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Abstract. During the last decade, rainfall monitoring using
signal-level data from commercial microwave links (CMLs)
in cellular communication networks has been proposed as
a complementary way to estimate rainfall for large areas.
Path-averaged rainfall is retrieved between the transmitting
and receiving cellular antennas of a CML. One rainfall esti-
mation algorithm for CMLs is RAINLINK, which has been
employed in different regions (e.g., Brazil, Italy, the Nether-
lands, and Pakistan) with satisfactory results. However, the
RAINLINK parameters have been calibrated for a unique
optimum solution, which is inconsistent with the fact that
multiple similar or equivalent solutions may exist due to un-
certainties in algorithm structure, input data, and parame-
ters. Here, we show how CML rainfall estimates can be im-
proved by calibrating all parameters of the algorithm sys-
tematically and simultaneously with the stochastic particle
swarm optimization method, which is used for the numeri-
cal maximization of the objective function. An open dataset
of approximately 2800 sub-links of minimum and maxi-
mum received signal levels over 15 min intervals covering
the Netherlands (~ 35 500km?) is employed: 12d are used
for calibration and 3 months for validation. A gauge-adjusted
radar rainfall dataset is utilized as a reference. Verification of
path-average daily rainfall shows a reasonable improvement
for the stochastically calibrated parameters with respect to
RAINLINK’s default parameter settings. Results further im-
prove when averaged over the Netherlands. Moreover, the
method provides a better underpinning of the chosen param-
eter values and is therefore of general interest for calibration

of RAINLINK’s parameters for other climates and cellular
communication networks.

1 Introduction

Accurate rainfall observations with high temporal and spa-
tial resolution are crucial for, e.g., agriculture, meteorology,
flood warnings, and freshwater resource management. How-
ever, for many places on the Earth’s land surface, accu-
rate rainfall information is lacking, especially from ground-
based measurements at sub-daily and daily timescales (Sun
et al., 2018). Another issue is the data availability of ground-
based measurements. For instance, the largest worldwide rain
gauge database, maintained by the Global Precipitation Cli-
matology Centre (GPCC), had 45 000 rain gauges in 1961—
2000, down to 10000 after 2016. This decrease was caused
by a delay in data delivery and by post-processing at GPCC
(Schneider et al., 2021). Although decreasing in the past due
to quality control, the GPCC database has been increasing in
recent years as a result of delivery of updates as well as sup-
plements with additional stations and long time series of data
(Schneider et al., 2021).

Suggested by Upton et al. (2005) and initially applied by
Messer (2006) and Leijnse et al. (2007), the technique to
estimate rainfall intensities based on signal-level data from
commercial microwave links (CMLs) is slowly but surely be-
coming a complementary source of rainfall information next
to traditional ground-based measurements from rain gauges,
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weather radars, and disdrometers. A CML is the link along a
path between a transmitting antenna on one cell phone tower
and a receiving antenna on another cell phone tower, often
having two sub-links for communication in both directions.
Since rainfall attenuates microwave radiation at frequencies
of tens of gigahertz (GHz) (wavelengths of about 1 cm), typ-
ically employed by CMLs, the integrated rain-induced atten-
uation along the link path can be computed from the decrease
in signal levels with respect to dry weather and subsequently
converted to path-average rainfall. The core of the rainfall
retrieval algorithm is the conversion of specific attenuation k
(dBkm™!) to path-average rainfall intensity R (mm h~1) via
the power-law relation R = ak” (Atlas and Ulbrich, 1977,
Olsen et al., 1978). The coefficient ¢ (mmh~! dB~? km?)
and exponent b (-) depend mainly on the microwave link’s
frequency and polarization and on the raindrop size distribu-
tion (DSD) (Leijnse et al., 2007). Before applying the power-
law relation, the received signal power must be processed to
filter out any attenuation unrelated to rain and to compare
signals during a rainy interval with those from dry intervals.
A typical workflow consists of (i) CML data acquisition and
pre-processing, (ii) identification of rain events in noisy raw
data (wet—dry classification), (iii) baseline determination rep-
resentative of dry intervals, (iv) removal of outliers due to
malfunctioning links, (v) correction of received signal pow-
ers, and (vi) computation of mean path-average rainfall inten-
sities (Overeem et al., 2016a; Chwala and Kunstmann, 2019).

An advantage of CMLs is that they use the existing in-
frastructure of mobile network operators (MNOs) for net-
work maintenance, data storage, and acquisition. Further-
more, CMLs can be employed as a complement to existing
rain gauge and weather radar networks, as well as in areas
where instruments for ground observation are poor or non-
existent. Thus, rainfall retrieval from CML data and subse-
quent mapping is a form of “opportunistic” sensing that has
gained prominence in recent years (Uijlenhoet et al., 2018;
Chwala and Kunstmann, 2019).

A number of studies highlight the successful employment
of CMLs for rainfall retrieval, of which the most relevant for
this study are discussed here. Zinevich et al. (2009) show that
this technique is suitable for measuring near-ground rainfall
around the cities of Ramle and Modi’in (area ~ 900 kmz;
density ~0.025 CML km™2) in Israel. Incorporating the un-
certainty associated with the different sources of rainfall in-
formation, Bianchi et al. (2013) obtained reliable rainfall in-
tensity estimates by combining rain gauge, radar, and mi-
crowave link observations in the Ziirich area, Switzerland
(area ~ 460 km?; density ~0.03 CML km~2). In a dedicated
case study in Prague, Czech Republic, Fencl et al. (2015)
used 14 CMLs over a small area of 2.5 km? (i.e., a density
of 5.6 CML km™2), concluding that quantitative precipitation
estimates from CMLs capture the spatiotemporal rainfall dis-
tribution at the microscale very well. Recently, de Vos et al.
(2019) reached correlations around 0.60 for daily rainfall ac-
cumulations using instantaneously sampled data from a CML
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network in the Netherlands (density = 0.054 CML km~2).
Moreover, comparing those results with earlier studies in
the Netherlands, the authors highlight the fact that min—max
sampling outperforms instantaneous sampling in terms of
rainfall estimates. Long-term studies involving country-wide
verification of CML rainfall estimates based on data from a
few thousand CMLs are provided by Overeem et al. (2016b)
for the Netherlands employing RAINLINK (Overeem et al.,
2016a) and by Graf et al. (2020) for Germany employing py-
comlink (https://github.com/pycomlink/pycomlink, last ac-
cess: 16 October 2020), which are both open-source rainfall
retrieval packages. Machine learning supervised algorithms
have been used for rainfall retrieval via CMLs, improving the
performance of this kind of rainfall measurement (Pudashine
et al., 2020; Habi and Messer, 2021). These data-driven so-
lutions also hold promise for ungauged areas, but it will not
be feasible for places or countries without sufficient refer-
ence data to train the machine learning algorithms. That is,
data-driven models require a huge number of observations to
learn and detect the whole behavior of the phenomenon to be
modeled. For other algorithms, such as RAINLINK, it may
still be feasible to at least tune a few parameters, for instance,
by employing drop size distribution observations (from a re-
gion with a similar climate) to obtain more appropriate coef-
ficients of the relationship between specific attenuation and
rain rate.

