
 
 

Delft University of Technology

Surrogate DC Microgrid Models for Optimization of Charging Electric Vehicles under
Partial Observability

Veviurko, G.; Böhmer, J.W.; Mackay, Laurens; de Weerdt, M.M.

DOI
10.3390/en15041389
Publication date
2022
Document Version
Final published version
Published in
Energies

Citation (APA)
Veviurko, G., Böhmer, J. W., Mackay, L., & de Weerdt, M. M. (2022). Surrogate DC Microgrid Models for
Optimization of Charging Electric Vehicles under Partial Observability. Energies, 15(4), Article 1389.
https://doi.org/10.3390/en15041389

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/en15041389
https://doi.org/10.3390/en15041389


����������
�������

Citation: Veviurko, G.; Böhmer, W.;

Mackay L.; de Weerdt, M. Surrogate

DC Microgrid Models for

Optimization of Charging Electric

Vehicles under Partial Observability.

Energies 2022, 15, 1389. https://

doi.org/10.3390/en15041389

Academic Editors: Adolfo Dannier

and Hugo Morais

Received: 19 December 2021

Accepted: 9 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Surrogate DC Microgrid Models for Optimization of Charging
Electric Vehicles under Partial Observability
Grigorii Veviurko 1,*, Wendelin Böhmer 1, Laurens Mackay 2 and Mathijs de Weerdt 1

1 Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology,
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands; j.w.bohmer@tudelft.nl (W.B.);
m.m.deweerdt@tudelft.nl (M.d.W.)

2 DC Opportunities R&D B.V., Molengraaffsingel 12, 2629 JD Delft, The Netherlands;
laurens.mackay@dc-opportunities.com

* Correspondence: g.veviurko@tudelft.nl

Abstract: Many electric vehicles (EVs) are using today’s distribution grids, and their flexibility can be
highly beneficial for the grid operators. This flexibility can be best exploited by DC power networks,
as they allow charging and discharging without extra power electronics and transformation losses.
From the grid control perspective, algorithms for planning EV charging are necessary. This paper
studies the problem of EV charging planning under limited grid capacity and extends it to the
partially observable case. We demonstrate how limited information about the EV locations in a grid
may disrupt the operation planning in DC grids with tight constraints. We introduce two methods to
change the grid topology such that partial observability of the EV locations is resolved. The suggested
models are evaluated on the IEEE 16 bus system and multiple randomly generated grids with varying
capacities. The experiments show that these methods efficiently solve the partially observable EV
charging planning problem and offer a trade-off between computational time and performance.

Keywords: DC microgrid; optimization; electric vehicle; partial observability

1. Introduction

The increasing penetration of electric vehicles (EVs) and renewable energy sources
(RES) into distribution grids provides new opportunities, but also poses new challenges
for the system operators. As EVs and some of the RES inherently use DC, they can be
integrated into DC grids without additional converters and with smaller power losses [1].
For this reason, DC in distribution grids is considered to be a suitable alternative to the
currently used AC [2]. Unlike conventional loads, EVs are flexible in terms of when
their demand should be served. This flexibility is provided by a special entity, the EV
aggregator [3], which coordinates the charging of EVs. The goal of the aggregator is to solve
the EV charging planning (EVCP) problem, i.e., to minimize the sum of unmet demand
and operation costs, while not violating the physical constraints of the grid.

In practice, there are two main challenges related to solving the EVCP problem. First,
information about the EV parameters (e.g., arrival and departure times, demand and
locations in the grid) and/or the grid state (topology, physical properties of the nodes or
lines) may not be fully available to the EV aggregator. Hence, the aggregator might have to
operate using incomplete information. Second, as the relation between current and voltage
is hyperbolic, the power flow equation makes the EVCP problem non-convex [4]. That
means not only that there is no theoretical guarantee of obtaining the globally optimal
solution, but also that the problem may become computationally intractable for large grids
and long planning horizons.

A popular perspective on the EVCP problem is to simplify or even omit the power
flow equations and grid constraints, in order to make the problem tractable. Various studies
have pursued this approach and focused on dealing with the uncertainty of the future EV
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arrivals. Sadeghianpourhamami et al. [5] applied a reinforcement learning algorithm to
coordinate the EV charging in a constraint-free grid. In [6], the authors minimized the
problem’s Lagrangian in a decentralized fashion to optimize the charging of the EVs located
in a single building with stochastic wind power supply. Wu and Sioshansi [7] designed a
two-stage optimization algorithm with a sample-average approximation technique to solve
the EVCP problem using a linearization of the AC power flow. On the other hand, some
studies have combined the EVCP with the non-convex optimal power flow (OPF) problem
and included the exact power flow equations and grid constraints in it. Kayacık et al. [8]
formulated the EVCP problem as a multi-timestep OPF problem extended with additional
constraints on the CO2 emissions and derived a convex second-order cone programming
relaxation that can be solved efficiently. In [9], a fuzzy-logic controller was developed to
minimize power costs and emissions simultaneously. Chen et al. [10] solved the EVCP+OPF
problem by decoupling the OPF part from the planning and using the convex dual problem
for it. However, no studies have included both incomplete information or EV uncertainties
and power flow equations in the EVCP problem.

