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Evaluating the impact of waiting time reliability on route
choice using smart card data

Sanmay Shelat , Oded Cats , Niels van Oort and J. W. C. van Lint

Faculty of Civil Engineering and Geosciences, Department of Transport and Planning, Delft University of
Technology, Delft, The Netherlands

ABSTRACT
Unreliable waiting times may cause frustration and anxiety amongst
public transport travellers. Although the effect of travel time relia-
bility has been studied extensively, most studies have used stated
preferences which have disadvantages, such as an inherent hypo-
thetical bias, or have analysed revealed preferences for road traffic.
Here, we derive revealed preferences from passively collected smart
card data to analyse the role of waiting time reliability in public trans-
port route choice. We study waiting time reliability as regular and
irregular deviations from scheduled values, examining a number of
indicators for the latter. Behaviour in morning peak and off-peak
hours is contrasted and differences in reliability coefficients for dif-
ferent modes in the network, and for origin and transfer stops are
reported. Results from The Hague indicate relatively low reliability
ratios with travellers perceiving a 5-minute standard deviation in
realised waiting times as an extra 1–5.6min of planned waiting time.
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1. Introduction

The impact of travel time reliability on route choice behaviour has receivedmuch attention
in literature. The vast majority of studies have used stated preferences collected through
surveys or simulation experiments (Carrion and Levinson 2012; Li, Hensher, and Rose 2010).
Due to the costs associated with data collection, only a few have analysed revealed pref-
erences and almost all of these have focussed on car traffic. Fortunately, however, an
increasing number of public transport networks are integrated with automatic fare collec-
tion (AFC) systems, which enable analysts to glean revealed preferences from this passively
collected data. Moreover, automatic vehicle location (AVL) data, provides detailed informa-
tion on the realised supply characteristics (e.g. travel time, waiting time) of public transport
services. In this paper, we combine the revealed preferences from AFC data with reliability
information derived from AVL data to establish the role of waiting time reliability in public
transport route choice.

Passively collecting revealed preferences offers two important advantages over sim-
ulation experiments and conventional stated preferences. First, and most importantly,
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revealed preferences are free fromhypothetical biases that are prevalent in the othermeth-
ods since observed choices have consequences and are made in real-world situations.
Second, passively collecting revealed preferences obviates the need to explicitly convey
reliability information, which has proven to be difficult (Bates et al. 2001; Carrion and Levin-
son 2012). Furthermore, unlike revealed preference questionnaires that enquire about past
behaviour, passive data collection allows us to gather significantly more observations.
However, since revealed preferences inherently lack experimental control, the amount of
information obtained per observation is likely to be significantly lower than stated pref-
erences or simulation experiments. The lack of experimental control could also lead to
issues in determining the direction of causality. Privacy regulations may also restrict the
amount and type of data that can be used for analysis. Finally, passively collected data typi-
cally require significant processing effort and require assumptions regarding attributes that
cannot be observed (e.g. Lam and Small 2001; Luo et al. 2018).

While more complete reviews of studies analysing the effect of travel time reliability on
travel behaviour are available elsewhere (Carrion and Levinson 2012; Li, Hensher, and Rose
2010), here, we briefly outline those using passively collected data for their analysis. For
car traffic, such studies have largely made use of road-pricing experiments in the United
States (Alemazkoor, Burris, and Danda 2015; Carrion and Levinson 2013; Lam and Small
2001). This setting offers researchers a unique opportunity to observe choices between a
free but (potentially) congested road and a tolled but (almost certainly) uncongested road,
and thus, estimate the value of reliability. Travel times and choices are obtained via loop
detectors or GPS devices and toll transponders, respectively. In recent years, with the intro-
ductionofAFC systems, researchers haveused this passively collecteddata to analyse travel
behaviour in public transport systems, often in combination with AVL data. Amongst these
studies, for many, general route choice behaviour is the primary aim of the analysis (e.g.
Jánošíková, Slavík, and Koháni 2014; Kim et al. 2019). Other studies focus on specific aspects
such as, on-board crowding (Hörcher, Graham, and Anderson 2017; Yap, Cats, and van
Arem 2020), transfer inconveniences (Guo and Wilson 2011), route choice variability (Kim,
Corcoran, and Papamanolis 2017; Kurauchi et al. 2014), or strategic behaviour (Nassir,
Hickman, and Ma 2019; Schmöcker, Shimamoto, and Kurauchi 2013). To the best of our
knowledge, only Leahy, Batley, and Chen (2016) have used such data to analyse the impact
of travel time reliability on route choice behaviour in public transport networks. Our study
is different from theirs in two important ways: (i) whereas they evaluate the role of the
total trip travel time reliability we focus on and are able to specifically estimate percep-
tions related to waiting time reliability; and (ii) they use a sample of AFC transactions over
the time period under study while we have access to the full population dataset.

In general for the service industry, waiting time is a critical component of satisfaction
(Maister 1985). For public transportation too, it has been consistently shown that waiting
time has a large impact on behaviour. Unreliability in this important component of travel
time may lead to frustration and anxiety amongst travellers. We note that unreliability is
inherently an uncertain (Knight 1921) attribute – the true distribution of waiting times is
unknown to the travellers. Instead travellers may have their own subjective distributions
(Dixit et al. 2019; Meng, Rau, and Mahardhika 2018) that they use to make decisions. How-
ever, in linewith themajority of previous research on this topic (Carrion and Levinson2012),
we model waiting time unreliability as if it were a known risk. We compare a number of
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empirical measures of unreliability in our choice analysis. Furthermore, the effects of wait-
ing time unreliability are modelled separately for origin and transfer stations, for different
public transport modes, and for morning peak and off-peak hours.