Likewise, research has been conducted to evaluate CML-
derived rainfall in hydrological model responses. Brauer
et al. (2016) study the effects of differences in rainfall
measurement techniques (including CMLs) on discharge
and groundwater simulations using a lumped rainfall-runoff
model in a small (6.5km?) catchment. CML-derived rain-
fall estimates are found to lead to much better results than
real-time weather radar data when comparing discharge and
groundwater simulations to observations for a full year. In-
vestigating the potential of CML-derived rainfall estimates
for streamflow prediction and water balance analyses, Smi-
atek et al. (2017) observe a significant improvement in the re-
production of observed discharge values for events with local
heavy rainfall. The authors find that even rainfall fields pro-
vided by gauge-adjusted weather radar do not capture such
events, which suggests that an extremely dense monitoring
network would be needed to properly capture local heavy
rainfall. Likely, this explains why Liberman et al. (2014)
achieve better results by merging CML and radar data rather
than using just one of these sources to retrieve rainfall inten-
sities.

Despite all these studies showing the potential of CMLs
for rainfall monitoring, challenges remain. These are mainly
related to dealing with typical sources of error, e.g., wetting
of antennas in rain events causing additional attenuation and
hence resulting in rainfall overestimation, as well as signal-
level decrease during dry periods in CML raw data (Lei-
jnse et al., 2008; Messer and Sendik, 2015; Overeem et al.,
2016a). Rainfall retrieval algorithms for CMLs aim to take
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these phenomena into account, although issues such as wet—
dry classification still require improvement. Another chal-
lenge concerns the calibration of the parameters of the rain-
fall retrieval algorithms. Current calibration procedures fall
short of addressing the uncertainties associated with CML
signal levels (e.g., due to different brands of antennas and
varying path lengths), algorithm structure (e.g., attenuation
thresholds for classification of rainy and non-rainy periods),
model parameters (e.g., for wet antennas and outlier filters),
and rainfall itself (e.g., due to DSD spatial variability along
the link path). Concretely, the parameters of the algorithms
are calibrated empirically in order to obtain a unique opti-
mum solution. In fact, many optimum solutions can occur,
corresponding to different parameters sets (a phenomenon
known as equifinality).

Here, we partly address this by calibrating the most im-
portant parameters of the open-source rainfall retrieval al-
gorithm RAINLINK systematically and simultaneously with
the stochastic particle swarm optimization method. This is
preceded by a sensitivity analysis selecting the most impor-
tant parameters. RAINLINK has been used for CML rain-
fall estimation in various regions, i.e., Australia, Brazil, Italy,
the Netherlands, Nigeria, Pakistan, and Sri Lanka (Overeem
et al.,, 2016a, b; Sohail Afzal et al.,, 2018; Rios Gaona
et al.,, 2018; de Vos et al., 2019; GSMA, 2019; Roversi
et al., 2020; Overeem et al., 2021b; Pudashine et al., 2021),
and has been calibrated deterministically (Overeem et al.,
2011, 2013, 20164, b; de Vos et al., 2019). With the new
optimization method, we provide a better underpinning of
parameter values for this CML rainfall retrieval algorithm.
Moreover, we optimize for the first time the main RAIN-
LINK processes, i.e., wet—dry classification and rainfall re-
trieval, separately. These resulting CML rainfall estimates
are contrasted with those based on RAINLINK’s default
parameter values (Overeem et al., 2011, 2013, 2016a). A
gauge-adjusted radar rainfall dataset is utilized as a refer-
ence for the CML-derived path-average rainfall estimates.
We use a large publicly available CML dataset of approxi-
mately 2800 sub-links of minimum and maximum received
signal levels over 15 min intervals covering the Netherlands
(~35500km?); 12d are used for calibration and 3 months
for validation.

This study is organized as follows. First, the study area,
datasets (Sect. 2.1), and methodology (Sect. 2.2 and 2.3) em-
ployed for RAINLINK calibration are presented. Next, the
results and discussion (Sect. 3) present our major findings.
Finally, the conclusions (Sect. 4) summarize the findings and
highlight the recommendations and outlooks for further re-
search.

https://doi.org/10.5194/amt-15-485-2022

2 Material and methods
2.1 Study area and datasets

The study area considered is the Netherlands (~ 35 500 km2;
Fig. 1a), which has a temperate oceanic climate according
to the Koppen—Geiger classification (Peel et al., 2007). CML
data were obtained from MNO T-Mobile NL: minimum and
maximum received power over 15min intervals based on
10 Hz sampling with a precision of 1 dB. Data from approx-
imately 2800 sub-links (validation) and 2940 (calibration)
per time interval were available (after pre-processing with
RAINLINK). The 12d calibration dataset used to optimize
RAINLINK’s parameters covers the period from June to
September 2011. It served as a validation dataset in Overeem
et al. (2013). The 3-month validation dataset covers the sum-
mer months of June, July, and August 2012. We only use data
from summer in the Netherlands to prevent analyzing events
with solid precipitation. This has the added advantage of the
data bearing greater resemblance to rainfall in (sub)tropical
climates, where the use of CMLs for rainfall retrieval has the
largest potential.

Figure 1 illustrates the main characteristics of the CML
dataset used for validation. Being distributed over the entire
country (Fig. 1a), the CMLs have a high temporal and spatial
data availability; i.e., 92 % of sub-links have observations for
more than 80 % of the period. In spite of not having a per-
fectly uniform distribution in terms of their directions, all
direction classes are well-represented (Fig. 1b). Microwave
frequencies range from ~ 13 to 40 GHz (the majority from 37
to 40 GHz, Fig. 1c). Lengths vary from 0.1 to 20 km (the ma-
jority less than 5 km, Fig. 1d), with shorter lengths typically
corresponding to higher microwave frequencies (Fig. 1d).

A climatological gauge-adjusted radar rainfall dataset of
5 min rainfall depths, aggregated over 15 min, was used as
a reference for calibration of the rainfall retrieval algorithm
(RAINLINK) and validation of rainfall estimates. The radar
dataset is maintained by the Royal Netherlands Meteorolog-
ical Institute (KNMI) and has a 1 km spatial resolution. For
more details, see Overeem et al. (2009a, b, 2011).

2.2 Rainfall retrieval algorithm

Overeem et al. (2016a) describe the CML rainfall re-
trieval algorithm RAINLINK. Made available as an R
package (R Core Team, 2018), the current version of
RAINLINK is 1.21 (Overeem et al., 2021a), and ver-
sion 1.2 was used in this study, which is hosted at
https://doi.org/10.5281/zenodo.5907524 (Overeem et al.,
2022). The code has been published together with Overeem
etal. (2016a). RAINLINK’s default parameter values are de-
rived or selected (Overeem et al., 2011, 2013, 2016a). The
algorithm begins with a quality control by pre-processing the
CML data. Links with frequencies lower than 12.5 GHz and
higher than 40.5 GHz are discarded. Moreover, the attributes

Atmos. Meas. Tech., 15, 485-502, 2022
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Figure 1. Map of the Netherlands and sub-link characteristics for the validation dataset: (a) CML locations and availability, (b) distribution
of link directions, (c) distribution of microwave link frequencies, (d) distribution of link lengths, and (e) density of link length and frequency

combinations.

frequency, link coordinates, path length, and identifier are
checked for either duplicated or mismatched information.
Next, RAINLINK is divided into two main sub-processes,
one for defining wet and dry periods and the other one for
the actual rainfall retrieval.

