0.22%
E-002-I 2.1 0.76% 0.41%
E-002-II 1.1 0.43% 0.12%
E-003-I 1.4 0.54% 0.77%
E-003-II 1.5 0.37% 15.%

dmin dmax

Ucyc

Umono

Utot = Umono+Ucyc

1

U N

dU
N

dN

β

β

α

αβ −

=

=

P
min

d0

P
max

Figure 2: Calculation of the energy dissipation dU/dN , as well as the definitions of the monotonic energy, Umono, the cyclic
energy Ucyc, and the total energy Utot.
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Figure 3: Crack growth rate plotted versus Gmax, as well as a schematic representation of the effect of keeping Gmax constant
and changing the R-ratio.

Figure 2 also shows that the total strain energy in the system Utot can be subdivided into two parts. The
first part is the monotonic energy Umono, which is added to the specimen during the first load cycle. This
is equal to the area under the curve from (d0,0) to (dmin,Pmin). If there was no crack growth this energy
would remain in the specimen for the entire duration of the test. However if there is crack growth, then
some of this energy may be released.225

The second part is the cyclic energy or applied work Ucyc, which is equal to the area under the curve
from (dmin,Pmin) to (dmax,Pmax). This energy is added to the specimen during the loading portion of the
fatigue cycle, or in other words, it is the work performed on the specimen by the fatigue machine. If no
dissipation occurs it would of course all be returned to the fatigue machine during the unloading portion of
the load cycle. However, if crack growth or other dissipative mechanisms do occur some of this energy will230

be dissipated, rather than returned to the fatigue machine. The specimen is loaded in displacement control,
which means that any energy dissipated due to crack growth will not be replaced. Therefore Ucyc decreases
as the test progresses and the crack grows. Since it is Ucyc that is added to the specimen during each fatigue
cycle (and returned again each cycle during the unloading, minus any dissipated energy), it shall be referred
to by the term applied work in this paper.235

5. Results - R-ratio effect

Figures 3 through 6, show the crack growth rates measured in the experiments plotted against the typical
SERR similitude parameters of Gmax, (∆

√
G)2, and ∆G. In order to maintain consistency of the units, the

example of Rans et al. [10] has been followed, and (∆
√
G)2 has been used as a similitude parameter, rather

than ∆
√
G. (∆

√
G)2 is defined as:

(∆
√
G)2 =

(√
Gmax −

√
Gmin

)2
(26)

Apart from the test data, the figures also illustrate schematically the effect of keeping the similitude param-
eter constant, while changing the R-ratio, on the applied G cycle and on the applied work (the area under
the force-displacement line).

Let us first examine the case of using Gmax as a similitude parameter, as shown in figure 3. It is clear240

that if Gmax is kept constant, increasing the R-ratio results in a reduction of the crack growth rate. Jones
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Figure 6: Crack growth rate plotted versus ∆G, as well as a schematic representation of the effect of keeping ∆G constant and
changing the R-ratio.

et al [41] have labelled this effect as ‘incorrect’, because they expect an increased R-ratio to lead to an
increased mean load, and therfore to an increased crack growth rate.

To examine whether the observed R-ratio effect is merely the cause of measurement uncertainty, figure
4 shows again the results displayed in figure 3, but now including error bars indicating the estimated245

95% confidence interval for da/dN . It is clear that even if the measurement uncertainty is taken into
consideration, an R-ratio effect remains.

As illustrated schematically in figure 3, keeping Gmax constant while increasing R corresponds to keeping
Gmax constant and increasing Gmin. This will indeed lead to an increase of the mean load. However, it will
also lead to a reduction of both the load range (i.e. ∆G or ∆

√
G) and the applied work.250

The effect of increasing R while keeping (∆
√
G)2 constant is shown in figure 5. From the experimental

data it is clear that increasing R, with (∆
√
G)2 constant, results in an increase of the crack growth rate.

