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Abstract. The low density of conventional rain gauge net-
works is often a limiting factor for radar rainfall bias cor-
rection. Citizen rain gauges offer a promising opportunity to
collect rainfall data at a higher spatial density. In this paper,
hourly radar rainfall bias adjustment was applied using two
different rain gauge networks: tipping buckets, measured by
Thai Meteorological Department (TMD), and daily citizen
rain gauges. The radar rainfall bias correction factor was se-
quentially updated based on TMD and citizen rain gauge data
using a two-step Kalman filter to incorporate the two gauge
datasets of contrasting quality. Radar reflectivity data from
the Sattahip radar station, gauge rainfall data from the TMD,
and data from citizen rain gauges located in the Tubma Basin,
Thailand, were used in the analysis. Daily data from the cit-
izen rain gauge network were downscaled to an hourly reso-
lution based on temporal distribution patterns obtained from
radar rainfall time series and the TMD gauge network. Re-
sults show that an improvement in radar rainfall estimates
was achieved by including the downscaled citizen observa-
tions compared with bias correction based on the conven-
tional rain gauge network alone. These outcomes emphasize
the value of citizen rainfall observations for radar bias correc-
tion, in particular in regions where conventional rain gauge
networks are sparse.

1 Introduction

Hydrometeorological hazards, like flash floods and land-
slides, cause severe damage to economies, properties, and
human lives worldwide. In this context, flood forecasting

and warning systems are a valuable nonstructural measure
to mitigate damage. However, such systems require the in-
put of rainfall data at a high spatial and temporal resolu-
tion. In most regions of the world, automatic rain gauge net-
works are insufficient for this purpose. Weather radar, which
can better capture the variation in rainfall fields at fine spa-
tial and temporal resolutions, could be used as an alterna-
tive rainfall product to improve the accuracy of flash flood
estimates and warnings. (Collinge and Kirby, 1987; Sun et
al., 2000; Uijlenhoet, 2001; Bedient et al., 2003; Creutin
and Borga, 2003; Mapiam et al., 2009a, 2014; Mapiam and
Chautsuk, 2018; Corral et al., 2019). However, weather radar
provides an indirect measurement of backscattered electro-
magnetic waves called radar reflectivity data (Z), and quan-
titative estimation of radar rainfall data (R) is acknowledged
as a complex process. Various sources of error affect radar
rainfall estimates, mainly errors in reflectivity measurements
and reflectivity–rainfall conversion (Jordan et al., 2000). Cor-
rection of these two sources of error is a crucial procedure
to increase the accuracy of radar rainfall estimates. “Ground
truthing” by rain gauge data is required to calibrate the Z–R
relationship (Z D ARb). The calibrated parameter A in the
Z–R relationship will include any errors in the radar system
caused by the electrical calibration of the radar (Seed et al.,
2002).

The calibrated Z–R equation is used to convert the mea-
sured instantaneous reflectivity data to rainfall intensity and,
subsequently, to accumulate them into the required tempo-
ral resolution. However, the parameters A and b vary signif-
icantly, even within a single storm event, depending on the
rainfall characteristics, which can exhibit a highly dynamic
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raindrop size distribution (DSD) (Ulbrich, 1983: Smith et
al., 2009). Additionally, past studies have found that the Z–
R parameters are sensitive to the temporal resolution of the
rain gauge rainfall data that are used for the Z–R calibration
(Hitchfeld and Bordan, 1954; Smith et al., 1975; Wilson and
Brandes, 1979; Klazura, 1981; Steiner et al., 1995; Mapiam
and Sriwongsitanon, 2008; Mapiam et al., 2009b). Conse-
quently, an important source of error remains associated with
the Z–R conversion process (Jordan et al., 2000; Berne and
Krajewski, 2013). Many researchers have attempted to cor-
rect this kind of error by classifying the measured reflectivity
data into different storm types and, thereafter, constructing
the Z–R equation corresponding to the classified storm char-
acteristics (Joss and Waldvogel, 1970; Rogers, 1971; Bat-
tan, 1973; Klazura, 1981; Austin, 1987; Rosenfeld et al.,
1992, 1993; Tokay and Short, 1996; Amitai, 2000; Arai et
al., 2005; Fang et al., 2018). To account for the effect of us-
ing rain gauge data with different temporal resolutions on the
Z–R relationships, Mapiam et al. (2009b) developed a uni-
versal scaling transformation function for converting the ref-
erence parameters A (obtained from using daily gauge rain-
fall data in the calibration) to the parameter A for sub-daily
resolutions. This improved the accuracy of the estimated sub-
daily radar rainfall, especially in locations with limited short-
duration rain gauge measurements.

After Z–R conversion, bias is expected to remain between
the assessed radar rainfall and the true rainfall amount at the
rain gauge locations if a fixed Z–R relationship is used to
estimate radar rainfall over the entire radar domain (Chum-
chean et al., 2006; Wang et al., 2015). An effective bias cor-
rection technique is key for enhancing the quality of radar
rainfall estimates (Steiner et al., 1999) and for removing
the residual errors between radar rainfall obtained from the
Z–R relationship and from the rain gauge data. Mean field
bias (MFB) adjustment is the conventional method used to
obtain a static bias factor which assumes that the Z–R rela-
tionship is homogeneous in space but varies in time (Smith
et al., 2007; Vieux and Bedient, 2004; Wilson, 1970). In
this method, a multiplicative correction factor is applied uni-
formly across the radar coverage. As the MFB approach does
not consider the noise and uncertainty of the rain gauge ob-
servations nor the spatial variability in observation bias, this
can lead to large errors in radar rainfall estimates, particularly
in areas where the density of rain gauge networks is limited.
The Kalman filter (KF) is an efficient algorithm that has been
applied to correct the spatially uniform mean field bias, es-
pecially in real time by accounting for the temporal variation
in the mean bias as well as uncertainties in the ground rain-
fall measurements (Anhert et al., 1986; Smith and Krajewski,
1991; Anagnostou et al., 1998; Seo et al., 1999; Dinku et al.,
2002; Chumchean et al., 2006).

Previous studies have used the KF to predict and correct
the mean field bias in order to mitigate the observation error
variances affecting the mean field bias estimate. Chumchean
et al. (2006) found that the density of the rain gauge network

also plays an important role in the radar rainfall bias adjust-
ment. They found that lowering the density of rain gauge ob-
servations in the KF process reduced accuracy of radar rain-
fall estimates. Additionally, the KF approach outperforms the
use of MFB if the rain gauge density is less than one gauge
per 90 km2, and both KF and MFB produce identical perfor-
mance when the rain gauge density is greater than one gauge
per 70 km2.

