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Robustifying Dynamic Positioning of Crane
Vessels for Heavy Lifting Operation

Jun Ye, Spandan Roy, Milinko Godjevac, Vasso Reppa, Member, IEEE, and Simone Baldi, Senior Member, IEEE

 
   Abstract—Construction  crane  vessels  make  use  of  dynamic
positioning  (DP)  systems  during  the  installation  and  removal  of
offshore structures to maintain the vessel’s position. Studies have
reported  cases  of  instability  of  DP  systems  during  offshore
operation  caused  by  uncertainties,  such  as  mooring  forces.  DP
“robustification” for  heavy  lift  operations,  i.e.,  handling  such
uncertainties  systematically  and  with  stability  guarantees,  is  a
long-standing  challenge  in  DP  design.  A  new  DP  method,
composed by an observer and a controller, is proposed to address
this  challenge,  with  stability  guarantees  in  the  presence  of
uncertainties.  We  test  the  proposed  method  on  an  integrated
cranevessel  simulation  environment,  where  the  integration  of
several  subsystems  (winch  dynamics,  crane  forces,  thruster
dynamics,  fuel  injection  system  etc.)  allow  a  realistic  validation
under a wide set of uncertainties.
    Index Terms—Construction  crane  vessels,  dynamic  positioning
system, offshore, robust control, uncertainty.
 

I.  Introduction

W ITH  the  shortage  of  onshore  energy  sources,  the  need
for energy is more and more satisfied by offshore wind

turbines  and  offshore  oil  fields.  These  structures  are
transported/installed  offshore  by  construction  crane  vessels.
During  offshore  heavy  lifting  operations,  the  vessel  needs  to
maintain  its  desired  position  via  the  so-called  dynamic
positioning (DP) system [1]. For a DP system to be effective,
it is required to counteract the effect of external environmental
forces such as wind and waves [2]–[5].  While attempting the
positioning task, a DP system is subjected to a wide variety of

uncertainty  [6],  such  as  the  crane  load  [7].  For  construction
vessels  such  as  dredgers,  heavy-lift  vessels,  and  pipe-laying
vessels,  additional  uncertainties  arise:  in  particular,  uncer-
tainties  from unmodelled  dynamics  of  the  propulsion  system
and unmodelled forces become crucial during offshore heavy
lift  operation  (see Fig. 1 ).  Unmodelled  dynamics  of  the
propulsion system affect the precision of the DP system, since
the  propulsion  system  of  a  vessel  cannot  provide  a  fast
response  against  disturbances  induced  by  waves  or
measurement  noises  [3];  also,  studies  have  shown  that
unmodelled forces propagating through the crane wires during
heavy  lifting  operation  (such  uncertainties  are  commonly
referred  to  as  mooring  forces)  can  cause  unstable  oscillatory
behavior of the DP system [8], [9]. These uncertain scenarios
bring  challenges  in  the  design  of  DP  systems,  which  are  of
high  interest  due  to  the  hazard  during  offshore  heavy  lifting
operation.

In  view  of  these  challenges,  research  has  focused  on
designing  DP  systems  for  offshore  cranes  in  the  presence  of
uncertainties [10]–[18]. Some works [10]–[12] mostly concen-
trated  on  the  uncertainties  in  crane  and  load,  neglecting
uncertainties  in  vessel  dynamics.  Other  works  [13]–[18]
studied  structural  uncertainties  (e.g.,  mooring,  damping
forces)  during  offshore  construction,  neglecting  the  effect  of
disturbances  and  slow  propulsion  dynamics  on  DP
performance.  To  address  all  uncertainty  aspects  in  a
comprehensive way, one should augment the DP system with
an observer ,  whose  task  is  to  filter  out  disturbances  in
position/velocity  measurements  [1],  [3],  [19].  The  design  of
such  observers  requires  the  accurate  structural  knowledge  of
the  vessel  dynamics  and  it  is  thus  sensitive  to  unmodelled
dynamics,  as  shown  in  [20].  It  is  worth  remarking  that
literature provides observer designs such as high gain observer
[21],  extended  state  observer  [22],  and  so  on.  However,  the
fast  estimation  response  which  is  typically  sought  via  these
observers  may  not  be  suitable  for  real  DP  operation,  mainly
due  to  the  fact  that  the  thrusters  and  propellers  of  heavy-lift
vessels  cannot  handle  fast  control  command  owing  to  their
sheer sizes and their non-ideal behavior. There is no guarantee
in  general  that  the  signals  filtered  by  the  observer  will  make
the  DP  system  operate  in  a  stable  way  under  such  practical
non-ideal  effects  [23].  Furthermore,  recent  studies  on  the
control  of  offshore  cranes  focus  on  the  vertical  plane  of  the
crane-load  system,  and  neglected  the  impact  from  the  sway
disturbances  and  thruster  delay  [24].  The  augmentation  of  a
DP system with an observer results in a composite design. To
the  best  of  the  authors’ knowledge,  composite  DP  designs
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without  requiring accurate  structural  knowledge of  vessel
dynamics  and  with stability  guarantees in  the  presence  of
uncertainty and unmodelled propulsion dynamics are missing
in the literature.

To  address  this  long-standing  challenge,  we  treat  mooring
and hydrodynamics terms as the summation of a nominal part
(which is known) and a perturbed part (which is unknown but
bounded).  The  bounds  of  uncertainties  do  not  require
structural knowledge of the unknown dynamic terms, and can
be used for robust control (worst-case) design. Meanwhile, the
effect of the observer error (filtering) is proven to be bounded
via robust stability analysis. The effectiveness of the proposed
composite  design  is  verified  under  the  influence  of  various
uncertainties via a realistic six DoFs simulation model, based
on  the  S-175  model  from  MSS  toolbox  [25]  with  vessel
dynamics  generated  by  WAMIT,  and  augmented  with  a  DP
system and a hydraulic crane. Preliminary work by the authors
on robust DP for heavy lift vessels was done in [26]: however,
in  [26]  the  presence  of  unmodelled  propulsion  dynamics  is
neglected.  A  point  of  interest  of  this  study  is  to  show  that
neglecting  propulsion  dynamics  (engine  dynamics,  thruster
dynamics, etc.) is not acceptable as it can lead to unstable DP
behavior.

Summarizing, the innovations of this work are:
a)  A  detailed  physical  modelling  for  heavy  lifting

operations, where the integration of several subsystems allows
to realistically simulate the effect of uncertainties;

b)  A  composite  observer  and  controller  solution  to  DP  for
offshore  heavy  lifting  operations  which,  without  requiring
accurate  structural  knowledge  of  the  vessel,  can  be  proven
stable  even  in  the  worst-case  uncertainty  settings  (robust

design).  The  proposed  composite  design  comprises  an
artificial  delay  based  method  to  tackle  the  unmodelled
propulsion dynamics without priori knowledge.

c)  Key  performance  indicators  (KPIs)  to  guide  the  design
while  considering  worst-case  uncertainty  and  worst-case
performance.