While the uncertainty of the EV parameters and non-convexity of the OPF are usually
considered separately in the existing literature, in reality the EV aggregator should solve
both problems simultaneously. The direct combination of the existing solutions for these
problems does not seem possible: two-stage optimization of a non-convex problem easily
becomes intractable. On the other hand, model-free methods, such as reinforcement
learning, are generally hard to apply to constraint optimization problems. Moreover,
if the present, rather than the future, is not fully known (e.g., due to privacy concerns),
the standard EVCP formulation becomes irrelevant, and further research is required to
formulate and solve the partially observable version of the problem.

An important input group of parameters for the EVCP problem is the locations of the
EVs in the grid, as they are necessary to compute the power flow required for charging. This
study investigates the EVCP with partial observability of the EV locations. The problem is
reformulated to account for partial observability, and we investigate how it affects the EV
aggregator by answering the following questions:

• How crucial is it for the EV aggregator to know exact locations of the EVs in the grid?
• How can one obtain a well-performing, scalable solution when the EV locations are

known only up to certain degree?

In order to answer the first question, we conducted experiments on DC grids with
various topologies and capacities to evaluate how different degrees of awareness about
EV locations affect the planning. The experimental results demonstrate that a lack of
information about the locations of the EVs currently present in the grid considerably
disrupts the performance, whereas locations of the EVs that are yet to arrive are much less
vital. To deal with this issue, this paper introduces two alternatives for modeling the grid
topology without knowing the exact locations of the EVs. Experiments on both real and
randomly generated grids show that the suggested models perform better than a naive
baseline and offer a trade-off between computational cost and performance.

2. Background
2.1. EVCP Problem Formulation

Existing studies consider various formulations of the EVCP problem depending on the
optimization objective, EV charging approach, and optimization approach [3]. This study
adopts the perspective of an EV aggregator that represents the combined interest of all the
EVs in a grid. Its goal is to maximize the social welfare—the sum of the demand provided
to the EVs—with minimal operation costs. Following [10,11], EV charging optimization is
combined with power flow equations and grid constraints. Unlike most existing studies,
this work does not assume that all vehicles can be charged fully. To account for that, all
EVs have a linear utility function quantifying how much value each car assigns to being
charged for one Watt Hour.
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Advances in power electronics allow for new solutions in the microgrid design. Var-
ious aspects of DC microgrids’ control, protection, and energy management are being
studied in the literature (e.g., see [12] for an overview). As this paper aims at solving the
charging planning problem with partial observability, we employ the relatively simple DC
microgrid model suggested in [13]. For the same reason, this work does not consider the
properties of the EV batteries, as they does not affect the charging planning algorithm. This
study considers DC microgrids that consist of multiple EV charging stations and one or
several generators that can represent connections to an external power grid or distributed
generators (DGs). Prior to defining the optimization problem for the EVCP in DC grids, we
introduce the necessary notation.

The set N = L t G of nodes in the grid (the squared cup symbol t is the disjoint
union operator) is a disjoint union of the loads L and generators G. For convenience, we
use n and m as subscripts when we mean an arbitrary node and use subscripts l and g to
highlight the difference between the loads and generators. The set of lines E ⊂ N ×N
contains the node pairs (n, m) that are connected by a line. The set {t0, t1, . . . , tT} is
the set of planning timesteps, each timestep having a constant length, being defined as
∆t := ts+1 − ts, ∀s ∈ {0, . . . , T − 1}. At each timestep t, voltage and power in the loads
l and generators g are denoted by vt

l , pt
l and vt

g, pt
g correspondingly. Line current and

conductance between nodes n and m are denoted by it
nm and ynm, respectively. For each

generator g ∈ G, we define energy supply costs as a linear function of the generator’s
power with coefficient ct

g. We use a convention that power at the generators is negative
and power at the loads is positive. The bounds for the voltages, power, and currents are
denoted by V̄n, Vn, P̄n, Pn, Īnm. The set of the electric vehicles is denoted by K, and each EV
k ∈ K has several parameters. Let tarr

k , tdep
k be the arrival and departure times, Ēk be the

desired state-of-charge (SOC) at departure, and uk be the coefficient of the linear utility
function specifying the priority of the particular EV. SOC at timestep t is denoted by et

k. For
simplicity, we use l(k) to denote the load where EV k is being charged and k(l) for the EV
at load l.

