Usability of Physical Internet Characteristics for Achieving More Sustainable Urban Freight Logistics: Barriers & Opportunities Revealed by Dominant Stakeholder Perspectives

J.H.R. van Duin
Faculty of Technology, Policy & Management/Knowledge Center Sustainable Portcities
Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
Rotterdam University of Applied Sciences, Heijplaatstraat 23, 3089 JB Rotterdam, The Netherlands
j.h.r.vanduin@tudelft.nl/j.h.r.van.duin@hr.nl

C.B.H. (Kees) van Son
Delft University of Technology, Faculty of Technology, Policy and Management/ AT Osborne
Jaffalaan 5, 2628 BX Delft/ John F. Kennedylaan 100, 3741 EH Baarn
kees.vanson@atosborne.nl

L.A. Tavasszy
Delft University of Technology, Faculty of Technology, Policy and Management/Faculty of Civil Engineering,
Jaffalaan 5, 2628 BX Delft/ Stevinweg 1, 2628 CN Delft
L.A.Tavasszy@tudelft.nl

A.J. van Binsbergen
Delft University of Technology, Faculty of Civil Engineering,
Stevinweg 1, 2628 CN Delft
A.J.vanbinsbergen@tudelft.nl

P.A. (Peter) Kee
AT Osborne
John F. Kennedylaan 100, 3741 EH Baarn
peter.kee@atosborne.nl

E.M. (Edgar) Huitema
AT Osborne
John F. Kennedylaan 100, 3741 EH Baarn
edgar.huitema@atosborne.nl

Word Count: 4742 words + 8 tables (250 words per table) + 2 figures (250 words) = 7242 words

Submitted [Submission Date] 12 July 2021
ABSTRACT

Urban freight logistics currently has to deal with multiple unsustainable conditions. Physical Internet characteristics can be promising to make urban freight logistics more sustainable. This paper explores the opportunities and barriers for implementing this concept. Q-methodology is a method to reveal the different stakeholder perspectives. The results of the Q-methodology show four different perspectives out of which three perspectives show a positive attitude towards PI characteristics. One perspective is more moderate and states that a lot is possible already without any changes happening. One of the barriers shows there is no urgency to change. Further, most perspectives have a positive attitude towards regulations as long as they are nationally coordinated. On the basis of these results a policy advices are developed that state individual and collaborative actions for stakeholders.

Keywords: Physical Internet, Urban Freight Logistics, Q-methodology, Sustainability
INTRODUCTION

The current logistical system is described as unsustainable in an economic, environmental and social way (1). Mervis (2) states that the logistical industry is a conservative industry that, because of this attitude, is now dealing with the unsustainable symptoms by Montreuil (1). Not all symptoms will be mentioned here, however the most relevant for urban freight transport. We are shipping air and packaging, empty trips are rather the norm than the exception, truckers/drivers have become modern cowboys, getting products in out the city is a nightmare and smart automation and technology are hard to justify. Still 10 years later the current logistical systems in our urban areas are a major disturbing factor (3). This is a long occurring issue that has already been researched for 20 years (4). Since urbanisation is a prevailing global trend (5) this part of logistics becomes increasingly important.

Besides stating the unsustainable developments in the current logistical system, Montreuil (1) also introduces a promising concept to deal with the so called 'global logistics sustainability grand challenge'. This concept is called the 'Physical Internet (PI, π)', 'a global logistics system based on the interconnection of logistics networks by a standardised set of collaboration protocols, modular containers and smart interfaces for increased efficiency and sustainability' (6). Hendrickson et al. (2018) describes this also as the way to go on governance to ensure fairness among the stakeholders (7). This concept also appears as a strategy in the roadmap towards zero emission city logistics in the Netherlands (8-9).

A literature review conducted in the PI domain by Sternberg (10) assessed the quantitative research done on the effects of PI implementation and these show promising results (11-13). There already are solutions in urban freight logistics that make it more sustainable but PI concepts are currently not in use. The literature review of Treiblmaier (14) in the PI domain shows that the majority of research conducted is quantitative or conceptual and only a small amount is based on surveys (7%) and case studies (3%). Consequently, little is known about stakeholder perspectives regarding PI in urban freight logistics. However it is an important aspect since the PI will change the way decisions are made in the system, which has a direct effect on the stakeholders (15). Due to this literature gap it is not clear whether stakeholders in urban freight logistics find a logistics system with PI implementation equally promising (10).

Since urban freight logistics is characterized by a multitude of stakeholders the following research question is formulated:

• What opportunities and barriers exist for the implementation of Physical Internet characteristics in urban freight logistics and how can they be used/avoided to move to more sustainable urban freight logistics?