The  paper  is  organized  as  follows:  Section  II  models  the
physics  of  heavy  lifting;  Section  III  proposes  the  control
strategy  while  Section  IV  analyzes  its  stability;  simulation
results are in Section V, with conclusions in Section VI.

λmin(•) || • ||
(•)

I
sin(•) cos(•)

tan(•) s• c• t• x ∈ L∞
x

The  following  notations  will  be  used:  and  
represent  minimum  eigenvalue  and  Euclidean  norm  of 
respectively;  denotes  identity  matrix  with  appropriate
dimension;  the  trigonometric  functions , ,  and

 are abbreviated as , , and ; a vector  implies
that  is bounded in the infinity norm (cf. [27, Ch. 3]). 

II.  Control Objective

Because  it  was  reported  that  instability  in  DP  systems
occurs  during  heavy-lift  operation  due  to  large  mooring
forces,  it  is  crucial  to  model  realistic  dynamics.  A  realistic
model  that  can describe  realistic  dynamics  along six  DoFs is
commonly  referred  to  in  literature  as  a process  plant  model
[28]:  the  process  plant  model  in  this  work  is  based  on  the
S-175  model  from  MSS  toolbox  [25],  with  vessel  dynamics
generated  from WAMIT [29]  and integrated  with  DP system
and  hydraulic  crane.  A  schematic  of  the  overall  model  is
shown in Fig. 1. The process plant model allows to test a wide
range  of  uncertain  dynamical  scenario,  by  including  vessel
dynamics,  environmental  loads,  hydraulic  crane,  position
controller,  thrust  allocator,  diesel  engines  and  thrusters.  The
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Fig. 1.     Overall process plant model for the construction crane vessel. Unmodelled dynamics of the propulsion system affect the DP precision. Also, during
offshore heavy lifting operation, instability of DP systems has been reported due to large mooring forces, which is the horizontal component of .
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various  modules  of  the  simulation  model  are  individually
detailed hereafter, and the simulation variables and parameters
are collected in Table I.

 
TABLE I  

System Parameters and Variables

Variables Definitions
η f The position and rotation angle of the vessel in NED

J(ϕ,θ,ψ) Rotation matrix from body-fixed to NED
ν f Body-fixed vessel velocity
νc Body-fixed current velocity
ν f r Body-fixed relative velocity of the vessel w.r.t the current
τ f Thrust force
τthri Thrust force of i-th thruster (scalar)
τthri Forces and moments induced by i-th thruster (vector)

τcrane
Crane induced forces and moments in surge, sway, heave,
pitch, roll, and yaw

G(η f ) Hydrostatic restoring force

d̄s External loads from wind and wave
τwind Wind induced forces and moments
τwave Wave induced forces and moments

Fhoist Tension in the crane wires (scalar)

F Time-varying mooring stiffness in surge, sway, and yaw

T Output torque of hydraulic motor

Q Inlet flow rate

Mb Output torque of diesel engine

Mp Propeller output torque

np Propeller’s rate of revolution

τ Control input

Parameters

MRB Rigid body mass matrix of the vessel in 6 DoFs

MA Added mass matrix of the vessel in 6 DoFs

Ds Hydraulic damping matrix of the vessel in 6 DoFs

C(ν f r) Coriolis term in 6 DoFs

Bta Thrust allocation matrix

 
 
 

A.  Vessel Dynamics

x
y

z

x y
z

Two coordinate systems are used to describe motion: body-
fixed  coordinate  system  and  north-east-down  (NED)
coordinate system. For the body-fixed coordinate system, the
center of origin is fixed on the vessel, with -axis positive to
the  front  of  the  vessel, -axis  positive  to  the  right  of  the
vessel,  and -axis  positive  downwards.  For  the  NED
coordinate  system,  the  origin  is  fixed  on  the  earth  surface,
with -axis pointing the north, -axis pointing to the east, and
-axis pointing downwards. The resulting dynamics of motion

describe the six DoFs of the vessel: we follow the approach in
[29,  Eq.  8.5]  under  the  assumptions  of  low  velocity  and
acceleration and of irrotational and constant ocean currents:
 

η̇ f = J′(ϕ,θ,ψ)ν f (1)
 

(MRB+MA)ν̇ f r = − (C(ν f r)−Ds(ν f r))ν f r −τcrane

−g0−G(η f )+ d̄s+τ f (2)
 

d̄s = τwind+τwave

η f = [x y z ϕ θ ψ]T

(x,y,ψ)
(z,ϕ,θ)

ν f r = ν f −νc

νc = [uc,vc,0,0,0,0]T ν f = [u,v,w,
p,q,r]T

J′(ϕ,θ,ψ)

where  is  the  vessel  position  in  NED
coordinate  system,  in  which  denote  the  surge,  sway
and  yaw  angle  of  the  vessel,  and  denote  the  heave
position,  roll  and  pitch  angles  of  the  vessel; 
denote  the  relative  velocity  of  the  vessel  with  respect  to  the
current  velocity ,  where 

 is  the  vessel  velocity  (all  in  body-fixed  coordinate
system);  is the body-to-NED rotation matrix
 

J′(ϕ,θ,ψ) =

 Rn
b 03×3

03×3 Tn
b

 (3)

where
 

Rn
b =

 cψcθ −sψcθ + cψsθsϕ sψcϕsθ
sψcθ cψcϕ+ sϕsθsψ −cψsϕ+ sθsψcϕ
−sθ cθsϕ cθcϕ

 (4)

 

Tn
b =


1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ

cθ
cϕ
cθ

 . (5)

d̄s

τwind τwave τcrane

τ f = [τx, τy,0,0,0, τψ] G(η f )
g0 = [0 0 −Mg 0 0 0]T

The external disturbance  comprises of the external loads
from wind ( ) and wave ( );  are the crane forces
and moments in six DoFs, which also contain the three DoFs
(in  surge,  sway,  and  yaw)  mooring  forces  and  moment;

 is  the  thrust  force  in  six  DoFs; 
and  are  the  restoring  and  gravity
forces,  where M  is  the  mass  of  the  vessel  and g  is  the
gravitational acceleration.

MRB,MA,C(ν f r) Ds

MRB ∈ R6×6

The  terms ,  and  denote  the  rigid  body
mass  matrix,  added  mass  matrix,  Coriolis  terms,  and
hydrodynamic damping terms, respectively;  consistently with
[29], the inertia matrix  is defined as
 

MRB =

 mI3×3 −mS(rb
g)

mS(rb
g) Jv

 (6)

m Jv

rb
g

a×b = S(a)b

where  is the weight of the vessel,  is the inertia moment
matrix  in  roll  pitch  and  yaw,  is  the  vector  from Center  of
Origin to Center of Gravity expressed in body frame, and the
cross-product is defined as .