First, the power flow constraints are defined as follows:

Vl ≤ vt
l ≤ V̄l , Pl ≤ pt

l ≤ P̄l , ∀l ∈ L (1a)

Vg ≤ vt
g ≤ V̄g, Pg ≤ pt

g ≤ P̄g, ∀ g ∈ G (1b)

− Īnm ≤ it
nm ≤ Īnm, ∀(n, m) ∈ E (1c)

it
nm = (vt

n − vt
m)ynm, ∀(n, m) ∈ E (1d)

pt
n = −vt

n ∑
{m|(n,m)∈E}

ynm(vt
n − vt

m), ∀n ∈ N (1e)

Then, the EV state-of-charge is subject to the following constraints:

e
tarr
k

k = 0, ∀k ∈ K (2a)

0 ≤ et
k ≤ Ēk, ∀k ∈ K, ∀t ∈ [tarr

k , tdep
k ] (2b)

et+1
k = et

k + ∆tpt
l(k), ∀k ∈ K, ∀t ∈ [tarr

k , tdep
k ) (2c)

The optimization objective of the EVCP problem is defined as

J(p) = ∑
t

(
∑
l∈L

uk(l)pt
l ∆t + ∑

g∈G
ct

g pt
g∆t
)

. (3)

We call J the social welfare as it combines the fulfilled demand weighted by the EV utility
coefficients and the negative of the operation costs. The coefficients ct

g can represent the
generation costs or price for buying power from the external grid. The utility coefficients
uk are defined per EV and represent the importance of each vehicle. It is worth mentioning
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that it is possible to define the utility coefficients per load rather than per EV. In that case, it
can be used to model the pricing tariff in the grid. However, the problem will not change
mathematically, and hence we do not deliberately study this case. The constraints (1a–e)
and (2a–c) and the objective (3) define the EVCP problem:

max
v,i,p,e

J(p)

subject to: (1a)–(1e)

(2a)–(2c)

(Exact EVCP)

2.2. SOCP Relaxation

Due to the Equation (1e), the OPF problem and hence the EVCP problem are non-
convex. Several methods to convexify the OPF problem are suggested in the literature,
including semi-definite programming (SDP) [4] and second-order convex programming
(SOCP) [13] formulations. As the latter has been shown to perform optimally in multiple
real DC grids [13], we adapt it to the EVCP problem. The SOCP relaxation can be obtained
by the following change of variables:

v̂t
n = (vt

n)
2

pt
nm = ((vt

n)
2 − vt

nvt
m)ynm

lt
nm = y2

nm(vt
n − vt

m)
2

The constraints (1a–e) can be relaxed to the following quadratic cone constraints:

V2
l ≤ v̂t

l ≤ V̄2
l , Pl ≤ pt

l ≤ P̄l , ∀l ∈ L (4a)

V2
g ≤ v̂t

g ≤ V̄2
g , Pg ≤ pt

g ≤ P̄g, ∀g ∈ G (4b)

− Ī2
mn ≤ lt

mn ≤ Ī2
mn, ∀(m, n) ∈ E (4c)

lt
nm

ynm
= pt

nm + pt
mn, ∀(n, m) ∈ E (4d)

ynm(v̂t
n − v̂t

m) = pt
nm − pt

mn, ∀(n, m) ∈ E (4e)

pt
n = ∑

{m|(n,m)∈E}
pt

nm, ∀n ∈ N (4f)

lt
nmv̂t

n ≥ (pt
nm)

2, ∀(n, m) ∈ E (4g)

Then, the SOCP relaxation of the EVCP problem is the following optimization problem:

max
v̂,l,p,e

J(p)

subject to: (4a)–(4g)

(2a)–(2c)

(Relaxed EVCP)

2.3. Including Uncertainties

If the full information about the EVs and the grid is available to the EV aggregator, then
the only challenge for solving the exact EVCP problem is its non-convexity. As discussed in
the previous section, convex relaxation techniques such as SDP or SOCP are demonstrated
to be effective solutions for that. In practice, however, the information that the aggregator
has access to might be limited. For example, due to causality, parameters of an EV usually
become known only after it arrives in the grid, hence making the EVCP a stochastic
optimization problem. Moreover, if RES [6] or inelastic loads [10] are included in the
problem, their generation and demand are usually also modeled as random variables.
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A common approach to solving the EVCP problem with uncertainties is online planning,
where the problem is repeatedly solved at each timestep.

An important feature of online planning is that it allows one to obtain a feasible
solution of the EVCP problem even in the presence of future uncertainties. However,
a conceptually different example emerges when the state of the grid is only partially
observable. For example, changes in the grid topology, variations in nodal and line limits,
or locations of the EVs in the grid might be reported to the aggregator with a delay. In this
case, the EVCP problem cannot be formulated in the standard way, because its constraints
are unknown. Furthermore, as the solution is not guaranteed to be feasible, the objective
value cannot be used to evaluate the solution’s quality. The next section presents a way to
define the EVCP problem with partial observability and introduce an evaluation framework
that can be used with it.

3. Partially Observable EVCP

In a partially observable EVCP (PO-EVCP) problem, the EV aggregator may be un-
aware of some input parameters of the EVCP problem. This study considers the case when
the locations of the EVs in the grid are only partially known. Specifically, the loads in
a distribution grid are divided in several regions, which are referred to in this paper as
cables. For example, the cables can correspond to charging stations at different streets or
EV parking lots. Then, the EV aggregator only knows at which cables EVs are parked.
In practice, that can be relevant due to the privacy concerns or limited communication
between the EV aggregator and the grid operator.

