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a b s t r a c t

In this paper, it is shown how characteristic coordinates, or equivalently how the well-
known formula of d’Alembert, can be used to solve initial-boundary value problems for
wave equations on fixed, bounded intervals involving Robin type of boundary conditions
with time-dependent coefficients. A Robin boundary condition is a condition that specifies
a linear combination of the dependent variable and its first order space-derivative on a
boundary of the interval. Analytical methods, such as the method of separation of variables
(SOV) or the Laplace transform method, are not applicable to those types of problems. The
obtained analytical results by applying the proposed method, are in complete agreement
with those obtained by using the numerical, finite difference method. For problems with
time-independent coefficients in the Robin boundary condition(s), the results of the
proposed method also completely agree with those as for instance obtained by the method
of separation of variables, or by the finite difference method.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The study of one-dimensional wave equations goes back to themiddle of the 18th century when d’Alembert solved in Refs.
[1e3], an initial value problem on an infinite interval (that is, on �∞< x<∞) by using characteristic coordinates. The formula
for the solution of this problem is nowadays well-known, bears the name of d’Alembert, and can be found in all elementary
books on partial differential equations.

This classical formula of d’Alembert can also be used to solve an initial value problem for a wave equation on a semi-
infinite interval (that is, for instance on 0< x<∞). For a Dirichlet type of boundary condition at x¼ 0 (that is, a condition
for which the dependent variable is specified at x¼ 0), or for a Neumann type of boundary condition at x¼ 0 (that is, a
condition for which the first order space derivative of the dependent variable is specified at x¼ 0), it is also well-known that
the functions in the classical formula of d’Alembert should be extended as odd, or as even functions in x, respectively. A Robin
boundary condition at x¼ 0 is a condition that specifies a linear combination of the dependent variable and its first order x-
derivative on the boundary x¼ 0. How the functions should be extended for a Robin type of boundary condition (with
gineering, China University of Mining and Technology, Xuzhou, 221116, China.
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constant coefficients) at x¼ 0, is less well-known, but it was already discovered at the end of the 19th century by Bryan in
Ref. [4], and was also described in the Russian literature around the 1960s in Ref. [5]. Recently, in Ref. [6] this extension
procedure for problems with a Robin type of boundary condition (with constant coefficients) at x¼ 0 was further formalized.
Even more recently, in Refs. [7,8] the extension procedures on semi-infinite intervals for problems with a mass-spring-
damper boundary condition at x¼ 0, were presented for a string equation and for an axially moving string equation,
respectively.

On a bounded interval (that is, for instance on 0< x< L<∞) the classical formula of d’Alembert can also be used to solve an
initial value problem for a wave equation. In the literature only the cases where one has Dirichlet and/or Neumann boundary
conditions, are solved by using the formula of d’Alembert, and leads to odd and/or even periodic extensions of the functions in
the formula of d’Alembert. For other boundary conditions the formula of d’Alembert is not used, most likely, because it is not
(well) known how to extend the functions in the formula of d’Alembert for other boundary conditions than those of Dirichlet
type or of Neumann type. The reader is also referred to the papers [9,10] in which characteristic coordinates are used to solve
problems for axially moving strings with Dirichlet and/or Neumann boundary conditions at the endpoints of the string.
Usually themethod of separation of variables (SOV), or the (equivalent) Laplace transformmethod is used to solve initial value
problem for a wave equation on a bounded interval for various types of boundary conditions with constant coefficients.
However, when a Robin boundary condition with a time-dependent coefficient is involved in the problem, then the afore-
mentioned methods are not applicable. In this paper it will be shown how characteristic coordinates or equivalently, how the
classical formula of d’Alembert can be used to solve an initial value problem for a wave equation on a bounded, fixed interval
with at one endpoint a Dirichlet type of boundary condition, and at the other end a Robin type of boundary condition with a
time-dependent coefficient. The Robin boundary condition with a time-dependent coefficient is an interesting one to study
from the applicational (and from the mathematical) point of view. When one considers the transversal vibrations of a string
which at one end is attached to a spring for which the stiffness properties change in time (due to fatigue, temperature change,
and so on), then a Robin type of boundary condition is obtained with a time-varying coefficient. But also in the study of
longitudinal vibrations of axially moving strings with time-varying lengths (as simple models for vibrations of elevator or
mining cables), one obtains, after some transformations as a first order approximation of the problem, a wave equation for
which at one end a Robin type of boundary conditionwith a time-varying coefficient has to be satisfied. The reader is referred
to the papers [11e18] for further information on initial-boundary value problems for axially moving continua. Also in other
fields of application the Robin boundary condition plays an important role and is sometimes called an impedance boundary
condition in electromagnetic problems or a convective boundary condition in heat transfer problems.