In basins where a dense rainfall network is not avail-
able, citizen science (CS) offers a promising opportunity to
enhance the density of rainfall observations (Davids et al.,
2019). With the popularization of smartphones and the avail-
ability of (relatively) simple and cheap equipment, abundant
mobile applications and projects have been initiated in wa-
ter resources management to measure hydrometeorological
variables like rainfall, water level height, or water quality as
well as to ground truth remotely sensed information on, for
example, land use (Srivastra et al., 2018; Davids et al., 2019;
See, 2019; Seibert et al., 2019). In the current study, we fo-
cus on rainfall measured by local citizens using a network
of cheap rain gauges and a specially designed mobile ap-
plication. As citizen rainfall observations are typically pro-
vided at a daily scale, a temporal downscaling technique
is needed for sub-daily applications. A variety of tempo-
ral rainfall downscaling methods have been developed since
the 1970s. The simplest approach is to distribute daily rain-
fall data to sub-daily resolutions by assuming uniform dis-
tributions. Stochastically generating subperiod data or spa-
tially transferring finer-resolution rainfall from a nearby rain
gauge station to the study area based on spatial correlations
are alternative approaches (Koutsoyiannis, 2003; Debele et
al., 2007). However, these methods are usually not designed
for real-time data disaggregation over large areas. Instead, a
common approach for such scenarios is to downscale daily
rainfall based on a simple fraction technique by considering
the distribution patterns of high-resolution gridded rainfall
products from radar or satellite sensors (Paulat et al., 2008;
Wüest et al., 2009; Vormoor and Skaugen, 2013; Sideris et
al., 2014; Barton et al., 2020). This study aimed to mod-
ify the KF logic by integrating hourly rain gauge data with
daily citizen rain gauge data that are downscaled to an hourly
timescale using a simple fraction method. The radar rainfall
bias correction factor was sequentially updated using a two-
step Kalman filter accounting for the contrasting quality of
the hourly rain gauge data and downscaled citizen rain gauge
data. The question that we set out to answer is as follows: to
what extent do the downscaled citizen rainfall observations
improve the accuracy of hourly radar rainfall estimates? Sev-
eral scenarios of hourly rainfall distribution patterns were ap-
plied for downscaling in order to investigate the most suitable
technique for hourly radar rainfall assessment. Tubma Basin,
located in Rayong Province, eastern Thailand, was used as a
case study area to test the approach.
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Figure 1. Climatological spatial rainfall distribution in and around the Tubma Basin calculated from 30-year average annual rainfall data
from a rain gauge network of 311 daily gauges using the inverse distance squared (IDS) method.

2 Study area and data

2.1 Study area

The study area is the Tubma Basin (12.6789–12.8775� N,
101.0881–101.2975� E) located in Rayong Province, eastern
Thailand (Fig. 1). It covers a catchment area of 197 km2 with
a basin elevation ranging from 4 to 416 m a.m.s.l. (above
mean sea level). The main river, the Klong, is 42 km in
length; originates in the Khao Chom Hae, Khao Ket, and
Khao Krabok mountains; and flows downstream to the north-
west before meeting the Gulf of Thailand in Pak Nam,
Mueang Rayong District. The Tubma watershed is suscep-
tible to flooding, in particular Rayong. In Fig. 1, we show
the climatological variation across the study area and its sur-
roundings, based on the 30-year (1987–2017) annual mean
rainfall from a network of 311 daily rain gauges owned by
the TMD and situated within 200 km of the Tubma Basin.
Spatial rainfall patterns were generated using the inverse dis-
tance squared (IDS) method between the gauge locations.
The map shows that while there is a small gradient in mean
annual rainfall (1100–1700 mm mean annual rainfall) across
the Rayong and Chonburi provinces (within 90 km of the
study area), changes are more pronounced when the distance
exceeds the 90 km boundary, especially to the east of the
study area. This is because these areas are affected differ-
ently by the southwest monsoon. Consequently, the evalua-
tion of the effectiveness of the bias correction techniques was
carried out within a 90 km radius of the study area to ensure
similar climatology.

2.2 Radar data

2.2.1 Reflectivity data collection

The Tubma Basin is located within the coverage of the Sat-
tahip radar station. The Sattahip radar, which belongs to
the Department of Royal Rainmaking and Agricultural Avi-
ation (DRRAA), is an S-band Doppler radar that transmits
radiation with a frequency of 2.9 GHz and a half-power
beamwidth of 1.0�. The radar reflectivity product is provided
on a Cartesian grid covering a 240� 240 km extent with a
0:6� 0:6 km spatial and 6 min temporal resolution. The Sat-
tahip radar provides the reflectivity data derived from the
2.5 km constant altitude plan position indicator (CAPPI). The
CAPPI reflectivity data originate from below the climato-
logical freezing level, so the effects of measurement errors
caused by the bright band were considered negligible. The
effects of ground clutter were removed from the reflectivity
data by finding the clutter locations and discarding the radar
measurements in these areas. Additionally, the noise power
caused by various sources, such as emission from space (cos-
mic noise), radiation from electrical sources near the radar
antenna, and internally generated noise, were eliminated by
setting reflectivity values below 15 dBZ to zero (Doviak and
Zrnic, 1984). While Fulton et al. (1998) suggested that mea-
sured reflectivity values that are greater than 53 dBZ be lim-
ited to 53 dBZ in radar rainfall estimation to mitigate false
interpretation caused by hail, the hail cap can be seen as an
adaptable threshold representing the maximum expected in-
stantaneous rain rate, which is unfortunately quite difficult to
determine for a particular storm. Note that slightly higher hail
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threshold values have also been reported in tropical environ-
ments. After data quality control, we separated the data into
three datasets: the first dataset from May to October 2013 and
from May to September 2014 was used for the climatologi-
cal Z–R calibration; the second dataset from October 2014
was used for the Z–R verification; and the third dataset from
August to October 2019 was used in the bias correction pro-
cesses.

2.2.2 The Z–R calibration and radar rainfall
aggregation

The Z–R conversion error is a crucial source of error in radar
rainfall estimates. The Z–R relationship was used to con-
vert the measured reflectivity data (Z, mm6 m�3) into rainfall
rates (R, mm h�1). The Z–R calibration and verification are
essential procedures to ascertain the A and b parameters in
the relationship. Firstly, the instantaneous 6 min radar reflec-
tivity was converted to rainfall intensity using the climato-
logical relationship Z D 200R1:6 proposed by Marshall and
Palmer (1948). Secondly, the estimated 6 min initial instan-
taneous radar rainfall data were aggregated to an hourly rain-
fall resolution using the accumulation algorithm proposed by
Fabry et al. (1994). Thirdly, gauge rainfall was aggregated
to an hourly resolution. Finally, the optimal value of the pa-
rameter A was established by minimizing the mean absolute
error (MAE) between the gauge and the radar rainfall esti-
mates, whereas the exponent b was 1.5 in our study. This is
because radar rainfall estimates are relatively insensitive to b
with typical values between 1.2 and 1.8 (Battan, 1973; Ul-
brich, 1983). Thus, 1.5 was generally suitable to represent
the exponent b in the Z–R relation (Doelling et al., 1998;
Steiner and Smith, 2000; Hagen and Yuter; 2003; Germann
et al., 2006; Chantraket et al., 2016). The MAE is illustrated
in Eq. (1):

MAED
1

TNG

TX

tD1

NGX

iD1
jGi;t �Ri;t j; (1)

where Gi;t is the gauge rainfall (mm h�1) at gauge i for
hour t , Ri;t is the hourly radar rainfall accumulation (mm)
at the pixel corresponding to the ith rain gauge for hour t ,
NG is the total number of rain gauges, and T is the total pe-
riod used in the calculation. Results found that the optimal
climatological Z–R relationship for the Sattahip radar used
in this study is Z D 251R1:5. This relation is appropriate for
both the calibration and validation datasets with an MAE of
1.36 and 1.47 mm, respectively.