Now let us examine the effect on the load cycle. Increasing R for constant (∆
√
G)2 results in an increased

mean and maximum load. Furthermore, if (∆
√
G)2 is kept constant and R is increased, the applied work

Ucyc performed on the specimen is also increased. This can be shown with some algebra as follows [45]:
From the definitions of R and G we have:

(∆
√
G)2 = (1−R)

2
Gmax (27)

Then keeping (∆
√
G)2 constant and changing the R-ratio gives:

(∆
√
G)22 = (∆

√
G)21 (28)

(1−R2)
2
Gmax,2 = (1−R1)

2
Gmax,1 (29)

Gmax,2 = (1−R1)
2

(1−R2)
2Gmax,1 (30)

setting R2 = R,R1 = 0, one can then obtain which value of Gmax will produce the desired (∆
√
G)2 value,

for any R-ratio:

Gmax =
1

(1−R)
2Gmax,R=0 (31)

Assuming linear elasticity, the applied work can be written as:

Ucyc = 1
2Pmaxdmax − 1

2Pmindmin (32)
=
(
1−R2

)
Pmaxdmax (33)
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Introducing for convenience the coefficient η, defined as:

η =
2wa

n
(34)

one can rewrite equation 33 to:

Ucyc =
(
1−R2

) Gmax

η
(35)

Thus if (∆
√
G)2 is kept constant, and the R-ratio is increased from 0, Ucyc can be obtained by inserting

equation 31 into equation 35 to give:

Ucyc =

(
1−R2

)
(1−R)

2

1

η
Gmax,R=0 (36)

Since (1−R)
2
<
(
1−R2

)
, this means Ucyc will increase if (∆

√
G)2 is kept constant while R is increased.

The last case is using ∆G as a similitude parameter, as shown in figure 6. For the current experimental
results there is no clear systematic R-ratio effect. In literature usually a reduction of the crack growth rate
is reported [10, 41] if ∆G is kept constant and R is increased. From the definition of the R-ratio it follows
that in order to keep ∆G constant and increase R, the mean load and also the maximum load must increase.
The effect on Ucyc can again be determined using the approach that was introduced above. The definitions
of ∆G and R give [45]:

∆G =
(
1−R2

)
Gmax (37)

therefore, keeping ∆G constant and increasing R from zero implies that Gmax must equal:

Gmax =
1

1−R2
Gmax,R=0 (38)

inserting this into equation 35 gives:

Ucyc =
(
1−R2

)
Gmax

η (39)

=
(1−R2)
(1−R2)

1
ηGmax,R=0 (40)

= 1
ηGmax,R=0 (41)

in other words: if R is increased, but ∆G is kept constant, then Ucyc will remain constant as well.255

This section has presented the experimentally determined effect on the crack growth rate of changing
the R ratio while keeping one of the SERR similitude parameters (Gmax,(∆

√
G)2, or ∆G) constant. It has

also presented the effect of changing the R-ratio on the mean load and the applied work Ucyc based on a
theoretical linear elastic force-displacement curve. Table 5 summarises these results. It is clear that the
effect of the R-ratio depends on what is considered to be the fundamental similitude parameter that is being260

held constant. Furthermore it is clear that there is no direct relationship between a change in either the
mean load or maximum load and the crack growth rate. Increasing the mean load could lead to either an
increase or a decrease of the crack growth rate, depending on which parameter is being kept constant, and
the same goes for the maximum load and Ucyc.

Table 5 therefore indicates that the R-ratio effect should not be thought of as a modification of the265

fundamental relationship between a single SERR parameter and the crack growth rate. Rather, the crack
growth rate is a function of the entire load cycle, which can only be described by using multiple parameters,
e.g. Gmax and ∆G, or (∆

√
G)2 and R. The question then becomes whether it is possible to explain the

qualitative relationships shown in 5 based on such a multiple parameter viewpoint, and whether a physical
interpretation of the SERR parameters can be hypothesised that explains these relationships..270

The next section will use the energy approach to further explore the physical meaning of the SERR simil-
itude parameters. In section 7 it will be shown how this physical interpretation can explain the relationships
shown in table 5.
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Table 5: Effect of changing the R-ratio while keeping one SERR parameter constant. In the present research for constant ∆G
no clear effect of R-ratio on da/dN could be identified, but in literature a decrease of da/dN for an increase of R is usually
reported [41].