The objective of this paper is to show how characteristic coordinates can be used to solve analytically an initial-boundary
value problem for a wave equation on a bounded, fixed interval involving Robin types of boundary conditions with time-
dependent coefficients. For these types of problems, no analytical solutions are yet available, and are presented in this
paper (to the authors' knowledge) for the first time in the literature. This paper is organized as follows. In section 2 of this
paper, the problem is formulated and it is shown shortly why the method of separation of variables cannot be used to these
wave problems on a fixed, bounded interval involving at one endpoint a Robin type of boundary condition with a time-
dependent coefficient and at the other endpoint a Dirichlet type of boundary condition. In section 3, the problem as
formulated in section 2 will be solved by using the formula of d’Alembert. For some simple examples, the solutions con-
structed by the method as presented in section 3 will be compared in section 4 with numerical approximations, and (when
applicable, that is, for time-independent coefficients in the Robin boundary condition) with solutions found by the method of
SOV. Finally, in section 5 some conclusions will be drawn, and some remarks will be made about future research.
2. Statement of the problem

The governing equation of the transversal vibration of a string as shown in Fig. 1 can be derived by using Hamilton's
principle (see, for instance [12,17])

r
v2uðx; tÞ

vt2
� P

v2uðx; tÞ
vx2

¼ 0; 0< x< L; t � 0; (1)
Fig. 1. The transverse vibrating string with a time-varying spring-stiffness support at x¼ L.
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where r is the cable mass per unit length, P is the axial tensionwhich is assumed to be constant, L is the distance between the
supports, and uðx; tÞ is the lateral displacement of a cable particle at position x at time t. The boundary conditions are given by�

uð0; tÞ ¼ 0
PuxðL; tÞ þ kðtÞuðL; tÞ ¼ 0 ; t � 0; (2)

where kðtÞ is the time-varying stiffness of the spring attached to the string at x¼ L. The boundary condition at x¼ 0 is a
Dirichlet type of boundary condition, and the boundary condition at x¼ L is a Robin type of boundary condition with a time-
varying coefficient k(t).

Based on the Buckingham theorem, the following dimensionless quantities can be obtained to transform the governing
equation (1) and the boundary conditions (2) to a non-dimensional form

x ¼ x
L
; u ¼ u

L
; t ¼ t

L

ffiffiffi
P
r

s
; k ¼ kL

P
; (3)

and hence, Eqs. (1) and (2) can be expressed as
utt � uxx ¼ 0; 0< x<1; t � 0; (4)�
uð0; tÞ ¼ 0

uxð1; tÞ þ kðtÞuð1; tÞ ¼ 0 ; t � 0: (5)

where the overbar notations are omitted for convenience. The initial conditions for the string are assumed to be
�
uðx;0Þ ¼ f ðxÞ
utðx; 0Þ ¼ gðxÞ ; 0 � x � 1 ; (6)

When the method of separation of variables is used to find a nontrivial solution of Eqs. (4)e(5), it is assumed that there

exist solutions in the form

uðx; tÞ ¼ XðxÞTðtÞ: (7)
Substituting (7) into the second boundary condition in Eq. (5) one obtains

dXðxÞ
dx

����
x¼1

þ kðtÞXð1Þ ¼ 0: (8)

This implies that kðtÞ is time-independent, which contradicts to the fact that kðtÞ is time-dependent. Thus, the method of

separation of variables is not applicable to the problem, that is, the problem under consideration does not admit solutions in
the form (7).