Next, we present our case study: the urban public transport network of The Hague, fol-
lowed by the methodology outlining data preparation, choice set identification, attribute
extraction, and finally choice analysis. We then discuss the estimated choice models and
conclude with a summary of the main results and suggest avenues for future work.

2. Case study description

For our analysis, we use smart card data from the urban public transport system in The
Hague, the third largest city in the Netherlands. The network contains 12 tram and 8 bus
lines connecting 499 aggregated stops (operator-defined ‘parent stations’ in theGTFSdata)
in The Hague and neighbouring suburbs and towns (Figure 1). About 90% (Yap, Cats, and
van Arem 2020) of the trips in the network are paid for through a smart card based AFC
systemwhich requires travellers paying with the smart card to interact with the system (i.e.
check-in and check-out) upon boarding and alighting a vehicle. Travellers in the network
can check scheduled departure times at all tram and bus stops, at most of which, real-time
information is also available. For those using mobile internet, real-time information for the
entire network is always available.

The urban public transport operator in The Hague, HTM, provided us with processed
and anonymised AFC and AVL data from March 2015. The provided AFC data consists of

Figure 1. The Hague tram (orange) and bus (grey) networks in March 2015.
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journeys constructed by linking individual AFC transactions using a time-based transfer
inferencemethodwherein a trip with the same smart card identifier is included in the same
journey as the previous trip if the boarding time of the second trip is within 35min of the
alighting time of the first. Since the data we received does not contain these unique identi-
fiers, we are unable to follow individual cards across different journeys. Furthermore, since
no information about the typeof cardor discounts applied is available, segmentationbased
on such variables is not possible.

The data consists of about 5.9 million inferred journeys and information on boarding
and alighting time, stop, and line for each trip in every journey is available. In this study,
we analyse and contrast route choice behaviour in weekday morning peak (06:00–09:00)
and off-peak (09:00–16:00) hours. After filtering the datasets accordingly and applying the
transfer inferenceprocedure (describednext),weare leftwith1.02and2.63million journeys
for the morning peak and off-peak hours, respectively.

3. Methodology

3.1. Data preparation

Three data sources are used: (i) automatic fare collection, (ii) automatic vehicle location,
and (iii) general transit feed specification (GTFS) data. While AFC data is the source for
behavioural observations, the latter two, being data on the realised and scheduled opera-
tions, respectively, provide informationon travel timecharacteristics includingwaiting time
reliability.

To analyse route choice behaviour, complete journeys – as sequences of trips (i.e. rides
on a single vehicle) without intervening trip-generating activities – have to be known.
Although, the AFC data provided by the operator already consists of journeys, these are
inferred by a time-based algorithms which tend to over-estimate the number of transfers
(Yap et al. 2017). The time-based algorithm considers two trips to be part of the same jour-
ney if the time between the last check-out and next check-in is less than 35min. Thus,
trip-generating activities of shorter duration are ignored, leading to an overestimation of
the number of transfers. This is particularly true for an urban public transport systemwhere
services have a relatively higher frequency and transfer times are rarely greater than the
threshold. Therefore, we apply our own transfer inference algorithm to each journey to
check whether the trips linked together by the operator indeed constitute one journey.
For this, the AFC and AVL datasets were merged using the technique detailed in Luo et al.
(2018).

The transfer inference algorithm is composed of one spatial and one temporal rule. The
spatial rule ensures that the alighting stop of one trip and the boarding stop of the next
are within 400 Euclidean metres (Yap et al. 2017) of one another. This places an upper
bound on the distance travellers will walk to transfer. The temporal rule checks whether,
after alighting, the first plausible service (or an earlier one) of the line used in the next trip
is boarded. When this is the case, it is unlikely that a traveller will have performed an inter-
mediate trip-generating activity. If the boarding stop is the same as the alighting stop of
the previous trip, then the first plausible service is the same as the first service. That is,
if the alighting and boarding stops for two consecutive trips are the same, then the first
plausible service is the first vehicle of the line (actually) used in the second trip to arrive



TRANSPORTMETRICA A: TRANSPORT SCIENCE 5

at the stop after the traveller has alighted. If the two stops are different then it is the first
service (of the line used in the next trip) after adding the time required by most people
to walk between the two stations. For this, Euclidean distances and a walking speed of
0.66m/s (Hänseler, Bierlaire, and Scarinci 2016) are used. A slower walking speed is used
to ensure that the first plausible service is feasible for the majority (in this case 97.5%) of
the population. Note that since it is rare for vehicles in the network to be too crowded
for passengers to board, we do not account for the possibility that a traveller does not
board the first plausible vehicle due to overcrowding. As an example to understand how
the transfer inference algorithmworks, consider an operator-inferred journeywhere a trav-
eller goes from stop A to D, first taking line 1 from A to B, then walking from B to C, and
finally taking line 2 from C to D. The traveller alights line 1 at 10:03 and boards line 2 at
10:20. Line 2 departs from C every 10min (i.e. at 10:00, 10:10, 10:20, etc.) and the distance
between stops B and C is 200m. The transfer thus passes the spatial rule as the distance
is less than the threshold of 400m. Based on the assumed walking speed of 0.66m/s, the
traveller should have arrived at stop C by about 10:05. Thus, the first plausible service of line
2 at stop C is the one at 10:10. Since the traveller instead boarded the service departing at
10:20, it fails the temporal rule and the two trips (A to B and C to D) are separated to two
journeys.