2.3 Rain gauge data

2.3.1 Rainfall data collection

Data from the network of 297 continuous tipping-bucket
gauge stations located within the Sattahip radar radius were
collected (Fig. 2). These rain gauges, which produce data

with a temporal resolution of 15 min, are owned and oper-
ated by the Thai Meteorological Department (TMD). All of
the continuous rain gauges used in this study have a resolu-
tion of 0.5 mm. The data quality screening was first carried
out using the double-mass curve method. To avoid no-rainfall
events and systematical underreporting by the tipping-bucket
rain gauge, hourly data above the tipping-bucket resolution
of 0.5 mm were selected in the next step. Rain gauges with
more than 80 % of their recorded rainfall amounts below
the 0.5 mm threshold at the daily scale were excluded from
the analysis. It turns out that many of these faulty gauges
recorded zero rainfall throughout most of the study period.
Following the implementation of these criteria, rainfall data
obtained from 134 rain gauges corresponding to the collected
reflectivity datasets were used for the Z–R calibration and
validation processes. For the bias adjustment computation,
the selection of rain gauge networks with rainfall behavior
similar to the study area is necessary. We selected 14 TMD
rain gauges in the region surrounding the Tubma Basin (Ray-
ong and Chonburi provinces), based a on spatial decorrela-
tion analysis, for this the process.

2.3.2 Citizen rain observations

Out of the total TMD rain gauge network, only one rain
gauge is located in the Tubma Basin. To increase the density
of the rain gauge network in the basin, low-cost citizen rain
gauges were implemented in this study to capture the spa-
tial heterogeneity of rainfall in the region. A total of 16 citi-
zen rain gauges were installed (Fig. 2) with local residents
taking daily measurements. The additional 16 citizen rain
gauges (with one station co-located with an existing TMD
gauge) increased the density of rain gauges in the Tubma
Basin to one gauge per � 12 km2. The citizen observations
were made by installing a cone-shaped transparent plastic
rain gauge in an open area around a school, monastery, bridge
or other building. This type of rain gauge is in standard use
in South Africa (Fig. A1) and has a diameter of approxi-
mately 12.7 cm (5 in.) and a maximum capacity of 100 mm
of rainfall. A mobile application developed by Mobile Water
Management (MWM) (Mobile Water Management, 2020),
the Netherlands, was used to record rainfall data for each
rain gauge on a daily basis. The application has a an eas-
ily accessible and user-friendly interface where participants
simply fill in the observed rainfall amount, take a photo of
the rain gauge, and upload the information to the application.
The photo and the rainfall data, along with the measurement
location and time, are automatically stored in the database.
Photos are used for visual validation of the recorded rainfall
depth in order to eliminate errors.

In this study, the participants recruited were government
officers, teachers, and local residents living close to the sta-
tions; these participants were trained to take measurements
at around 07:00 LT (local time) daily according to the TMD
standards. The quality of the collected data was assured
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Figure 2. Location of the study domain, showing the Thai Meteorological Department (TMD) automatic rain gauges, the citizen rain gauges,
the Sattahip radar, and the Tubma Basin.

by double-checking the observations against the abovemen-
tioned high-resolution photos as well as by the strict require-
ments with respect to measurement times, which ensured
consistency with the TMD daily rainfall recording standard.
Validation of the cone-shaped citizen gauges was conducted
based on a citizen gauge co-located with an automatic TMD
gauge in the Tubma Basin, from August to October 2019.
The citizen gauge installed at the same location as a TMD
gauge (location R.3) showed good similarity with an RMSE
and bias of 5.5 mm and 1.04, respectively (Fig. A2).

Quality control consisted of screening all citizen rain
gauge data for errors and inconsistencies using double-mass
curves. If citizen rain gauges reported > 100 mm d�1 rain-
fall (maximum capacity of the citizen rain gauge), these data
were excluded from the analysis. If days with no-rainfall data
were found from all citizen rain gauges, the bias correction
of that day was discarded from the dataset. Considering these
data selection criteria for rainfall data recorded from August
to October 2019, more than 80 % of the whole period for the
bias adjustment process was then used for further analysis.

3 Methods

The methodology for radar rainfall bias correction using
tipping-bucket and citizen gauges consists of the following

steps. Daily citizen rain gauge data were downscaled to an
hourly timescale to be used as input for bias correction. The
downscaling methods used in this paper are discussed in
Sect. 3.1. Next, an hourly radar bias correction model was
developed that combined rain gauge and downscaled citi-
zen rain gauge data using a KF approach, as presented in
Sect. 3.2.

3.1 Downscaling daily to hourly rainfall

To downscale the daily citizen rain gauge data to an hourly
timescale, information on the hourly storm distribution pat-
tern is needed. Methodologies to obtain the temporal rainfall
distribution patterns are outlined in Table 1.

3.2 Hourly radar bias model

This section describes how radar bias is modeled
(Sect. 3.2.1), how observations are assimilated in the
model to correct the bias (Sect. 3.2.2), and how model
parameters are estimated (Sect. 3.2.3). Our approach ex-
tends a previously used Kalman filter radar bias model by
including two different types of rainfall observations (data
from traditional and from citizen rain gauges) and using a
likelihood-based method for parameter estimation.

https://doi.org/10.5194/hess-26-775-2022 Hydrol. Earth Syst. Sci., 26, 775–794, 2022
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Table 1. The four methods used in this study to downscale the daily citizen rainfall amounts to hourly rainfall data.

Distribution Description of methodologies Description of code
code

RP Hourly rainfall patterns derived from The distribution patterns of radar
radar rainfall time series of the radar rainfall at each radar pixel.
pixel corresponding to the citizen rain
gauge location were used for
downscaling.

RMP Hourly radar rainfall distributions of all The mean distribution pattern
radar pixels corresponding to the citizen of radar rainfall.
rain gauge locations were averaged to
represent the mean temporal
distribution pattern of radar rainfall.
The RMP downscaling pattern was
applied to all citizen rain gauges.

GMP Hourly gauge rainfall patterns of all 14 The mean distribution pattern
gauges in the region surrounding of rain gauge rainfall.
Tubma Basin were averaged to
construct the mean hourly distribution
pattern of regional rain gauge rainfall.
The GMP was applied to all citizen rain
gauges.