3. The analytical solution based on d’Alembert's method

According to the method of d’Alembert, the general solution to Eq. (4) and Eq. (6) is given by

uðx; tÞ ¼ 1
2
½f ðx� tÞ þ f ðxþ tÞ� þ 1

2

Zxþt

x�t

gðsÞds: (9)
It should be noted that the functions f and g are defined only when their arguments are in between 0 and 1, because f(x)
and g(x) are only defined on the interval [0, 1]. To obtain f and g on the domain outside [0, 1], the boundary conditions should
be used. By substituting Eq. (9) into the boundary conditions (5), one obtains

f ðtÞ þ f ð�tÞ þ
Zt

�t

gðsÞds ¼ 0; (10)

f 0ð1þ tÞ þ f 0ð1� tÞ þ gð1þ tÞ � gð1� tÞ þ kðtÞ

2
64f ð1þ tÞ þ f ð1� tÞ þ

Z1þt

1�t

gðsÞds

3
75 ¼ 0; (11)
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where f and g are independent functions, because these functions represent the initial displacement and the initial velocity,
respectively (and these physical quantities can be chosen independently). Once f and g have been determined completely
outside the domain [0, 1], it follows from (9) that the solution of the initial-boundary value problem (4)e(6) has been
constructed for all t � 0 and 0 � x � 1. In the next two subsections it will be shown how f and g can be determined completely
outside the domain [0, 1].

3.1. Extension of the function f

For g≡0, Eqs. (10) and (11) become

f ðtÞ þ f ð�tÞ ¼ 0; 0 � t � 1; (12)

f 0ð1þ tÞ þ kðtÞf ð1þ tÞ ¼ �½f 0ð1� tÞ þ kðtÞf ð1� tÞ�; 0 � 1� t � 1: (13)
Eq. (12) implies that

f ðtÞ ¼ �f ð�tÞ;�1 � t � 0; (14)

which defines f on the interval [�1, 0]. So, f (x) is now defined on the interval½ � 1;1�.
From Eq. (13), it now follows that the functions in the right hand side are defined and known for 0 � t � 2. Then by solving

this equation for the still unknown function f ð1þ tÞ for 0 � t � 2, one can determine f on the interval [1,3]. LetyðtÞ ¼ f ðtþ 1Þ,
then Eq. (13) can be transformed into

y0ðtÞ þ kðtÞyðtÞ ¼ �½f 0ð1� tÞ þ kðtÞf ð1� tÞ�: (15)

R t
Multiply both sides of (15) by the integrating factor e 0
kðsÞds, and then Eq. (15) can be rewritten in

d

0
BBBBBB@
e

Z t

0
kðsÞds

yðtÞ

1
CCCCCCA

dt
¼ �e

Zt

0

kðsÞds
½f 0ð1� tÞ þ kðtÞf ð1� tÞ�: (16)
Integrating (16) with respect to t from t is 0 to t, yields

e

Zt

0

kðsÞds
yðtÞ � yð0Þ ¼

Zt

0

�e

Zt
0

kðsÞds
½f 0ð1� tÞ þ kðtÞf ð1� tÞ�dt: (17)
From (17) and from yðtÞ ¼ f ðt þ 1Þ for 0 � t � 2 it follows that

f ðt þ 1Þ ¼ e

�
Zt

0

kðsÞds
f ð1Þ þ e

�
Zt

0

kðsÞds Zt

0

�e

Zt
0

kðsÞds
½f 0ð1� tÞ þ kðtÞf ð1� tÞ�dt: (18)
And so, the function f is defined on the interval [1,3]. By Eq. (14) f is now defined on [-1, 3].
Let f½i;j�ðxÞ denote the expression of f on the interval [i, j]. By using the boundary condition at x¼ 0, and by using Eq. (18), the

expression for f on the interval ½�3;�1� can then be derived and is given by

f½�3;�1�ðtÞ ¼ �f½1;3�ð�tÞ; �3 � t � �1: (19)
Again, by using Eq. (19) and the boundary condition at x¼ 1, we can find the expression for f on the interval [3,5]. By
repeating this extension procedure over and over again, the expression for f(t) can then be found for all t with � ∞ � t � ∞.
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3.2. Extension of the function g

Let f≡0, Eqs (10) and (11) become

Zt

�t

gðsÞds ¼ 0; (20)

Z1þt
gð1þ tÞ � gð1� tÞ þ kðtÞ
1�t

gðsÞds ¼ 0: (21)
It readily follows from (20) that gðtÞ should be extended as an odd functionwith respect to its argument at zero, that is, gð�
tÞ ¼ � gðtÞ. From Eq. (21) it follows that

gð1þ tÞ þ kðtÞ
Z1þt

1

gðsÞds ¼ gð1� tÞ þ kðtÞ
Z1�t

1

gðsÞds: (22)
Obviously, the right-hand side is defined for 0 � t � 2. By putting yðtÞ ¼ gðtþ 1Þ, we again obtain an ODE for yðtÞ (which is
similar to Eq. (15)). Following the same extension procedure as for the function f ðtÞ, the function gðtÞ can then be found for all
t with � ∞ � t � ∞.