Journeys containing transfer between the same lines (about 0.47% of the data) are not
removed as long as they pass the above temporal criterion. This is done to accommo-
date travellers affected by planned and unplanned short-turning, stop-skipping or dead-
heading. To avoid considering such routes as different alternatives, wherever the temporal
criterion is passed for such transfers, the trips involved aremerged into one (thus removing
the extra transfer to the same line).

Applying this transfer inference algorithm reduces the number of journeys with at least
one transfer from 18.8% of all journeys in the dataset provided by the operator to 10.8%.
Journeys with more than one transfer make up about 0.5% of the total.

3.2. Choice set identification

A number of choice set generationmethodologies have been proposed in literature. These
approaches typically either require enumerating shortest paths or relying on a variety of
behavioural assumptions (see Bovy 2009; Prato 2009, for an overview). However, stud-
ies analysing travel behaviour using AFC data have typically identified the route choice
set for each origin-destination (OD) pair directly from the set of observed routes (Kim
et al. 2019; Leahy, Batley, and Chen 2016; Yap, Cats, and van Arem 2020). A potential
disadvantage of this method is that we do not include in our analysis routes that are
feasible but are only used for a few trips or not at all. However, since the data used for
this study covers the entire network and covers a reasonably long period of time, this
disadvantage is fairly low and the direct identification method is also suitable for our
analysis.

The following filtering rules are applied to identify OD pairs (and associated route alter-
natives) for choice analysis: (i) each OD pair must have at least 2 route alternatives, (ii) each
OD pair must have at least 200 trips between them, and (iii) each route alternative must
make up at least 10% of the observations of its OD pair. While the first rule ensures that
we are able to observe trade-offs between alternatives, the lower limits on the number of
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Figure 2. Choice set size distribution for the morning peak and off-peak hours.

observations ensure that there is sufficient information to estimate behavioural parame-
ters as well as to eliminate unusual observations that do not take place regularly. The set of
eligible OD pairs is filtered iteratively using these rules until a stable set is obtained.

For the choice analysis, routes have to be uniquely defined such that travellers can be
reasonably expected to perceive one route to be different from another. To this end, route
alternatives are defined by the sequence of modes used and the boarding, intermediate
and alighting stops. We consider lines (of the same mode) along a common corridor (i.e.
traversing the same sequence of stops) to be perceived equivalently by travellers. More-
over, routes that have different transfer stops but are otherwise similar are distinguished as
separate alternatives. This is to account for the fact that different stops may be associated
with differentwaiting time reliability characteristics due to various reasons, such as planned
transfer coordination.

Given these filtering rules, for themorning peak, we are left with 39 OD pairs and 30,606
inferred journeys suitable for choice analysis while for the off-peak, we have 105 OD pairs
and 85,952 inferred journeys. As shown in Figure 2,mostODpairs in both timeperiods have
only 2 alternatives.

3.3. Choice attributes

Once all eligible OD pairs and associated choice sets are obtained, attribute values for the
alternatives are assigned. The following attributes are used for the choice analysis: for each
leg of the route, its (i) mode, (ii) in-vehicle time, and (iii) waiting time (and its components:
scheduled waiting time, and regular and irregular deviations), and for the route alternative
as a whole, its (iv) path size factor (indicating degree of overlap with other alternatives) and
the (v) number of transfers. Attributes (i) and (v) – mode used in each leg and number of
transfers – are directly known from the route definition. Travel time attributes are aggre-
gated over each hour per day of the week (e.g. Mondays, 0900h–1000 h) to account for the
fact that travel time attributes may vary over time. Unfortunately, the data available does
not include fare (or discount) information. However, for alternatives of a given OD pair, the
price difference is typically in the order of cents. Moreover, paying by smart cardmaymake
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it evenmore difficult for passengers to internalise costs. Having said that, we acknowledge
that any fare effects will instead show up in the coefficients of other attributes, particularly,
in-vehicle time, number of transfers, andmode,which are associatedwith price differences.
We describe each choice attribute and its calculation below.

3.3.1. Modes and number of transfers
The mode used (denoted bym in Equation (3)) helps to understand how travel time com-
ponents areweighed for differentmodes by travellers while the number of transfers (ntrans)
is used to evaluate the transfer penalty, that is, the additional disutility beyond the trans-
fer waiting time. Amongst the journeys eligible for choice analysis, all have a maximum
of one transfer although the vast majority of observations are direct tram trips. Barring
two OD pairs in the off-peak hours, whenever a bus-based option is available, it com-
petes against a tram alternative. However, the overall proportion of observations where
the choice between bus and tram is observed is also quite low: only 5 (5.12% of observa-
tions) and 11 (9.86% of observations) such OD pairs are available in the peak and off-peak
hours, respectively. This may be expected given the different functions the two networks
perform in a wheel & spoke-like network where the tram lines radiate out of the centre and
the bus lines provide peripheral connections.