First, let C be the set of cables, where a single cable c ∈ C contains several loads
c ⊂ L. Every load in the grid belongs to one cable, i.e., L =

⊔
c∈C c. For simplicity, the cable

corresponding to load l is denoted by c(l). The EV aggregator only knows the cable where
an EV is parked, c(k), but the particular load l(k) is a random variable. Its distribution can
be obtained by the following process: initially, all loads in the grid are unoccupied. Then,
for each timestep t ∈ {t0, . . . , tT}, if an EV k arrives in the grid, its location l(k) is sampled
uniformly from the unoccupied nodes in the cable c(k). The sampled load l(k) becomes
occupied until the EV departs.

In the PO-EVCP problem, the feasibility region defined by (1a–e) and (2a–c) is stochas-
tic. The remainder of this section introduces three approximate approaches to resolving the
partial observability of the problem.

3.1. Blind Guessing Model

The simplest way to derive a deterministic approximation for the PO-EVCP problem
is to sample the positions of incoming EV uniformly from the unoccupied loads. Note
that the sampled and the actual positions will rarely coincide. Let~l and~k be vectors of
the loads and EVs, respectively, and let~l(~k) be the true unknown assignment of grid loads
to EVs. Blind guessing is defined as this random sampling of an assignment~l′(~k), and we
denote the resulting EV-to-load and load-to-EV maps as l′(k) and k′(l), respectively. In the
EVCP problem, only constraint (2c) and objective (3) depend on~l′(~k). Hence, they can be
rewritten as follows:

et+1
k = et

k + ∆tpt
l′(k), k ∈ K, t ∈ [tarr

k , tdep
k ) (5)

Ĵ(p) = ∑
t
[∑
l∈L

uk′(l)pt
l + ∑

g∈G
ct

g pt
g].

Then, the PO-EVCP problem with blind guessing can be defined:

max
v,i,p,e

Ĵ(p)

subject to: (1a)–(1e)

(2a), (2b), (5)

(Guessing PO-EVCP)
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Essentially, the blind guessing model resolves the uncertainty in the PO-EVCP problem
by randomly assuming where EVs are parked within the corresponding cable. Then,
the problem is reduced to the standard exact EVCP problem, defined in Section 2.1.

3.2. Surrogate Grid Models

As an alternative to blindly guessing the EV assignments, it is possible to instead
modify the grid topology used in the optimization problem. The goal is to derive a
surrogate grid with such topology that the optimization problem becomes independent of
the non-observable information. In other words, such surrogate grid should be invariant
over different EV assignments, as it effectively makes the problem deterministic. This
section presents two different surrogate grid models with this property. Before defining
these models, some additional notation is introduced. For each pair of nodes m, n ∈ N , let

p(m, n) = {(m, n1), (n1, n2), . . . , (nu, n)}

denote a path from m to n. The path conductance yp is defined by the equation

1/yp = ∑
(i,j)∈p(m,n)

1/yij.

Then, let p∗ be the path from m to n with the highest conductance. The conductance of this
path is denoted by ypath

mn and its current limit by

Īpath
mn := min

(ni ,nj)∈p∗
Īninj

The conductance between a cable c ∈ C and an external node m /∈ c is defined as the
average conductance over the paths from m to loads in c :

ypath
mc :=

1
|c| ∑

n∈c
ypath

mn .

The current limit between c and m is defined as

Īpath
mc := min

n∈c
Īpath
mn .

Parallel nodes model. The parallel nodes model transforms each cable c into a set of
nodes connected in parallel. To derive the parallel nodes surrogate grid, all lines that
connect nodes within c are removed. For each connection (m, n) from an external node
m /∈ c to n ∈ c, a new node n̂ is added and connected to m with Īmn̂ = Īmn and ymn = ∞.
Then, node n̂ is connected to all loads in the cable ni ∈ c with new lines, such that Īn̂ni = Īmn

and yn̂ni = ypath
mni . The new node n̂ is passive; i.e., Pn̂ = P̄n̂ = 0. The parallel nodes’ surrogate

grid is illustrated in Figure 1.

Figure 1. An example of the parallel nodes surrogate grid. Rectangular nodes are loads, and red
circle nodes are generators. Line capacity is denoted by y and current limit by i.
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Let Npar = Lpar t Gpar and Epar be the sets of nodes and lines in the parallel nodes
surrogate grid. Then, the optimization problem for the parallel nodes models is the same as
the exact EVCP problem with Npar, Epar :

max
v,i,p,e

∑
t

(
∑

l∈Lpar

uk(l)pt
l ∆t + ∑

g∈Gpar

ct
g pt

g∆t
)

subject to: (1a)–(1e) for Npar, Epar

(2a)–(2c)

(Parallel PO-EVCP)

It is crucial that, due to the topology of the parallel nodes surrogate grid, the opti-
mization problem is equivalent for all values of l(k) and hence the partial observability
is resolved.