3.3. Wave reflections

As for thewave equation given by Eq. (4), thewave travelling speed is 1, which implies that the vibration information at the
point x ¼ xi (with 0 � xi � 1) will travel into two directions with speed 1, and at t¼ 2 the information will be back to the
position xi, as shown in Fig. 2. Thus, if we treat the status of the string at t¼ 2 as a new initial condition, we can then copy the
extension steps as presented for the time-interval [0, 2] for the next time interval of length 2, that is, for 2� t� 4.

From the solution obtained by the d’Alembert method, the vibration data between [x � t, x þ t] is needed to derive the
response of the particle at position x and at time t. Fig. 3 shows the domain of dependence, from which we can see that the
information from [�2, 3] is needed to determine the response of thewhole string at t is 2. Then, by treating the state at t¼ 2 as
a new initial condition and by using the same extension procedures (as presented for t from t ¼ 0 to 2), the information that is
needed to calculate the solution of the equation up to time t ¼ 4 can be obtained.

By dividing the time domain into finite intervals of length 2, and by letting fk;½i;j� and gk;½i;j� be the “initial” functions defined
on the space domain [i, j] and for time t ¼ 2ðk� 1Þ with k ¼ 1;2;3;/, the initial condition extension relations are shown in
Fig. 4.

For example, the responses of the string at time is t¼ 5 can be expressed as follows

uðx;5Þ ¼ 1
2

h
f3;½�1;0�ðx� 1Þ þ f3;½1;2�ðxþ 1Þ

i

þ1
2

2
64 Z0

x�1

g3;½�1;0�ðsÞdsþ
Z1
0

g3;½0;1�ðsÞdsþ
Zxþ1

1

g3;½1;2�ðsÞds

3
75: (23)
Fig. 2. Wave propagation and reflections.



Fig. 3. Domain of dependence.

Fig. 4. Initial condition extension relations.
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3.4. Numerical approximation

Herewe introduce a uniformmesh Dx, a constant discretization time Dt, and a rectangular mesh consisting of points ðxi; tjÞ
with

xi ¼ iDx; tj ¼ jDt; (24)
where i ¼ 1;2;3;/;N; j ¼ 1;2;/, with NDx ¼ 1. Following the finite difference method and by the Taylor series expansion,
the second order space and time derivatives can be approximated by

v2u
vx2

�
xi; tj

�
z
u
�
xiþ1; tj

�� 2u
�
xi; tj

�þ u
�
xx�1; tj

�
ðDxÞ2

þ1
�
ðDxÞ2

�
; (25)

v2u � � u
�
xi; tjþ1

�� 2u
�
xi; tj

�þ u
�
xi; tjþ1

� � �

vt2

xi; tj z ðDtÞ2
þ1 ðDtÞ2 : (26)
Substituting the finite difference formulae into Eq. (4), and rearranging the terms, we end up with the linear iterative
system

ui;jþ1 ¼ s2uiþ1;j þ 2
�
1� s2

�
ui;j þ s2ui�1;j � ui;j�1; i ¼ 2;3;/;n� 1; j ¼ 1;2;/; (27)
where ui;j ¼ uðxi; tjÞ, s ¼ Dt=Dx. From the boundary condition (5) it follows that
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u0;j ¼ 0; (28)

un�1;j
un;j ¼ 1þ k
�
tj
�
Dx

: (29)
Let

uðjÞ ¼ 	
u1;j u2;j / un�2;j un�1;j


T
; (30)