3.3.2. In-vehicle time
Since the focus here is on waiting time reliability, only scheduled in-vehicle times (tivtm ) are
used in the analysis. In-vehicle times are separately calculated for each stop pair and line
combination by taking the mean of the scheduled values over the aggregation period. For
common corridors, the in-vehicle times are assigned by taking themedian of the in-vehicle
times of the individual lines in the corridors.

3.3.3. Waiting time
We use the reduced-form approach to include reliability effects in the route choice model.
This method directly introduces statistical measures of travel times in the utility function
(Börjesson, Eliasson, and Franklin 2012). Usually, centrality and dispersion of realised travel
times are used (Alemazkoor, Burris, and Danda 2015; Carrion and Levinson 2012) with the
aim of estimating how expectations of travel times (centrality measures such as mean or
median) are traded-off against dispersion parameters (such as standard deviation or skew).
However, unlike road traffic, since schedules exist for public transport networks, they may
loom large in the decision process. Therefore, based on van Oort et al. (2015) and van Oort
(2016), we consider the following waiting time components to quantify the effect of relia-
bility on route choice behaviour: (i) scheduledwaiting time (twt0,m); and (ii) regular deviations
(twtd,m) and (iii) irregular deviations (twtr,m; where r is replaced by the indicator name) of the
realised waiting times from the schedule.

Regular deviations are calculated as the difference between the median of realised and
scheduled values. For irregular deviations, a few studies on road traffic have compared indi-
cators (Alemazkoor, Burris, and Danda 2015; Bogers, Van Lint, and Van Zuylen 2008; Bogers
et al. 2006) but there is little consensus regardingwhichdispersionmeasures best represent
the perception of travel time unreliability. van Lint, van Zuylen, and Tu (2008) categorise
these measures into (i) statistical ranges, (ii) buffer times, (iii) tardy trip measures, and (iv)
probabilistic measures. The first two categories are commonly included in travel behaviour
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Table 1. Waiting time dispersion measures considered.

Category Statistical measure Formula

Statistical range Standard deviation

√∑
(xi − μ)2

N

Normalised variance (van Lint,
van Zuylen, and Tu 2008)

p90 − p10
p50

Buffer times Reliability buffer time p95 − p50

Reliability buffer index
p95 − p50

p50

Normalised skew (van Lint, van
Zuylen, and Tu 2008)

p90 − p50
p50 − p10

For a given time period aggregate (hour-day of week), xi is the ith realised
value, µ is the mean of realised values, N is the number of realisations,
pm is themth percentile of the realised values.

studies: statistical ranges (for instance, variance or standard deviation) measure the varia-
tion around the central valuewhile buffer times indicate the extent of worse case scenarios,
usually through the difference between the 90th or 95th percentile travel time and the
median. In our analysis, we tested absolute and normalised formulations of these two com-
monly used dispersion measures (Table 1) to evaluate which representations best explain
observed behaviour.

The effects of waiting times at origin (towt) and transfer (ttwt) stops are considered sepa-
rately. We assume that travellers arrive uniformly at origin stops and subsequently consider
half of the headway time (of relevant lines) as the origin waiting time. Previous studies
have found that for headways up to 10–12min, passengers tend to indeed arrive randomly
(Ansari Esfeh et al. 2020; Fan andMachemehl 2009; van Oort 2011). Figure 3, top-left shows
the distribution of calculated waiting times at origin (the headways are double these val-
ues). It can be seen that although our assumption is reasonable for most alternatives, for
some, the headways are slightly higher. For these, we may be considering a slightly higher
waiting time than reality as we can expect travellers to begin coordinating their arrivals to
departure times (or be ‘less random’ Fan andMachemehl (2009)). Furthermore, we assume
that travellers take the first vehicle available to them since denied boarding is rare in The
Hague (Yap, Cats, and van Arem 2020). Transfer waiting times, on the other hand, can be
fully observed as the time between departures of the lines used to and from the transfer
stop. However, for alternatives with common corridors, the expected transfer waiting time
also depends on the lines used from the previous stop; and therefore ultimately on the
assumptionsmade regarding traveller arrivals at the origin. For example, to obtain thewait-
ing time at the first transfer stop, the proportion of travellers using each line at the origin
stop (under given assumptions) is used to weight the feasible transfer times between the
lines from the origin to the transfer stop and from the transfer stop onward.

Figure 3 shows the distribution of scheduled waiting times, and regular and irregular
deviations for the route alternatives eligible for analysis. (Since it is ultimately selected for
the choice models in section 4, only standard deviation is shown here). While the origin
waiting times are generally low, transfer waiting times show a stark difference between
the two time periods. Lower transfer waiting times in the peak hours may be a result of
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Figure 3. Scheduled, regular deviations, and irregular deviations for origin and transfer waiting times
of route alternatives in the choice analysis (in minutes).

increased transfer coordination by the operator. Characteristic of urban public transport
networks, regular deviations are distributed around zero. Most values fall within a narrow
deviation of 0.5min for both time periods, indicating a fairly reliable service on average –
although again a wider spread can be observed in the off-peak hours at transfer stops. On
average, irregular deviations seem to be slightly higher in the peak hours presumably due
to disturbances caused by the higher number of travellers on the public transport network
and heavier road traffic.