To answer this question first a literature study is carried out on PI, and PI in Urban Freight Logistics. The following section explains the research steps in the Q-methodology. Further the results obtained by the application of the Q-methodology in the Netherlands are discussed. The next section shows the main obstacles and opportunities for PI and discuss an policy environment for implementing PI. The paper ends with the main conclusions.

LITERATURE STUDY

This literature study focusses on the PI-concept and PI-concept in an urban freight logistics context.

Physical Internet

The Physical Internet is a vision that could fundamentally change current logistics operations (1). Montreuil (17) even thinks that 'we face a revolution as radical as the Internet Revolution’. Ballot (6) defines the Physical Internet as 'a global logistics system based on the interconnection of logistics networks by a standardized set of collaboration protocols, modular containers and smart interfaces for increased efficiency and sustainability’. The definition of PI can be ambiguous since multiple definitions exist in literature. To deal with this uncertainty, the characteristics from PI named by Montreuil (1) are
compared to the definitions of Ballot (6) and Treiblmaier (14). Based on the comparison the most
important characteristics of PI are defined as followed:

• Open system
 o Data sharing
 o Asset sharing
• Standardization
 o Standardized collaboration protocols
 o Standardized modular containers

In a PI-environment, stakeholders get different roles as well. When looking at the characteristics
of PI it becomes apparent that PI is strongly dependent on sharing of both data and assets. Data, like the
shipment’s origin and demand, should be available centrally (and safely) to make flow optimization in the
network possible. The network exists of physical assets, like different kinds of vehicles, warehousing
facilities and transshipment points. These are indeed part of the open system creating a network with
multiple options for optimizing freight flows. The foundation of this system lies in both standardization of
packaging and data collaboration protocols.

The PI should realise the shift from private supply network to open supply network (1). This
steers towards outsourcing logistics, or at least, not merely taking care of your own. According to Crainic
(18) 'the retailers and manufacturers do not anymore exploit their dedicated distribution centres’. In this
sense an Logistics Service Provider (LSP) is an appropriate stakeholder to take care of those logistics
services operating in an open supply network. The shippers move their goods through the open supply
network. This means that different links and hubs can be used regardless of the logistics service provider
that operates that part of the network. In the current system the logistics service provider defines the
routes and their options to improve are limited in this private supply network setting (1). It is interesting
to see how LSPs feel about this paradigm shift. Simmer (20) shows that in Austria logistics companies
are mostly positive towards horizontal collaborations. However, they see barriers like the fear of antitrust
fines and high administrative input. Simmer (20) argues that the first steps towards collaboration as
proposed in the PI vision are horizontal collaborations. Therefore, LSPs can have a very important role in
the shift to this new logistics system. Eventually shippers can obtain more decision power, but this can
only happen when LSPs start to connect their private supply networks.

Physical Internet and Urban Freight Logistics

Crainic (18) linked PI to urban freight logistics in order to reveal the possibilities of this novel
concept for the final distribution stage. PI aims at a structure with multiple hubs that are all linked to each
other. This can be translated to urban freight logistics by using (already existing) hubs for consolidated
city distribution. These hubs do not necessarily have to be located at the outskirts of urban areas while PI
also allows flows to be consolidated in an earlier stage.

The key to the concept is that not all different cities are treated as unique. The PI concept relies
on standardization which can only be beneficial when used on a bigger scale. Besides, the major users of
the logistics system do not only serve a single city. This is why the interconnection with other cities is ‘a
fundamental key’ for the PI concept in urban freight logistics (18).

The operationalization of PI in urban freight logistics can also be connected to the UCC (Urban
Consolidation Centers) or Urban Freight Hubs (UFH) developments that can currently be observed.
Besides, the use of PI characteristics might even break down certain barriers that current concepts have to
deal with. The differences between the two concepts are depicted in Table 1.

1 Horizontal collaboration is between companies in the same industry that, while not competing directly, market and
sell to similar customers and consumers. A high-profile example of horizontal collaboration involves the Hershey
Co. and the Ferrero Group in North America.
Some of the barriers to economic feasibility of UCCs could diminish in combination with a PI-based system. Fragmented cost savings will not be a problem since PI is based on fragmented supply chains. In PI it is also easier to achieve a certain critical mass, as PI is inherently not limited to a single urban area and a small amount of participants.

On the other hand, with a system like PI it is questionable if a dedicated UCC still has a future. In an open supply network multiple existing DCs surrounding urban areas could act as urban hubs in the PI network (1, 18). Shipments could be consolidated and shipped inside the urban area with zero emission vehicles. Besides, in the current situation the zero emission vehicles belong to a certain UCC. Combining private supply chains then forms new private supply chains within the urban areas. Whilst in a PI network a vehicle should not merely be in use for a single hub but for all the hubs in a network of open supply chains.