For  a  vessel  which  is  symmetric  on  port-starboard,  the
added mass and added inertia matrix can be expressed as
 

MA =



m11 0 m13 0 m15 0
0 m22 0 m24 0 m26

m31 0 m33 0 m35 0
0 m42 0 m44 0 m46

m51 0 m53 0 m55 0
0 m62 0 m64 0 m66


(7)

mi j mi j = ρw
u

S φi
∂φ j
∂n dS ρw

S φi
i

where  can be expressed as: , where 
is the density of sea water,  is the wetted ship area,  is the
flow potential when the vessel is moving in th direction.

When  the  roll  and  pitch  angle  is  small,  the  restoring  force
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G(η f ) can be expressed as
 

G(η f ) =



0
0

ρwgAwpz

ρwg▽GMTϕ

ρwg▽GMLθ

0


(8)

Awp
Awp ▽

GMT GML

C Ds

where  is  the  water  plane  area  of  the  vessel,  and  it  is
assumed that  stays constant for small heave movement; 
is  the  nominal  displaced  water  volume;  and  
denote  transverse  metacentric  height  and  longitudinal
metacentric  height,  respectively.  The  terms  and   are
considered according to [29, Sect. 7.3.1]. 

B.  Environmental Loads
The environmental loads can be seen as the combination of

wind load and wave load. Wind load is related to the surface
of  the  vessel  above  the  waterline,  wind  velocity  and  attack
angle  of  the  wind,  causing  additional  air  pressure  to  the
surface  of  the  vessel.  For  a  vessel  in  DP  control  mode  with
zero speed over ground, the wind load can be defined as
 

τwind =
1
2
ρaV2

w



CX(γw)AFw

CY (γw)ALw

CZ(γw)AFw

CK(γw)ALwHLw

CM(γw)AFwHFw

CN(γw)ALwLoa


(9)

ρa Vw
CX CY CZ

CK CM CN

AFw ALw
HFw HLw

γw

τwave

where  is  air  density,  is  wind  speed,  modeled  as  a
combination of slow-varying wind and wind gust; , , ,

, ,  and  are  nondimensional  coefficients  related  to
the  angle  of  attack,  and  can  be  caculated  from  [29,  Eq.
8.30–8.36];  and   are  the  frontal  and  lateral  project
areas  above  the  waterline,  while  and   are  the
centroids of the two areas, and  is the angle of attack of the
wind.  The  wind  angle  is  considered  to  be  slowly  varying
around the mean wind angle. The wave load  is modeled
as a the sum of a first-order wave (zero mean oscillation load)
and  a  second  order  wave  (mean  wave  drift  load  without
oscillatory  component)  (cf.  [29,  Eq.  8.88–8.89]  for  their
detailed structure). 

C.  Hydraulic Crane
The crane model consists of a hydraulic crane and the crane

wires.  Assuming no slack,  the  crane  wires  are  modelled  as  a
spring and a damper [30]
 

Fhoist = kw(lw(t)− lini(t))+Dw
d
dt

(lw(t)− lini(t)) (10)

Fhoist =
√

F2
hoistx
+F2

hoisty
+F2

hoistz
kw

Dw lw lini

lini

where  is  the  norm  of  the
tension  in  the  crane  wires,  is  the  stiffness  of  the  crane
wires,  is the damping term of the wires,  and  are the
instantaneous  length  and  initial  length  of  the  crane  wires,
respectively.  During  the  simulation,  is  changing  to  adjust

the output torque from the hydraulic motor.
The  crane  winch  is  actuated  by  a  PI-controlled  hydraulic

motor,  typically  designed  by  the  crane  manufacturer.  The
output torque T of the hydraulic motor is [31]
 

T =
ηhydQ∆p

2π
, Fhoist =

T
r

(11)

 

Q = KhpδT +
w

KhiδTdt (12)

Q ∆p

ηhyd
δT

where  is  the  inlet  flow  rate  per  revolution;  is  the
pressure difference between the inlet flow and the outlet flow,

 is the efficiency of the motor; r is the radius of the drum
that the cable is wound on, where  is the difference between
the user-defined required torque and the actual torque. The PI
controller  has  been  tuned  according  to  reaction  curve  based
methods  as  in  [32,  Sect.  6.5]  in  such  a  way  that  the  time
constant of the output torque is around 1 s. 

D.  Propulsion System
To properly capture the dynamics of the propulsion system,

we  use  a  mean-value  first  principle  modelling  for  engine-
propeller  interaction  (cf.  [33],  [34]  for  details).  The  diesel
engine is modeled as a four-stroke engine with six cylinders
 

Mb =
6ηem f kLHVneng

2πneng
(13)

Mb ηe m f
kLHV

neng
i

where  is  the output torque;  is  the efficiency,  is  the
fuel  injection  in  gramme;  is  the  lower  heating  value
(a.k.a fuel energy/mass ratio), and  is the engine speed in
rotation per second. The thrust force for each thruster  is
 

τthri = ρwn2D4
propKt

= ρwn2
pD4

prop(Kta
VA

npDprop
+Ktb) (14)

ρw np
Dprop Kta Ktb

VA

where  is  the  water  density;  is  the  rate  of  revolution;
 is  the  diameter  of  the  propeller;  and   are  two

constant parameters;  is the arriving water velocity.
Similarly, the propeller torque is

 

Mp = ρwn2
pD5

propKq

= ρwn2
pD5

prop(Kqa
VA

npDprop
+Kqb). (15)

A  shaft  is  connected  between  the  diesel  engine  and  the
propeller  with  a  gearbox.  The  rate  of  revolution  of  the
propeller can be described as
 

np =
ne

igb
=

w Mbηtrmigb−Mp

2πItot
dt (16)

igb ηtrm
Itot

where  is  the  gearbox  ratio,  is  the  transmission
efficiency, and  is the total mass of inertia of the propulsion
system. The overall thrust force on the vessel is computed as
 

τ f =
∑

τthri (17)

where the summation is  to  be intended as  vector  summation.
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A thrust allocator is designed for the engine-thrust system 
τthr1
τthr2
...

τthr6

 = Btaτ (18)

Btawhere  is designed based on the knowledge of the positions
of the thrusters [30]. 

