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Abstract—Air traffic contributes to global warming through
CO2 and non-CO2 effects, including the impact of NOx emissions
on atmospheric ozone and methane, formation of contrails, and
changes in the amount of stratospheric water vapour. The climate
impact of non-CO2 effects is highly dependent on the background
atmospheric conditions at the time and location of emission.
Therefore, there is the potential of mitigating the climate impact
of aviation by optimizing the aircraft trajectories. In the present
paper, we focus on the properties of alternative trajectories
which have the potential to minimize the climate impact of NOx
emissions, under a multitude of weather patterns. This study
aims at enhancing the understanding of the relation between
NOx-climate impacts and routing strategies, by employing the
European Center Hamburg general circulation model (ECHAM)
and the Modular Earth Submodel System (MESSy) Atmospheric
Chemistry (EMAC) model. To this end, we conduct 1-year
simulations with the air traffic submodel AirTraf 2.0, coupled to
the EMAC model. We optimize 85 European flights, considering
the atmospheric conditions at the time and location of the flight,
to calculate the expected climate impact from the emitted species
through a set of prototype algorithmic Climate Change Functions
(aCCFs). The mean flight altitudes of NOx-climate optimal
trajectories showed seasonal and latitudinal dependencies. We
found that the potential of reducing ozone effects from aviation
NOx is subjected to a strong seasonal cycle, reaching a minimum
in summer.

Keywords—air traffic management; climate impact reduction;
nitrogen oxides emissions; aircraft trajectories optimization.

I. INTRODUCTION

Air traffic is estimated to have contributed to about 5% of
the total anthropogenic global warming [1]–[3]. Its demand
is expected to recover from the effects of the COVID-19
pandemic, achieving higher growth rates than other transport
modes [4]–[6]. As a consequence, it is crucial to reduce the

climate impact of aviation. Aircraft emissions perturb the
background atmospheric conditions through various mecha-
nisms: the main processes are (1) the formation, spreading
and persistence of contrail cirrus, (2) the perturbation on
ozone, methane, and stratospheric water vapour caused by NOx
emissions, (3) emission of green-house gases, such as CO2 and
H2O, (4) aerosol interactions with radiation and clouds [2], [3].
Local atmospheric conditions play a crucial role in determin-
ing the magnitude, and even the sign, of the radiative forcing
terms due to the non-CO2 effects, which account for about 2/3
of the net aviation effective radiative forcing [5]. In particular,
the impact of NOx emissions on climate has been shown to be
highly dependent on cruise altitude and geographical location
of the aircraft [7], [8]. Therefore, previous studies highlighted
the potential of mitigating the climate impact of aviation by
optimizing the aircraft trajectories [9]–[12].

Earth System Models have been employed to evaluate the
mitigation potential of aircraft trajectory optimization. For ex-
ample, the REACT4C research project developed the concept
of climate change functions, to represent the dependency of the
climate impact of a specific emission on its time and location
[13]. However, this approach requires large computational
costs, limiting the number of weather patterns that can be
analyzed. To address this issue, algorithmic Climate Change
Functions (aCCFs, [14]) were developed during the ATM4E
SESAR-ER project (http://www.atm4e.eu/). These functions
take as input instantaneous weather data at the time and
location of emission, and allow to obtain an approximation of
the Average Temperature Response over a time horizon of 20
years (ATR20, [13]). To measure the climate impact, a climate
metrics should be defined, which resembles the respective cli-



mate objective [15]. In general, they vary with type of emission
(pulse, sustained, or future emission scenarios), metric (e.g,
warming potential, or average temperature response), and time
horizon (20, 50, or 100 years). Here, the ATR20 is defined as
the mean temperature change over a time horizon of 20 years
[13].

The FlyATM4E project (https://flyatm4e.eu/) is applying
these concepts to evaluate the mitigation potential of climate-
optimized routes. In particular, one of the objectives of
FlyATM4E is the identification of trajectories leading to a
significant reduction of aviation climate impact, while leaving
the economic costs nearly unchanged. The potential of finding
these conditions in aviation has been shown by previous
studies [9], [16], [17]. However, these studies usually focused
on a limited number of representative weather patterns, or
on specific regions of the airspace. Within FlyATM4E, we
aim at identifying and analyzing optimized trajectories in the
European airspace, under a multitude of weather patterns.