According to Montreuil (1) PI has the potential to resolve all of the three overarching types of unsustainability issues. However, it is difficult to implement such changes to the vast logistical system that is currently in place. The PI proposes fundamental changes to the basis of how logistics function right now. Most of the research that is done is conceptual or quantitative - little is based on surveys or interviews (14). This is why this research focusses on stakeholders perspectives regarding PI in urban freight logistics.

Q-METHODOLOGY

Q-methodology is an exploratory technique (22) based on gathering information from different stakeholders in a certain area of interest. This information is retrieved by constructing a survey which entails rating statements regarding the subject relative to one another. The statements are retrieved from different sources and should represent the discourse of the topic. The outcome of the survey can be used to reveal different perspectives on the topic. The perspectives have a relation to a group of participants that share a similar believe. The following stages are part of the Q-methodology.

Q-set

The first step in the process is the creation of the Q-set. This set (Table 2) consists of statements about the implementation of PI characteristics in urban freight logistics. These statements originate from literature research - on both scientific and grey literature - and interviews conducted with experts. Besides, statements are based on the characteristics of PI and on the following dimensions: logistics, market, societal and data.

TABLE 1 Differences between UCC/UFH concept and PI concept

<table>
<thead>
<tr>
<th></th>
<th>UCC/UFH concept</th>
<th>PI concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main goal</td>
<td>Sustainable last mile</td>
<td>Economic efficiency</td>
</tr>
<tr>
<td>Scope</td>
<td>Urban and regional</td>
<td>Global</td>
</tr>
<tr>
<td>Standardization level</td>
<td>Tailor made services</td>
<td>Standardized services</td>
</tr>
<tr>
<td>Openness</td>
<td>Open to clients</td>
<td>Open to everyone</td>
</tr>
</tbody>
</table>
TABLE 2 Q-set on PI characteristics in Urban Freight Logistics

<table>
<thead>
<tr>
<th>#</th>
<th>Q-Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sharing assets in urban logistics is very complicated due to an abundance of client specific services that are currently offered.</td>
</tr>
<tr>
<td>2</td>
<td>Sharing distribution centres on the outskirts of cities will remove the need for urban consolidation centres.</td>
</tr>
<tr>
<td>3</td>
<td>Increased efficiency by sharing assets increases city liveability more than changing to zero emission vehicles in urban freight logistics.</td>
</tr>
<tr>
<td>4</td>
<td>The hidden costs in logistics make fair assignment of costs and benefits a major barrier for asset sharing concepts.</td>
</tr>
<tr>
<td>5</td>
<td>Even the introduction of road pricing in urban areas won't increase level of asset sharing.</td>
</tr>
<tr>
<td>6</td>
<td>Most logistics service providers have the will to share assets but the transition costs are currently not outweighing the benefits.</td>
</tr>
<tr>
<td>7</td>
<td>Strong long lasting client relationships cannot be sustained with a system based on asset sharing.</td>
</tr>
<tr>
<td>8</td>
<td>Most logistics companies are not digitally ready for data sharing while they should be.</td>
</tr>
<tr>
<td>9</td>
<td>When data sharing proves to yield significant economic benefits suddenly most of the logistics service providers are able to do it.</td>
</tr>
<tr>
<td>10</td>
<td>When data is shared on a large scale the bigger companies are mainly going to benefit from it.</td>
</tr>
<tr>
<td>11</td>
<td>A disruption in the logistics sector is needed to make companies share their data.</td>
</tr>
<tr>
<td>12</td>
<td>Some say the fear of sharing competitive information is a big barrier to sharing data but in reality this isn't the major problem.</td>
</tr>
<tr>
<td>13</td>
<td>Urban freight logistics is already quite efficient and does not form a very urgent problem otherwise there would be more regulation already.</td>
</tr>
<tr>
<td>14</td>
<td>The introduction of zero emission zones will exclude the smaller logistics service providers from the urban logistics market.</td>
</tr>
<tr>
<td>15</td>
<td>Zero emission zones are going to provide low emission logistics but will increase total vehicle kilometres.</td>
</tr>
<tr>
<td>16</td>
<td>The biggest inefficiencies in urban freight logistics are caused by shippers and receivers taking care of their own transport.</td>
</tr>
<tr>
<td>17</td>
<td>The reason why shippers and receivers provide their own transport is mainly because they do not see it as extra costs</td>
</tr>
<tr>
<td>18</td>
<td>Although the margins are small the logistics sector is not being challenged enough to get more efficient.</td>
</tr>
<tr>
<td>19</td>
<td>Municipalities should regulate urban freight logistics more to tackle unsustainable issues but it should be nationally coordinated.</td>
</tr>
<tr>
<td>20</td>
<td>Pilots that are done to improve urban logistics are mostly executed with small volumes and have a small chance of succeeding.</td>
</tr>
<tr>
<td>21</td>
<td>Municipalities say they want to make urban freight logistics more sustainable but mostly because it looks good.</td>
</tr>
<tr>
<td>22</td>
<td>A governmental organization should be in charge of a standardized data sharing platform.</td>
</tr>
<tr>
<td>23</td>
<td>An open platform where logistics service demand and supply meet will exclude a lot of logistics service providers from the logistics market.</td>
</tr>
</tbody>
</table>
An open platform where logistics service demand and supply meet will be the future of logistics.

