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Exaggerated boundary layer thickness estimation at Re

      Mach < 0.3  
Reynolds >10e6

play essential role in 
performance of large 

wind turbines

Wind turbine airfoil flows are 
incompressible and have very high 
Reynolds number. Mach stays 

constant while Reynolds grows 
as turbines increase in size

 to reduce costs

Airfoils needed to replicate airfoil field 
conditions mean experimental 
costs escalate as Reynolds

 number grows

Large
Wind Tunnels

codes used with 
scarce validation and 

large uncertainties

CFD
simulation

come from semi-empirical 
turbulence models with 
incomplete physics callibrated 

with insufficient data
[2, 3] 

Errors in 
Load  Prediction

Gat h er 
measurements   of   very   High   Reynolds   FlowS

Flat plate,  Aerofoil
Backward Facing Step

Wind Turbine Wake
Power Production Loads

Water Pipe Experiments
Taylor and Couette Flow

High Altitude Winds, 
Clouds, Oceanic Currents

Law of the wall, e^N 
theory, Isotropic Turb.
 

Sem i
    Analyti cal 
           So luti o ns

Wi n d
Tu n n el

Can n o n i cal 
Flows

Industrial
      Wi n d
           Cases

Earth
O bservati o n

Tu r b u lent
Flow  Data base

Should we rely on the pioneer database hosted
  by Durasaimy at Michigan University [4,5], 

Turbgate (http://turbgate.engin.umich.edu/)  ?
Or should we develop a European

alternative with broader 
flow data ?

(EO)

N.A., Direct Numerical  
Simulation (to provide 
asymptotic behaviour)

Ultrasonic Anemometry, 
Wind LIDAR, SCADA and 
Turbine Controller Data

Pressure Tap, Wake Rake, 
Load Balance, Particle 

Image Velocimetry (PIV) 

ADM Aeolus Instrument, 
Lagrangian Tracers on 

Optical/IR Measurements 

Hot wire, PIV, Pressure 
Tap and Stanton Tube

Instrument

Instrument

Instrument

Instrument       [6,7]          

Instrument

Flow

Flow

Flow

Flow

Flow

Early experiments show that size of calibration dataset is 
critical for successful data driven turbulence modelling, 
motivating      multidisciplinary
bridges to                                fill data gaps.
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EO flow  measurements 
hold unique information on high Reynolds turbulent 
phenomena, essential to identify asymptotic tendencies. 

Gazing  at  Clouds  to  understand
turbulence  on  Wind  TURBINE  Airfoils

S
o
l
u
t
i

o
 n

We propose to rethink the procedure for calibrating turbulence models used in 
popular Computational Fluid Dynamics (CFD) codes. Like Duravaisamy [4,5] , we 
recognize that current turbulence models were calibrated
with a single handful of reference cases, and therefore 
attempt to create a large unified calibration dataset.
The large calibration dataset will be used to learn optimal 
conditional calibration rules for popular turbulence 
models: Integral Boundary Layer (IBL) closures,
RANS models like Spalart-Almaras (SA) and 
LES subgrid scale (SGS)  closure models

Ad o pt  data  r i ch  approach  
to tu n e flow tu r b u len ce  m o d els

LEARN

Gather

PREDICT

Start with data assimilation
and grow into  (Deep)Learning

calibration for
turbulence 
models 

measurements of very high Reynolds
turbulent flows, quantify data quality 
and reduce redundant points

« Every �ow is an observation of
         the phenomenon of turbulence. »
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« Perhaps the single, most critical area in CFD simulation capability that will remain
     a pacing item by 2030 (...) is the ability to adequately predict viscous turbulent �ows »

CFD Vision 2030 Study, NASA CR 2014-218178

2014

2015

2016

Gather partners to share 
data and write proposals. 
Summer schools: JMBC Turb.,  
LxMLS16  and 8th ESA EO.

Process CFD Fields to learn 
neural VI closure relations.