In this paper, we present our preliminary results, that we
obtained during the first steps towards this objective. Firstly,
we investigated the maximum feasible reduction of the climate
impact from the aircraft emitted species, as simulated by our
model. In particular, here we focus (1) on the effects of
optimizing aircraft trajectories w.r.t. the impact of their NOx
emissions on climate, and (2) on the seasonal variability of
these optimised trajectories, caused by the natural atmospheric
variability. We present the results obtained during 1-year
simulations, employing a set of prototype aCCFs to evaluate
the climate impact of aircraft emissions. The aCCFs of ozone
and methane were used to optimize the trajectories w.r.t.
the climate impact of NOx emissions, and to compare the
difference with the NOx-climate impact of “cost-optimal”
trajectories. We conducted simulations from 1 December 2015
to 1 December 2016 with the ECHAM/MESSy Atmospheric
Chemistry (EMAC) model (Section II). The model output is
analyzed in Section III, and our results are discussed in Section
IV. To conclude, we present our plans to further explore the
mitigation potential of optimizing aircraft trajectories w.r.t. the
climate impact of their emitted species (Section V).

II. METHODS

A. Base model

The EMAC model is a numerical chemistry and climate
simulation system that includes sub-models describing tro-
pospheric and middle atmosphere processes and their inter-
action with oceans, land and human influences [18]. It uses
the second version of the Modular Earth Submodel System
(MESSy2) to link multi-institutional computer codes. The core
atmospheric model is the 5th generation European Centre
Hamburg general circulation model (ECHAM5, [19]). For the
present study we applied EMAC (ECHAM5 version 5.3.02,
MESSy version 2.54.0) in the T42L31ECMWF-resolution,
i.e. with a spherical truncation of T42 (corresponding to a
quadratic Gaussian grid of approx. 2.8 by 2.8 degrees in
latitude and longitude) with 31 vertical hybrid pressure levels
(up to 10 hPa ∼ 30 km of altitude). We applied a time

step of 20 minutes, and we set the simulation duration to
1 year (from 1 Dec. 2015 to 1 Dec. 2016). The simula-
tions were nudged down to the surface towards the ECMWF
ERA-Interim reanalysis data [20]. The applied model setup
comprised the submodels ACCF [21], CONTRAIL [22], and
AIRTRAF [23]. Note that these sub-models are currently under
development (further information on their status can be found
at https://www.messy-interface.org). Therefore, in this study,
we illustrate the preliminary results obtained using the current
versions of these sub-models, to analyze the model behaviour
under different routing strategies. Table I summarizes the
settings of the model that were employed to run our yearly
simulations.

TABLE I. SUMMARY OF THE MODEL SETUP EMPLOYED IN OUR SIMULA-
TIONS.

ECHAM5

Horizontal resolution T42 (2.81◦× 2.81◦)

Vertical resolution L31ECMWF
(31 vertical pressure levels up to 10 hPa ∼ 30 km)

Time step 20 min

Duration 1 year (from 1 Dec. 2015 to 1 Dec. 2016)

AirTraf

Flight-plan 85 flights in the European airspace
(ATM4E flight plan on 2015-12-18
with all A33x aircraft models)

Waypoints 101

Optim. Objectives SOC, ATR20NOx (ATR20tot, fcost-clim.)

B. Sub-model AirTraf

In our simulations, air traffic is simulated by the EMAC
sub-model AirTraf 2.0 [23]. This model optimizes aircraft
routes based on the calculated weather information provided
by EMAC. During the optimization steps, a genetic algorithm
(ARMOGA, [24]) provides the coordinates of eight control
points (three along the projection on the Earth, and five in
the vertical cross section), which determine the B-spline curve
representing the flight trajectory (Figure 1, from [25]). AirTraf
only considers the cruise phase of the flight, and the vertical
control points can vary between FL290 and FL410 (∼ 8.8 -
12.5 km). The model uses 101 waypoints (Table I) to divide
each B-spline into segments, at which the flight properties
are calculated for analysis and output [25]. Various routing
strategies are available: each option optimizes a specific ob-
jective function, e.g. representing fuel used, operating cost,
or the climate impact of a flight. The sub-model successfully
minimizes the selected optimization objective [23].