An open platform for assets sharing will improve efficiency but will ultimately result in decrease of urban liveability.

An open platform for asset sharing causes better competition instead of forming a monopoly.

Difference in data formats on loading units is currently a major barrier to asset sharing.

Size standardization of smaller loading units will accelerate the sharing of assets.

The current level of loading unit standardization in logistics is adequate for sharing assets.

Standardization of smaller loading units should be introduced by a governmental organisation.

Standardization of smaller sized loading units will lead to higher load factors, especially in urban logistics.

Postponing certain emission restrictions in urban areas from 2025 to 2030 is needed to keep urban freight logistics affordable.

The current level of data format standardization is generally sufficient for the sharing of assets.

Municipalities should obligate data sharing, just like the obligation to use zero emission vehicles in the future.

P-set

The participants of the Q-analysis are defined in the P-set. In this set multiple stakeholder groups are represented that are related to urban freight logistics. Our P-set contains logistics service providers (#15), branch organisations (#2), municipalities (#8) and other organisations (#3). Ultimately, 28 participants take part in this research which proved to be sufficient to extract significant perspectives.

Q-sort

As previously mentioned, the statements (Q-set) are presented (Table 2) to the participants (P-set) in a specific format. An example of Q-sort format can be found in Figure 1. Thus, the more extreme options (-5, 5) have the lowest amount of spaces for placing certain statements. On the other hand, the most neutral opinion (0) has the highest amount of spaces for placing certain statements. This format imitates a normal distribution and forces participants to rate statements in comparison to each other and make trade-offs (23).

Figure 1 An Example of a Filled out Grid used for the Q-survey, the Numbers Represent Statements. (KADE v1.2.0)
In this research a balanced grid is applied as it is expected that the participants have both knowledge of - and an opinion about - most of the statements. To explain the research and clarify the statements, a video is made for the participants and is added to the survey. The survey consists of the following four steps:

1. Introduction video and overview of all the statements
2. Rank the statements: Agree, neutral or disagree
3. Rank the statements: Q-grid (see Figure 2)
4. Comment on most extreme ranked statements (4 and -4)

Q-analysis

When all statements (Q-set) are filled out in the format (Q-sort) by the participants (P-set) the results can be analysed in the Q-analysis. A factor analysis can reveal the participants subjectivity whereafter they can be grouped. The number of factors to extract is determined by (a) quantitative objective rules (22-24), (b) qualitative guidelines and (c) qualitative explained value. Per group the dominant perspectives can be distilled from the corresponding Q-sorts. Besides, the participants are asked to explain their choices for the most extreme options. This helps with understanding discourse in the different perspectives per group of participants.

RESULTS

The factor analysis shows that four different perspectives can be identified. To investigate the meaning of those factors, the quantitative information following from the factor analysis is translated to a qualitative perspective. The different outcomes listed below are assessed in order to construct the perspectives (24):

- Significantly distinguishing statements per factor;
- Extremely ranked statements per factor;
- Overall consensus-disagreement on statements and correlation between factors;
- Feedback on choices made by participants.

In the analysis six different factor solutions were explored as can be seen in Table 3. Multiple solutions meet the objective rules regarding explained variance (≥35%), eigenvalues (≥1) and Q-sorts per factor (≥2). Since this proved to be indecisive the qualitative guidelines (24) are used to assess the solutions. Both the 5 and 6 factor solution do not meet the simplicity criterion. Finally, qualitative explained value is checked to make the decision between the 3 and 4 factor solution. Contradictions in extremely ranked statements are found in the 3 factor solution which makes it subordinate to the 4 factor solution. This means that now 4 different perspectives can be distinguished within the group of stakeholders.

| TABLE 3 Factors with Corresponding Eigenvalues and Explained Variance (KADE v1.2.0) |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Eigenvalues | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
| % explained variance | 17 | 11 | 9 | 9 | 7 | 7 |
| Cumulative % explained variance| 17 | 28 | 37 | 46 | 53 | 60 |

Based on the information from the factor analysis and the multiple outcomes from the Q-survey the following perspectives are formed.
Perspective 1

Trust in an open platform and standardization of loading units to make urban freight logistics more sustainable, realistic regulation needed to set boundaries.

This perspective is positive about the standardization of loading units and open platform logistics. Such an open platform will have a positive effect on city livability but there is a chance that it will create a monopoly. Municipalities should increase urban freight logistics regulations yet the goals should be achievable for the logistics sector. The actors behind this perspective are both municipalities and LSPs. It is interesting that most of those LSPs are parcel handlers which might have caused the positive attitude towards loading unit standardization (see Table 4).