III.  Controller Design

[x,y,ψ]

While the performance of a DP system is better validated on
realistic six DoFs as in the process plant model (1) and (2), the
DP  design  is  conventionally  performed  on  a  three  DoFs
control  plant  model [28 ].  The  three  DoFs  arise  from  the

 coordinates (also known as surge, sway, and yaw) [29,
Sect. 7.3.1], resulting in
 

η̇ = J(ψ)ν (19)
 

Mν̇ = −Dν−Fη+τ+ds (20)
 

J(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (21)

η = [x,y,ψ]T

ν = [u,v,r]T

τ = [τx, τy, τψ]
M ∈ R3×3

[x,y,ψ]
M̄ =MRB+MA

D ∈ R3×3 Ds ds
[x,y,ψ] Fη

F ∈ R3×3

[0,0,0]T

where  comprises of north position, east position
and heading angle;  is  the vessel  velocity/angular
velocity  in  body-fixed  coordinate  system; ;

 is the combination of rigid body mass/inertia matrix
and  added  mass  matrix  in  three  DoFs  which  are  obtained  by
considering  only  the  components  of  the  six  DoFs
matrix  in (2), and is a positive definite matrix
[29]; similarly,  is the three DoFs version of ;  is
the combination of external  loads on  coordinates;  
denotes  the  mooring  force  with  being  the  positive
definite spring coefficient matrix arising from the linearization
of  crane  force  in  surge,  sway,  and  yaw  (cf.  [30]  for  the
detailed steps of linearization). Without loss of generality, we
consider  to be the desired position of the vessel.

Remark  1  (Control  Plant  Model  vs.  Process  Plant  Model):
Reducing a process plant model to a control plant model, i.e.,
from  6  to  3  DoFs,  introduces  unmodelled  dynamics.
Unmodelled dynamics in (20) as compared to (2) are

C,G g01) The terms , and ;
2) The thruster dynamics;
3) The damping components of the crane wires.
Therefore,  the  simulations  using  the  six  DoF process  plant

will  allow  to  test  the  performance  of  the  proposed  design  in
representative  dynamical  uncertain  scenarios.  A  DP  system
must be designed so as to tackle all such uncertainties.

In  the  following  we  will  describe  how  uncertainty  is
included in the three DoF control plant model (20). 

A.  Uncertainty Setting
J(ψ) JHenceforth, for compactness,  will be represented as ,

and the system dynamics (19) and (20) is represented as
 

η̇ = Jν (22)
 

ν̇ = −A1η−A2ν+M−1τ+d (23)
A1 ≜M−1F,A2 ≜M−1D d ≜M−1ds Mwhere ,  and  is positive

A1 A2

definite  matrix  [20].  Note  that  in  crane  vessels  the  exact
values of the positive definite matrices  and  is subject to
uncertainty. The following assumption highlights the nature of
uncertainties considered in this work for dynamics (20):

Ai
Âi Ãi

Ai(t) = Âi+ Ãi(t)

∆Ai ||∆Ai|| ≥ || Ãi(t)|| ∀t M
∆d

||∆d|| ≥ ||d(t)|| ∀t

Assumption  1  (Uncertainty): 's  can  be  decomposed  into
two  positive  definite  matrices  (nominal  part)  and 
(unknown  perturbation),  i.e., .  Quantities
available  for  control  designs  are:  the  maximum  perturbation
ranges  (such that  ); the mass matrix ;
the  upper  bound  on  the  external  disturbances  (such  that

 ).

∆Ai
∆d

M

Remark  2  (Robustification  Philosophy): The  perturbation
ranges  define the worst-case uncertainty in  mooring and
hydrodynamic  damping  forces.  The  upper  bound  defines
the  worst-case  environmental  conditions.  The  knowledge  of
these terms is  required if  one aims at  proving stability of  the
DP system in  the  worst-case  uncertainty  settings.  Differently
from mooring and hydrodynamic damping terms, the mass 
of  a  vessel  is  typically  known with  little  uncertainty.  In  fact,
uncertainty  in  mass  matrix  arise  from  movements  in  water
with  high  acceleration  or  deceleration  (added  mass  terms),
which are negligible during DP operation [29]. Such values of
the  vessel  can  be  obtained  from  the  data  provided  by
contractors. 

B.  Observer-Based Robust Control
The composite DP design can now be proposed

 

˙̂η = −Kη̂+K1η̃+Jν̂ (24)
 

˙̂ν = −Â1η̂− Â2ν̂+M−1τ+K2η̂ (25)
 

τ =M
(
Â1η̂+ Â2ν̂−K2η̂−JT η̂− (ρ+ρ1)ν̂

)
(26)

whose stability analysis will be given in Section IV. It consists
of  a  composite  design  of  robust  controller  and  observer:
observers  for  positions and velocities  via  (24)  and (25) helps
to  filter  out  disturbances  and  ease  the  thrusters’ action  (cf.
(18)).

H,K,K1,K2,ρ1 ρ
In  order  to  handle  the  worst-case  uncertainty  settings,  the

observer  and  control  gains ,  and  should  be
properly designed. The design of such gains is proposed as
 

λmin(K1) > || 1
2β2

(∆A1+K2)T H−1
2 (∆A1+K2)|| (27)

 

λmin(K) > || 1
2β3

(∆A1+K2)T H−1
3 (∆A1+K2)|| (28)

 

ρ > ||( 1
2β1

)∆AT
2 H−1

1 ∆A2||+ ||∆d|| (29)

 

ρ1(t) = α
w t

t−h
||(K1+K)||||η̂(ζ))||||η(ζ)− η̂(ζ)||dζ (30)

 

K2(t) = −Â1+JT (t) (31)
α > 1 βi Hi i = 1,2,3where ;  and    denote  positive  scalars  and

positive definite matrices that must satisfy
 

||(1
2

)(β1H1+β2H2+β3H3)|| < λmin(Â2). (32)

h > 0In  (30),  is  an  artificially  induced  delay  (i.e.,  use  of
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ρ1past ) and its choice is discussed in the subsequent section.

Â2 A2
βi

Hi K1,K,ρ
ρ1 J

||J(ψ)|| = 1 ∀ψ

K1

Remark 3 (Selection of Gains): According to Assumption 1,
 is  defined  based  on  the  nominal  knowledge  of .

Therefore, condition (32) provides a selection criterion for 
and , which in turn guides to select the other gains ,
and  from (27), (28), (29), and (30), respectively. Note that 
is  an  orthogonal  matrix  with  ;  thus,  one  can
easily  compute  the  upper  bounds  of  the  right  hand  sides  in
(27) and (28) when designing  and K. 