GTubma The hourly rainfall pattern of the single The distribution pattern of the rain
rain gauge situated in the Tubma Basin gauges in the Tubma Basin.
was used for the correction of all citizen
rain gauges in the basin.

3.2.1 Kalman filter with two observations: model
assumptions

Mean field bias (MFB) adjustment is a common technique
for bias correction in radar rainfall relative to ground stations.
It can be computed as the ratio of the mean hourly radar rain-
fall estimate to the rain gauge measurement (Anagnostou and
Krajewski, 1999; Yoo and Yoon, 2010; Hanchoowong et al.,
2013; Shi et al., 2018). However, direct application of the
MFB does not account for uncertainty in the bias associated
with each radar-gauge measurement. Alternatively, a KF has
previously been used to estimate the spatially uniform MFB
in real time in several studies, including Anhert et al. (1986),
Smith and Krajewski (1991), Anagnostou et al. (1998), Seo
et al. (1999), Chumchean et al. (2006), Kim and Yoo (2014),
and Shi et al. (2018). The KF has the benefit of accounting
for uncertainties in the observations by weighting the con-
tribution of measurements by their respective error variances
(Kalman, 1960). This is also the approach adopted here, but
we extend it to include two types of observations with dif-
ferent error characteristics, i.e., hourly rain gauge data from
TMD (yt ) and hourly downscaled citizen rain gauge data (zt ).

First, we define the logarithmic mean field radar rainfall
bias �t at hour t as follows (Smith and Krajewski, 1991;
Anagostou et al., 1998):

�t D log10

0

BBB
@

NG;tP

iD1
Gi;t

NG;tP

iD1
Ri;t

1

CCC
A
; (2)

whereGi;t andRi;t are as defined in Eq. (1). Following previ-
ous studies (e.g., Smith and Krajewski, 1991; Chumchean et
al., 2006), we model the logarithmic mean field radar rainfall
bias as a first-order autoregressive (AR1) process with sta-
tionary variance. Radar bias at time t is expressed in terms of
the bias at previous time (�t�1) and the process noise (Wt ):

�t D r1�t�1CWt I Wt �N
�

0;� 2
W

�
; (3)

� 2
W D

�
1� r2

1

�
� 2
� : (4)

Here, r1 is the lag-one correlation coefficient of the time-
varying bias �t , Wt is a zero-mean random error with vari-
ance � 2

W, and � 2
� is stationary variance of the process. We

consider two types of observations, yt and zt , of the unknown
bias at time t , derived from the TMD and citizen rain gauges.
Each observation is modeled as a random sample from a nor-
mal distribution conditioned on the underlying unknown bias
with distinct measurement error variances � 2

My;t
and � 2

Mz;t
:
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Figure 3. Panel (a) presents a factor graph representation of the radar bias model: white circles depict random variables (bias at each time
step), gray circles are rainfall bias observations (yt for TMD rainfall, and zt for citizen rain gauge rainfall), and black squares are relations
between variables (conditional normal distributions in this case). Panel (b) depicts uncertainty propagation along the edges of the factor
graph, from previous bias to current bias (Kalman prediction step in blue) and from the observations to current bias (two Kalman updates in
red).

yt D �t CMy;t I My;t �N
�

0;� 2
My;t

�
; (5)

zt D �t CMz;t I Mz;t �N
�

0;� 2
Mz;t

�
: (6)

Here, � 2
My;t

and � 2
Mz;t

are time-varying measurement error
variances for the TMD and citizen rain gauges, respectively.

A factor graph representation of the radar bias and obser-
vation models is illustrated in Fig. 3a, with circles denoting
random variables, and black squares denoting “factors” or
relations between variables in the model.

The model contains two parameters, i.e., r1 and � 2
� , that

need to be specified, together with values for the measure-
ment error variances, � 2

My;t
and � 2

Mz;t
. Parameter estimation

will be discussed in Sect. 3.2.3. Section 3.2.2 first describes
how observations are assimilated assuming that the values
of the parameters and the measurement error variances have
been specified.

3.2.2 Kalman filter with two observations: data
assimilation

Having defined the model, we describe how observations
are assimilated into the model, resulting in adjustments of
the estimated bias. While the regular Kalman filter has two
steps (prediction and update), assimilating two observations
at each time step involves three steps, i.e., a prediction fol-
lowed by two updates. Figure 3b shows a visual depiction of
the prediction and update steps as probabilistic information
propagating along the edges of the factor graph. These three
steps are as follows:

1. Time update step (prediction). The first step for each
hour t computes the respective prior mean O��t and vari-
ance P�t of �t as

O��t D r1
O�t�1; (7)

P�t D r
2
1Pt�1C �

2
W: (8)

Here, Pt�1 is the posterior variance of �t�1. For the first
time step 0 (t D 0), we assume �0 D 0 (climatological
logarithmic mean field bias) and P0 D .1� r2

1 /�
2
� (rep-

resents stationary process variance) (Smith and Krajew-
ski, 1991; Chumchean et al., 2006).

2. The �rst measurement update step (�rst correction).
The first update merges the bias prediction from step 1
with noisy observation yt (with measurement error vari-
ance � 2

My;t
), resulting in posterior mean O�y;t and vari-

ance Py;t of �t given by the Kalman update equations
(Eqs. 9–11).

Ky;t D P
�
t

�
P�t C �

2
My;t

��1
(9)

O�y;t D O�
�
t CKy;t

�
yt � O�

�
t

�
(10)

Py;t D
�
1�Ky;t

�
P�t (11)

Here, Ky;t is the Kalman gain for assimilating obser-
vation yt . If there is no observation available at time t ,
Ky;t is zero (mathematically, a missing observation is
equivalent to an observation with infinite variance � 2

My;t

in Eq. 9), and the previous equations reduce to not per-
forming any update, i.e., the posterior mean and vari-
ance are equal to the prior mean and variance.
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3. The second measurement update step (second correc-
tion). The second update is done using the posterior val-
ues from the first correction ( O�y;t and Py;t ) as the prior
values. The resulting respective Kalman gain and poste-
rior mean and variance are given by

Kz;t D Py;t

�
Py;t C �

2
Mz;t

��1
; (12)

O�z;t D O�y;t CKz;t

�
zt � O�y;t

�
; (13)

Pz;t D
�
1�Kz;t

�
Py;t : (14)

If there is no observation available at time t , Kalman
gainKz;t is zero, and these equations result in no update
being applied, i.e., the posterior mean and variance are
the same as after the first update.