TABLE 4 Z-scores on Factors Perspective 1

<table>
<thead>
<tr>
<th>Statement</th>
<th>Sig.</th>
<th>Factor 1 Z-score</th>
<th>Factor 2 Z-score</th>
<th>Factor 3 Z-score</th>
<th>Factor 4 Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardization of smaller sized loading units will lead to higher load factors, especially in urban logistics.</td>
<td>**</td>
<td>1.71</td>
<td>-0.15</td>
<td>-0.39</td>
<td>0.59</td>
</tr>
<tr>
<td>The biggest inefficiencies in urban freight logistics are caused by shippers and receivers taking care of their own transport.</td>
<td>-</td>
<td>1.62</td>
<td>0.09</td>
<td>1.7</td>
<td>-0.36</td>
</tr>
<tr>
<td>Size standardization of smaller loading units will accelerate the sharing of assets.</td>
<td>**</td>
<td>1.56</td>
<td>0.1</td>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>An open platform where logistics service demand and supply meet will be the future of logistics.</td>
<td>-</td>
<td>1.46</td>
<td>0.16</td>
<td>0.5</td>
<td>1.67</td>
</tr>
<tr>
<td>Standardization of smaller loading units should be introduced by a governmental organization.</td>
<td>**</td>
<td>1.41</td>
<td>-0.87</td>
<td>-1.33</td>
<td>-1.57</td>
</tr>
<tr>
<td>Municipalities should obligate data sharing, just like the obligation to use zero emission vehicles in the future.</td>
<td>**</td>
<td>-1.09</td>
<td>-2.31</td>
<td>0.97</td>
<td>1.57</td>
</tr>
<tr>
<td>Zero emission zones are going to provide low emission logistics but will increase total vehicle kilometers.</td>
<td>**</td>
<td>-1.51</td>
<td>1.13</td>
<td>0.29</td>
<td>0.4</td>
</tr>
<tr>
<td>Urban freight logistics is already quite efficient and does not form a very urgent problem otherwise there would be more regulation already.</td>
<td>-</td>
<td>-1.61</td>
<td>-0.09</td>
<td>-1.47</td>
<td>-1.92</td>
</tr>
<tr>
<td>Although the margins are small the logistics sector is not being challenged enough to get more efficient.</td>
<td>**</td>
<td>-1.74</td>
<td>-0.33</td>
<td>0.77</td>
<td>-0.23</td>
</tr>
<tr>
<td>An open platform for assets sharing will improve efficiency but will ultimately result in decrease of urban livability.</td>
<td>-</td>
<td>-1.86</td>
<td>-0.12</td>
<td>-0.75</td>
<td>-1.6</td>
</tr>
</tbody>
</table>
Perspective 2

It is already possible to work very efficiently, moderately negative towards PI characteristics, and governmental influence should be limited.

This perspective says that a lot is possible already when it comes to sustainable and efficient urban operations. It shows a relatively negative attitude towards regulation and does not think that client relationships can be sustained in open platform logistics. There is no unambiguous view on postponement of ZES regulations - the LSPs in this perspective seem to embrace this however the municipalities do not want them (Table 5).

TABLE 5 Z-scores on Factors Perspective 2

<table>
<thead>
<tr>
<th>Statement</th>
<th>Sig.</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The current level of data format standardization is generally sufficient for the sharing of assets.</td>
<td>**</td>
<td>-0.54</td>
<td>1.72</td>
<td>-1.54</td>
<td>0.07</td>
</tr>
<tr>
<td>Strong long lasting client relationships cannot be sustained with a system based on asset sharing.</td>
<td>**</td>
<td>-1.06</td>
<td>1.61</td>
<td>-1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>Most logistics companies are not digitally ready for data sharing while they should be.</td>
<td>-</td>
<td>-0.6</td>
<td>1.3</td>
<td>0.81</td>
<td>0.59</td>
</tr>
<tr>
<td>Sharing distribution centers on the outskirts of cities will remove the need for urban consolidation centers.</td>
<td>-</td>
<td>0.07</td>
<td>1.18</td>
<td>0.79</td>
<td>-0.69</td>
</tr>
<tr>
<td>The hidden costs in logistics make fair assignment of costs and benefits a major barrier for asset sharing concepts.</td>
<td>-</td>
<td>1.09</td>
<td>1.17</td>
<td>0.26</td>
<td>0.54</td>
</tr>
<tr>
<td>Most logistics service providers have the will to share assets but the transition costs are currently not outweighing the benefits.</td>
<td>**</td>
<td>-0.2</td>
<td>-1.11</td>
<td>0.22</td>
<td>-0.25</td>
</tr>
<tr>
<td>When data is shared on a large scale the bigger companies are mainly going to benefit from it.</td>
<td>-</td>
<td>-0.28</td>
<td>-1.14</td>
<td>-0.37</td>
<td>-0.54</td>
</tr>
<tr>
<td>A disruption in the logistics sector is needed to make companies share their data.</td>
<td>**</td>
<td>0.41</td>
<td>-1.77</td>
<td>0.52</td>
<td>0.46</td>
</tr>
<tr>
<td>A governmental organization should be in charge of a standardized data sharing platform.</td>
<td>**</td>
<td>0.98</td>
<td>-1.99</td>
<td>-0.13</td>
<td>0.52</td>
</tr>
<tr>
<td>Municipalities should obligate data sharing, just like the obligation to use zero emission vehicles in the future.</td>
<td>**</td>
<td>-1.09</td>
<td>-2.31</td>
<td>0.97</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Perspective 3