Effect of increasing R on:
Constant parameter da/dN mean G max G Ucyc
Gmax decrease increase constant decrease
(∆
√
G)2 increase increase increase increase

∆G decrease increase increase constant
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Figure 7: Crack growth rate versus energy dissipation per cycle. A power-law curve fit through the combined data for all
experiments is also shown. [48].

6. Results - Energy dissipation

As discussed in section 4, both the energy dissipation per cycle dU/ dN and the crack growth rate da/dN275

were determined from the measured data. Figure 7 shows a comparison of energy dissipation and the crack
growth rate in each cycle. From figure 7 it is clear that there is a very strong correlation between the crack
growth rate and the energy dissipation, as would be expected. With the exception of one outlier (experiment
B-002-II; R = 0.61), the data for all the experiments falls within a narrow band, irrespective of R-ratio.
The reason for the offset between the data for experiment B-002-II and the other experiments could not280

be determined. Although the curves for the different experiments collapse to a narrow band, upon closer
inspection a small R-ratio effect can still be seen.

Before discussing the R-ratio effect further, it should be noted that the exponent of a power-law curve
fit through the data shown in figure 7 is not equal to 1. This means that the amount of energy dissipated
per unit of crack growth was not constant over the course of the test. At high crack growth rates, more285

energy was dissipated per unit of crack growth, than at low crack growth rates. In other words, if the energy
dissipation in a cycle dU/ dN is increased by a factor of 2, the crack growth rate will only increase by a
factor of 20.86 ≈ 1.8. This suggests that at high crack growth rates additional dissipative mechanisms are
activated that do not contribute to crack growth.

The energy dissipation per unit of crack growth can be represented with the parameter G∗, introduced
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√
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point corresponds to a different experiment [45].

in [45] as:

G∗ = − 1

w

dU/ dN

da/dN
(42)

G∗ can be interpreted as the average strain energy release rate during a cycle. However, it should be noted290

that G∗ is not necessarily equal to the mean value of the applied G cycle. Since G∗ represents the amount
of energy that must be dissipated to create a unit of crack growth, it can be interpreted as a measure of the
material’s resistance to crack growth; if G∗ is higher, more energy must be dissipated to create the same
amount of crack growth. As mentioned above, the fact that the exponent of the power-law fit through the
dU/ dN vs da/dN data is not equal to one, implies that G∗ is not constant during a crack growth test.295

To further investigate this matter, it is useful to examine the energy dissipation for a fixed amount of
crack growth. Figures 8 and 9 show the energy dissipation measured during each test at the point where the
crack growth rate was equal to 10 −4 mm/cycle. Since the crack growth rate was the same for each point,
G∗ can readily be estimated by dividing dU/ dN by 25 · 10−4 (the crack growth rate times the nominal
width). This is shown on the right hand axis of each panel. It is clear that the amount of energy dissipation300

was different in the different tests, even though the crack growth rate was the same. This implies that the
resistance to crack growth, i.e. the amount of energy required per unit of crack growth, was different in each
test.

To find out which parameter(s) control(s) the crack growth resistance, in the figures the energy dissipation
is plotted against the different LEFM parameters. It is clear there is a strong linear correlation between305

the energy dissipation and Gmax, and a weaker correlation between the energy dissipation and (∆
√
G)2. As

before, experiment B-002-II is an outlier. The reason for this could not be ascertained. However, given that
the behaviour of B-002-II was anomalous, even when compared to the other experiments performed at the
same R-ratio, it was considered to be appropriate to exclude the data point for B-002-II in the determination
of the linear fit.310

17



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
* (

m
J/

m
m

2 )

R = 0.036
R = 0.29
R = 0.61
R = 0.86

- d
U

/d
N

 (m
J/

cy
cl

e)

G (N/mm)

410 /da mm cycle
dN

Figure 9: Energy dissipation versus ∆G for a crack growth rate of 10−4 mm/cycle [45].