High correlation between regular and irregular deviation indicators may affect choice
analysis. Unlike dispersion indicators calculated for total travel times (for example in Ale-
mazkoor, Burris, and Danda 2015; Lam and Small 2001), a small negative correlation (0
to −0.3) is found between absolute values and median scheduled waiting times. Natu-
rally, therefore, when the indicators are normalised with the median value, the magnitude
of negative correlation is stronger (−0.5 to −0.8). For routes that include transfers, the
variability of waiting times at transfer stops may depend on that for the origin stops
(which is essentially the variation in headways) (Bates et al. 2001). For eligible routes in our
analysis, we find only a small positive correlation (0–0.2) in the peak hours, while in the off-
peak hours dispersion indicators for the origin and transfer stops of a route appear to be
unrelated.

3.3.4. Path size factor
In order to account for overlap between the available alternatives, the path size factor for
each route is calculated.Wedefine the degree of overlap as the number of links sharedwith
other alternatives and use the simplest form of the path size factor (Hoogendoorn-Lanser,
van Nes, and Bovy 2005). Specifically, if route k of an OD pair traverses over links l∈Lk , and
the number of alternatives using link l is nl , then the route’s path size factor, pk , is given
by Equation (1) (|Lk | indicates the number of links in Lk). The path size factor lies between
0 and 1, with higher values corresponding to lesser overlap. As described in the following
sub-section, the natural logarithm of the path size factor enters the systematic utility under
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multinomial logit.

pk = 1
|Lk|

∑
l∈Lk

1
nl

(1)

3.4. Choice analysis

The effect of waiting time reliability on route choice behaviour is assessed under the con-
ventional random utility maximisation (RUM) paradigm. Since the data provided does not
contain individual identifiers, we treat each observation as independent (although in reality
choices made by the same person may be correlated) and employ multinomial logit (MNL)
models. Within the RUM paradigm, the utility of an alternative a, Ua, is composed of sys-
tematic (Va) and random (ε) components. The systematic part is the product of the vector
of tastepreferences (β) and thevectorof alternative attributes (xa). TheMNLmodel assumes
that the random components are i.i.d. Gumbel distributed, which gives the probability of
choosing alternative i from I alternatives as the following:

Ua = Va + ε; Va = β · xa; Pni = eVi∑I
a=1 e

Va
(2)

In the most generic form of the model, all attributes associated with separate legs of the
route are mode-specific as shown in Equation (3) (symbol descriptions can be found in
section 3.3). To examine the impact of including reliability parameters, we estimate one
set of models with only planned values and another which also incorporates parameters
for regular and irregular deviations. We also estimated models with quadratic terms for
in-vehicle times and interaction effects between irregular deviations and in-vehicle times
but this resulted in less generalisable models; that is, for values outside of the ranges
observed here, the effects would be in the wrong direction. The effect of transfer distances
was excluded because of the relatively small magnitude. Choice model parameters are
estimated using PandasBiogeme (Bierlaire 2018).

V = βtrans · ntrans + βps · ln(p) +
∑
m∈M

β ivt
m · tivt0,m

+
∑
m∈M

βowt
0,m · towt0,m + βtwt

0,m · ttwt0,m

+
∑
m∈M

βowt
d,m · towtd,m + βtwt

d,m · ttwtd,m

+
∑
m∈M

βowt
r,m · towtr,m + βtwt

r,m · ttwtr,m (3)

Wealso separately validate theoff-peakhourmodels (with andwithout reliability param-
eters), using a k-fold procedure where each fold is assigned observations from a unique
OD pair. In one iteration of this procedure, we keep the observations of an OD pair as the
test dataset; estimate the choice model using observations from the remaining OD pairs;
and calculate the likelihood that this estimated model predicts the test data. This is then
repeated until all OD pairs have been kept as the test dataset. After all iterations have been
completed for a particular model, all prediction likelihoods are aggregated by taking their
product. The two models can then be compared using the likelihood ratio test.
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4. Results and discussion

Table 2 shows the estimated route choice models, with and without reliability parameters
for morning peak and off-peak hours. Estimated coefficients are scaled relative to that for
in-vehicle times in trams to easily compare models. To arrive at the final models, statisti-
cally insignificant (p > 0.1) coefficients are removed (i.e. fixed to zero) one-by-one followed
by re-estimation until all coefficients retained in the model are significant (p ≤ 0.1). Other
exceptional conditions for keeping or removing parameters are discussed below.

Most parameters are statistically significant although, given the relatively low number
of trips with transfers to buses, mode-specific coefficients for transfer waiting times were
difficult to estimate with sufficient confidence. As discussed previously, we tried different
irregular deviation measures in the choice models with reliability parameters. Likelihood
ratio tests confirmed that in both time periods, all dispersion measures led to a better fit
than models with only scheduled travel times (p < 0.001). For each time period, (with the
exception of normalised variance in peak hours) fairly similarmodel fits were found and val-
ues for transfer penalties andwaiting-to-in-vehicle time ratioswere comparable.Usingboth
indicator types (statistical range and buffer times) together, did not improve the model
significantly and led to counterintuitive results.