Zero emission is important but operations should primarily become more efficient, asset sharing and data standardization are promising to achieve this.

Great importance towards increasing efficiency characterises this perspective. Greater efficiency will have more impact on city liveability rather than changing to ZE vehicles. Open platform logistics could provide a solution for the current unsustainability issues and therefore data format standardization is needed. An open platform will cause different relations with the clients but additional services can still be provided. Ultimately, innovation will have to come from the sector, but the government must set certain limits and encourage good initiatives. This perspective is mainly detected among municipalities but also exists at a logistics service provider (Table 6).

TABLE 6 Z-scores on Factors Perspective 3

<table>
<thead>
<tr>
<th>Statement</th>
<th>Sig.</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>* = P<0.05, **=P<0.01</td>
<td></td>
<td>Z-score</td>
<td>Z-score</td>
<td>Z-score</td>
<td>Z-score</td>
</tr>
<tr>
<td>Increased efficiency by sharing assets increases city livability more than changing to zero emission vehicles in urban freight logistics.</td>
<td>**</td>
<td>-0.19</td>
<td>0.67</td>
<td>1.9</td>
<td>0.72</td>
</tr>
<tr>
<td>The biggest inefficiencies in urban freight logistics are caused by shippers and receivers taking care of their own transport.</td>
<td>-</td>
<td>1.62</td>
<td>0.09</td>
<td>1.7</td>
<td>-0.36</td>
</tr>
<tr>
<td>Some say the fear of sharing competitive information is a big barrier to sharing data but in reality this isn't the major problem.</td>
<td>-</td>
<td>0.32</td>
<td>0.97</td>
<td>1.2</td>
<td>-1.25</td>
</tr>
<tr>
<td>The reason why shippers and receivers provide their own transport is mainly because they do not see it as extra costs.</td>
<td>*</td>
<td>0.31</td>
<td>0.3</td>
<td>1.01</td>
<td>-0.22</td>
</tr>
<tr>
<td>An open platform for asset sharing causes better competition instead of forming a monopoly.</td>
<td>-</td>
<td>0.03</td>
<td>-0.45</td>
<td>1</td>
<td>1.02</td>
</tr>
<tr>
<td>Postponing certain emission restrictions in urban areas from 2025 to 2030 is needed to keep urban freight logistics affordable.</td>
<td>-</td>
<td>0.06</td>
<td>1.11</td>
<td>-1.35</td>
<td>-0.75</td>
</tr>
<tr>
<td>Sharing assets in urban logistics is very complicated due to an abundance of client specific services that are currently offered.</td>
<td>**</td>
<td>0.26</td>
<td>-0.28</td>
<td>-1.39</td>
<td>0.8</td>
</tr>
<tr>
<td>Urban freight logistics is already quite efficient and does not form a very urgent problem otherwise there would be more regulation already.</td>
<td>-</td>
<td>-1.61</td>
<td>-0.09</td>
<td>-1.47</td>
<td>-1.92</td>
</tr>
<tr>
<td>The current level of data format standardization is generally sufficient for the sharing of assets.</td>
<td>**</td>
<td>-0.54</td>
<td>1.72</td>
<td>-1.54</td>
<td>0.07</td>
</tr>
<tr>
<td>Strong long lasting client relationships cannot be sustained with a system based on asset sharing.</td>
<td>**</td>
<td>-1.06</td>
<td>1.61</td>
<td>-1.83</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Perspective 4

An open platform will bring more efficiency to urban freight logistics and city hubs will still be needed together with regulation and stimulation.

According to this perspective, more regulation around city logistics is well conceivable, for example with regard to the sharing of data. The latter will have to be coordinated nationally. However, regulating is not as easy; it is a big challenge for municipalities. An open platform where supply and demand can be matched is promising and could be the future of the logistics sector. It can be difficult to maintain the same relationships with the customers by using this new way of working, and the fear of sharing competitively sensitive information. In this future, the city hubs will also play an important role in ensuring sustainable and efficient city logistics. This perspective was found at governmental organisations and LSPs specialised in urban freight logistics (Table 7).