Single node model. The single node model transforms each cable c into a single node nc.
For each neighbouring node m /∈ c, such that ∃i ∈ c, (m, i) ∈ E , a line (m, nc) is added.
Its parameters are defined as Īmnc = Īpath

mc and ymnc = ypath
mc . The power bounds for nc are

defined as the sum over original nodes: P̄nc = ∑n∈c P̄n, Pnc = ∑n∈c Pn. Voltage bounds are
defined as the average: V̄nc =

1
|c| ∑n∈c V̄n, Vnc =

1
|c| ∑n∈c Vn. The parallel nodes’ surrogate

grid is illustrated in Figure 2.

Figure 2. An example of a single node surrogate grid. Rectangular nodes are loads and red circle
nodes are generators. Line capacity is denoted by y and current limit by i.

In the single node surrogate model, all nodes from a cable c are mapped to new node nc.
Hence, there are multiple EVs charging at nc. Prior to defining the optimization problem,
new notation is introduced. Let pt

k be the power provided to EV k at timestep t. Then, there
are the following constraints on pt

k and EVs’ SOC.

et+1
k = et

k + ∆tpt
k, ∀k ∈ K, ∀t ∈ [tarr

k , tdep
k ) (6)

pt
k = 0, ∀k ∈ K, ∀t /∈ [tarr

k , tdep
k ) (7)

∑
k∈{k∈K|c(k)=c}

pt
k = pt

nc , ∀c ∈ C, ∀t ∈ [tarr
k , tdep

k ) (8)

Let Nsng = Lsng t Gsng and Esng be the sets of nodes and lines in the single node surro-
gate grid. Then, the optimization problem for the single node model is defined as follows:

max
v,i,p,e

∑
t

(
∑

l∈Lsng

uk(l)pt
l ∆t + ∑

g∈Gsng

ct
g pt

g∆t
)

subject to: (1a)–(1e) for Npar,

(2a), (2b), (6)–(8)

(Single PO-EVCP)

Since all EVs belonging to a cable c in the original problem are charged at the same
node nc in the single node model, the value of the true assignment~l(~k) does not affect the
problem. Hence, the partial observability is resolved.
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3.3. Planning and Execution

As the PO-EVCP problem with blind guessing or a surrogate grid has a feasibility
region different from the one defined by the constraints (1a–e) and (2a–c), it can be im-
possible to execute its solution. Moreover, though Li et al. [13] demonstrate that SOCP
relaxation is exact in various real grids, the theoretical guarantees of the exactness are
limited in the presence of line current constraints. Therefore, the solution obtained by
solving the PO-EVCP problem using the SOCP relaxation cannot be safely executed in
the grid. To account for that, this paper proposes a planning and execution framework that
divides the solution process into two consecutive steps. Planning is the process performed
by the EV aggregator, aimed at computing the optimal charging schedule under partial
observability. Its counterpart, the executor, can be seen as a part of the grid itself. It is
a control algorithm responsible for maintaining the grid state within its physical limits.
The executor is considered to be fully-aware of the grid state. In this study, the executor is
solving a single-timestep OPF problem, since it is one of the most common grid control
algorithms and can be implemented in hardware [14].

At each timestep t, the planner solves an SOCP relaxation of the PO-EVCP problem
(using blind guessing or a surrogate grid model). As discussed above, the obtained solution
might be imperfect due to the inexactness of the relaxation and/or partial observability.
To account for that, planner and executor work in an online fashion: at each timestep the
planner solves the PO-EVCP problem and the executor runs the solution. Let Kt be the
set of the EVs active at the timestep t; i.e., Kt = {k ∈ K|tarr

k ≤ t < tdep
k }. Furthermore, let

p̂t
l denote the part of the planner’s solution corresponding to the power at timestep t at

loads where the EVs from Kt are parked. Then, p̂t
k is used as an input to the executor’s

OPF problem:
max
vt ,it ,pt

Jt(pt) = ∑
l∈L

uk(l)pt
l + ∑

g∈G
ct

g pt
g

subject to: (1a)-(1e)

pt
l(k) ≤ p̂t

k, k ∈ Kt

(Executor)

If p̂t
k is feasible in terms of (1a–e) and the objective is monotonically increasing (which

is true if uk � cg), the executor problem solution will match p̂t
k. The interaction between

the planner and the execution is described by Algorithm 1.

Algorithm 1 Planning and execution framework.

Initialize total social welfare Jex = 0
Initialize EVs’ SOC ek = 0, for k ∈ K
for t ∈ {t0, t1, . . . , tT} do

For active EVs k ∈ Kt, obtain p̂t
k by solving the planner problem

Create the executor problem using p̂t
k

Solve the executor problem, obtain power at loads pt
l and objective value Jt(pt)

Jex ← Jex + Jt(pt)
for k ∈ Kt do

ek ← ek + ∆t× pt
l(k)

end for
end for

The planning and execution framework guarantees that each grid state is always
feasible, and hence allows for evaluation of inexact planners, such as the surrogate grid
and blind guessing planners.