C.  Precompensation for Unmodelled Thruster Dynamics
The  dynamics  of  the  thrusters  include  a  limitation  of

propulsion  rate  and  a  time  delay  which  can  be  modelled
approximately  as  a  low  pass  filter.  Such  low  pass  filter
introduces  unmodelled  dynamics  which,  if  left  unattended,
might lead to unstable closed-loop behaviour. In view of such
scenario,  inspired  from  [35],  we  employ  an  artificial  delay
based precompensation method as
 

τ̄i(t) = Niτi(t)− N̄iτi(t−h), i = 1,2,3 (33)
τ = {τ1, τ2, τ3} τ̄i

Ni N̄i τi(t−h)

h > 0

where ;  denotes  the  input  to  the  thrust
allocator;  and  are two positive scalars,  requires
to artificially use of a past control input of previous sampling
time (being  the so-called artificial time delay).

Ni N̄i τ(t)
h

Ni N̄i τ̄i
τ(t)

τi(t−h)

To design  and ,  one notes  that  boundedness of  is
established in (56) following [35]. Therefore, given an , one
needs to design  and  such that boundedness of  can be
established from boundedness of . As the sampling time of
DP  system  is  of  typically  small  (order  of  hundredth  of  a
second),  can be approximated via Padé approximation
 

τ̄i(s) = Niτi(s)− N̄i
− h

2 s+1
h
2 s+1

τ(s)

⇒ τ̄i(s)
τi(s)

=
(Ni+ N̄i)hs+2(Ni− N̄i)

hs+2
(34)

s N̄i
0 < N̄i < Ni

where  is  the  Laplace  operator.  One  can  verify  that  any 
satisfying  leads  to  minimum  phase  dynamics  for
(34),  i.e.,  the  precompensation  (33)  will  not  invalidate  the
closed-loop stability of the subsequent Section IV.

Remark  4  (Available  Measurements): The  proposed
observer-based  robust  controller  requires  position  measure-
ments  but  no  velocity  measurements.  Removing  noisy
velocity  feedback  is  especially  relevant  in  surface  operation
[36],  when  one  can  rely  on  GNSS  systems  (e.g.,
GPS/GLONASS  and  Galileo  [37]),  or  relative  positioning
systems  based  on  lasers  and  cameras.  On  the  other  hand,
velocity  feedback  becomes  beneficial  in  environments  where
the  aforementioned  measurements  are  not  possible  (e.g.,
underwater) [38]. 

IV.  Stability/Performance of the Proposed DP

We first give the stability analysis of the proposed controller
and  consequently,  we  highlight  some  key  performance
indicators to drive the selection of the design parameters.

Υ
(η(0),ν(0))

Definition  1  (Globally  Uniformly  Ultimately  Bounded
Stability  [39]): System  (22)  and  (23)  is  globally  uniformly
ultimately bounded if there exists a convex and compact set 
such that for every initial condition , there exists a

T (η(0),ν(0)) (η(t),ν(t)) ∈ Υ t ≥ Tfinite  such that  for all . 

A.  Main Stability Result

βi > 0 Hi > 0
1 = 1,2,3 K,K1,K2, Â2,ρ ρ1

Theorem 1: Under Assumption 1,  the system (22) and (23)
employing  the  controller  (24)–(26)  remains  uniformly
ultimately  bounded  (UUB)  if,  for  given  and  

,  the  selection  of  the  gains ,  and 
satisfy (27)–(32).

η̃ ≜ η− η̂ ν̃ ≜ ν− ν̂ η̂ ν̂
η ν

η̃ ≜ η− η̂ ν̃ ≜ ν− ν̂

Proof: Let us define  and ; where  and 
are the observed (filtered) values of  and , respectively, and

, . The closed-loop system stability is proved
using the following Lyapunov function:
 

V(ξ) = V1(η̃, ν̃)+V2(η̂, ν̂) (35)
ξ ≜ [η̃T ν̃T η̂T ν̂T ]T V1 ≜ ( 1

2 η̃
T η̃+ 1

2 ν̃
T ν̃) V2 ≜

( 1
2 η̂

T η̂+ 1
2 ν̂

T ν̂)
where ,  and  

.  Using (22)–(25),  the observer error dynamics
are
 

˙̃η = η̇− ˙̂η = Jν̃+Kη̂−K1η̃ (36)
 

˙̃ν = ν̇− ˙̂ν =− Â1η̃− Ã1(η̃+ η̂)−K2η̂

− Â2ν̃− Ã2(ν̃+ ν̂)+d. (37)
From (31) and (36)–(37), the following can be achieved:

 

V̇1 =− η̃T K1η̃− ν̃T (Â2+ Ã2)ν̃+ η̃T Kη̂
− ν̃T (Ã1−K2)η̃− ν̃T Ã2ν̂

− ν̃T (Ã1+K2)η̂+ ν̃T d
≤− η̃T K1η̃− ν̃T Â2ν̃+ η̃

T Kη̂+ ν̃T d− ν̃T Ã2ν̂

− ν̃T (Ã1−K2)η̃− ν̃T (Ã1+K2)η̂ (38)
Ã2where we have used the fact that  is positive definite from

Assumption 1. Further, using (24)–(26), the following holds:
 

V̇2 = η̂
T (−Kη̂+K1η̃+Jν̂)+ ν̂T (−(ρ+ρ1)ν̂−JT η̂)

=− η̂T Kη̂− (ρ+ρ1)||ν̂||2+ η̃T K1η̂. (39)
β > 0

z1

Given any scalar  and a positive definite matrix H, the
following  holds  for  any  two  non-zero  vectors z  and   [40],
[41]:
 

±2zT z1 ≤ βzT Hz+ (
1
β

)zT
1 H−1z1. (40)

βi > 0,Hi > 0 i = 1,2,3
Applying  (40)  to  the  last  three  terms  of  (38)  the  following

relations are obtained for  :
 

− ν̃T Ã2ν̂ ≤ (
β1

2
)ν̃T H1ν̃+ (

1
2β1

){Ã2ν̂}T H−1
1 {Ã2ν̂} (41)

 

− ν̃T (Ã1−K2)η̃ ≤ (
β2

2
)ν̃T H2ν̃

+ (
1

2β2
)η̃T (Ã1−K2)T H−1

2 (Ã1−K2)η̃ (42)

 

− ν̃T (Ã1+K2)η̂ ≤ (
β3

2
)ν̃T H3ν̃

+ (
1

2β3
)η̂T (Ã1+K2)T H−1

3 (Ã1+K2)η̂. (43)

||Ãi|| ≤ ||∆Ai||From  the  upper  bound  condition  in  Assump-
tion 1, one can verify the following quadratic relations:
 

{Ã2ν̂}T H−1
1 {Ã2ν̂} ≤ {∆A2ν̂}T H−1

1 {∆A2ν̂} (44)
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(Ã1±K2)T H−1
j (Ã1±K2)

≤ (∆A1+K2)T H−1
j (∆A1+K2), j = 1,2. (45)