Although the energy dissipation is correlated to Gmax and (∆
√
G)2, there does not appear to be a

correlation between the energy dissipation and ∆G. It should be noted that in figure 8, Gmax and (∆
√
G)2

are not independent, since the crack growth rate of 10−4 mm/cycle is the result of a load cycle that is defined
by a combination of Gmax and (∆

√
G)2. Thus a higher Gmax implies a lower matching (∆

√
G)2 and vice

versa. This means that figure 8 cannot be used to tell whether the energy dissipation is correlated to Gmax,315

(∆
√
G)2, or the combination of both. However, this can be decided by plotting G∗ as a function of these

parameters over the entire test range, as is done in figure 10
This figure shows that the correlation between G∗ and (∆

√
G)2 depends on the R-ratio, whereas there

is a linear correlation between G∗ and Gmax that is not affected by R. This implies that G∗, and therefore
the resistance to crack growth, is correlated to Gmax, and not to (∆

√
G)2. A possible explanation is that320

the resistance to crack growth, i.e. how much energy must be dissipated per unit of crack growth, mainly
depends on the maximum stress at the crack tip. At higher crack tip stresses, it may be expected that
more mechanisms are activated that dissipate energy, without contributing to crack growth. For example
the higher the crack tip stresses, the more plastic strain – and thus energy dissipation – there will be around
the crack tip, which might have a shielding effect. As Gmax provides a measure for the crack-tip stress, it325

makes sense that Gmax is correlated to the resistance to crack growth.
Of course crack growth resistance is only half the story. If the energy dissipation per unit of crack growth

is known, then the total amount of crack growth achieved in the cycle will depend on the total amount of
energy dissipated in that cycle [42, 45]. As discussed in section 4.4, dU/ dN provides a measure for the
energy dissipation in a cycle. To investigate what determines the magnitude of dU/ dN , the same strategy330

as before was followed, only instead of keeping the crack growth rate fixed, now G∗ was kept fixed. This
is shown in figures 11 through 13. These figures show the energy dissipation for the point in each test at
which G∗ was equal to 0.7 mJ/mm2. Since G∗ was equal for all these data points, there is a one-to-one
correspondence between dU/ dN and da/dN for these figures.

In figures 12 and 13 power law fits through the data are shown. In the left panel of figure 12) (dU/ dN335

vs (∆
√
G)2) the data for experiment B-002-II (R = 0.61) is anomalous. The reason for this could not be

ascertained. However, given that the behaviour of B-002-II was so different, compared to the other tests at
the same R-ratio, it was considered appropriate to exclude the data point for B-002-II when producing the
curve fit. Similarly in the left panel of 13 (dU/ dN vs Utot) the data point for B-002-I (R = 0.86) does not
match the rest of the data. Again the cause for this behaviour could not be determined. Since B-002-I was340

the only experiment conducted at R = 0.86 the possibility that this behaviour is caused by the very high
R-ratio cannot be ruled out. However, this would have to be cause by some sudden change in behaviour,
occurring for 0.61 < R < 0.86. Therefore, the data point for B-002-I was neglected as an outlier when
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producing the curve fit shown in the graph.
Per the first law of thermodynamics, the total amount of energy dissipated in a cycle must be equal to345

the amount of energy available for crack growth. Thus dU/ dN is a measure for the total amount of energy
available in each cycle. When G∗ is fixed, there is no correlation between Gmax and dU/ dN , see figure 11.
However, as can be seen in figures 12 and 13, there is a clear correlation between dU/ dN and ∆G, (∆

√
G)2,

Ucyc, and Utot.
The exact nature of these correlations is at present still unclear, as is the question whether they are all350

meaningful. After all, the parameters ∆G, (∆
√
G)2, Ucyc and Utot are not independent in this representation:

increasing one will result in an increase of all the others. On the basis that fatigue crack growth must
ultimately be driven by the energy input into the system during the load cycle, the correlation between
dU/ dN and Ucyc would seem to be the most fundamental relationship. However, the present graphs don’t
provide enough evidence to draw this as a firm conclusion.355

Another question that needs to be investigated further is why the relationship between the amount of
energy available for crack growth (dU/ dN) and the applied work (Ucyc) is not linear. For the shown G∗

value, increasing Ucyc by a factor of 2 will increase the amount of available energy by a factor of 23.78 ≈ 13.7.
This implies that at higher levels of applied work, also a greater portion of that work is available for crack
growth [45]. The reason for this is not yet clear.360