As the logarithmic mean field radar rainfall bias �t
is assumed to be normally distributed, the mean field
bias (Bt ) is lognormally distributed with posterior mean
at time t obtained from the posterior mean and variance
of �t (Smith and Krajewski, 1991):

OBt D 10
�
O�z;tC0:5Pz;t

�

: (15)

The overall procedure of sequentially assimilating and
downscaling the data is referred to as CKF (Kalman fil-
ter combined with the citizen rain gauge data), and it is
summarized by the flowchart in Fig. 4. Operationally,
it is implemented as follows. First, as the citizen rain
gauge data were received in the last hour of day i, be-
fore receiving the downscaled hourly citizen rain gauge
data of day i, the ordinary KF and observed hourly data
of TMD were used to predict and correct the hourly bias
adjustment factor. Second, if the citizen rain gauge data
were available at the end of the day i, they were down-
scaled to an hourly timescale, as explained in Sect. 3.1.
Third, the TMD and downscaled citizen rain gauge data
were used together to conduct two steps of measure-
ment update in the CKF process for all hourly time steps
of day i. Finally, bias adjustment factors were applied
at every hourly time step to obtain the final product of
hourly radar rainfall estimation of day i. The bias factor
for the last hour of the day i was used afterward as the
initial value for calculating the ordinary KF of day iC1.

3.2.3 Kalman filter with two observations: parameter
estimation

The model requires specification of the two parame-
ters, r1 and � 2

� , and the measurement error variances, � 2
My;t

and � 2
Mz;t

. We estimate the latter using formulas for the vari-
ance of the mean bias across individual TMD and citizen rain
gauges:

� 2
My;t
D
� 2
yt

ny;t
; (16)

� 2
Mz;t
D
� 2
zt

nz;t
: (17)

Here, � 2
yt

and � 2
zt

are variances that quantify spatial variabil-
ity of radar bias at time t at TMD and citizen rain gauge lo-
cations, respectively, and ny;t and nz;t are the corresponding
number of observations at hour tfrom the two networks.

Once measurement error variances are specified, values
for parameters r1 and � 2

� are obtained by maximizing the
marginal likelihood function (Bock and Aitkin, 1981; Har-
vey, 1990; Proietti and Luati, 2013; Pulido et al., 2018).
As mentioned earlier, we have two sources of observed log
mean field bias at hour t , from TMD (yt ) and citizen rain
gauges (zt ). When only TMD data are available, the marginal
likelihood is computed as follows:

p.D/D
TY

tD0

Z
p.yt j�t /p .�t jyt�1; : : :; y0/d�t

D

TY

tD0
N
�
yt I O�

�
t ;�

2
yt
CP�t

�
; (18)

where D is the data vector that contains all observed values,
�t is the true hidden state of log mean field bias at hour t , and
T is the number of hourly time steps. When both TMD and
citizen rain gauge data are available, the marginal likelihood
is obtained as follows:

p.D/D
TY

tD0

Z
p.yt j�t /p .zt j�t /p .�t jyt�1;zt�1; : : :; y0;z0/d�t

D

TY

tD0
N
�
yt Izt ;�

2
My;t
C � 2

Mz;t

�
N

 

��1

 
yt

� 2
My;t

C
zt

� 2
Mz;t

!

I

O��t ;�
�1
CP�t

�
; (19)

where � D 1
� 2

My;t
C

1
� 2

Mz;t
and prior mean O��t and variance P�t

are from the prediction step in Sect. 3.2.2.
To obtain optimal values of the two parameters r1 and � 2

�

that maximize the (logarithm of the) marginal likelihood,
the Nelder–Mead simplex was used, which is an algorithm
for searching a local optimum of a function (Lagarias et al.,
1998; Luersen and Le Riche, 2004; Gao and Han, 2012).

3.3 Verification of the proposed bias correction
approaches

To investigate which bias adjustment technique (MFB, KF,
and CKF) gives the most suitable radar rainfall estimates for
the Tubma Basin, the adjusted radar rainfall estimates were
validated against measured rainfall data. There was only one
automatic TMD rain gauge available in the basin, which was

Hydrol. Earth Syst. Sci., 26, 775–794, 2022 https://doi.org/10.5194/hess-26-775-2022



P. P. Mapiam et al.: Citizen rain gauges improve hourly radar rainfall bias correction 783

Figure 4. A diagram of the procedure of Kalman filter combined with the citizen rain gauge data (CKF).

insufficient for validation purposes. Consequently, to test the
performance of the hourly rainfall bias correction, data from
13 TMD stations located within a 90 km radius of the center
of the Tubma Basin were used in addition to the one TMD
station in the basin. Furthermore, daily timescale validation
was conducted, using the daily rainfall data from 16 citi-
zen rain gauges located in the Tubma Basin. A leave-one-
out cross-validation (LOOCV) algorithm was implemented
to avoid bias in selecting the validation rain gauges. For each
round of cross-validation, one rain gauge was left out for val-
idation, and the remaining rain gauges were used as the cali-
bration rain gauges to calculate the bias adjustment factor us-

ing the three different techniques. This was repeated for all
combinations, and the error of radar rainfall estimates after
correction with the estimated bias factor at each radar pixel
corresponding to the held-out gauge was then computed for
all trials. In this study, the root-mean-square error (RMSE)
and mean bias error (MBE) were applied as statistical mea-
sures to evaluate the effectiveness of the different bias cor-
rection methods at each validation rain gauge. The number
of possible combinations is equal to the total number of vali-
dated gauges (NG). Data for the period from August to Octo-
ber 2019 were used in the evaluation. Four scenarios combin-
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Table 2. Simulation cases for evaluating the effectiveness of bias correction techniques.

Number of rain gauges used for different purposes

Evaluation Tested Rain gauge Gauges for Gauges for Validation Temporal and
case approaches datasets calculating combination gauges (NG) spatial scale of

MFB and KF with KF rainfall for
validation

KF-TMD-H MFB and 14 TMD 13 TMD – 14 TMD Hourly, Tubma Basin
KF and a 90 km radius of the basin

KF-TMD-D MFB and 14 TMD 14 TMD – 16 citizen rain Daily, Tubma
KF and 16 citizen gauges Basin

rain gauges

CKF-D MFB, KF, 14 TMD 14 TMD 15 citizen rain 16 citizen rain Daily, Tubma
and CKF and 16 citizen gauges gauges Basin

rain gauges

CKF-H� MFB, KF, 14 TMD 13 TMD 16 citizen rain 14 TMD Hourly, Tubma Basin
and CKF and 16 citizen gauges and a 90 km radius of the basin

rain gauges

� CKF-H includes four scenarios for four different hourly downscaling patterns for the citizen rain gauges, according to Table 1.

ing the three bias adjustment techniques were evaluated, as
summarized in Table 2. These four scenarios are as follows:

1. KF-TMD-H – 1 TMD rain gauge from the 14 total
gauges was left out for validation, and the remaining
13 gauges were separated to calculate the bias adjust-
ment factors using the MFB and KF. This process was
iterated 10 times until all 14 TMD rain gauges were left
out for cross-validation. Aggregated hourly rainfall val-
ues between the adjusted radar and the gauge rainfall
data were compared to obtain the RMSE and MBE.

2. F-TMD-D – to identify whether the MFB or KF is more
accurate for daily rainfall simulation in the Tubma Basin
if there are only 14 TMD rain gauges available, 14 TMD
and 16 citizen rain gauges were used for the analysis.
All TMD gauges were used for assessing the MFB and
KF, and estimated bias factors were applied at the daily
timescale. An assessment of the RMSE and MBE of
daily rainfall at all 16 citizen rain stations was used for
validation.