4. Experiments

We simulated the EVCP problem using the planning and execution framework with
different planners in order to answer the two following questions:
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• How important is the knowledge of the precise EV locations in different DC grids for
the EV aggregator to solve the EVCP problem?

• Which approach should the EV aggregator use when EV locations are known only at
the cable level?

This section describes the details of the simulations and presents the results. Two
main components of each simulation are the grid configuration and the scenario. The grid
is defined by the numbers of loads, generators, and lines between them; the voltage
and power limits of the nodes; and the current limits and conductance of lines. In the
experiments, the grid topology was either sampled from the random topology classes
(Figure 3) or taken from the real IEEE16 grid [13] (Figure 4). For both meshed and radial
topologies of the IEEE16 grid, we considered two cases: with and without connection to
the external grid. In the former case, capacities of the feeders A, B, and C were infinite
Pg = ∞. In the disconnected case, the feeder capacities were set to zero Pg = 0. For all nodes,
the voltage limits were defined as Vn = 300 V, V̄n = 400 V. The load power bounds were
set to Pl = 0, P̄l = 10,000 W. The generators power upper bound was set to zero P̄g = 0 W
(meaning generators cannot consume power), and the lower bound Pg varied across the
experiments. The line current limits Īmn also varied. The conductance was equal for all
lines in all grids, ynm = 15 S. We always set all generators to have the same capacity Pg and
cost coefficient cg. The line capacities Īnm were also equal for all lines. In the experiments
with random grids, we sampled one random topology per value of Pl and Īmn.

(a) (b)

(c) (d)

Figure 3. Random grid topologies. Rectangular nodes are loads, red circles are generators. Colors of
the loads encode the cables they belong to. (a) Radial grid with single generator. (b) Radial grid with
DGs. (c) Meshed grid with DGs between cables. (d) Meshed grid with DGs between and at cables.
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(a) (b)

Figure 4. IEEE16 grid from [13]. Rectangular nodes are loads, red circles are generators. Colors of the
loads encode the cables they belong to. (a) Radial version. (b) Meshed version.

Each scenario contained a power price and EV parameters. The power price for each
scenario was sampled from the day-ahead price data for the Netherlands [15]. Figure 5a
shows an example of the power price curve for a single day. To sample the EV arrival
times, we simulated a non-homogeneous Poisson process independently in each load.
The arrival rate was similar across the loads and scenarios and derived from the dataset of
EV charging sessions in Dundee, Scotland [16]. Figure 5b demonstrates the dynamics of
the EV arrival rate.

(a) (b)

Figure 5. (a) An example of the power price curve for a single day. (b) Poisson process rate used to
model the EV arrivals.

The demand, parking time, and utility coefficient were sampled from the normal
distributions described in Table 1. It is worth mentioning that we chose values for the
utility coefficients ck such that they were at least an order of magnitude larger than the
power price ct

k. In this case, the objectives in the executor and planner problems were
monotonically increasing, i.e., charging an EV always increases the social welfare.

Table 1. Distributions of the EV parameters.

Distribution Unit

Desired SOC Ēt
k N (8500, 500) Watt

Charging time tdep
k − tarr

k N (3.75, 0.5) Hour

Utility coefficient uk N (5× 10−4, 5× 10−7) $/Watt
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The planning horizon was set to 24 h for all simulations, and timestep size to 30 min.
For each grid topology and parameters, we used 6 scenarios to evaluate the performance of
the planners.

The optimization routine was performed by MOSEK Fusion API for Python 9.3.10 [17]
on a single machine with Intel® Core i7-10700K Processor. We used default solver pa-
rameters except for setting basisRelTolS, basisTolS, and intpntCoTolDfeas to 10−9. The initial
conditions and convergence criteria were also default for MOSEK.

4.1. Importance of the Locations

To estimate the importance of knowing the precise EV locations, we tested a blind
guessing SOCP planner on the PO-EVCP problem using different degrees of observability
of the EV locations (Table 2). The planners were obtaining the assignments~l(~k) by first
fixing the precisely known locations and then randomly sampling the remaining locations
within the corresponding cables.

Table 2. Four degrees of observability of the EV locations.

Observability Precisely Known Locations Locations Known up to Cable

Full All EVs None

Present EVs that have already arrived EVs arriving in the future

Past EVs that stayed in the grid for at
least one timestep

EVs that have just arrived
and future EVs

Blind None All EVs

We evaluated all four planners by sampling random meshed grids (Figure 3c) with
12 nodes and 4 generators and varying generation capacity Pg and the lines’ current limit
Īmn. Figure 6 demonstrates the provided social welfare as a function of Pg and Īmn. For
better comparability between different topologies, the social welfare is normalized relative
to the full planner.

(a) (b)

Figure 6. Results of random guessing planners with different degree of knowledge of the EV loca-
tions. Values are normalized relative to the full planner. Horizontal axis is the lines current limit.
(a) Normalized social welfare over varying lines current limit, per-generator capacity is fixed at 72 kW.
(b) Normalized social welfare over varying single generator’s capacity, per-line current limit is fixed
at 56 A.