What is clear in any case is that the amount of energy available for crack growth is correlated to Ucyc, Utot,
(∆
√
G)2, or ∆G. These parameters depend mainly on the load range. On the other hand, the resistance to

crack growth is correlated to Gmax, i.e. the maximum load. Thus the results presented in this section point
to a physical interpretation of the meaning of the SERR parameters, and their influence on crack growth.
Gmax relates to the maximum applied load and therefore correlates to the resistance to crack growth. On the365

other hand, ∆G and (∆
√
G)2 relate to the load range, and to the applied work, and thereby form a measure

for the amount of energy available for crack growth (dU/ dN). The total amount of crack growth that will
occur in a cycle then depends on the combination of the amount of energy available for crack growth, for
which dU/ dN is a measure, and the amount of energy required for crack growth, for which G∗ is a measure.
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Figure 11: Energy dissipation as a function of Gmax for a fixed value of G∗ = 0.7mJ/mm2. Since G∗ is fixed, each value of
dU/ dN corresponds to a different crack growth rate. Each point corresponds to a different experiment.
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Figure 12: Energy dissipation as a function of (∆
√
G)2 (left panel) and ∆G (right panel) for a fixed value of G∗ = 0.7 mJ/mm2,

including power-law fits through the curves. For the dU/ dN versus (∆
√
G)2 fit, the data for experiment B-002-II was excluded

as an outlier. Since G∗ is fixed, each value of dU/dN corresponds to a different crack growth rate [45].

20



10
0

20
0

30
0

40
0

50
0

60
0
70

0
80

0

10-4

10-3

10-2

10-1

10
0

20
0

30
0

40
0

50
0

60
0
70

0
80

0

10-4

10-3

10-2

10-1

-d
U

/d
N

 (m
J/

cy
cl

e)

Utot (mJ)

G* = 0.7 mJ/mm 2

16 5.004.31 10
tot

dU U
dN

B-002-I

B-002-II

2 0.82R

 R = 0.036
 R = 0.29
 R = 0.61
 R = 0.86

-d
U

/d
N

 (m
J/

cy
cl

e)

Ucyc (mJ)

12 3.781.49 10 cyc
dU U
dN

2 0.91R

Figure 13: Energy dissipation as a function of Utot (left panel) and Ucyc (right panel) for a fixed value of G∗ = 0.7 mJ/mm2,
including power-law fits through the curves. For the Utot versus (∆

√
G)2 fit, the data for experiment B-002-I was excluded as

an outlier. Since G∗ is fixed, each value of dU/ dN corresponds to a different crack growth rate [45].
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7. Discussion370

With the physical interpretation for Gmax, (∆
√
G)2, and ∆G presented in the previous section, the

R-ratio effect when using these parameters as similitude parameters (table 5) can now be qualitatively
explained.

7.1. Explanation of the R-ratio effect
If Gmax is used as similitude parameter, then keeping Gmax constant and increasing R results in a375

decrease of the load range, and thus (∆
√
G)2 and ∆G, and a decrease in the applied work (Ucyc). As Gmax

is constant, so is G∗, implying the amount of energy required per unit of crack growth remains constant.
The net effect is that the crack growth rate decreases.

Keeping (∆
√
G)2 constant and increasing R results in an increase of Gmax and an increase of Ucyc.

The increase of Gmax corresponds to a greater resistance to crack growth (as measured by G∗). However380

the increase in Ucyc corresponds to an increase in the amount of available energy. The resistance correlates
linearly with Gmax, whereas the correlation of the amount of available energy (as measured by dU/ dN) with
Ucyc is non-linear, with an exponent greater than 1. Thus the increase in available energy will outweigh the
increase in resistance to crack growth, and the net effect will be an increase of the crack growth rate. Note
that it is the increase in the cyclic work that drives the increased crack growth rate, whereas the increased385

mean load (and therefore also increased maximum load) in fact causes an increase in the resistance to crack
growth, and therefore a decrease in the crack growth rate. In other words, keeping (∆

√
G)2 constant and

increasing the mean load produces two opposite effects on the crack growth rate. That the crack growth
rate in the end increases is due to the net result of these two opposite effects.