A daily flight-plan, subset of a larger European flight-plan,
is repeated on every simulation day. This subset includes only
A33x aircraft models, taking into account that the AirTraf
sub-model is currently configured for this aircraft type [23].
The flight-plan includes 65 Origin-Destination (OD) pairs, and
their relative departure times throughout the day. A fraction
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of these OD pairs are repeated multiple times each day, at
different departure times. As a result, AirTraf optimizes a total
of 85 flights on each simulation day.

Figure 1. Geometry definition of the flight trajectory in the AirTraf sub-model,
from Yamashita et al., 2016 [25]. A trajectory from MUC to JFK is used as
example (bold solid lines). Top: the vertical cross section; the dashed lines
indicate the lower/upper variable bounds in altitude. Bottom: projection on the
Earth; the dashed boxes define the rectangular domains of the three control
points.

C. Routing optimization strategies

We conducted simulations with the model setup described
in the previous paragraphs, varying only the route optimization
strategy. In particular, we consider the following options:

• cost-optimal trajectories, minimizing the Simple Oper-
ational Costs (SOC). Note that we use a simplified
definition of the operational costs, as the aim of this
optimization strategy is to take into account both flight
time and fuel use. Therefore, the objective function values
are calculated with the following formula [26], [27]:

SOC = ct

nwp−1∑
i=1

TIMEi + cf

nwp−1∑
i=1

FUELi (1)

where nwp = 101 are the number of waypoints; TIMEi

and FUELi are flight time and fuel used at the ith flight
segment; ct [$/s] and cf [$/kg] are the unit time and
unit fuel costs, respectively, assuming the values ct =
0.75 $/s and cf = 0.51 $/kg [23], [28].

• NOx-climate optimal trajectories, minimizing the climate
impact from NOx emissions. This is represented by the
sum of the ozone and methane effects, which are indi-
vidually computed by the model using a set of prototype
aCCFs [14], [21], [23]:

ATR20NOx = ATR20O3 + ATR20CH4 (2)

Note that the aCCFs include the NOx climate impact
through the increase in ozone concentration and the

reduction of methane concentration; they do not take into
account the two feedback processes caused by the change
in CH4 concentration, affecting (1) primary mode ozone,
and (2) the stratospheric water vapour [14].

III. RESULTS

A. Changes in seasonal mean flight altitudes and horizontal
paths

First of all, we look at how the aircraft trajectories change,
when we minimize the climate impact of NOx. Figure 2
compares cost-optimal and NOx-climate optimal trajectories,
averaged over the winter months (DJF). Analogue figures can
be obtained for other seasons from our annual simulation, but
they are not included here, as they show similar tendencies.
The main difference between different seasons is the magni-
tude of the trajectory variations, as we discuss in the next
paragraph (III-B).

Figure 2. Comparison between vertical profiles and horizontal paths of flights
optimized w.r.t. NOx-climate impact (green lines) or Simple Operating Cost
(red lines), averaged over the winter months (DJF). The top panel (a) shows
the winter seasonal mean horizontal paths. The lower panels represent the
winter seasonal mean flight altitude vs. longitude (b) and latitude (c). Each
curve corresponds to a specific city-pair included in the flight-plan. Panel
(c) includes the seasonal mean tropopause height as reference (black, dashed
line).

Figure 2a shows the changes in the seasonally averaged
horizontal paths. In general, the winter mean NOx-climate
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optimal horizontal routes show a northward shift of the aircraft
locations. This is in agreement with previous studies [29],
which found a decrease in the impact of NOx emissions
towards higher latitudes.