The simulations imply that knowing EV locations becomes important when the line
current constraints are tight. On the contrary, the tighter the generation constraints are, less
effect is caused by the partial observability. Moreover, the planner with access to the present,
but not the future, EV locations (labelled SOCP_present) performed almost optimally, while
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past and blind planners (SOCP_past and SOCP_blind, respectively) provided considerably
less social welfare. Practically, that means that knowing locations of the EVs arriving in
the future is not crucial and knowing currently present EVs locations is enough for the EV
aggregator to compute the charging schedule. However, when the locations are unavailable
even for the active EVs in the grid, the EV aggregator might want to use surrogate grid
models for planning.

4.2. Surrogate Grid Models

As demonstrated in the previous section, the blind planner performs suboptimally for
tight line constraints. In this section we compare single node and parallel nodes models with
the blind planner and demonstrate their benefits for the EV aggregator.

We used all four random topologies from Figure 3 and two versions of the IEEE
16 buses grid (Figure 4) for the simulations. We varied Īmn to determine how the tightness
of the line constraints affects planing. Importantly, we used different ranges for Īmn in
different grids, such that the highest value in each range represents the case when the line
constraints in the full planner’s solution were not binding. The results for random grids
and IEEE16 grids are presented in Figures 7 and 8, respectively. Appendix A also shows
the solutions achieved by different planners at one planning timestep.

(a) (b)

(c) (d)

Figure 7. Social welfare provided the surrogate models, full and blind planners. Values are normalized
relative to the full planner. Horizontal axis is the lines current limit. (a) Radial grid with single
generator. (b) Radial grid with DGs. (c) Meshed grid with DGs between cables. (d) Meshed grid with
DGs between and at cables.

The results in Figure 7 suggest that all three planners reach nearly optimal perfor-
mances as the line current constraints become irrelevant. In the tight constraints case,
however, the parallel nodes planner (labeled SOCP_parallel) is clearly dominant. The single
node (SOCP_single) performs slightly worse than the blind planner in the radial grids,
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but the gap decreases when the number of generators increases. In the meshed grids with
additional DGs, the single node planner outperforms the blind guessing planner.

(a) (b)

(c) (d)

Figure 8. Social welfare provided by the surrogate models, full and blind planners. Values are
normalized relative to the full planner. Horizontal axis is the lines’ current limit. (a) Radial IEEE16
grid connected to the external grid. (b) Disconnected radial IEEE16 grid. (c) Meshed IEEE16 grid
connected to the external grid. (d) Disconnected meshed IEEE16 grid.

The results in Figure 8 demonstrate similar behavior. Interestingly, the parallel nodes
planner is much more dominant in the radial version of the grid. In the meshed case,
when more generators are connected to each cable, the single node model again slightly
outperforms the blind planner.

Based on Figures 7 and 8, we may conclude that the parallel nodes planner seems to be
the best choice for tightly constrained grids in terms of performance. In practice, however,
the computational time may also be an important factor for the EV aggregator. Larger grids
and longer planning horizons may make the EVCP problem hardly tractable even using
the SOCP relaxation. Since the parallel nodes’ surrogate grid uses more lines and passive
nodes than the original grid, it is expected to be the slowest method. Similarly, the single
node model should scale best. Figure 9 compares the planning time of different planners as
a function of the grid size. For that experiment, we used random radial grids with DGs
from Figure 3b. We investigated the planning time in the grids with three cables of varying
cable lengths (Figure 9a) and in the grids with varying numbers of cables with six loads
(Figure 9b).
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(a) (b)
Figure 9. Planning time per timestep for different grid sizes. (a) Random radial grid with DGs with
3 cables each of equal length varying from 4 to 14 (b) Random radial grid with DGs with cables of
length 6. The amount of cables varied from 2 to 7.

The results in Figure 9 confirm the poor scalability of the parallel nodes planner and
show the superiority of the single node solution.

5. Conclusions

In this paper, we have extended the EVCP problem for DC microgrids by including
partial observability of the EV locations (PO-EVCP). We have studied the effects of partial
observability on the performance of planners and suggested two solutions tailored to
deal with the unknown EV locations. The experiments in this study lead to the following
conclusions about the PO-EVCP:

1. In DC grids with tight line constraints, knowing the locations of the active EVs in
the grid is important for computing charging schedules which maximize the social
welfare. Practically, this should be considered when designing a communication
protocol between EV owners and the EV aggregator.

2. If, due to the limitations of the communication scheme or privacy concerns, the EV
aggregator can only partially observe the EV locations, it may prefer to use parallel
nodes or single node models. The former model is clearly dominant performance-wise,
but requires more resources, and the latter offers great scalability at the cost of a tiny
performance drop.