Tune the G-Beta constants 
of a viscous-inviscid (VI) 
solver (RFOIL) with genetic 
algorithms (NSGA2).

« Turbulence remains the last unsolved 
               problem of classical mechanics. »

Deterministic Chaos, Kumar N, U. Press

L o n g  t e r m   i d e a
o pen  to  pa rtn ers

Lea r n 
turbulence  model  calibration  Curves

2 p r ed i ct
turbulent  flows
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Even when good calibration is achieved, 
turbulence models will still rely on many coarse 
assumptions: most popular RANS and LES 
closures rely on the Boussinesq hypothesis 
and rule some (if not all) anisotropy out.

Once established, the methodology will be 
applicable to any type of turbulent closure 
relation, thereby higlighting the common 
features of seemingly diverse models:

Navi er
Stokes

cl
os

ur
e

Reynolds Averaged
Navier Stokes

Large Eddy Filtered
Navier Stokes

Viscous-Inviscid
Asymptotic

RANS

Vi

LES

«Big whirls have little whirls 
that feed on their velocity, 
and little whirls have lesser whirls 
and so on to viscosity. »

Turbulence is a complex flow 
process dominated by 
seemingly chaotic eddy 
motions of multiple scales. 
Large eddies decompose into 
smaller eddies of nearly 
random appearance, but 
small eddies reorganize into 
larger coherent structures [1].

For high Reynolds numbers, 
turbulent processes are too 
complex to be fully resolved 
(DNS) in Computational Fluid 
Dynamics (CFD) simulations. 
Engineers use approximate 
equations (VI/RANS/LES) to 
handle turbulent phenomena 
with closure models [2, 3].

Weather Prediction by 
Numerical Process 
Richardson LF, CUP

t h e i ss u e  w i t h  t u r b u len c e m o d elli n g  o n 
wi n d  tu r b i n e Ai r fo i ls 
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i n fer
new  closure  terms
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Model calibration curves can hint towards the 
most problematic simplifications behind current 
turbulence models [5], and neural networks can 
even learn improved closure terms [4]. But learning 
algorithms do not aim to replace researchers: like 
genetic airfoil optimizers enhance the work of 
airfoil designers, neural networks can  
empower turbulence modellers.

Obtain CD closure for VI Codes

Run  Neural Network to learn 
the CD  in terms of H and Retheta

Learn dissipation coefficient (CD) 
closure to match a VI code (RFOIL) 
to RANS model (Spalart Almaras)

Generate velocity fields in OpenFoam 
and process into CD , H and Retheta 

 2
nd

  s
im

pl
e  

 ex
pe

ri
m

en
t

There are many ways to learn from data. Our first 
experiment consisted in reproducing the way 
aerodynamicists work [2] with a genetic optimizer. 
The data pool was too narrow and asymptotic 
tendencies were unreliable. Our 2nd experiment, a 
simple version of [4], had a virtually unlimited data 
pool and used neural networks. Results were better, 
but computationally expensive. Data assimilation 
approaches used in EO [ 7] could yield better results..

 1st  si m ple   exper i m ent
Compare VI code 
results with trustable 
reference data

Optimize (NSGAII) G-Beta 
closure constants to  
match results

Group D8 of the AE-2223 
course developped the 
neural network code: 
Koopman, Henger, Lebesque, 
Mekic, Mollinga, Vijverberg, 
R e u t e l i n g s p e r g e r

Gael de Oliveira1

Ricardo Pereira1

Nando Timmer1

Danielle Ragni1
Fernando Lau2

Gerard van Bussel1

Si
m

pl
e 

In
fo

gr
ap

hi
c 

Se
t 

by
 B

N
IM

IT
Be

ba
s 

Fo
nt

 b
y 

Ry
oi

ch
i T

su
ne

ka
w

a
O

pe
n 

Sa
ns

 F
on

t b
y 

St
ev

e 
M

at
te

so
n 

D
es

ig
ne

d 
by

 th
e 

Au
th

or
s u

sin
g:

   