Figures 2b and 2c illustrate the winter seasonal mean flight
altitude vs. longitude and latitude, respectively. We can see that
the seasonal mean flight altitudes are highly affected by the
choice of the routing strategy. The simulations show that NOx-
climate optimal trajectories tend to fly at lower altitudes than
cost-optimal trajectories. This is in line with our expectations,
since cost-optimal trajectories minimize the sum of fuel use
and flight time and, to reduce aerodynamic drag, high altitudes
are preferred. In contrast, the trajectories minimizing NOx
effects generally prefer lower flight altitudes. This is because
the residence time of O3 at lower altitudes is shorter, due to a
more efficient wash out, which reduces the warming effects.
This tendency of flying lower is in line with results from
previous studies on the relation between NOx-climate impact
and flight altitudes [8], [30]–[32].

Furthermore, in Figure 2c, we can observe that NOx-climate
optimal trajectories present a strong dependency on latitude,
which is not visible in the cost-optimal option. Using the NOx-
climate optimization strategy, the flight altitude increases to-
wards lower latitudes, following the increasing average height
of the tropopause (black, dashed curve). This model behaviour
can be expected, considering that the upper-troposphere is
characterised by a sharp increase in the NOx climate impact,
related to a high ozone production rate [29]. Therefore, the
location of the tropopause is crucial in determining the cruise
altitude of NOx-climate optimal trajectories. On the other
hand, from Figure 2b, we can see that there appears to be
no clear dependency of the optimal flight altitude on the
longitude, especially if we look at 0◦-30◦E. The fact that we
observe higher flight altitudes in the western side of Figure 2b
is due to the distribution of the origin-destination pairs on the
map (Figure 2a), since western flights are all located at low
latitudes.

B. Time-evolution of changes in fuel use and flight time

Figure 3 shows the evolution of flight altitude, flight time,
fuel use, and Simple Operating Cost during the year of
simulation. A 7-days running average is applied. Figure 3a
compares the flight altitude of cost-optimal (red) and NOx-
climate optimal (green) trajectories. We can see that there is
no evident seasonal variability in the flight altitude of cost-
optimal trajectories, as its values remain constant at 11.5-12
km throughout the year. On the other hand, the reduction
in the cruise altitude of NOx-climate optimal trajectories is
larger in winter than in summer. This could be linked to
the elevation of the average height of the tropopause during
the summer season, which determines the cruise altitude
of NOx-climate optimal trajectories, as described in Section
III-A. Moreover, the extension of the shaded area shows that
the variability within the set of flights is larger using the
NOx-climate optimization strategy. Figure 3b shows that the
evolution of fuel increase follows the same seasonality, since it

is driven by the increase in aerodynamic drag caused by flying
at lower altitudes. Lastly, we can observe that the relative
changes in flight time are also larger in winter/spring than
during summer/autumn months, but they are always negligible
compared to the changes in fuel use. Therefore, the increase
in SOC is driven by the increment in fuel use.

Figure 3. Evolution in time of: (a) flight altitude [km], averaged over the
trajectory waypoints, comparing cost-optimal (red) and NOx-climate optimal
(green) trajectories; (b) relative change of Simple Operating Costs (blue), fuel
(orange), and flight time (brown) of NOx-climate optimal trajectories, w.r.t.
cost-optimal ones. The thick lines indicate the median values over the 85
routes included in the flight plan. The shaded areas extend from the first to
the third quartile. The curves represent the 7-days running average over the
daily output values generated by the model.

C. Changes in NOx climate impact

In this section, we look at the effects of minimizing
ATR20NOx on the two elements contributing to the NOx-
climate impact, i.e. the impact on ATR20O3 and ATR20CH4 .
Figure 4a shows the total aviation climate impact from NOx
emissions, combining ozone and methane effects. The magni-
tude is larger for ozone than for methane effects, thus the
seasonality of the ATR20O3 relative variations (Figure 4b)
emerges also in Figure 4a. We found that the impact of
NOx through ozone effects reaches a maximum in summer
(Figure 4b), due to a higher photochemical activity, which is
in agreement with previous studies [14], [32]. This seasonality
is found for both optimization strategies.

During winter and spring, the ATR20O3 values are sig-
nificantly reduced by NOx-climate optimal trajectories. This
could be due to the fact that vertical and latitudinal gradients
in temperature and geopotential (input fields to calculate the
ozone aCCF [14]) are larger in this period of the year. In
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(a) Total aviation climate impact from NOx emissions.