<table>
<thead>
<tr>
<th>TABLE 7 Z-scores on Factors Perspective 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>Municipalities should regulate urban freight logistics more to tackle unsustainable issues but it should be nationally coordinated.</td>
</tr>
<tr>
<td>An open platform where logistics service demand and supply meet will be the future of logistics.</td>
</tr>
<tr>
<td>Municipalities should obligate data sharing, just like the obligation to use zero emission vehicles in the future.</td>
</tr>
<tr>
<td>Pilots that are done to improve urban logistics are mostly executed with small volumes and have a small chance of succeeding.</td>
</tr>
<tr>
<td>An open platform for asset sharing causes better competition instead of forming a monopoly.</td>
</tr>
<tr>
<td>Standardization of smaller loading units should be introduced by a governmental organization.</td>
</tr>
<tr>
<td>An open platform for assets sharing will improve efficiency but will ultimately result in decrease of urban livability.</td>
</tr>
<tr>
<td>The introduction of zero emission zones will exclude the smaller logistics service providers from the urban logistics market.</td>
</tr>
<tr>
<td>Urban freight logistics is already quite efficient and does not form a very urgent problem otherwise there would be more regulation already.</td>
</tr>
<tr>
<td>An open platform where logistics service demand and supply meet will exclude a lot of logistics service providers from the logistics market.</td>
</tr>
</tbody>
</table>
The Similarities and Differences between the Perspectives

When looking at the differences between perspectives, it stands out that perspective 2 differs most from the others, especially for the most distinguishing and extreme ranked statements. The difference between perspective 2 and the other perspectives (1, 3 and 4) can also be seen in Table 8 where the correlations between factors are depicted.

Table 8 Z-scores on Factors Perspective 4

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td>1</td>
<td>-0.1122</td>
<td>0.2381</td>
<td>0.2704</td>
</tr>
<tr>
<td>Factor 2</td>
<td>-0.1122</td>
<td>1</td>
<td>-0.0779</td>
<td>-0.0024</td>
</tr>
<tr>
<td>Factor 3</td>
<td>0.2381</td>
<td>-0.0779</td>
<td>1</td>
<td>0.3498</td>
</tr>
<tr>
<td>Factor 4</td>
<td>0.2704</td>
<td>-0.0024</td>
<td>0.3498</td>
<td>1</td>
</tr>
</tbody>
</table>

To depict what these differences and similarities look like, the distinguishing statements from factor 2 are assessed and related to factor 1, 3 and 4. These statements show that a lot can be done already in the current situation, and that the situation might not be as bad as it is sometimes presented. According to factor 2 an open platform would not be satisfying, since this would not allow LSPs to maintain strong relations with their clients. Through ‘normal’ collaboration between parties already a lot can be achieved, thereby potentially making dedicated urban consolidation centres less important. Zero emission zones might cause extra vehicle kilometres and postponing certain regulations related to this might not be a bad idea. Besides, municipalities should not heavily regulate urban freight. Yet, if they do, it should be coordinated nationally.

The perceptive above does not match to the other perspectives in multiple ways. According to the latter, a zero emission zone is necessary yet only as a part of the solution. Regulations around this should only be postponed when really necessary. PI characteristics are generally perceived as positive (see Figure 3). However, one perspective ascribes more importance to the standardization of loading units, while the other attaches more value to the standardization of data formats. It is generally thought in factors 1, 3 and 4 that an open system, where logistics supply and demand meets, is promising for the future of the sector.

In addition, it is interesting to see that regulation is not viewed negatively in any of the perspectives. Yet, there certainly are differences in the degree of regulation. For example, perspective 3 states that municipalities only need to set boundaries while perspective 1 argues that a government organisation should introduce a standard for loading units (Figure 2). There is consensus that more regulation is welcome in urban freight logistics, however it must be coordinated nationally.
IMPLEMENTATION

To make the step to implementation the different perspectives are used to research what characteristics of PI are promising to make urban freight logistics more sustainable. Besides, the aim is also to reveal what barriers and opportunities there are in relation to those characteristics.

Barriers and Opportunities

As the results show, the majority (1, 3 and 4) of the perspectives has a generally positive attitude towards PI characteristics. An open network is found promising in all of these three perspectives and divided over those perspectives the other characteristics are ranked positively as well. The standardization of loading units and the standardization of data formats are mentioned as important only in perspective 1 and 3 explicitly.

Perspective (2) does not show a positive attitude towards the implementation of PI characteristics. The LSPs representing that factor state that they already work in a very collaborative and efficient way. According to them a major change to a new system does not seem to be needed. However, their attitude towards the PI characteristics was not entirely negative as well. Besides, collaborations are a first step to an growing open supply network which is actually a part of the PI vision (20).