Finally, keeping ∆G constant and increasing R also results in an increase of Gmax, but in this case Ucyc390

remains constant. Thus again the resistance to crack growth is increased, while the amount of available
energy now remains constant. Thus the net result is a decrease of the crack growth rate, which is what is
usually reported in literature [10, 41], although the effect was not very visible for the present results (figure
6). Note that this shows that the role of the mean load is usually misinterpreted in the literature. The
crack growth rate increases only when Ucyc increases. Any increase of the mean load that also results in an395

increase of the maximum load, will in fact lower the crack growth rate, rather than cause it to increase.
The arguments presented above should make it clear that the R-ratio effect that is reported in literature

is largely caused by an incorrect description of the load cycle. The amount of crack growth in a cycle is
determined by the entire load cycle, which it is impossible to describe with a single parameter. It is only by
using a two-parameter based description of the load cycle (e.g. Gmax and ∆G, or (∆

√
G)2 and R, or some400

other combination) that the load cycle is uniquely defined, and similitude is maintained.
Furthermore, calling the R-ratio effect a mean load effect is incorrect. The effect of changing the mean

load will depend on whether only the load range changes, or also the maximum load. In other words, the
effect of changing the mean load will depend on what other load parameters are kept constant.

Previous research has identified physical mechanisms that would also produce an R-ratio effect (e.g.405

crack closure). It is not the contention of the authors that these mechanisms do not exist. However, in order
to properly measure their effect on crack growth, it is important to first properly describe the applied load
cycle. Only once a correct and unique description of the applied load cycle is used, can the effect of physical
mechanisms such as crack closure be determined.

7.2. Generality of the results410

This paper presents results only for mode I crack growth, for only one material type, i.e. an epoxy
adhesive, and for only one specimen geometry. Thus a discussion on the generality of the results presented
here is appropriate.

Firstly, it should be acknowledged that it is not yet clear how to apply the energy dissipation methodology
employed here to the case of mode II cracks, especially for R-ratios smaller than zero (i.e. reversed shear).415

The key argument of this paper is that the R-ratio effect can largely be explained by the observation that
the resistance to crack growth correlates to Gmax (and thus the maximum load), whereas the amount of
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energy available for crack growth correlates to Ucyc (and thus to the load range). Whether these correlations
also hold for mode II crack growth requires further investigation.

The experiments described here were all performed at the same loading frequency (5 Hz). It is known420

that loading frequency can affect the crack growth rate. Therefore the specific numerical correlations found
here may be expected to be frequency dependent. However, as long as visco-elastic effects remain negligible,
it is expected that the general trends that were identified will remain applicable.

In the present study, the crack lengths were all measured from the side of the specimen. Post-mortem
investigation showed that the crack front was curved. The crack length at the centre of the specimen was425

several millimetres longer than near the edges. This curvature may introduce errors into the calculation
of G [49, 50] and G∗, as for both calculations a straight front was assumed. Similar curvature was seen
for cracks of different lengths, which suggests that the curvature remains more or less constant during the
growth of the crack. Since this paper looked mainly at the crack growth rate, it is thought that a constant
curvature would not have much effect on the results discussed here. Similarly, although the curvature might430

introduce an error into the calculation of G, it is thought that this error will be constant. Therefore, although
the numerical values of the presented correlations may be affected, the existence and general form of the
correlations is still valid.

After the fatigue tests were performed the specimens, with the exception of B-001-II, were opened and
the fracture surfaces were examined. Adhesive residue was observed on both fracture surfaces, indicating435

that cohesive failure took place inside the adhesive layer. Thus the relationships that were identified in the
previous chapter may only apply to cohesive failure. Indeed there is already some evidence that a change
of failure mechanisms may change these relationships [45]. A more detailed fractographic analysis may be
found in [45].