Using  the  above  inequalities,  the  relation  (41)–(43)  are
simplified to
 

− ν̃T Ã2ν̂ ≤ (
β1

2
)ν̃T H1ν̃

+ (
1

2β1
){∆A2ν̂}T H−1

1 {∆A2ν̂} (46)

 

− ν̃T (Ã1−K2)η̃ ≤ (
β2

2
)ν̃T H2ν̃

+ (
1

2β2
)η̃T (∆A1+K2)T H−1

2 (∆A1+K2)η̃ (47)
 

− ν̃T (Ã1+K2)η̂ ≤ (
β3

2
)ν̃T H3ν̃

+ (
1

2β3
)η̂T (∆A1+K2)T H−1

3 (∆A1+K2)η̂. (48)

Substituting (46)–(48) in (38), adding (38) and (39) yields
 

V̇ ≤− η̃T {K1− (
1

2β2
)(∆A1+K2)T H−1

2 (∆A1+K2)}η̃

− ν̃T {Â2− (
1
2

)(β1H1+β2H2+β3H3)}ν̃

− η̂T {K− (
1

2β3
)(∆A1+K2)T H−1

3 (∆A1+K2)}η̂

− ν̂T {ρI− (
1

2β1
)∆AT

2 H−1
1 ∆A2}ν̂

−ρ1||ν̂||2+ η̃T (K+K1)η̂+ ν̃T∆d. (49)
Using  the  design  conditions  (27)–(29)  we  define  the

following positive definite matrices:
 

Q1 ≜ {K1−
1

2β2
(∆A1+K2)T H−1

2 (∆A1+K2)}

Q2 ≜ {Â2− (
1
2

)(β1H1+β2H2+β3H3)}

Q3 ≜ {K−
1

2β3
(∆A1+K2)T H−1

3 (∆A1+K2)}

Q4 ≜ {ρI− (
1

2β1
)∆AT

2 H−1
1 ∆A2}.

From (49) we have
 

V̇ ≤−λmin(Q1)||η̃||2−λmin(Q2)||ν̃|| −λmin(Q3)||η̂||2

−λmin(Q4)||ν̂||2+ ||(K+K1)||||η̃||||η̂||
+ ||ν̃||||d|| −ρ1||ν̂||2. (50)

ξ ||ξ|| ≥ ||ν̂||
||ξ|| ≥ ||ν̃|| ||ξ|| ≥ ||η̂|| ||ξ|| ≥ ||η̃||

From  the  definition  of  as  in  (35)  we  have ,
, , and . Moreover,

 

α
w t

t−h
||(K1+K)||||η̂(ζ))||||η̃(ζ)||dζ
≥ α||(K1+K)||||η̂(t))||||η̃(t)||, ∀t ≥ 0

α > 1
ρ1 d

V̇

where  by design. Using these conditions, the expression
of  from (30) and the upper bound of  from Assumption 1,

 from (50) yields
 

V̇ ≤−ϱm||ξ||2+ ||∆d||||ξ||
− ||(K+K1)||||η̃||||η̂||(α||ν̂||2−1) (51)

ϱm ≜mini=1,2,3,4{λmin(Qi)}where .
σ ∈ R+ 0 < σ < ϱm

V V ≤ ||ξ||2
Consider  a  scalar  such  that .  The

definition of  in (35) yields . Hence,
 

V̇ ≤ −ϱm||ξ||2+ ||∆d||||ξ||
− ||(K+K1)||||η̃||||η̂||(α||ν̂||2−1)

= − (ϱm−σ)||ξ||2−σ||ξ||2+ ||∆d||||ξ||
− ||(K+K1)||||η̃||||η̂||(α||ν̂||2−1)
≤ −σV − ||ξ|| {(ϱm−σ)||ξ|| − ||∆d||}
− ||(K+K1)||||η̃||||η̂||(α||ν̂||2−1). (52)
V̇ ≤ −σV α||ν̂||2 ≥ 1⇒ ||ν̂|| ≥

√
1/α

(ϱm−σ)||ξ|| ≥ ||∆d|| ⇒ ||ξ|| ≥ (||∆d||/(ϱm−σ)) ||ξ|| ≥ ||ν̂||
V̇ ≤ −σV

Thus, one has  when  and
.  Since 

by definition,  the combined condition for  turns  out
to be
 

min{||ν̂||, ||ξ||} ≥max{(||∆d||/(ϱm−σ)) ,
√

1/α}
⇒ ||ν̂|| ≥max{(||∆d||/(ϱm−σ)) ,

√
1/α}. (53)

η̃, ν̃, η̂, ν̂ ∈ L∞⇒ η,ν ∈ L∞
This  affirms  the  UUB  condition  [39]  implying

. ■

η,ν, η̂, ν̂
ρ1,τ K2(t)

Boundedness  of  Various  Signals: From  the  observer-
controller co-design (24)–(32), besides boundedness of signals

 as proved in the above analysis, boundedness of other
closed-loop signals , and  can also be proved:

K2(t) J(t)
Â1

1)  in (31) is  always bounded since  is  a  bounded
orthogonal matrix and  is a constant matrix.

ρ1
h h

ρ1(t) t
f (ζ) = (||(K1+K)||||η̂(ζ))||||η(ζ)− η̂(ζ)||)

h ζ (t−h) t
η(ζ) η̂(ζ)

η(ζ), η̂(ζ) ∈ L∞ ρ1(t)
ρ1(t) ∈ L∞

2)  as in (30) is the result of an integral over a finite time
of  length ,  where  is  a  user-defined  interval  (usually  the
sampling  time  in  practice).  Following  notion  of  Reimann
integration,  at any time  is governed by the area covered
by  the  curve  and  the
finite  base  width ,  with  spanning  from  to  .
Therefore,  if  and   are  uniformly  bounded  (i.e.,

),  then  is  also  uniformly  bounded.  With
these arguments, one can establish that .

τ
η̂, ν̂, ρ1 K2

3)  From  (26)  it  can  be  noticed  that  will  be  bounded  if
, and  are bounded. Boundedness of these signals is

provided above. 

B.  Key Performance Indicators
η

τ
b ||τ||

From (53), an ultimate bound on the position error  and an
upper  bound  of  control  input  can  be  computed,  which  can
generate key performance indicators (KPIs)  and .