3. CKF-D – to evaluate the added value of using citizen
rain gauges in the basin for bias correction, 15 citizen
rain gauges (leave one citizen rain gauge out for valida-
tion) were used in addition to the TMD gauges follow-
ing the CKF procedure explained in Sect. 3.2.2. Estima-
tion of the daily RMSE and MBE was carried out at the
held-out citizen rain gauge.

4. CKF-H� – to test whether the CKF with the most suit-
able storm pattern could benefit radar rainfall estimates
in the area further away from the Tubma Basin, 14 TMD

gauges were used to generate four cases of hourly rain-
fall distribution patterns, as described in Table 1, for
downscaling the selected 16 daily citizen rain gauge
data to an hourly timescale. The synthesized hourly cit-
izen rain gauge data were later used as a second obser-
vation for the second correction of the CKF. A total of
13 TMD gauges (leave one TMD out) were used to pro-
duce estimates with the MFB and KF, and all 16 citizen
rain gauges were merged for CKF computation.

All bias adjustment techniques evaluated the effectiveness
at the held-out gauge for all possible combinations of the
LOOCV procedure.

4 Results and discussion

4.1 Simulation of the bias adjustment factor

4.1.1 Parameter estimation for the KF and CKF

Five scenarios were investigated for radar bias correction us-
ing the KF, based on TMD and citizen rain gauge observa-
tions, including four scenarios comparing different hourly
downscaling approaches for the citizen rain gauge data (Ta-
ble 1). Parameter estimates of the KF are shown in Table 3.
These results indicate that the parameter r1, the lag-one cor-
relation coefficient of the logarithmic mean field bias, ranges
from 0.15 to 0.53, depending on the hourly downscaling ap-
proach, whereas � 2

� , representing the stationary variance of
the logarithmic mean field bias, remains relatively invariant
(ranging from 0.24 to 0.28) over the same period of simula-
tion.
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Figure 5. Comparison of (a) daily observed mean field bias based on TMD rain gauges in the region and the citizen rain gauges in the Tubma
Basin, (b) hourly observed mean field bias based on TMD rain gauge observations and downscaled citizen rain gauge observations, (c) hourly
observation error variances, and (d) hourly estimated mean field bias obtained based on the MFB and the five different KF approaches.
Bias calculations cover 16 citizen gauges in the Tubma Basin and 14 TMD gauges within a 90 km radius of the Tubma Basin. Hourly
scale calculations for the citizen gauges (CKF) are based on four different sub-daily interpolation scenarios (RP, RMP, GMP, and GTubma;
Table 3).

Table 3. The parameters of the KF estimated from different datasets
of observation gauge rainfall. KF-TMD only uses TMD hourly rain
gauge observations; CKF uses TMD and citizen rain gauge observa-
tions, where RP, RMP,GMP, andGTubma represent different strate-
gies for hourly downscaling of the citizen rain gauge observations
(Table 1).

Type of observation KF parameters

gauge rainfall r1 � 2
�

KF-TMD 0.29 0.24
CKF-RP 0.53 0.28
CKF-RMP 0.33 0.24
CKF-GMP 0.15 0.24
CKF-GTubma 0.38 0.25

4.1.2 Bias adjustment factor comparison

To test the performance of the bias adjustment techniques
among KF-TMD, CKF-RP, CKF-RMP, CKF-GMP, and
CKF-GTubma, all approaches were used to assess the mean
field bias for each hour using the data period from August to
October 2019. The results were compared to the MFB cal-
culated using the 14 TMD rain gauges (MFB-TMD) in the
Tubma Basin and within a 90 km radius of the basin. The
results summarized in Fig. 5 show the following:

– The daily observed bias is somewhat higher and shows
larger variability for the citizen gauges compared with
the TMD gauges. The hourly observed bias values based
on downscaled citizen gauge data are in the same range
as hourly bias values based on TMD gauges, with some-

what higher median values and spread (25–75 percentile
range) for the RP and GTubma downscaling scenarios.

– The hourly observation error variance is smallest for the
CKF-RP downscaling approach and somewhat larger
for the other CKF approaches compared with the ob-
servation error variance for the TMD gauges.

– Estimated hourly bias values based on KF-TMD show
a slightly higher mean and a smaller variability range
compared with observations. The bias produced by the
KF-TMD is close to the MFB-TMD if the observation
error variance is small. In the case that no measured data
are available for the bias update, the computed bias fac-
tor (Bt ) progressively converges to 1.3, to meet the cli-
matological logarithmic mean field bias.

– Estimated bias values based on the CKF approaches are
able to reproduce bias variability as observed by TMD
gauges, with median values deviating by 0.2–0.4 and
the value range being slightly larger for CKF-RP and
smaller for CKF-RMP.

– CKF gives different bias values according to the storm
distribution pattern (see Appendix B) and the availabil-
ity of the daily citizen rain gauge data used in combina-
tion with the KF. In the case that no citizen rain gauge
data are available for updating, the bias generated by the
CKF for every combination is close to the ordinary KF
with small differences depending on their respective r1
and � 2

� parameters.
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Figure 6. Variation in RMSE and MBE across the cross-validation scenarios for the various evaluation cases: (a) case 1, hourly bias updating
based on the MFB and KF using TMD gauges; (b) case 2, daily bias updating based on the MFB and KF using only TMD gauges; and
(c) case 3, daily bias updating using the MFB, KF (TMD gauges), and CKF (TMD and citizen gauges). Validation covers 16 gauges in the
Tubma Basin for the daily scale and 14 gauges within a 90 km radius of the Tubma Basin for the hourly scale.

4.2 Effectiveness evaluation of bias correction
approaches

4.2.1 Hourly rainfall validation for the larger region
(90 km radius) surrounding Tubma Basin using
the MFB and KF approaches (case 1)

Figure 6a shows cross-validation results based on the RMSE
and MBE between TMD rain gauges and adjusted radar rain-
fall using the MFB and KF for hourly bias adjustment. Bias
adjustment reduces the RMSE and, especially, the MBE,
with KF-TMD performing somewhat better than the MFB-
TMD (especially in terms of the RMSE). This confirms the
ability of the KF approach that considers the error variance
of observed hourly data as the weight for correcting the pre-
dicted mean bias instead of using only the calculated mean
field bias (Smith and Krajewski, 1991; Chumchean et al.,
2006).

4.2.2 Daily rainfall validation in the Tubma Basin
using the MFB and KF approaches with citizen
gauges for validation (case 2)

Results associated with validating the bias correction perfor-
mance within the Tubma Basin are presented in Fig. 6b. This
shows bias correction performance within the Tubma Basin
for the MFB and KF-based daily bias adjustment. The two
approaches show similar performance at the daily scale and
improve the RMSE by 20 %–30 % and the MBE by 50 %–
60 % (for median and upper 75percentile, respectively). The
added value of a KF-based approach is limited for this case,
as 14 TMD rain gauges in the region were used to compute
observation variance which cannot represent the mean field
bias behavior in the Tubma Basin.