2.2.1 Wet—dry classification

The process to define wet and dry periods assumes that rain-
fall is spatially correlated. Therefore, during a rainy time in-
terval, a substantial decrease in received signal levels should
be detected by nearby links within a specific radius (Overeem
et al., 2011, 2016a). This approach is called the “nearby link
approach”. The output is a binary response to indicate wet
and dry periods. Table 1 highlights all employed parameters.

2.2.2 Rainfall retrieval

Once the rainy and non-rainy time intervals have been identi-
fied, a reference signal level (Pf) is computed, which repre-
sents the median received power during dry intervals. Next,
outliers are removed by applying a filter which uses specific
attenuation derived from the uncorrected minimum received
power. It assumes that rainfall is correlated in space. The
filter removes a time interval of a link for which the time-
integrated difference between its specific attenuation and that
of the surrounding links over the previous period (Table 2,

Atmos. Meas. Tech., 15, 485-502, 2022

parameter RRy) is lower (i.e., more negative) than a certain
threshold (Table 2, parameter RR3).

To prevent nonzero rainfall estimates during non-rainy in-
tervals, corrected minimum (Pn(l:in) and maximum (Prgax) re-
ceived power is calculated by adjusting the signals to the
base level for non-rainy intervals. Subsequently, the mini-
mum and maximum rain-induced attenuation, A, (dB) and
Amax (dB), respectively, are calculated for each link and time

interval using

Amin = Pret — Pgax,
Amax = Pref_Pnclin' (D

Next, the minimum and maximum path-averaged rainfall in-
tensities, Rpyin (mm h_l) and Rp,x (mm h_l), respectively,
are computed according to

(

where H is the Heaviside function (if the argument of
H is smaller than zero, H =0; else H =1). A, (dB) is
a fixed wet antenna attenuation correction term, and a
(mmh~"dB~?km”) and b (-) are the coefficient and ex-
ponent of the employed power-law R — k relation, respec-
tively. The values of a and b, which depend mainly on link
frequency, have been derived from measured raindrop size
distributions and computations of electromagnetic scattering

Amin, max — A b
%H (Amin, max — Aa)) > 2

Rmin, max — a
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Table 1. Wet—dry classification parameters (WDpy): default values from RAINLINK and calibration search space (minimum and maximum

values). Modified from Overeem et al. (2016a).

Parameter description Symbol and unit Default Minimum Maximum
value value value

WDy — Minimum number of hours needed —(h) 6 2 15

to compute max(Ppin)

WDy, — Number of previous hours over —(h) 24 6 24

which max(Ppj,) is to be computed (also

determines period over which cumulative

difference F of outlier filter is computed)

WDp3 — Radius r (km) 15 10 30

WDp4 — Attenuation threshold median(A P) (dB) —14 —8 0

WDps — Specific attenuation threshold median(A Pp) (dB km_l) —0.7 -2 0

WDp6 — Minimum number of available - 3 3 10

(surrounding) links

WDp7 — Minimum received power threshold - (dB) 2 1 4

Table 2. Rainfall retrieval parameters (RRp;, ): default values from RAINLINK and calibration search space (minimum and maximum values).

Modified from Overeem et al. (2016a).

Parameter description Symbol and Default Minimum Maximum
unit value value value

RRp| —Minimum number of hours that - (h) 2.5 2.5 12

should be dry in preceding period

RRpy — Period over which reference —(h) 24 12 24

level is to be determined

RRp3 — Outlier filter threshold F; (dB km~! h) —32.5 —100 0

RRp4 — Wet antenna attenuation A, (dB) 2.3 0 5

RRps — Temporal rain rate distribution o (=) 0.33 0.1 0.6

coefficient

by raindrops for vertically polarized signals (Leijnse et al.,
2008). The polarization for individual links was unknown,
but the majority of links used vertically polarized signals.

Finally, the mean path-averaged rainfall intensity, R
(mmh~"), is computed by means of

E == aEmax + (1 - a)ﬁmin, (3)

where « is a coefficient which determines the contribution
of the minimum and maximum path-averaged rainfall inten-
sity during a time interval. Table 2 gives an overview of all
parameters used in the rainfall retrieval process.

2.3 RAINLINK sensitivity analysis and calibration

Using the mean 15 min path-averaged rainfall intensities re-
trieved from RAINLINK, the parameters with the highest
importance in the algorithm are identified by means of a sen-

https://doi.org/10.5194/amt-15-485-2022

sitivity analysis called Latin hypercube one factor at a time
(LH-OAT) (Van Griensven et al., 2006). This method ensures
that the full range of parameters is sampled according to an
LH design and within each sample the parameters are tested
one at a time. Initially, it takes N LH sample points for N
intervals while varying each LH sample point p times by
changing each of the n parameters one at a time, according
to the OAT design (Van Griensven et al., 2006). Around each
Latin hypercube point a relative partial effect for each param-
eter is calculated. A final effect is calculated by averaging the
partial effects over all N LH points. Thus, local sensitivities
(i.e., partial effects) get integrated into a global sensitivity
measure. Having the same feature as the Monte Carlo sam-
pling, i.e., a global screening method, LH sampling reduces
the computational cost significantly (n — 1 times), therefore
being more efficient (Van Griensven et al., 2006).

Atmos. Meas. Tech., 15, 485-502, 2022
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The method is very efficient, as the N intervals in the LH
method require a total of N(p + 1) evaluations. The relative
importance of the parameters is determined by ranking the
final effects from large to small (Van Griensven et al., 2006).
Each relative importance can be divided by the sum of all rel-
ative importances to yield a normalized measure of relative
importance. We choose a step size that represents a fraction
of 0.1 of the parameter search space. The 12 parameters se-
lected for the sensitivity analysis are listed in Tables 1 and
2. The most sensitive parameters are selected such that the
sum of their normalized relative importances reaches at least
95 %.

After having selected the most important parameters by
sensitivity analysis, the RAINLINK parameters are opti-
mized with the standard particle swarm optimization (SPSO-
2011) method (Clerc, 2012). As a major improvement over
previous PSO versions with an adaptive random topology
and rotational invariance, SPSO-2011 is a stochastic, effec-
tive, and efficient calibration method, as highlighted in recent
studies with other hydrological and environmental models
(Abdelaziz and Zambrano-Bigiarini, 2014; Bisselink et al.,
2016; Pijl et al., 2018). The optimization is performed for the
two RAINLINK sub-processes separately. First, the wet—dry
classification parameters are calibrated to make sure RAIN-
LINK is able to correctly identify dry and rainy periods.
Next, using the optimum parameters for the wet—dry clas-
sification, the rainfall retrieval parameters are calibrated. We
have included all zero rainfall observations in the entire cal-
ibration process for both the gauge-adjusted radar reference
and the RAINLINK estimates. Note that data from individual
sub-links were used in the calibration process, so data from
two links (in opposite directions) having the same link path
were not averaged.