2
2
�
1� s2

�
s2

3

B ¼

666666666664

s2 2
�
1� s2

�
s2

s2 1 1

1 1 s2

s2 2
�
1� s2

�þ s2

1þ k
�
tj
�
Dx

777777777775
; (31)

then the iteration process can be rewritten in the following matrix form
uðjþ1Þ ¼ ВuðjÞ � uðj�1Þ; (32)

where initial values imply:
ui;0 ¼ fi ¼ f ðxiÞ; ui;1 ¼ 1
2
s2fiþ1 þ

�
1� s2

�
fi þ

1
2
s2fi�1 þ Dtgi: (33)
4. Examples

4.1. Case I: k(t) is constant

In this section, we first consider k(t) as a constant by letting kðtÞ ¼ 1=2, then the method of SOV can be applied here, and
the solution can be found as

uðx; tÞ ¼
X∞
i¼1

ðAisinðlixÞcosðlitÞ þ BisinðlixÞsinðlitÞÞ; (34)

where li satisfies the transcendental equation li ¼ � k tanðliÞ. By substituting Eq. (34) into the initial conditions and by using

the well-known orthogonality properties of the eigenfunctions, the coefficients Ai and Bi can be determined, yielding

Ai ¼

Z 1

0
f ðxÞsinðlixÞdxZ 1

0
sin2ðlixÞdx

; (35)

Z 1
Bi ¼ 0
gðxÞsinðlixÞdx

li

Z 1

0
sin2ðlixÞdx

: (36)
The initial conditions are assumed to be (as an example)

�
f ðxÞ ¼ sin2ð1:7155xÞ
gðxÞ ¼ 0

: (37)
By using the first 10 terms in the Fourier series (as obtained by themethod of SOV), the string shapes comparison at t is 2, 3,
4 and 5 using themethod as presented in this paper, the method of SOV, and the finite differencemethod are given in Fig. 5. In
this figure it can be seen that the methods are all in good agreement.



Fig. 5. String shape comparison when kðtÞ ¼ 1=2, the proposed method (solid line), the finite difference method (dashed line) and the method of separation of
variables (marked with o): (a) u(x, 2), (b) u(x, 3), (c) u(x, 4) and (d) u(x, 4).
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4.2. 4.2case II: k(t) ¼ 1/(t þ 2)

Let k(t)¼1/(tþ2). In this case, the method of SOV cannot be applied. For the same initial conditions (37), as in the previous
case, the string wave shape comparisons between the proposed method and the finite difference method are shown in Fig. 6.

In Figs. 5 and 6, it can be seen that the proposed method agrees well with the method of SOV (when k(t) is constant) and
the finite difference method (in both cases). For the finite difference method, according to Eq. (29), its accuracy is1ðDxÞ. And
for the method of SOV, since only the first 10 terms in the Fourier series are considered, its result is also an approximation to
the exact solution. In contrast, the proposed method provides the exact solution, and the minor differences between the
proposed method and the two other methods can be found in the zoomed figures in Figs. 5 and 6.
Fig. 6. String shapes comparisons when k(t)¼1/(t þ 2), the proposed method (solid line), the finite difference method (dashed line): (a) u(x, 2), (b) u(x, 3), (c) u(x,
4) and (d) u(x, 4).
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5. Conclusions

In this paper, an analytical method is presented to solve wave equations on fixed, bounded intervals involving Robin type
of boundary conditions with time-dependent coefficients. Based on the d’Alembert formula and on the boundary conditions,
the initial conditions are extended on the whole x-domain. Taking into account the wave travelling speed and the total
reflection time, the time domain is divided into smaller intervals of fixed length, so that the initial conditions extension
procedure for each interval coincides with the previous ones. In this way one can obtain in a rather straightforward way an
analytical expression for the solution on the time-interval [0, 2n] with n¼ 1, 2, 3,…, N and N not too large. Of course one will
encounter computational issues for large N. The proposed method is consistent compared with the method of SOV and the
finite differencemethod. The presentedmethod can also be applied to other initial-boundary value problems for PDEs like the
heat equation. The proposed method also provides a way to test the accuracy of the analytical/numerical approximations. As
mentioned in the introduction of this paper, the proposedmethod can be applied to solve the first order problem (obtained by
a formal perturbation expansion) for the longitudinal vibrations of moving cables with similar boundary conditions. To
construct amore accurate approximation, the next order problem, which involves terms that act as the external forces, should
be solved. How to solve these nonhomogeneous problems is an interesting subject for future research, and includes the study
of resonances in the problem.
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