Another point that needs investigation is whether the correlations mentioned above also hold for other440

materials. A strong correlation between crack growth rate and energy dissipation has been found in other
types of materials, including glass-fibre / epoxy composites [51, 52], carbon-fibre / epoxy [53], and metals
[54–60]. Therefore it seems very likely that the energy method used here could also be used to characterise
fatigue crack growth in other materials. Whether the correlations between crack growth resistance and
available energy on the one hand, and the load cycle on the other, that were found in this case are also445

applicable to other materials needs to be investigated further. However, the literature already provides some
clues. For example Ranaganathan et al. [59, 60] have shown that the amount of energy needed per unit of
crack growth is not necessarily a constant, but can depend on the applied load. More recently Hogeveen
investigated fatigue crack growth in aluminium 2024 [54]. He found that if the maximum load was increased,
the roughness of the fracture surfaces also increased. This would likely result in an increase in the amount450

of energy required per unit of projected crack area, giving effectively an increase in the resistance to crack
growth. Alderliesten [31] examined R-ratio corrections in metals. He concluded that if one formulates an
R-ratio correction based on keeping Ucyc constant, one obtains numerical values that are very close to the
R-ratio corrections based on the plasticity induced crack closure concept. This suggests that also in metals
Ucyc correlates to the driving force for crack growth.455

Clearly, more research is needed before the results of this paper can be generalised to cover all materials.
However the literature does provide indications that also in other materials crack growth resistance is
correlated to the maximum load. At the same time, based on basic mechanics the amount of cyclic energy
is always related to the load range. It also seems logical that putting more energy into the system would
also result in more energy available for crack growth. This is further backed by the analysis of Alderliesten460

[31]. Thus the results presented in this paper are expected to hold for other materials as well.
In particular it is expected that two different trends may be active, i.e. that the resistance to crack

growth, and the amount of energy available for crack growth are affected by different properties of the
load cycle, and may in fact counteract each other (e.g. both resistance to crack growth, and amount of
energy available might increase). Any net ‘R-ratio effect’ that is identified may therefore be the result of465

two different trends, which may even have opposite effects on the crack growth rate. R-ratio effects in all
materials should be investigated from this point of view.
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8. Conclusion

By measuring energy dissipation, and using this approach to characterise the fatigue crack growth be-
haviour of an adhesive bond, a physical interpretation was found for the commonly used LEFM similitude470

parameters: Gmax, (∆
√
G)2, and ∆G. It was shown that the resistance to crack growth (in terms of required

energy dissipation per unit of crack growth) correlates to the maximum applied load, and therefore Gmax

provides a measure of the resistance.
The energy dissipation per cycle dU/ dN provides a measure of the amount of energy available for crack

growth. It was found that dU/ dN depends on the load range and/or the applied work Ucyc. Thus (∆
√
G)2475

and ∆G provide a measure for the amount of available energy.
The total amount of crack growth depends on both the available energy and the resistance to crack

growth, i.e. it depends on both the maximum load, and the load range. These physical interpretations
were used to show that the R-ratio effects that are usually reported in literature, are caused by relying
on an incomplete description of the load cycle. Keeping one of the LEFM similitude parameters constant480

and changing the R-ratio amounts to applying a different load cycle the specimen. Therefore the R-ratio
effect should primarily be understood as the effect of applying a different load cycle, rather than a change
in material behaviour as such. Various physical mechanisms (e.g. crack closure) have been suggested as
the cause of the R-ratio effect. However, in order to correctly measure their effect, it is important to use a
complete and unique (in the mathematical sense) description of the applied load cycle.485

Furthermore it was shown that the mean stress (or mean load) effect is misinterpreted in the literature.
Any increase of the mean load that also results in an increase of the maximum load will in fact result in
an increase in the resistance to crack growth. The crack growth rate will only increase if Ucyc is increased.
When using ∆K (or, equivalently, (∆

√
G)2) as a similitude parameter, it is often reported that the crack

growth rate increases when the mean load is increased. However, in this case both the maximum load and490

Ucyc are increased. The increase of Ucyc, and thus the amount of available energy, outweighs the increase
of the resistance related to the increased maximum load. Thus the resulting net effect is an increased crack
growth rate. It should be kept in mind that this increase is due to the net result of two competing effects,
and is not a simple function of the increase in mean load.
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