The goodness-of-fit measures chosen to drive the opti-
mization and performance for the wet—dry classification and
the rainfall retrieval processes are the Matthews correla-
tion coefficient (MCC) (Matthews, 1975) and the modified
Kling—-Gupta efficiency (KGE) (Kling et al., 2012), respec-
tively. Both are maximized towards an optimum value of 1.
A 15min time interval from a given sub-link is considered
dry if the reference is below 0.25 mm.

Due to the higher frequency of non-rainy 15 min intervals
(data points), the process of wet—dry classification is con-
sidered an imbalanced classification problem. Employing re-
current metrics for binary classification, such as F1 score and
accuracy, may lead to inflated results. The Matthews corre-
lation coefficient is less subjective and preferred since it in-
forms how correlated the predictions and observations are,
reaching a high score only if the prediction obtained good
results in all four confusion matrix categories (true positives
— TPs, false negatives — FNs, true negatives — TNs, and false
positives — FPs) (Chicco and Jurman, 2020). The Matthews

Atmos. Meas. Tech., 15, 485-502, 2022

correlation coefficient is defined as
. TP-TN — FP-FN
N /(TP +FP)(TP + FN)(IN + FP)(IN + FN)

McCC “)

The denominator is arbitrarily set to 1 when any of the four
sums in the denominator is zero. Kling—Gupta efficiency is
defined as

KGE=1-(p— 12+ B -1+ — 12, 5)
with p the Pearson correlation coefficient, 8 the bias ratio

— e

p , (6)
Mo

and y the variability ratio,
Cv

y = e _ Oclbo ’ (7
CV, MeOo

where 1 and o are the mean and standard deviation of path-
averaged rainfall intensity (mm h~1) for CML estimates (e)
and gauge-adjusted radar observations (0). CV is the coeffi-
cient of variation, defined as the ratio of the standard devia-
tion and the mean.

2.4 RAINLINK validation

The validation was performed for both wet—dry and rain-
fall retrieval RAINLINK processes by using the newly cal-
ibrated parameters against its default parameters as given by
Overeem et al. (2016a). In addition to MCC and following
the confusion matrix, the assessment binary metrics, accu-
racy, sensitivity, and specificity were computed as follows:

TP +TN
Accuracy = , (3)
TP+ TN+ FP +FN
o TP
Sensitivity = ——, ©)]
TP +FN
Specificity = ——. 10
P = Ep F TN (10)

As for the RAINLINK rainfall retrieval process, besides
KGE and its components p, 8, and y, the CV of the residu-
als (CV ), the percent bias (PBIAS), and root mean square
error (RMSE) were employed:

CVies = 2 (a1
Mo
n o — .
PBIAS  1002=i=L(¢ — %) (12)
Zi:loi
n . 2
RMSE — M#’o’), (13)

Finally, the level of agreement of daily rainfall is ana-
lyzed graphically. RAINLINK’s ability to estimate 15 min

https://doi.org/10.5194/amt-15-485-2022
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path-average rainfall rates is also evaluated. Moreover, both
agreement of accumulated rainfall for all individual CMLs
and agreement of daily mean rainfall over the Netherlands
estimated from the CML values (as time series) are consid-
ered, taking those links with over 75 % of data availability
into account.

3 Results and discussion
3.1 Calibration
3.1.1 Wet—dry classification parameter optimization

The sensitivity analysis for the wet—dry classification pro-
cess is performed at a 15 min time interval. Table 3 provides
the parameter ranking obtained considering the search space
illustrated in Table 1. The most important parameters are
WD;2, WDp4 (median(A P)), WDp1, WDps (median(A PL)),
and WD,3 (r). The accumulated relative importance of these
parameters is 98 %. The importance of the two thresholds
(WDp4 and WDps) was expected because these parameters
define the values for which an individual microwave link
will be classified as rainy or not. However, the analysis per-
formed here, which systematically evaluates all parameters
together by maximizing a goodness-of-fit measure, reveals
that the parameters WDz, WDy1, and WDys are important
as well. The highest importance reached by the WDy pa-
rameter highlights the rain-induced attenuation temporal cor-
relation. Since this parameter represents the number of pre-
vious hours over which the maximum value of the mini-
mum received power (max(Ppiy)) is computed, it governs
the wet—dry classification process by influencing the attenu-
ation (median(A P)) and specific attenuation (median(A Pp))
computation. It is important to highlight that the max(Pp;n)
is only computed if at least a minimum number of hours
(defined by WDy,1) of data are available; otherwise it is not
computed and no rainfall intensities are retrieved. The low
ranking of the WDy threshold is consistent with the find-
ings of Overeem et al. (2016a), who report that including this
step hardly changes results for a 12 d dataset when validating
rainfall depths (i.e., the total effect on the amounts, not the
occurrence of wet and dry periods as such).

The five highest-ranked parameters are now employed in
the calibration, taking the ranges reported in Table 1 into ac-
count. Using particle swarm optimization (PSO), the parame-
ters’ dispersion and distributions across the search space have
been computed for the 12 d calibration dataset (Fig. 2). The
distributions are obtained for all solutions, and the frequency
histograms of the parameters are multi-modal and skewed,
reflecting the uncertainties in the optimum values.

The parameters WDp1, WDp2, WDp3, WDy, and WDps
reach optimum values equal to 7.5h, 14.1h, 19.7km,
—2.7dB, and —0.9dbkm™!, respectively. Compared with
the default values of these parameters, namely 6h, 24 h,
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Table 3. Wet—dry classification sensitivity analysis: WDp, (sym-
bol) — wet—dry classification parameters; see description in Table 1.

Rank  Parameter (symbol) Relative RI

importance  normalized

(RD

1* WDy 77.68 0.48
2% WDy (median(A P)) 35.07 0.21
3* WDy 29.44 0.18
4% WDps (median(A PL)) 10.37 0.062
5* WDp3 (1) 10.23 0.061
6 WDy 2.16 0.013
7 WDy 0.32 0.0019

Note: * most sensitive parameters obtained from the Latin hypercube
one-factor-at-a-time analysis.

15km, —1.4dB, and —0.7dBkm™!, the difference is con-
sidered small for the parameters WDy, WDp3, and WD,s.
However, the parameters WDy, and WDp4 presented a rea-
sonable difference compared to the default values. For so-
lutions with an MCC value greater than 0.53, which are
classified as “behavioral” solutions (Zambrano-Bigiarini and
Rojas, 2013), the median values of the parameters were
4.8h, 10h, 18.9km, —1.5dB, and —0.7dBkm™! for WDy,
WDy2, WDp3, WDp4, and WDys, respectively. The values
obtained for the calibrated parameters are based on the me-
dian of the behavioral solutions and are in line with the de-
fault parameters, except for WDy, which indicates a shorter
period for computing the maximum of the minimum received
power. A possible explanation for the optimized value of 10h
in contrast to the default value of 24 h is that this 10h pe-
riod is more representative for the wet—dry classification. For
instance, signal fluctuations due to, e.g., changes in atmo-
spheric moisture in the period 24 to 10 h before the current
interval may result in wet—dry classification parameter val-
ues being less representative, which may lead to less accurate
wet—dry classification.