Other revealed preference studies have also reported similar results. In their analyses of
choices between a free and tolled route, Lam and Small (2001) find that reliability buffer
time and standard deviation perform almost the same in terms of model fit while Carrion
and Levinson (2013) find that using the mean and standard deviation gives the best fit fol-
lowed closely by the combination of median and reliability buffer time. The fact that we
find comparable models with different indicators may be because, similar to the above-
mentioned studies, in each time period the indicator types are generally highly correlated.
Ultimately, we choose to present results with standard deviation as the dispersion indicator
in both time periods. As noted below, the coefficients for the off-peak hours seemmore in
linewith expectations; therefore, we choose the indicators that fit best for that time period.
Since standard deviation is also most commonly used to calculate reliability ratios in litera-
ture, using this indicator also enables comparison. In the following, unless noted otherwise,
we discuss parameters of the models with reliability parameters.

4.1. Unexpected effect of irregular deviations in peak hours

Some coefficients for origin waiting time in peak hours are unexpected. The scheduled
waiting to in-vehicle ratio (in the model with reliability parameters) at the origin for trams
is 0.81, indicating that travellers value in-vehicle time more than waiting time, while the
opposite effect has been typically found. We also confirmed (by means of a t-test) that the
two parameters are indeed different with a statistical confidence of >99%. Furthermore,
irregular deviations – both statistical ranges and buffer times as indicators – are found to
have a positive effect. Leahy, Batley, and Chen (2016), who analyse smart card data from
London, also find higher travel time standard deviation to have a positive effect on the
utility of one of the mode combinations studied, and suggest that this is indicative of risk-
seeking behaviour. We, however, submit that this anomaly in our results may have arisen
because crowding and dispersion measures are correlated in the long run. That is, as more
travellers choose a particular line it becomes more unreliable because of delays due to
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Table 2. Estimation results.

Peak Hours (06:00–09:00) Off-peak Hours (09:00–16:00)

Scheduled values only With reliability parameters Scheduled values only With reliability parameters

Initial LL −22,420.31 −22,420.32 −62,909.21 −62,909.21

Final LL −20,964.06 −20,938.99 −57,663.89 −57,544.00

Coefficient Value p-value Scaled Value p-value Scaled Value p-value Scaled Value p-value Scaled

Number of
transfers

βtrans −1.960 0.000 10.103 −1.520 0.000 7.958 −2.420 0.000 14.405 −2.060 0.000 12.118

Path size factor βps 0.373 0.004 −1.923 0.234 0.076 −1.225 −0.208 0.017 1.238 −0.117 0.183 0.688
Scheduled
in−vehicle
times

β ivt
0,bus −0.086 0.004 0.445 −0.079 0.016 0.414 −0.186 0.000 1.107 −0.184 0.000 1.082

β ivt
0,tram −0.194 0.000 1 −0.191 0.000 1 −0.168 0.000 1 −0.170 0.000 1

Scheduled waiting
times

βowt
0,bus −0.338 0.000 1.742 −0.337 0.000 1.764 −0.281 0.000 1.673 −0.287 0.000 1.688

βowt
0,tram −0.167 0.000 0.861 −0.155 0.000 0.812 −0.204 0.000 1.214 −0.262 0.000 1.541

βtwt
0,bus −0.223 0.000 1.149 −0.227 0.000 1.188 0 (fixed) 0 0 (fixed) 0

βtwt
0,tram −0.179 0.021 0.923 −0.244 0.010 1.277 −0.104 0.000 0.619 −0.216 0.000 1.271

Regular deviations βowt
d,bus 0 (fixed) 0 −0.135 0.013 0.794

βowt
d,tram −0.130 0.000 0.681 −0.269 0.000 1.582

βtwt
d,bus 0 (fixed) 0 0 (fixed) 0

βtwt
d,tram 0 (fixed) 0 −0.247 0.000 1.453

Irregular deviations
(standard
deviation)

βowt
std,bus 0.141 0.035 −0.738 −0.323 0.000 1.900

βowt
std,tram 0.053 0.000 −0.280 −0.053 0.000 0.314

βtwt
std,bus 0 (fixed) 0 0 (fixed) 0

βtwt
std,tram −0.169 0.000 0.885 0 (fixed) 0
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greater boarding and alighting times. If in reality unreliability has a small effect on travellers’
choices, the estimation procedure would find that travellers tend to choose the unreli-
able alternative because of this underlying long-run relationship. This phenomenonwould
be particularly in effect in peak hours because concentrated demand then would lead to
higher crowding which causes the unreliability.

4.2. Waiting times

Other parameters in the study are generally in line with expectations. In the off-peak hours
at origin stops, for both, trams and buses, 1 min of waiting time is about 1.55 in-vehicle
minutes in the respectivemodes. This is comparable to previous revealed preferences stud-
ies which have found similar values in urban public transport networks with ratios ranging
between 1.5 and 1.7 (Kim et al. 2019; Nassir, Hickman, andMa 2019; Yap, Cats, and vanArem
2020). Transfer waiting time to in-vehicle time ratios for trams in the off-peak hours is about
1.27, indicating thatwaiting time at transfers has a smaller impact on route choice than that
at origin. While most studies lump origin and transfer waiting times together, results from
Guo and Wilson (2011), who focus on transfer inconvenience, also indicate that the latter
has a lower effect. The lower weight attached to transfer waiting time compared to origin
waiting time may be indicative of travellers adopting a strategy-based decision rule where
the transfer waiting time would depend on the line boarded at the origin. Another pos-
sible reason could be that travellers value waiting time costs closest to them more whilst
discounting future losses. That is, the anticipated disutility of waiting at a transfer stop is
lower or the traveller pays less attention to it simply because it is further in the future. Since
the route observations suitable for choice analysis do not contain journeys with more than
one transfer, we are unable to check if the impact of waiting time at subsequent transfers
would be even lower.