The knowledge that perspectives 1,3 and 4 are generally positive towards PI characteristics is helpful but it does not explain why there are no widespread 'PI-like-networks' already. In our research the following barriers have been identified from the textual explanations in the Q-survey:

- Open platform can introduce monopolies;
- LSPs are digitally not advanced enough;
- Fear of sharing competition sensitive information;
• Current networks suffice;
• Transition costs to a new system;
• Inability to maintain strong relations with asset sharing;
• Specific services cannot be provided with asset sharing;
• Allocation of cost and benefits with asset sharing.

This shows that multiple barriers are still in place in relation to the PI characteristics. For many of these barriers opportunities mentioned in the survey can be opposed. However the barrier stating it is hard to allocate costs and benefits accordingly when sharing assets is not being opposed by an opportunity.

One more thing stands out regarding the transition costs to the new system. The opportunities related to this barrier say that a certain ‘urgency’ has to come to accelerate a disruption. At this moment there is no real need to make a change to a more efficient system. To deal with this there should be an ‘environment where efficiency pays off’ which gives the sector an incentive to get in action.

Creating an Environment Where Efficiency Pays Off

As currently there is no need to change, coincides well with the generally positive assessment of the statements related to increasing regulations regarding urban freight logistics, which has the potential to create a certain need to change. This can be achieved by drawing up unambiguous, national regulations setting clear boundaries for urban freight logistics per municipality. This contains regulation on certain subjects that can be adjusted per municipality according to their requirements. The subjects of these measures are determined in consultation with the logistics sector and the Ministry of Infrastructure and Water Management. Clear communication towards the logistics sector concerning the restrictions in that specific area is needed per municipality. In addition, municipalities also indicate that it is important for the logistics sector to share information with them, as with the provisioning of better insight into their operations more realistic goals can be set.

Not all perspectives have agreed on the influence of municipalities in other policy areas. That is why it is decided not to actively set up government initiatives, along the lines of perspective 2 which emphasises that the market develops quite well on their own. However, it is interesting to help the sector by investigating the barriers they encounter. Research may contribute to create mutual understanding and removing these barriers, thereby enabling the sector to innovate itself.

CONCLUSIONS AND DISCUSSION

The aim of this research is to find out what opportunities exist for PI characteristics and what barriers co-exist. Revealed perspectives from a group of municipalities, LSPs and branch organisations show that there is a generally positive attitude towards PI related developments. Three perspectives have a positive attitude towards the open system where logistics supply and demand meet. Besides, there is trust in standardising loading units and data formats, however not so much widespread as the positive attitude towards the open system.

Only perspective 2 does not seem to be as interested in PI characteristics as the rest of the perspectives. According to this perspective a lot can be established right now through collaboration and therefore there is no need for PI-like developments. However, the attitude towards the PI characteristics was not entirely negative as collaborations can be interpreted as a first step towards an open supply network as addressed in the PI vision (20).

Multiple barriers still exist regarding the implementation of PI characteristics. A fair allocation of costs and benefits in an open system seems to be a significant barrier. It is also remarkable that multiple participants stated that there currently is no real need to change. Most perspectives show a positive attitude towards regulation in urban freight logistics. This is mainly based on the attitudes towards zero-deliveries in the inner-cities and not based on the general perception to improve efficiency for the whole sector (instead of the individual company’s perspective).

This positive view on regulations and the current absence of a need to change is paired in a framework. This framework consists of actions between different stakeholders in order to realise an
'environment where efficiency pays off'. Nationally coordinated regulations should be established and
adjusted to each municipality, as this will bring clarity in the current 'jungle’ of regulations. The
boundaries set by the municipalities will create a need to change - working towards more efficient
operations.

A critical reflection can be made on the application of the Q-methodology. Results can only be
validated by feeding back the resulting perspectives to the participants and letting them assess those (20).
This means that these perspectives are indeed present within the group, but cannot be generalised to a
bigger population. Due to that condition, it cannot be ruled out that other perspectives exist on the subject.
Q-methodology proves to be helpful in revealing different perspectives on the subject. However, the
scope and the subject of the research is quite comprehensive. Also the interpretation of the perspectives is
quite challenging, since multiple statements are in some cases merged into one statement. Yet, the
validation has shown that perspectives seem to be quite accurate still and the insight in the perspectives
provides a good opportunity to proceed with implementing PI in city logistics according a well-defined
roadmap.

AUTHOR CONTRIBUTIONS
The authors confirm contribution to the paper as follows: study conception and design: All authors; data
collection: C.B.H. van Son; analysis and interpretation of results: All authors; draft manuscript
preparation: J.H.R. van Duin, C.B.H. van Son. All authors reviewed the results and approved the final
version of the manuscript.
REFERENCES