ι ≜max{(||∆d||/(ϱm−σ)) ,
√

1/α}
V ≥ (1/2)||ν̂||2⇒ ||ν̂|| ≤

√
2V

V̇ ≤ −σV

Let .  From  (35)  we  have
.  Thus,  from  (53),  we  have

 when
 

ι ≤ ||ν̂|| ≤
√

2V ⇒ V ≥ ι
2

2
. (54)

VTherefore, one can deduce the upper bound of  as
 

V ≤max{V(0),
ι2

2
} ≜ B. (55)

||η̂|| ≤
√

2V ||η̃|| ≤
√

2V
||η|| = ||η̃||+ ||η̂|| b η

b ∈ [0, 2ι]
τ

Utilizing  the  relations ,  and
, the  ultimate  bound  on the  position  error 

can be computed as . Similarly, an upper bound on
 can be derived from (26) as

 

||τ|| = ||M{Â1η̂+ Â2ν̂−K2η̃−JT η̂− (ρ+ρ1)ν̂}||
≤
√

2B||M||
{
||Â1−JT ||+ ||Â2− (ρ+ρ1)||+ ||K2||)

}
. (56)
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Remark 5 (Innovative Aspect of the Proposed Design): The
notable  feature  of  the  stability  result  for  the  proposed  DP
scheme  (24)–(26)  is  its  composite  nature:  the  design  jointly
provides  robustness  against  model  uncertainties,  unmodelled
thruster dynamics and filtering against measurements. In state-
of-the-art  DP  systems,  no  composite  stability  was  proposed:
either  robustness  is  achieved neglecting filtering (cf.  [1],  [3],
[19]),  or  filtering  is  implemented  neglecting  model
uncertainties  (cf.  [13]–[18])  or  neglecting  thruster  dynamics
such as engine dynamics, delay [26].

K,K1,ρ α
ι

Remark 6 (Design Guidelines): It  can be noticed from (53)
and (55) that high values of , and  (determined from
(27)–(30)) help to reduce  and improve control performance.
On  the  other  hand,  the  upper  bound  (56)  reveals  that  higher
values  of  the  above mentioned gains  demands  higher  control
effort.  Thus,  a  designer  has  to  make  a  trade-off  between  the
positioning performance and control effort. 

V.  Simulation Results and Analysis

In this section, the performance of the proposed controller is
validated  under  the  two  following  scenarios  for  a  heavy  lift
vessel in “moored” stage (i.e., the heavy load is attached to the
platform, and the load is fully/partly on the platform, while the
vessel is taking out loading/unloading work trying to transfer
the load to/from the vessel from/to the platform):

S1  in  the  first  scenario,  the  thrusters  are  considered  to  be
ideal, i.e., no constraint is imposed on its ability of responding
to variations in the control input; and

S2 in the second scenario, non-ideal thrusters are considered
where  low  pass  filters  are  used  to  limit  the  response  to
variations in the control input, in line with Section III-C.

0.6 m/s 0.3 m/s 0.5 m/s

Various dynamics parameters of the S-175 ship model used
in  this  work  are  available  as  open  source  in  [25]:  for
convenience,  we  have  summarized  them  in  Appendix.
Simulations  for  both  the  scenarios  are  carried  out  under  the
“smooth-to-slight” sea-state (i.e., sea state 2) with a current of

 (i.e.,   in  north  and  approximately  in
east).  The reason we have chosen sea state 2 is  that  for most
companies, this is the maximum sea state allowed to carry out
offshore  heavy  lift  operations  [23].  The  environmental  data
under such sea-state are shown in Table II and Fig. 2.
 

TABLE II  
Environment Setting

Current velocity in
north and east

Wind
velocity

Significant wave
height

Mean wind and
wave angle[

uc
vc

]
=

[
0.5
0.3

]
m/s 2.5 m/s 0.5 m 210◦

 
 

Bta = [0.5000;0.5000;0−2.670.03;02.670;01.00−0.03]
Â1

F = Fmax Fmax

F
Â1 = 10−3[2.7261 0 0; 0 2.0931

The  thrusters  on  board  consist  of  three  bow  thrusters  and
two  propellers.  The  corresponding  thrust  allocator  matrix  is

.  The
nominal value  is  chosen based on the highest  load during
the  simulation,  when ,  where  refers  to  the
maximum  mooring  stiffness  during  the  heavy  lifting
operation,  which  refers  to  the  mooring  stiffness  with
maximum  crane  load.  Thus, 

−0.0004; 0 −0.0004 0.0011] A2
Â2 = 10−1[0.1762 0 0; 0 1.1312 −0.6066; 0 −0.0003 1.3604]

90% A2

; nominal value of  is chosen as
 ,

which is  of the actual value of .

M = 1010[0.0026 0 0; 0 0.0033 0.0015; 0 0.0015 6.5209]
∆d = [0.1948, 1.4940,

0.0012]T ∆A1 ∆A2
10% 100% Â1 Â2

α = 2, βi = 1 Hi = ∆A2 ∀i = 1,2,3
K =K1 = 289.78I ρ = 1.53

N̄i = 300,Ni = 301 h = 0.01 ∀i = 1,2,3

Other parameters  involved in the simulation are chosen as:
;  the

upper bound of disturbance is chosen as 
. The upper bounds of the perturbation  and 

are selected to be  and  of   and ,  respectively.
The  various  control  design  parameters  are  selected  as

,  and , .  Consequently,  other
control gains turn out to be: ; . The
additional  control  parameters  for  S2  are  selected  as

, and , .
Throughout the simulation, the tension in the crane wires is

considered  to  follow  the  pattern  depicted  in Fig. 3 :  such
profile  emulates  the  loading  and  unloading  in  a  crane-vessel
system.
 

0 200 400 600 800 1000 1200 1400 1600 1800
0
1
2
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)

×107

 
Fig. 3.     Tension in the crane wires.
  

A.  Results From Scenario S1

2460

ϑ = 0

The performance of the proposed controller in this scenario
is  shown  in Figs. 4–6 .  Its  performance  is  compared  with  the
design  in  [30],  which  employs  a  nonlinear  passive  observer
with  a  (non-robust)  PID  controller.  The  PID  controller  is
tuned for a load of  ton (i.e., approximately 10% mass of
the  vessel)  on  the  platform  under  sea  state  2,  and  the
parameters  are  fixed  during  the  whole  simulation.  The
performance of both the proposed and the PID strategy can be
checked in the first column of Tables III and IV ( ). Both
the  root  mean square  error  (RMSE) and the  maximum offset
from  the  desired  equilibrium  position  are  reported.  These
values show that the proposed approach reduces the RMSE by
89% in north direction, 50% in east direction and 82% in yaw.
Offset  reductions  are  95% in  north  direction,  78% in  east
direction, and 83% in yaw. 

B.  Results From Scenario S2
In  this  scenario,  the  thrust  allocators  are  considered  to  be

embedded with the following low pass filters: 

 

x

y

210°

O

Environmental
load

 
Fig. 2.     Environmental load on the vessel.
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H(s) =
1

ϑs+1
(57)

ϑwhere  denotes the filter time constant.