4.3. Transfer penalties

We estimate transfer penalties of more than 8 and 12 in-tram minutes in the peak and
off-peak hours, respectively. In comparison, other revealed preference studies for public
transport networks have reported values ranging from as low as 3–5min (Guo and Wilson
2011; Yap, Cats, and van Arem 2020) to values in the vicinity of ours (Nassir, Hickman, and
Ma 2019) to extremely high penalties of 0.5–2 h (Han 1987; Jánošíková, Slavík, and Koháni
2014; Kim et al. 2019). A higher transfer penalty in the off-peak hours could be a result of
travellers having more modest time constraints than commuters in the morning peak or
because travellers are more worried about missing a transfer as the frequencies are slightly
lower in this time period.

4.4. Effect of overlapping alternatives

Since the logarithmof the path size factor is itself negative, a positive coefficient indicates a
penalty that corrects for correlation due to overlapping routes. Negative coefficients have
also been found for public transport networks which have been interpreted as overlap-
ping routes adding robustness thus making them more attractive (Hoogendoorn-Lanser,
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van Nes, and Bovy 2005). We find positive and negative coefficients for the peak and off-
peak hours, respectively. The negative sign for the off-peak hours may, again, be indicative
of travellers seekingmore robustness in light of slightly higher headways in this timeperiod.

4.5. Tram bonus

Previous research (both stated and revealed preference studies) has indicated that trav-
ellers in urban networks find each minute on a bus to be equivalent to 1.2–1.67min on a
tram (Axhausen et al. 2001; Bunschoten 2012; Yap, Cats, and van Arem 2020). We too find
a consistent tram bonus on the lower end of this range. Although in Table 2, peak hour
in-bus coefficients are much lower than those for in-tram, closer inspection reveals that,
correspondingly, origin waiting times for trams are weighted much lower than those for
buses. Using mode-agnostic (generic) coefficients for waiting times reveals a bus to tram
in-vehicle time ratio of 1.2, indicating a small preference for trams. For the off-peak hours,
using either mode-specific or generic coefficients for waiting times, one minute in a bus is
perceived as approximately 1.1min in a tram. Furthermore, in the off-peak hours waiting
for buses is valued slightly worse than trams. Since many stops in The Hague serve both
trams and buses, it is unlikely that this is caused by different waiting conditions. A more
likely reason may be that travellers perceive waiting for trams to be less uncertain than for
buses. Note that this would not necessarily be captured in the schedule deviation terms as
this perception may be independent of empirical values.

4.6. Regular and irregular deviations in waiting time

Regular deviations for trams in the off-peak hours are evaluated as 1.03 and 1.14 times
the scheduled values at origin and transfer stops, respectively. This may indicate that trav-
ellers do not really consider these values separately but rather internalise the distribution
of actual waiting times in their decision making. In contrast, regular deviations for buses
are weighted about half of their scheduled waiting times. A possible reason for this is that
of the observations suitable for choice analysis, the majority of those choosing a bus at the
origin (in the off-peak hours) are along a corridor served by two bus lines and a tram line.
Since the two bus lines are along a common corridor, they form a single choice alternative
with a net higher frequencywhichmay have reduced the importance of regular deviations.

We calculate the reliability ratio to compare our dispersion parameter estimates against
a fairly large number of studies who also calculate this indicator albeit typically for total
travel time rather than only waiting time. The reliability ratio is defined as the ‘marginal
rate of substitution between average travel time and travel time variability’ (Li, Hensher,
and Rose 2010) and canbe calculated as the ratio of the coefficients of time variability to the
coefficient of average time in the utility function. A smaller value indicates a weaker impact
of travel time variability (irregular deviations in our case) relative to the impact of average
travel times (scheduled waiting times in our case). In the morning peak, at transfer stops,
we find a reliability ratio of 0.69 for trams. In the off-peak hours at origin stops, reliability
ratios for trams and buses are found to be 0.20 and 1.12, respectively.

Since previous studies calculate reliability ratios for total travel time there is little empir-
ical evidence that can be directly compared. However, in comparison to these values, our
findings are overall in agreement. Literature reviews (Carrion and Levinson 2012 (Figure 3);
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Li, Hensher, and Rose 2010) have found a wide range of reported reliability ratios from
0.1–3.3. These studies focussing mostly on car traffic contain results from both stated and
revealed preference studies. In their meta-analysis, Carrion and Levinson (2012) do not find
the type of data (stated or revealed preferences) to have a significant effect on the value of
reliability. However, amongst the studies they reviewed, those that had carried out analy-
sis on both stated and revealed preferences, reported that estimates from the latter were
typically higher (e.g. Ghosh (2001); Small, Winston, and Yan (2005)). In contrast, Bates et al.
(2001) argue that protest responses in stated preference experiments may lead to higher
value of reliability ratios for public transport. Recent empirical evidence concurs with these
expectations: studying crowding valuations using smart card data, Yap, Cats, and van Arem
(2020) conclude that stated preferences tend to overestimate values. Leahy, Batley, and
Chen (2016), whose study using smart card data is the closest to ours, find reliability ratios
for the London Underground to be below 0.6 in two model specifications (higher ratios
were found for light and heavy rail modes), in line with our results.