(b) NOx-climate impact through ozone effects.

(c) NOx-climate impact through methane effects.

Figure 4. Evolution in time of the relative change of aviation climate impact
components, comparing cost-optimal (blue curves) and NOx-climate optimal
(green) trajectories. The yearly mean value from the cost-optimal strategy is
chosen as reference (black line), and it assumes the values 1.9×10−13 K/km,
2.3 × 10−13 K/km, and −3.7 × 10−14 K/km, for panel (a), (b), and (c),
respectively. The thick lines represent the median values over the 85 routes
included in the flight plan, while the shaded regions extend from the first
to the third quartile. The ATR20 values are weighted against the total flight
length L. We perform a 7-days running average over the daily output values
generated by the model.

winter/spring, the jet stream is stronger and located further
south than during the summer [33], leading to sharper temper-
ature and geopotential gradients over the European airspace.
Therefore, the large mitigation potential in winter would be
linked to (1) larger meridional mass exchange, hence large
possibility to transport an air parcel to the tropics, and (2)
larger difference in chemical activity between mid latitudes

and tropics [34]. However, the ATR20O3 reduction is almost
negligible in summer, when the jet stream is weaker and
shifted northward.

Figure 4c shows that the cooling effects due to methane
depletion are always enhanced by NOx-climate optimal tra-
jectories. It also emerges that NOx-climate optimal and cost-
optimal trajectories are characterized by opposite seasonal
trends in ATR20CH4 : the difference between the impact of
the two strategies is largest in winter/spring, when ATR20CH4

reaches its maximum value in the cost-optimal scenario. Using
the NOx-climate optimization strategy, we can see that the
maximum ATR20CH4 is reached during summer, when the
enhancement of the cooling effects w.r.t. cost-optimal trajec-
tories is reduced. Lastly, we notice that the daily variability of
ATR20CH4 values across different city-pairs is larger for NOx-
climate optimal trajectories than it is for cost-optimal ones.

IV. DISCUSSION

This study aims at enhancing the understanding of the
relation between NOx-climate impacts and routing strategies,
exploring how the systematic application of a specific rout-
ing strategy in a global chemistry-climate model produces a
comprehensive set of alternative trajectories which – under the
strategy applied in this paper – are intended to have a smaller
climate effect due to NOx emissions. In this Section IV, we
include two additional optimization strategies to (1) investigate
the possible effects of NOx-climate optimal trajectories on
the other radiative forcing (RF) terms from aircraft emissions,
and (2) introduce the next steps that are planned within our
research project.

In this paper, we employed the aCCFs representing the
effects of NOx emissions on ozone and methane [14], [35].
At present, a full set of prototype aCCFs is available and
implemented in the EMAC sub-model AirTraf, to represent
the aviation climate impact of NOx, contrails, water vapour,
and CO2. Therefore, the following optimization strategies are
applicable in our simulations:

• climate-optimal trajectories, minimizing the total climate
impact of a flight, measured as ATR20tot. This objective
function takes into account not only NOx-climate impact,
but also the climate impact of CO2, H2O, and day/night
contrails effects, which are affected by higher uncertainty
levels than ATR20NOx . Similarly to the evaluation of
ATR20NOx , these terms are calculated separately, using
the set of prototype aCCFs [14], [21], [23], and subse-
quently summed:

ATR20tot =ATR20NOx + ATR20cpc+

+ ATR20CO2 + ATR20H2O
(3)

where ATR20cpc, ATR20CO2 , and ATR20H2O represent the
ATR20 from contrail potential coverage, carbon dioxide,
and water vapour effects, respectively.