To ensure realistic conditions, the experiments in this work included a wide range of
line capacities and demands, and also randomly generated topologies. Therefore, we are
confident that the conclusions drawn from these simulation results are quite general and
will also hold in practice.
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Abbreviations
The following abbreviations are used in this manuscript:

EV Electric vehicle
RES Renewable energy source
DC Direct current
AC Alternating current
DG Distributed generator

Appendix A. A Solution Example

This appendix demonstrates an example solution for the PO-EVCP problem obtained
by different planners. This example was taken from the IEEE16 meshed grid connected
to the external grid (Figure 4b). The generation capacitiy Pg in the feeders was unlimited,
and set to −144,444 W for the distributed generators. The line current limit, Īnm, was
equal for all lines and set to 17 A. Tables A1 and A2 demonstrate the solutions obtained by
different planners at a single timestep during the simulation.

Table A1. One timestep of the simulation of the IEEE16 meshed grid with exernal grid connection.
Comparison of the exact (fully-observable) and blind planners. Columns voltage (V) and p (W)
correspond to the nodal voltage and power obtained by the executor; planned p (W) is the solution
derived by the corresponding planner.

Exact Blind

Voltage (V) P (W) Planned P (W) Voltage (V) P (W) Planned P (W)

Feeder A 400.0 −7000.0 −7000.0 399.09 −6984.0 −7000.0

Feeder B 399.94 −6999.0 −6999.0 400.0 −7000.0 −6998.0

Feeder C 400.0 −7000.0 −7000.0 399.65 −6994.0 −7000.0

load_4 398.83 6626.0 6626.0 397.92 6965.0 6965.0

load_5 398.83 6962.0 6962.0 398.42 19.0 19.0

load_6 398.77 3756.0 3756.0 397.43 5374.0 5374.0

load_7 398.18 526.0 526.0 396.67 4995.0 4995.0

load_8 398.77 3753.0 3753.0 398.83 30.0 30.0

load_9 398.83 6610.0 6610.0 398.15 6215.0 6215.0

load_10 398.18 7495.0 7495.0 398.36 6980.0 6980.0

load_11 398.83 35.0 35.0 397.75 6325.0 6325.0

load_12 398.83 6980.0 6980.0 397.73 9450.0 9450.0

load_13 398.83 0.0 0.0 398.48 0.0 0.0

load_14 397.67 10,000.0 10,000.0 397.88 6403.0 6403.0

load_15 398.83 0.0 0.0 397.91 0.0 0.0

load_16 397.67 10,000.0 10,000.0 396.74 6483.0 10,000.0

DG_17 399.94 −6999.0 −6999.0 398.59 −6975.0 −6995.0

DG_18 400.0 −7000.0 −7000.0 399.59 −6993.0 −7000.0

DG_19 400.0 −7000.0 −7000.0 399.32 −6988.0 −7000.0

DG_20 399.34 −6989.0 −6989.0 399.52 −6992.0 −6994.0

DG_21 400.0 −7000.0 −7000.0 398.9 −6981.0 −7000.0
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Table A2. One timestep of the simulation of the IEEE16 meshed grid with exernal grid connection.
Comparison of the single-node and parallel nodes planners. Columns voltage (V) and p (W) cor-
respond to the nodal voltage and power obtained by the executor; planned p (W) is the solution
derived by the corresponding planner.

Single-Node Parallel Nodes

Voltage (V) P (W) Planned P (W) Voltage (V) P (W) Planned P (W)

Feeder A 398.76 −6978.0 −6996.0 397.28 −6952.0 −6993.0

Feeder B 398.91 −6981.0 −6995.0 398.81 −6979.0 −6994.0

Feeder C 400.0 −7000.0 −7000.0 400.0 −7000.0 −6999.0

load_4 397.59 2788.0 2788.0 396.11 7121.0 7121.0

load_5 397.06 8250.0 8250.0 396.11 7133.0 7133.0

load_6 397.42 4835.0 4835.0 396.15 5866.0 5866.0

load_7 396.9 4997.0 4997.0 396.0 7788.0 8292.0

load_8 397.74 7661.0 7661.0 397.65 5536.0 5536.0

load_9 397.39 6457.0 6457.0 397.13 5537.0 5537.0

load_10 398.21 3669.0 3669.0 397.92 6742.0 6742.0

load_11 396.75 5708.0 5708.0 396.14 5711.0 5711.0

load_12 397.61 5680.0 5680.0 397.37 5533.0 5533.0

load_13 398.83 0.0 0.0 398.83 0.0 0.0

load_14 398.12 4768.0 4768.0 398.17 2552.0 2552.0

load_15 398.38 0.0 0.0 398.33 0.0 0.0

load_16 397.21 5071.0 7824.0 397.17 0.0 2844.0

DG_17 398.59 −6975.0 −6996.0 397.31 −6953.0 −6993.0

DG_18 398.22 −6969.0 −7000.0 397.27 −6952.0 −7000.0

DG_19 398.56 −6975.0 −6992.0 398.3 −6970.0 −6993.0

DG_20 399.37 −6989.0 −7000.0 399.09 −6984.0 −7000.0

DG_21 398.77 −6979.0 −6999.0 398.54 −6974.0 −6995.0
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