It should be noted that, in spite of being gauge-adjusted,
the radar product used here is not a perfect reference. Dif-
ferences between radar sampling (indirect measurements
aloft) and ground-based sensors can lead to significant er-
rors (de Vos et al., 2019). Thus, accounting for this sampling
difference could even further increase the value of the MCC
metric. In particular for small rainfall events, these errors can
lead to false positive and false negative classifications.

The value of the WDy parameter results in exclusion
of 12 % of the data points during the algorithm processing
for both default and calibrated parameters sets (which have
a similar value). This parameter has a direct relation with
data availability, since it determines the minimum number of
hours needed to compute max(Ppn). Note that max(Ppin)
is only computed if at least a minimum number of hours
of data are available; otherwise it is not computed and no
rainfall intensities will be retrieved (Overeem et al., 2016b).
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Figure 2. Calibration of the wet—dry classification parameters: panel showing the interaction between calibration parameters at different
Matthews correlation coefficient (MCC) values. Note: the upper-right diagonal represents the correlation among the parameters for both
the total samples (black values) and the grouped samples (color values) by MCC intervals. Significance levels: *** p < 0.001, * p < 0.05,

@

> p < 0.1, and no symbol p < 1.

Although the calibration dataset has been selected consider-
ing rainy days, the number of non-rainy data points is much
higher than the number of rainy data points, representing
93 %, which is comparable to the average occurrence of dry
spells in the Netherlands according to automatic weather sta-
tions. Thus, this calibration period can be considered repre-
sentative for other periods within the same weather season.

3.1.2 Rainfall retrieval parameter optimization

The same sensitivity analysis and calibration are employed
for the rainfall retrieval at the 15min time interval (Ta-
ble 4); zeroes in the CML and/or reference are also included.
The sensitivity analysis presented here underlines the uncer-
tainty associated with the microwave link measurements. The
most sensitive parameters are RRps (o) and RRp4 (A,). The
summed relative importance of these parameters is 95 %.

Atmos. Meas. Tech., 15, 485-502, 2022

Table 4. Rainfall retrieval sensitivity analysis: RRp, — rainfall re-
trieval parameters; see Table 2.

Rank  Parameter Relative RI

(symbol) importance  normalized

(RD

1 RRps () 1071.18 0.84
2 RRp4 (Aa) 143.92 0.11
3 RRpy 27.96 0.02
4 RRp 17.39 0.01
5 RRp3 (F1) 8.32 0.006

The parameter RRy4 is related to the correction of the
attenuation due to wet antennas. This phenomenon is con-
sidered an important source of extra attenuation and may
cause significant rainfall overestimation if not sufficiently ac-
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counted for (Leijnse et al., 2008; Messer and Sendik, 2015;
Overeem et al., 2016a).

Since the parameter RRps represents a coefficient that
determines the relative contributions of the minimum and
maximum path-averaged rainfall intensities (Runin and R max,
Eq. 3) to the 15 min average rainfall intensity estimates, it
is directly related to the temporal sampling strategy of the
received signal power and has an important weight in the
rainfall retrieval. In a comparative study, de Vos et al. (2019)
found that min—max sampling at a 15 min time interval (as
employed by RAINLINK) outperforms instantaneous sam-
pling in the Dutch climate. This underlines the importance of
properly estimating RRps (o) for accurate rainfall retrievals.

The parameter RR;,3 (Fy) represents an outlier filter. There-
fore, it seems reasonable to assume a threshold value based
on expert judgment because strict filtering would result in
a high performance, but with a severe decline in the re-
maining number of links. Using the default values of the
parameters RRp4 (A;) and RRps (o) obtained in Overeem
et al. (2013), Overeem et al. (2016a) applied a sensitivity
analysis varying only the parameter RRp3 (F), confirming
that the default value equal to —32.5dB km~! h~! (Overeem
et al., 2013) is a reasonable trade-off between performance
and retaining a significant number of links. Although con-
sidered unimportant by the sensitivity analysis in the range
from —100 to 0dB km~! h, a proper calibration procedure is
deemed important, and the default value of RR3 (F?) fixed
at —32.5dBkm~! h™! is kept to prevent an excessive loss of
data. One way forward to calibrate RR,3 (F;) would be to
include the number of available links in the optimization or
perform an optimization based on rainfall maps, which can
be influenced by the underlying CML network density.

Figure 3 illustrates the interaction between parameters in
the calibration procedure for the rainfall retrieval at different
KGE values. This figure shows that the regions with the high-
est KGE values (green and blue points) correspond mainly to
values ranging from 1 to 2.5dB for RRp4 and from 0.17 to
0.30 for RR5. We classified the solutions greater than 0.45 as
behavioral solutions (dark green and blue points in Fig. 3a).
Different from the calibration of the wet—dry classification
process, we observe a distribution of the parameters that is
less skewed and with a well-defined mode (Fig. 3b). Thus,
for the respective parameters RRp4 and RRyps, the optimum
values of 1.7 dB and 0.23 are almost identical to the median
values for the behavioral solutions of 1.74 dB and 0.24.

The parameter RR;,4 shows a more pronounced dispersion
than the parameter RRy,5. RRp4 is related to wet antenna at-
tenuation and varies depending on the ambient conditions,
e.g., while there is dew, rainwater, or melting precipitation
(the latter unlikely in this study) present on the antenna cov-
ers (Leijnse et al., 2008; Overeem et al., 2016b; Uijlenhoet
et al., 2018). It may also vary depending on the type of an-
tenna cover. Finally, in the rainfall retrieval algorithm it is
always assumed that, whenever it rains, RRp4 is constant,
whereas in reality neither antenna, only one antenna, or both
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antennas may be wet. Hence, it is unlikely that all CMLs
across the considered study area will share the same excess
signal attenuation in terms of magnitude, timing, and spa-
tial occurrence. In principle, each single CML is expected
to have its own time-varying set of values of the parame-
ter RRp4. This implies great uncertainty in the overall opti-
mum value for the time period and region of interest. These
parameters are expected to be positively correlated. Likely,
higher RRs values lead to higher rain intensities, increasing
the weight of the maximum attenuation, and consequently a
higher value of RRp4 would become necessary to compen-
sate for the extra attenuation, decreasing the rain intensity
estimates.

It is apparent from Fig. 3 that the parameter RRs reaches
its optimum value at 0.23, which is much lower than RAIN-
LINK’s default value of 0.33. This implies that the maximum
and minimum path-averaged rainfall intensities (Rmax, Rmin)
have respective weights of 0.23 and 0.77 in the computation
of the best estimate of the 15 min mean path-averaged rain-
fall intensity. However, a smaller spread around the optimum
value compared to the other parameters can be observed, in-
dicating a moderate uncertainty around the optimum. Note
that the value of « is related to the temporal distribution
of path-average rainfall intensities within 15 min intervals,
which is influenced by the lengths of the links as well as
by the rainfall space—time variability. This suggests that the
optimum parameter value will depend on both link network
topology and rainfall climatology.