4.2.3 Daily rainfall validation in the Tubma Basin
using the CKF approach (case 3)

Figure 6c shows cross-validation results at the daily scale for
the Tubma Basin, comparing bias correction approaches us-
ing TMD only and TMD combined with citizen gauges. Fol-
lowing the CKF steps, citizen rain gauge data are downscaled
to an hourly timescale using four different approaches, result-
ing in variation in hourly observed bias and error variances,
as shown in Fig. 5b and c, respectively. Cross-validation re-
sults after accumulation to the daily scale show that CKF-RP
outperforms the other approaches (CKF-RMP, CKF-GTubma,
MFB-TMD, KF-TMD, and CKF-GMP) in terms of both the
RMSE and MBE. The performance of the CKF techniques
for radar rainfall simulation in the Tubma Basin relates to
the reliability of the downscaled hourly observations. This is
reflected in the variation in the estimated observation error
variances for CKF-RP, as shown in Fig. 5b and c. The better
performance of CKF-RP is explained by the smallest range in
observation error variance, which is indicative of better con-
sistency observation bias. In comparison with the “No-bias”
scenario, CKF-RP can improve the RMSE by 32 %–25 %
and can improve the MBE by 90 %–80 % for the median and
upper 75 percentile, respectively. In contrast, CKF-GMP ex-
hibits the worst performance compared with the other CKF
approaches, with a 13 %–16 % improvement in the RMSE
and an 57 %–56 % improvement in the MBE for the median
and upper 75 percentile, respectively. This apparent decrease
in the efficiency of the CKF can be confirmed by the highest
median value of the estimated observation error variances of
CKF-GMP (see Fig. 5c), which is 33 % higher than that of
CKF-RP.
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Figure 7. Comparison of the RMSE and MBE for different range intervals from the center of the Tubma Basin. Panel (a) shows the rain
gauge locations at each range interval, panel (b) shows comparisons for the 0–40 km range, and panel (c) shows comparisons for the 40–
90 km range. For CKF, only results for the CKF-RP approach are shown, based on its better performance at the daily timescale (shown in
Fig. 6c).

Figure 8. Comparison of mass curves of hourly rainfall among various rain gauge locations for (a) the citizen rain gauges located in the
Tubma Basin, (b) TMD rain gauges within a 0–40 km radius of the Tubma Basin, and (c) TMD rain gauges within a 40–90 km radius of the
Tubma Basin.

4.2.4 Hourly rainfall validation using the MFB, KF,
and CKF approaches (case 4)

Results for this section are presented in Figs. 7 and 8. The
performance for radar rainfall estimates using CKF-RP with
different distances from the Tubma Basin is reported in Ap-
pendix C. Cross-validation results at an hourly timescale
show a strong improvement achieved by bias adjustment us-
ing citizen gauges, in particular close to the Tubma Basin
where the citizen gauges are located. Figure 7b and c show
validation results based on TMD gauges for gauges close to
(0–40 km radius) and further away from (40–90 km radius)
the center of Tubma Basin (see Fig. 7a); both ranges cover a
similar number of TMD gauges. Figure 7b and c show that
CKF-RP bias adjustment significantly improves radar rain-
fall estimates at an hourly timescale, compared with bias ad-
justment approaches based on TMD gauges only in the 0–
40 km range closest to the Tubma Basin. While there is a
modest improvement in the mean RMSE (see the black line

connecting the mean values of the box plots from the MFB-
TMD to CKF-RP), the upper 75 percentile RMSE is reduced
from about 6 to 3.5 mm h�1. The mean MBE is changed from
0.1 to �0:15 mm h�1 (see the red dotted line connecting the
mean values from the MFB-TMD to CKF-RP). For the 40–
90 km range, CKF-RP performs similarly to the MFB-TMD
and KF-TMD.

Figure 8 illustrates that hourly rainfall distribution patterns
of TMD rain gauges in the 0–40 km range, which are mainly
influenced by the southwest monsoon, appear to be more
similar to the mean citizen rain gauge data than the range be-
yond 40 km. Consequently, the application of CKF-RP based
on combining the citizen rain gauge network with the TMD
rain gauge network (with similarity of rainfall characteristic)
is key for improving radar rainfall estimates.

The results in Fig. 7 also show that the MBE values in
the 0–40 km range are explicitly lower than those in the 40–
90 km range. Apparently, at shorter range, positive and neg-
ative errors represented in the MBE cancel out more fre-
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quently than they do for the gauges at larger distance. In
other words, gauges more or less randomly over- or under-
estimate rainfall values: we can see similar rainfall distribu-
tion patterns among all gauges, although there is high varia-
tion in the rainfall amount during the storm period in Fig. 8b.
Conversely, in the 40–90 km range, bias correction at gauge
locations consistently leads to over- or underestimation of
rainfall. This can be explained by gauges at larger distances
from the center of the basin being affected by different rain-
fall generation patterns, associated with their location closer
to the coast or mountains (see Fig. 7a). The influence of the
southwest monsoon strongly affects all gauges located in the
coastal region on the windward side of a mountain, whereas
rain gauge locations on the leeward side experience less rain-
fall. Figure 8c shows that TMD gauges located on the lee-
ward side (e.g., 4590009 and 4590011) obviously appear as
a steady gradient of the mass curve, reflecting light rainfall
accumulation, whereas gauges on the windward side (e.g.,
4590002 and 4590003) show mass curves with a sharper gra-
dient. Further details on the sensitivity bias adjustment tech-
niques’ accuracy with respect to rainfall characteristics are
provided in Appendix D.

5 Conclusion

In this study, we introduced a modified KF approach in
radar bias correction in the Tubma Basin, eastern Thailand.
The two-step KF integrates daily data from a dense citizen
rain gauge network with hourly data from a much sparser
network of conventional higher-quality tipping-bucket rain
gauges. Daily citizen rain gauge observations were down-
scaled to an hourly timescale using four different approaches.
The question that we aimed to answer was as follows:
to what extent do the downscaled citizen rainfall obser-
vations improve the accuracy of hourly radar rainfall es-
timates? Results showed that citizen rain gauges signifi-
cantly improve the performance of radar rainfall bias adjust-
ment, up to a range of about 40 km from the center of the
Tubma Basin (197 km2) where the citizen rain gauge net-
work is located. While a modest improvement in the mean
RMSE was obtained, the upper 75 percentile RMSE was re-
duced from 6 to 3.5 mm h�1. The MBE was changed from
0.1 to �0:15 mm h�1 across the validation period (August–
October 2019). In the Tubma Basin, beyond the 40 km range,
no significant improvement from the inclusion of the citizen
gauges was found. The rainfall distribution pattern is key for
downscaling the daily measured citizen rain gauge observa-
tions to an hourly temporal resolution. In the study region, we
found that downscaling based on the rainfall patterns derived
from hourly radar rainfall at overlying radar pixels corre-
sponding to the citizen gauge location was the most suitable
technique, resulting in the smallest variation in observation
error variances of the mean field bias. In the case of a sparse
rain gauge network, the mean field bias and the Kalman fil-

ter approach both show improvement, and the degree of im-
provement was similar between the two approaches. In other
words, in a sparse gauge network, the added value of error
information represented in the Kalman filter is limited. Note
that citizen rain gauge data are available only at the end of
the day; consequently, the modified two-step Kalman filter,
as used in this study, has limitations with respect to real-time
applications. However, the method proposed here has clear
potential when creating high-quality historical radar-rainfall
time series for climatological studies and in post-event analy-
sis. Moreover, near-real-time assessment could be achievable
if the citizen rain gauge data were collected at a sub-daily
timescale.