• trade-off trajectories, minimizing the weighted sum of
SOC and ATR20tot:
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Figure 5. Seasonal mean values of the changes in flight altitude (a), SOC (b), the ATR20 from NOx (c), CO2 (d), contrail potential coverage (e), and the
total ATR20 (f). We compare the variations w.r.t. cost-optimal trajectories of three different routing strategies: climate-optimal (blue bars), trade-offs (orange
bars), and NOx-climate optimal (green bars). Here we use the median values over the 85 city pairs included in the flight plan, before calculating the average
over time.

fcost-clim. = α SOC +

+ (1− α)k ATR20tot
(4)

where α ∈ [0, 1] is a weight parameter, which determines
the relative importance of SOC and ATR20tot; k [$/K] is
a conversion factor. In our simulations, we set α = 0.8 to
discourage increases in the SOC. To set the conversion
factor k, the SOC and ATR20tot values of cost-optimal
and climate-optimal trajectories are used to calculate the
mean value of the following ratio [36]:

k =
SOCclim.-opt. − SOCcost-opt.

ATR20cost-opt. − ATR20clim.-opt.
(5)

We set k = 8.104302 × 1012$/K, which is a reference
value obtained from free-running test simulations of the
duration of 1 year, using the setup indicated in Table I.

These aCCFs are currently under verification, therefore it is
not the aim of this paper to analyze the quantitative estimates
calculated for climate-optimal and trade-off trajectories. On
the other hand, they are included in this Discussion section
to demonstrate the challenges that we are addressing in our
research project, and the uncertainties affecting our results.

An assessment of changes in the overall performance of
the alternative trajectories allows to compare trajectories from
the three optimization strategies, and provides an overview on
possible mitigation gains and trade-offs. Figure 5 summarizes
the seasonal average variations in the main properties of
the climate-, trade-off-, and NOx-climate optimal trajectories,
w.r.t. cost-optimal trajectories. Looking at panel 5f, we can see
that NOx-climate optimal trajectories do not reduce the total

aviation climate impact in our simulations. In fact, contrail
effects are the dominant contributor to the simulated changes
in ATR20tot between different strategies (Figure 5e). On the
other hand, if we include the ATR20tot values in the calculation
of our Optimization Objective Function (i.e. in the climate-
optimal and trade-off options), we achieve large reductions in
ATR20tot, especially in winter and spring months. These large
variations are obtained by the model through the formation
of cooling contrails, in agreement with [9]: in fact, the values
of ATR20cpc using these strategies are often negative. It has
to be noted here that direct compensation of a warming non-
CO2 effect by another (additional) non-CO2 effects is facing
the challenge that, at present, further knowledge on methods
to quantify the response of the atmosphere-climate system is
required, to ensure that two forcings really cancel out. What is
significant to observe is that these large reductions in climate
impact are achieved at lower increases in fuel use and flight
time than those caused by NOx-climate optimal trajectories,
as shown by the variation in SOC in Figure 5b. In fact, Figure
5a shows that the mean flight altitude change is larger for
NOx-climate optimal trajectories, than for climate-optimal and
trade-off solutions. On the other hand, these latter strategies
are still reducing the NOx-climate impact, especially in non-
summer months (Figure 5c), even if the leading term of the
optimization is ATR20cpc. Lastly, we observe that all strategies
lead to an increase in the impact of CO2 emissions (Figure
5d), hence also fuel consumption, but this additional climate
effect is compensated by the reduced RF of contrails and NOx
emissions.

Our calculation of SOC (Equation 1) comprises both costs
of fuel and time, assuming a linear dependence between
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costs of time and time of flight. If one would intend to
consider extra costs due to delay time, a linear relationship
would not be realistic. However, in our concept of alternative
trajectories planning, these costs of time represent those costs
due to longer working hours and usage of the airplane. Other
costs, e.g. route charges are not included in the calculation of
economic costs (SOC) in our analysis, as a simple relationship
between time and costs would not be realistic. A detailed
assessment of the regional strongly varying route charges and
their influence on operating costs is beyond the scope of this
study.

Please note that we rely on the aCCFs to calculate and
compare the climate impact of different routing strategies.
This innovative methodology has the advantage of signifi-
cantly reducing the computational time, allowing to perform
trajectory optimization. On-going research is addressing the
source of uncertainties that affect the current climate impact
estimates [37]. These are originated, for example, by (1) the
calculation of the RF from the emitted species/contrails, and
(2) the conversion from the RF values to the selected climate
metric (ATR20). Moreover, the representation of atmospheric
processes in the EMAC model is subjected to uncertainties,
affecting the meteorological fields that are used as input for the
aCCFs. Therefore, these sources of uncertainties must be taken
into account interpreting the output of our model simulations.