Its important to highlight that we did not calibrate the
power-law coefficients. Since they are physically based, we
used values obtained in dedicated experiments representative
for the Dutch climate (Leijnse, 2007). For other countries,
the International Telecommunication Union (ITU) presents
recommendations (International Telecommunication Union,
2005). However, these are not representative for all climates.
A physically based approach which derives these coefficients
from drop size distribution observations and scattering com-
putations is preferred compared to optimizing these coef-
ficients in a statistical manner, especially for frequencies
higher than 35 GHz. The drop size distribution dependence
of the k — R relation in the frequency range of approximately
20-35 GHz is considered small compared to errors from wet
antenna attenuation or erroneous wet—dry classification. Al-
though a physically based approach is considered better, a
calibration of power-law coefficients may be a way forward
for regions which lack disdrometer data (Ostrometzky and
Messer, 2020).

3.2 Validation

After the parameter optimization using the 12 d calibration
dataset from 2011, the optimized and default parameter sets
are applied to a 3-month validation dataset from July, August,
and September 2012. The 15 min path-average rainfall esti-
mates were aggregated to hourly and daily path-average rain-

Atmos. Meas. Tech., 15, 485-502, 2022



494

KGE
(-0.4091,0.1574]
@ (0.1574,0.3552
0.3552,0.4066
0.5 0.4066,0.4512
[ %0.4512. 519
e ., 0 0.4519,0.4523]
el L]
° o e o o © ¢
. .O . °
0.4 4 oo .: o’ e . ¢ o« °
— ¢ eageett . o ’
- . o oseet ) o
= fo e st ’ °
2034° " ¢ .
°
' St
L) L] °
(o4 .
e o »
0.2 o' . e
oo PR .., ° -
co0 ) o %
0.0 % o 82 e *o
. .-',,. %8 . o0
0.1 o °, .
e oo
T T T T T
1 2 3 4 5
RR,; (dB)

W. Wolff et al.: Rainfall retrieval algorithm for commercial microwave links: stochastic calibration

(b)

2000
2000
J

1500
|

1500
|

Frequency
1000
|
Frequency
1000
|

(=]
g 2 ]
o~ (=R
01 2 3 4 5 01 03 05
RR,; (dB RRys (-)

Figure 3. Rainfall retrieval performance projected onto the parameter space: dotty plot showing the interaction between calibration parame-

ters at different Kling—Gupta efficiency (KGE) values.

fall estimates if CML availability was at least 75 %, resulting
in data from on average 2783 sub-links for both the default
and optimized parameters. Thus, given that after the RAIN-
LINK pre-processing on average 2800 sub-links are left, data
availability is reduced by approximately 0.7 % for both de-
fault and optimized parameters due to the pre-processing.

3.2.1 Wet—dry classification validation

Figure 4 highlights that the wet—dry classification process by
using calibrated parameters performs better in terms of MCC
and accuracy metrics, with values of 0.40 and 0.96 against
0.37 and 0.95 for the default parameters, respectively. How-
ever, the sensitivity metric shows that the calibrated parame-
ters are worse for classifying the true positive rate; the default
parameter set reaches a value of 0.51 against 0.49 for the cal-
ibrated parameter set. We find an MCC value of 0.4 for the
validation dataset, which is smaller than the MCC threshold
for behavioral solutions, i.e., 0.53. This occurred because the
optimization might not have generalized the wet—dry classifi-
cation process well enough. It was focused on the calibration
dataset, capturing many details and noise, and subsequently
failed to capture a different trend from another dataset, i.e.,
became an overfitted model. Thus, the performance for the
validation dataset was worse because the calibration dataset
will not be entirely representative for other periods. A solu-
tion could be to increase the size of the calibration dataset,
encompassing more characteristics and trends about the phe-
nomenon.

Atmos. Meas. Tech., 15, 485-502, 2022

In spite of having the same specificity value, we can ob-
serve in confusion matrices (Fig. 4, green cells for line and
column 1) that the calibrated parameter set classified more
dry periods correctly than the default parameter set. Thus,
considering the MCC feature, which aims to evaluate all el-
ements of the confusion matrix (false positive, false nega-
tive, true positive, and true negative), the calibrated param-
eters outperform the default ones. Approximately 50 % of
the rainy events are classified as dry (i.e., false negatives)
for both the calibrated and default parameter sets. Using a
convolutional neural network for classifying wet—dry peri-
ods, Polz et al. (2020) found a proportion of approximately
25 % for false negatives.

According to the wet—dry observations of the reference
during the validation period, we observed that 97 % of the
data points represent non-rainy intervals. Being just 4 per-
centage points higher than the calibration period (93 %), the
fraction of dry periods can be considered comparable to each
other. However, the fraction of rainy periods for the calibra-
tion period (7 %) is more than twice as high as for the vali-
dation period (3 %). This implies that the calibration dataset
is at least different with respect to the validation dataset con-
cerning the percentage of rainy periods, which may have re-
sulted in a lower MCC value for validation.

3.2.2 Rainfall retrieval validation

Figure 5 illustrates the performance in terms of daily path-
average rainfall estimates for the two tested parameter sets,
i.e., calibrated and default. In general, the metrics for the cali-
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Figure 4. Confusion matrices and binary classification metrics for the wet—dry classification process: (a) results of the wet—dry classification
using calibrated parameters and (b) results of the wet—dry classification using default parameters. Note: Matthews correlation coefficient
(MCC), accuracy (Acc.), sensitivity (Sen.), and specificity (Spe.) metrics.

brated parameters are slightly better than those for the default
parameters. The values improve from 0.37 to 0.45 for KGE,
from 6.37 to 5.75 mm for RMSE, from 2.5 to 2.27 for CV s,
and from 0.42 to 0.46 for p.

The main improvement is observed for the percent bias
(PBIAS). Even if both parameter sets lead to overestimates
compared to the reference, the rainfall depth retrieved when
using the calibrated parameters shows 10.6 percentage points
less overestimation compared to using the default parame-
ters. In addition to p, the bias ratio () and the variability
ratio (y) are incorporated into the KGE metric (Egs. 5-7).
The default parameters § and y are 1.24 and 0.99, respec-
tively. For the calibrated parameters the values of § and y
are 1.13 and 0.99, respectively. All three KGE components
have their ideal value at unity, and the higher value of KGE
when using the calibrated parameters is due to a better bias
performance. Overall, the calibrated parameters outperform
the default parameters.

Next, the performance of 15 min path-averaged rainfall es-
timates is investigated. Table 5 summarizes RAINLINK’s
performance when the default and calibrated parameters are
applied for different rainfall thresholds. The calibrated pa-
rameter set yields a better performance of RAINLINK in
terms of KGE, RMSE, and CV, for all thresholds. As
for PBIAS, the default parameters outperform the calibrated
ones for the thresholds “reference > 0’ and “reference > 17,
whereas the calibrated parameters show better performance
for the remaining thresholds. One can also observe that, if a
threshold is only applied to the reference and consequently
the false positives are removed, RAINLINK shows a large
underestimation with respect to the reference. This underes-
timation is not observed if either RAINLINK or the reference
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is above the threshold. This indicates that the observed under-
estimation is due to RAINLINK estimating zero rain when
the reference suggests that it is raining. This may be related to
differences in spatial and temporal sampling, although we are
not able to provide a conclusive explanation. Indeed, the false
positives presented a strong effect on PBIAS because when
they were removed (i.e., reference > 0), PBIAS changed sig-
nificantly. As for Polz et al. (2020) a different behavior was
observed, maybe due to a lower number of false positives or
due to a different distribution of false positives.