The fact that our estimates find that travellers do not react too strongly to irregular
deviations, means that these measures contribute fairly little to improving model perfor-
mance; especially, given the limited disturbances (indicating a reliable service) in the public
transport network in The Hague.

4.7. Model validation

Model validation using a k-fold procedure returned an aggregate log-likelihood of
−57,725.09 and −57,799.80 for off-peak models with and without reliability parame-
ters, respectively. Both of these have a poorer fit in comparison with models estimated
with the entire dataset (Table 2). However, this is expected with models estimated from
cross-validation folds. Moreover, the performance gap between them is smaller although
the likelihood ratio test confirms that the model with reliability parameters is still better
(p < 0.001). Analysis of predicted probabilities for observed choices did not reveal any
obvious patterns between difference in performance of the two models and reliability
attributes of the alternatives. Thus, the model with reliability parameters did not, as such,
describe behaviour better for OD pairs with greater differences in reliability. Given the gen-
erally small deviations from schedule in the public transport network of The Hague and
the relatively small coefficients for reliability, the fact that reliability parameters add little
predictive power is not surprising. Validation tests for the peak hour models found aggre-
gate log-likelihoods of −21,535.88 and −21,412.92 for models with and without reliability
parameters, respectively, indicating that the model with reliability parameters was over-
fitting the data. This could possibly support our hypothesis that the unexpected signs of
irregular deviation coefficients in thepeakhoursmodelswere causedbydata resulting from
a specific situation rather than describing the underlying behaviour.

5. Conclusion

In this study, we evaluate the impact of waiting time reliability on route choice behaviour
in public transport networks. Unlike themajority of studies on this topic, rather than stated
preference surveys or laboratory experiments, we use revealed preferences derived from
passively collected AFC data. While several studies have used smart card data for analysing



16 S. SHELAT ET AL.

choice behaviour, to the authors’ best knowledge, this is the first study explicitly analysing
the impact of waiting time reliability using all AFC transactions in the network. As a case
study, we analyse the urban public transport network of The Hague in the Netherlands.
Differentmodels are estimated for peak and off-peak hours; and, as far as possible, separate
coefficients are estimated for different modes, and origin and transfer stops. Furthermore,
we used both statistical range and buffer time type waiting time dispersion measures to
evaluate which best represents travellers’ perceptions of reliability.

All tested dispersion measures performed nearly equally well although in compari-
son with most previous studies, we find a relatively small effect of unreliability on route
choice behaviour. Reliability ratios estimated with standard deviation were in the range
of 0.20–1.12. In addition to the possibility that our values are lower because we use pas-
sively collected revealed preferences rather than stated preferences, the fact that public
transport in The Hague is overall quite reliable may have also contributed to smaller relia-
bility coefficients. In other networks where travellers have to regularly face delays, we may
findmore risk averse behaviour. This may be investigated further in future studies, particu-
larly because a number of studies (e.g. Bordagaray et al. 2014; Soza-Parra et al. 2019) have
found that reliability is usually on of the most important stated satisfaction determinants.
Differences in behaviour between the two time periods are also found, arisingmainly from
travellers being wary of missing transfers in the off-peak hours. Further, small differences
are found in travel time weights for different modes and origin/transfer stops.

This study has several limitations stemming from the nature of passively collected data.
Due to privacy regulations, we do not have unique identifiers that link different journeys in
the data. Typically, assuming each choice observation to be independent (as we do here)
leads to poorer model fit. Moreover, we also cannot comment on the nature of the het-
erogeneity in taste preferences of travellers. Although the AFC system used in The Hague
allows us to record complete trips, origin waiting times are not observed, forcing us to
make an overarching assumption regarding passenger arrivals at stops. This may have led
to overestimation of waiting times and subsequently underestimation of the impact of
waiting time. Furthermore, the absence of fare data from this period meant that we could
not include it in our model. However, we do not expect this particular limitation to have a
significant impact on our model.

Passively collected revealed preferences have a number of advantages over stated pref-
erences, in particular the absence of hypothetical bias and the need to convey probabilistic
information. However, by their nature, such data lacks experimental control. Thus, we did
not necessarily observe all trip types (with/without transfer) of all modes (trams/buses) in
equal numbers, which may have resulted in some of our coefficients being insignificant.
More importantly, the lack of control over causalitymay have led to anomalies such as trav-
ellers preferring more unreliable lines. Experimental setups that can disentangle causally
linked variables are an interesting avenue for future research into using such revealed
preferences.

Finally, we reiterate an important assumption made in this study (and similar revealed
preferences-based studies in literature): although we use observations of choices made in
real-life, our analysis is made under the assumption that travellers are able to internalise
and integrate empirical measures (such as median or standard deviation) of waiting time
distributions into their decision making process. The idea is that, on average, these mea-
sures should represent travellers’ perception of travel time but, clearly, this assumptionwill
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not always hold true. Even experienced travellers, who may be fairly aware of waiting time
distributions,wouldbe influencedbypersonal beliefs and subjectiveprobabilityweighting.
Futureworkmayalsowant to focus efforts on this – explicitly accounting for suchuncertain-
ties by usingmore complexmodels of decisions under risk and uncertainty (Li and Hensher
2019).
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