The climate impact due to contrail effects is particularly
sensitive to the background conditions simulated by the EMAC
model: the meteorological fields affect the temporal and spatial
distribution of contrails, as well as their radiative properties.
This fact represents one of the challenges of optimizing the
aircraft trajectories w.r.t. the total aviation climate impact.

On the other hand, our simulations appear to confirm
the mitigation potential of aircraft trajectories optimization,
which was already highlighted in previous studies [9], [11].
In particular, the final objective of our research is to identify
trajectories leading to a significant reduction of the total
aviation climate impact, while leaving fuel use and flight time
nearly unchanged. To this end, we are currently improving the
efficiency of the EMAC sub-model AirTraf for the resolution
of Multi-Objective Optimization Problems, to identify trade-
off trajectories using a more flexible approach, which will take
into account the specific mitigation potential of different city
pairs and weather patterns.

V. CONCLUSION

We used the EMAC sub-model AirTraf 2.0 to optimize
aircraft routes within the European airspace, simulating the
atmospheric conditions from 1 December 2015 to 1 Decem-
ber 2016. Subsequently, we analyzed the variability of the
properties of aircraft trajectories characterizing cost-optimal
and NOx-climate optimal trajectories. Stressing again that we
consider our current results as an initial study relying on
prototype estimates of non-CO2 effects, the main results and
the next steps of our research are:

• The seasonal mean flight altitudes of NOx-climate op-
timal trajectories are lower than those of cost-optimal

ones. The difference between the two strategies follows
a seasonal cycle, with a reduction in the variation during
summer months, when the average tropopause height
increases, and the potential of reducing NOx effects
decreases.

• The potential of reducing ozone effects from aviation
NOx is subjected to a strong seasonal cycle, reaching a
minimum in summer.

• Taking into account other main effects of aviation emis-
sions on climate (CO2, H2O, and contrails, as well as
NOx) the total climate impact might not be reduced by
NOx-climate optimal trajectories. However, this objective
could be achieved by trajectories leading to a smaller
increase in fuel use and flight time than NOx-climate op-
timal trajectories, as we showed for the trade-off solutions
mentioned in Section IV. This confirms the opportunity
of developing our models to identify solutions leading to
significant reductions in climate impact, without causing
changes in cost that are not compensated by a decrease
in the RF of aviation emissions.

• To address the previous remark, the optimization module
of AirTraf is now under further development to im-
prove its efficiency in solving Multi-Objective Optimiza-
tion Problems. The new modules for Optimization and
Decision-Making problems will be available in the next
release of MESSy [38].

• And last, but not least, on-going research is addressing the
sources of uncertainty that affect the current climate im-
pact estimates, e.g. due to the aCCFs implementation, and
to the meteorological fields at emission location. As this
is one central research question in the FlyATM4E project,
a systematic analysis is being conducted, analyzing such
uncertainties as those originated by the calculation of the
RF from the different components of aviation emissions,
and the model representation of background atmospheric
conditions [37].
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[31] C. Frömming, M. Ponater, K. Dahlmann, V. Grewe, D. S. Lee, and
R. Sausen, “Aviation-induced radiative forcing and surface temperature
change in dependency of the emission altitude,” Journal of Geophysical
Research Atmospheres, vol. 117, no. 19, pp. 1–15, 2012.

[32] O. A. Søvde, S. Matthes, A. Skowron, D. Iachetti, L. Lim, B. Owen,
Ø. Hodnebrog, G. Di Genova, G. Pitari, D. S. Lee, G. Myhre, and
I. S. Isaksen, “Aircraft emission mitigation by changing route altitude:
A multi-model estimate of aircraft NOx emission impact on O3 photo-
chemistry,” Atmospheric Environment, vol. 95, pp. 468–479, 2014.

[33] C. L. Archer and K. Caldeira, “Historical trends in the jet streams,”
Geophysical Research Letters, vol. 35, no. 8, 2008.
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