The p goodness-of-fit metric results in a better perfor-
mance for the default parameters with the CML rainfall es-
timates used in the thresholds. On the other hand, when just
the radar reference is considered in the thresholds, the cali-
brated parameter set achieves better p performance.

When no thresholding is applied the calibrated parame-
ters clearly perform better than the default ones in terms of
KGE and PBIAS values. With respect to data availability,
the calibrated and default parameter sets contain 15.6 % and
12.3 % fewer observations after running all of RAINLINK’s
processing steps than the entire dataset, respectively.

Reevaluating the Overeem et al. (2016b) study employ-
ing default parameter values, de Vos et al. (2019) find
5.75%, 2.84, and 0.27 for PBIAS, CV,e, and p, respec-
tively, for path-average 15 min rainfall depths and for links
or radars larger than O mm. Differences with respect to the
performance obtained here for the default parameter values
(33.10 %, 2.69, and 0.28 for PBIAS, CV,e, and p, respec-
tively) can be explained by the fact that the underlying data
for both studies are from different periods with different du-
rations (~ 20 months for the months of February—October
in de Vos et al., 2019, and 3 months for the months of
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Figure 5. Daily path-averaged rainfall depth comparison of CML rainfall estimates against gauge-adjusted radar data: (a) rainfall retrieved
using calibrated parameters; (b) rainfall retrieved using default parameters.

Table 5. The 15 min path-averaged rainfall depth performance for different thresholds. Note: reference is provided by the gauge-adjusted

radar data.
Thresholds of RAINLINK with KGE RMSE PBIAS CVigs P
rainfall (mm) parameters (mm) (%)
Reference OR Default 0.21 1.06 33.10 2.69 0.28
RAINLINK > 0 Calibrated 0.27 0.99 8.50 2.23 0.27
Reference OR Default 0.18 1.15 31.60 2.49 0.26
RAINLINK > 0.1  Calibrated 0.24 1.05 7.40 2.10 0.25
Reference OR Default —0.16 2.20 56.20 1.95 0.00
RAINLINK > 1 Calibrated —0.05 2.02 22.60 1.68 —0.02
Reference > 0 Default —0.11 1.01 —38.00 1.30 0.48
Calibrated 0.03 092 —42.20 1.16 0.50
Reference > 1 Default —0.46 1.92 —-39.70 0.89 0.38
Calibrated —0.31 1.77 —45.20 0.78 0.40
No threshold Default 0.33 0.28 33.10 10.55 0.42
(zero included) Calibrated 0.42 0.25 18.50 9.37 0.45

June—August here). Possibly, the wet—dry classification us-
ing default parameters applied by de Vos et al. (2019) re-
sults in fewer false positives, or due to the longer period the
false negatives compensate for the false positives, resulting
in a lower PBIAS value. The summer of 2012 was rainy,
with 286 mm of rain compared to the climatological aver-
age of 225 mm averaged over the Netherlands. For the cen-
tral weather station in the Netherlands, a long precipitation
duration of 153 h was observed compared to the climatologi-
cal average of 121 h over the summer months June, July, and
August. This could be a reason for differences in PBIAS, al-
though this summer is also part of the 613 d dataset evaluated
in de Vos et al. (2019).
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Figure 6 shows density plots for all CML double-mass
curves, i.e., the relation between the accumulation of rainfall
retrieved by RAINLINK and that obtained from the gauge-
adjusted radar reference. This figure shows that the class
with the highest occurrence coincides with the diagonal, in-
dicating reasonable agreement between the estimates and the
observations. A considerable dispersion above the diagonal
is found for both the calibrated and the default parameters.
However, it is clear that with the calibrated parameters, this
dispersion is less severe. This overestimation observed in the
double-mass curves is in line with the PBIAS values reported
earlier (Table 5), being caused by the higher presence of false
positive observations. Identifying the extra attenuation as the
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Figure 6. Density plots of the double-mass curves of all individual CMLs with respect to the gauge-adjusted radar reference at 15 min time
intervals: (a) rainfall accumulation retrieved by RAINLINK with calibrated parameters; (b) rainfall accumulation retrieved by RAINLINK

with default parameters.

main source of error, de Vos et al. (2019) report a similar
behavior of the double-mass curves for instantaneous signal
power sampling, although the considered period and hence
the meteorological circumstances are partly different.

So far small improvements in the rainfall retrievals are
obtained when employing the calibrated parameters through
the stochastic method of particle swarm optimization (PSO).
However, analyzing the average over an area, in this case the
Netherlands, more substantial improvements are found. Fig-
ure 7 shows time series of the daily mean rainfall depth over
the Netherlands; i.e., for each day the mean of all CML rain-
fall estimates is computed.

By employing the calibrated parameters, all metrics im-
prove with respect to the default parameters. The values
of KGE, RMSE, PBIAS, CV,¢, and p improve from 0.49,
3.39mm, 24.4 %, 1.32, and 0.59 to 0.57, 3.07 mm, 13.8 %,
1.21, and 0.63, respectively. Since the CML rainfall estimates
are averaged over a ~35500km? area not taking into ac-
count how they are distributed, the PBIAS and 8 values stay
the same (Fig. 5). On the other hand, the variability and sim-
ilarity (correlation), expressed by KGE components y and p,
respectively, are slightly better. In spite of not being a ho-
mogeneous network, the CMLs observe the entirety of the
Netherlands with a high enough spatial representativity for
computing a spatial average rainfall. Thus, for the areal time
series obtained by employing calibrated parameters, y and
p are equal to 0.83 (0.81 for default) and 0.63 (0.59 for de-
fault), respectively. The y value closer to unity confirms that
the estimated rainfall time series vary to the same extent as
the observed rainfall time series. Hence, as concluded from
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the path-averaged rainfall evaluation, the main improvement
provided by the calibrated parameters compared to the de-
fault parameters is a lower relative bias.

For both sets of parameters, calibrated and default, CML-
derived rainfall estimates correspond reasonably well to the
gauge-adjusted radar rainfall estimates. For path-averaged
daily rainfall an improvement is found when calibrated pa-
rameter values are employed, especially in terms of rela-
tive bias. Results further improve when rainfall estimates
are averaged over all of the Netherlands. Differences in cali-
brated parameter values with respect to the default ones may
be caused by the calibration being performed over different
events in June and July 2009 and in 2011 for the default pa-
rameters (Overeem et al., 2011, 2013). Moreover, the calibra-
tion here is done with a state-of-the-art and efficient method.