Appendix A: Citizen rain observation and validation

An example of installing a cone-shaped transparent plastic
citizen rain gauge (in standard use in South Africa) at loca-
tion R.22 (Map Tong school, Rayong Province) is illustrated
in Fig. A1. Validation of the cone-shaped citizen gauges was
done at location R.3 by comparing the measured daily cit-
izen gauge data with a co-located automatic TMD gauge,
as presented the result in Fig. A2. The root-mean-square er-
ror (RMSE) and bias were applied as statistical measures for
the validation as shown in Eqs. (A1) and (A2), respectively:

RMSED

vuut 1
T

TX

tD1

�
GTMD;t �GCR;t

�2
; (A1)

biasD

TP

tD1
GTMD;t

TP

tD1
GCR;t

: (A2)

Here, GCR;t is daily citizen gauge rainfall at location R.3 for
day t , GTMD;t is daily TMD gauge rainfall at the same lo-
cation of R.3 for day t , and T is the total period used in the
calculation.

Appendix B: Hourly rainfall distribution patterns

Four hourly rainfall distribution patterns were obtained, as
outlined in Table 1. Figure B1 illustrates the cumulative frac-
tion of daily rainfall at the hourly scale during the simulation
period from August to October 2019. It can be seen that most
rainfall was concentrated in the afternoon hours, with very
little rainfall falling at night. RP and RMP showed relatively
more rainfall concentrated in the afternoon, while RP and
GMP showed larger variability in the downscaled hourly data
with substantial outliers in the box plots, which were as-
sociated with the variability in the locations underlying the
rainfall distributions (multiple radar pixels within the Tubma
Basin for RP versus multiple TMD gauges surrounding the
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Figure A1. An example of installing a cone-shaped transparent
plastic citizen rain gauge at location R.22 (Map Tong school).

Figure A2. Daily rainfall depth comparison between the co-located
TMD and citizen rain gauge at location R.3 from August to Octo-
ber 2019.

Tubma Basin for GMP). GMP showed the flattest distribution
with the longest rainy period of around 11 h compared with
the others which had a period of heavy rainfall of around 4–
5hd�1. This is explained by the larger spatial variability in
the gauges covered by GMP.

Appendix C: The performance of radar rainfall
estimates using CKF-RP with different distances from
the Tubma Basin

We chose the 40 km separation boundary to achieve an equal
number of gauges in the “near” and “far” groups. Follow-
ing the referee’s comment, we investigated the RMSE be-
tween gauge rainfall and radar rainfall without bias adjust-
ment (RMSENo-bias) and with the CKF-RP (RMSECKF-RP)
for individual stations (located at distances of 5–80 km from
the Tubma Basin). We computed the percentage improve-
ment in radar rainfall estimates using CKF-RP compared
with No-bias at each rain gauge, indicating that the relative
errors change with distance from the Tubma Basin (Fig. C1).

Figure C1 shows that the improvement percentage of using
CKF-RP tends to decrease with increasing distance from the
Tubma Basin, where the citizen gauges are located. The per-
centage reduction gradually decreases beyond a distance of
about 40 km.

Note that gauge 4780010, situated nearest to the basin,
is expected to provide the best improvement; however, the
Sattahip radar temporarily stopped measuring for 3 h (from
16:00 to 19:00 LT on 24 September 2019) due to the pres-
ence of a heavy storm’s center that was only observed at
this gauge. This leads to significant degradation of the radar
rainfall performance. Furthermore, the lower percentage im-
provement for station 4780005 is associated with a localized
heavy rainfall event that was only recorded at this location
and negatively affected its performance as a representative
station for bias correction.

Appendix D: Investigation of rainfall characteristics
affecting the accuracy of bias adjustment techniques

Figure 7b shows that the upper 75 percentile RMSE of the
shorter range is remarkably high while using only TMD
gauges for the bias adjustment. These errors occurred for
3 h at three different gauge locations when heavy rainfall
data were only measured at the validated gauge location
while there was relatively uniform light rainfall at all avail-
able surrounding TMD gauges used for the bias adjustment
calculation. Consequently, the calculated bias factors from
the available gauges could not represent the heavy rain-
fall at the tested location, leading to the significant RMSE.
An analysis of hourly rainfall hyetographs obtained from
the TMD rain gauge network compared with the validated
rain gauge occurring on 3 different days is illustrated in
Fig. D1. It shows a considerable RMSE for 3 h on 3 d –
15 September 2019, 12:00 LT; 21 September 2019, 15:00 LT;
and 22 September 2019, 14:00 LT – associated with the vali-
dated gauges, 4780001, 4780005, and 4780003, respectively.
However, these RMSE values decrease considerably if the
CKF-RP was only implemented in the shorter range.

Indeed, Fig. 8a and b show that one of the citi-
zen gauges (R.18) collected a cumulative monthly rainfall
amount that was higher than the range of the other citizen and
TMD rain gauges. This is associated with a storm event that
occurred in September 2019 (the storm center was over R.18,
while the surroundings received appreciably less rainfall).
Figure D2 shows the radar reflectivity field at 13.00 LT on
22 September 2019, during the peak of the storm, confirming
the heavy rainfall affecting gauge location R.18. This shows
that the citizen gauge network is able to capture local storm
features thanks to the high density of the network. The multi-
ple reporting gaps visible in Fig. 8a are caused by time errors
in the observations submitted by local residents which were
removed from the analysis (as explained in Sect. 2.3.2).
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Figure B1. Variation in the fraction of 24 h rainfall for each rainfall distribution scenario.

Figure C1. Alteration of the percentage improvement in radar rainfall estimates using CKF-RP compared with No-bias at each rain gauge
with different distances from the Tubma Basin.
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Figure D1. Hourly rainfall hyetographs obtained from the TMD rain gauge network compared with the validated rain gauge for 3 different
days: (a) a storm event on 15 September 2019 based on using 4780001 as the validated gauge, (b) a storm event on 21 September 2019 based
on using 4780005 as the validated gauge, and (c) a storm event on 22 September 2019 based on using 4780003 as the validated gauge.

Figure D2. Overlap between the citizen rain gauge network and the spatial radar reflectivity data on 22 September 2019 at 13:00 LT.
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