3.3 Search space of parameters

For some parameters in Tables 1 and 2 a wider search space
could have been chosen. For WD;,; and RRp; a maximum
value of 24 h was chosen, implying that data from the pre-
vious day are needed. Because the calibration dataset is not
continuous, it was not feasible to use a larger value for WD;.
In both cases 24 h seems reasonably long for a reliable com-
putation. The maximum allowed value of 24 h for RR;; may
even be beneficial for the reference-level determination. If
this value became longer than 24 h, varying meteorological
conditions (e.g., related to changes in relative humidity) may
affect the accuracy of the reference-level determination, ren-
dering it less representative of the reference level just before
a rainfall event. For the radius WDpj3 the minimum value is
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Figure 7. Comparison of the daily mean rainfall depth time series for all of the Netherlands during the summer months of June, July, and
August 2012: (a) rainfall time series retrieved by RAINLINK with calibrated parameters; (b) rainfall time series retrieved by RAINLINK

with default parameters.

15km. A lower value could be tested, but given the network
density (Fig. 1), this is expected to lead to a (severe) reduc-
tion of available sub-links. This is because the wet—dry clas-
sification needs a minimum number of nearby links, which is
more difficult to achieve in the case of a smaller radius. The
employed minimum value for WD is already quite low. The
wet—dry classification is expected to become more reliable
when more sub-links are involved. Hence, it does not seem
sensible to choose an even lower minimum value.

4 Conclusions

A novel and reliable method for the objective estimation of
optimum parameter sets for RAINLINK and potentially for
other CML-based rainfall retrieval algorithms has been pre-
sented and tested. Using a 12 d dataset, the calibration was
performed by means of a stochastic approach, particle swarm
optimization (PSO), preceded by a sensitivity analysis select-
ing the parameters to be optimized. The optimized param-
eters were determined according to optimum goodness-of-
fit values and for the median of “behavioral” solutions, i.e.,
those solutions performing better than a threshold. Table 6
summarizes the values of RAINLINK’s optimized parame-
ters and the default ones.

The validation of daily path-averaged CML rainfall esti-
mates over 3 summer months reveals a reasonable improve-
ment for the calibrated parameters compared to the default
values. When daily path-averaged values are averaged over
the entire surface area of the Netherlands, the improvement
becomes much stronger. The aggregation over an area tends
to limit the effects of representativeness errors in the rain-
fall estimates and yields information with an acceptable per-
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formance for hydrological and meteorological applications.
This result is important because from a general perspective,
hydrological and meteorological scales of application are de-
fined over areas, e.g., watersheds, climate zones, and political
and administrative regions. Compelling improvements were
achieved not only in terms of the performance of CML rain-
fall estimates as such, but also with respect to the choice of
parameter values, which are now underpinned in a more ob-
jective way.

In fact, we now have a way to analyze the sensitivity and
stochastically optimize all parameters used in a rainfall re-
trieval algorithm. The proposed methodology is applicable
for different CML networks, climates, and algorithms, for
which either rain gauge or (gauge-adjusted) radar data can be
used as a reference. In the case of sampling strategies other
than min—max the algorithm can be easily adapted. Ideally,
optimized parameters would be obtained for different sea-
sons. Hence, for each processing period a dedicated parame-
ter set would be obtained.

Fencl et al. (2019) underline the importance of consider-
ing the rainfall properties in the quantification of wet antenna
attenuation, for which a fixed value may lead to overestima-
tion of heavy rainfalls. This can lead to an increase in the
computational cost, however, especially in the case of exten-
sive CML datasets. We also recommend extending our algo-
rithm by adding an extra goodness-of-fit criterion to the opti-
mization regarding the sub-link data availability after run-
ning RAINLINK’s processing steps (de Vos et al., 2019).
This could lead to improved coverage of CML rainfall es-
timates. In general, quantifying the effect of processing steps
on data availability is important. Moreover, due to the large
impact of false positives on PBIAS, a calibration of the rain-
fall retrieval process taking into account the wet—dry classi-
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Table 6. RAINLINK parameters: default and calibrated values (median of “behavioral” solutions). Note: calibrated parameter values are in

bold font.

Parameter description Symbol and unit Default  Calibrated
value value

WDy — Minimum number of hours needed to —(h) 6 4.8

compute max(Ppi,)

WDp, — Number of previous hours over which —(h) 24 10

max(Ppin) is to be computed (also determines

period over which cumulative difference F' of

outlier filter is computed)

WDp3 — Radius r (km) 15 18.9

WDP4 — Attenuation threshold median(A P) (dB) —14 -1.5

WDp5 — Specific attenuation threshold median(A Pr,) (dB km*l) —-0.7 -0.7

WDp6 — Minimum number of available (surround- - (-) 3 3

ing) links

WDp7 — Minimum received power threshold —(dB) 2 2

RRp 1 — Minimum number of hours that should be - (h) 2.5 2.5

dry in preceding period

RRp, — Period over which reference level istobe - (h) 24 24

determined

RR3 — Outlier filter threshold Fi (dBkm™1h) -325 -325

RRp4 — Wet antenna attenuation A, (dB) 2.3 1.74

RRps — Temporal rain rate distribution coefficient  « (-) 0.33 0.24

fication from the reference should be considered for further
research. Thus, an overestimation of wet antenna attenuation
that has to compensate for the long-term rainfall overestima-
tion from false positives would be avoided.

As a recommendation, studies could be conducted by test-
ing the convergence and performance of different goodness-
of-fit measures in addition to the Kling—Gupta efficiency
(Kling et al., 2012). Moreover, one could optimize the pa-
rameters using rain gauges near the CMLs as a reference
in order to exclude deviations that are sometimes found
in radar rainfall observations. Representativeness errors be-
tween radars measuring aloft and CMLs measuring near the
Earth’s surface can affect comparisons between the two. This
especially holds for short time intervals, which are as short
as 15 min in this study.

In spite of having stochastic properties and aiming to
explore the uncertainties affecting rainfall retrievals from
CMLs, the approach proposed here is not a panacea. In re-
gions without reliable rainfall ground truth, the calibration
of rainfall retrieval algorithm parameters can be a challenge
(Chwala and Kunstmann, 2019). Hence, we recommend the
setup of experiments in regions with little ground-based rain-
fall information in order to optimize parameters for specific
networks and climates, or even to improve rainfall retrieval
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algorithms themselves such as RAINLINK. As an alterna-
tive, parameters could be optimized in a well-gauged region
having a similar climate and CML network as the ungauged
region for which CML rainfall estimates are desired.

Further research can be conducted to test how the param-
eter range affects the importance of parameters in this ap-
proach. Specifically, even wider parameter ranges could be
tested. Moreover, a longer calibration period could be ana-
lyzed to make the optimized parameters more generally ap-
plicable to other data from other periods. This especially
holds for the wet—dry classification process.

Comparing CML-derived rainfall maps and gauge-
adjusted radar observations, Overeem et al. (2016b) found a
better performance for the summer season than for the win-
ter season in the Netherlands, likely related to the absence
of snow and melting precipitation, among other factors. The
rainfall type during the Dutch summer is largely of a con-
vective nature, bearing some resemblance to that in regions
characterized by (sub)tropical climates, which often lack sur-
face rainfall observations. As a consequence, we believe
CML rainfall monitoring is especially promising for low- to
middle-income countries typically having (sub)tropical cli-
mates.
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