ϑ

ϑ = 1,2,3,4 5

The  performance  of  the  proposed  controller  and  same  PID
controller  in  scenario  S1  is  verified  for  five  different s  as

,  and .  These  values  correspond to  five  possible
unmodelled  thruster  dynamics.  The  performance  of  both
controllers are tabulated in Tables III and IV, respectively (cf.

ϑ = 1,2,3,4 5
ϑ = 3

ϑ

ϑ ϑ = 3

ϑ = 0

the  columns  corresponding  to ,  and ).
Furthermore,  for  the  value ,  the  results  are  shown  in
Figs. 7–9 (proposed  controller),  and Figs. 10  and  11  (PID
controller).  The  tabulated  data  reveal  that  both  the  proposed
controller  and  the  PID  controller  loose  performance  as 
increases.  However,  the  proposed  controller  outperforms  the
PID controller for all . From the values in the columns 
it  is  possible  to  see  that  the  proposed  approach  reduces  the
RMSE by  98% in  north  direction,  53% in  east  direction  and
87% in  yaw.  Offset  reductions  are  97% in  north  direction,
85% in  east  direction  and  80% in  yaw.  These  are  similar  or
larger improvements as compared to : in other words, the
performance of the proposed approach is consistent for a large
range of uncertainties.

From Figs. 7  and 8  (proposed controller),  and Figs. 10  and
11 (PID  controller)  it  is  evident  that  the  PID  controller
produces  large  oscillations  which  are  at  the  onset  of
instability. Such large oscillations result in forces through the
crane  wires  which  are  around  10  times  larger  than  the
proposed approach. 

C.  The Role of Propulsion Dynamics and Sea State
ϑ = 1A  simulation  under  scenario  S2  with  employing  the

robust  observer  [26]  in Fig. 12  reveals  that  propulsion
dynamics plays a huge role in determining stability of the DP
system.  As  a  matter  of  fact,  state-of-the-art  designs  can  be
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Fig. 4.     Vessel position in scenario S1 employing the proposed controller.
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Fig. 5.     Crane  forces  and  moment  in  scenario  S1  with  the  proposed
controller.
 

 

TABLE III  
Performance of the Proposed Controller With Thruster

Dynamics

ϑ 0 1 2 3 4 5

RMSE

(m)North 0.05 0.02 0.03 0.03 0.05 0.07
(m)East 0.08 0.08 0.08 0.08 0.08 0.09
(◦)Yaw 0.03 0.01 0.02 0.03 0.03 0.03

Maximum offset

(m)North 0.14 0.04 0.06 0.10 0.20 0.24
(m)East 0.24 0.14 0.19 0.23 0.26 0.31
(◦)Yaw 0.11 0.04 0.08 0.10 0.11 0.09

 

 

TABLE IV  
Performance of PID Controller [30] With Thruster

Dynamics

ϑ 0 1 2 3 4 5

RMSE

(m)North 0.44 0.52 0.68 1.32 4.76 12.75
(m)East 0.16 0.16 0.16 0.17 0.18 0.21
(◦)Yaw 0.17 0.12 0.15 0.13 0.12 0.14

Maximum offset

(m)North 2.61 2.89 3.15 3.87 13.22 43.70
(m)East 1.11 1.27 1.43 1.54 1.67 1.79
(◦)Yaw 0.63 0.39 0.55 0.50 0.44 0.52
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Fig. 6.     Thrust forces and moment in S1 with the proposed controller.
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unstable due to lack of robustness.

0.21 0.3
0.3◦

More simulations are made with different sea states (Table V),
and  different  loads  (Table VI).  These  results  show  that  the
proposed  robust  controller  can  still  maintain  the  position  of
the vessel with a maximum offset of  m in north,  m in
east,  and  in  yaw under  sea  state  4  (Table V).  Moreover,
the  proposed controller  is  quite  insensitive  to  different  loads,
according to Table VI. 

VI.  Conclusions and Future Work

An  observer-based  robust  DP  system  was  presented  for
construction  crane  vessels.  The  closed-loop  control  system
was  proven  to  be  stable  under  against  uncertainty;  the
effectiveness  of  the  proposed  scheme  was  verified  in
comparative  simulations  incorporating  real-life  uncertain
scenarios  such  as  changing  mooring  force,  environmental
load, unmodelled propulsion dynamics, and thruster delay. An
important  future  work  is  embed estimators  in  the  DP control
framework to avoid worst-case uncertainty bounds. 
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ϑFig. 7.     Vessel position in scenario S2 with the proposed controller,  = 3.
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Fig. 8.     Crane  forces  and  moment  in  scenario  S2  with  the  proposed
controller,  = 3.
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ϑFig. 9.     Thrust forces and moment in S2 with the proposed controller,  = 3.
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ϑFig. 10.     Vessel position in scenario S2 with PID controller,  = 3.
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Fig. 11.     Crane forces and moment in scenario S2 with PID controller, 
 = 3.
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APPENDIX
Numerical Values for the Process Plant Model

The parameters  mentioned in Section II  are  summarized in
Table VII, and they are based on the open source S-175 vessel
model [25].
 

MRB = 106



24.6 0 0 0 −1.23 0
0 24.6 0 1.23 0 0
0 0 24.6 0 0 0
0 1.2 0 171 0 0
−1.23 0 0 0 4340 0

0 0 0 0 4340 0



 

MA = 106



1.40 0 0 0 0 0
0 11.7 0 −9.95 0 49.8
0 0 30.0 0 97.0 0
0 −7.88 0 235 0 −633
0 0 98.1 0 2920 0
0 14.9 0 −444 0 2890


.

 

TABLE VII  
Numerical Values for the Various Crane Vessel

Components

Vessel parameters

Draught 9.5 m

Breadth 25.4 m

Length between perpendiculars 175 m

MMass ( ) 24609620 kg

ρwDensity of water ( ) 1025 kg/m3

gAcceleration of gravity ( ) 9.81 m/s2

GMTTransverse metacentric height ( ) 0.996 m

GMLLateral metacentric height ( ) 204.436 m

Block coefficient 0.569

Radius of gyration in roll 8.331 m

Radius of gyration in pitch 42 m

Radius of gyration in yaw 42 m

AFw 270 m2

ALw 2500 m2

CZ =CK =CM 0
Awp 3150 m2

GML 204.436 m
GMT 0.996 m
Engine parameters

m fNominal fuel injection ( ) 1.3148

ηeNominal engine efficiency ( ) 0.38

nengNominal engine speed ( ) 1.5 Hz

Nominal engine power 960 kW

Crane wires

kw 1.68×108 N/m

Dw 4.07×105 Ns/m

Hydraulic winch
ηhyd 0.9

Khp 4.0
Khi 0.4

Propeller parameters

DpropDiameter of the propeller ( ) 3 m
{Kta, Ktb} {−0.438, 0.4773}
{Kqa, Kqb} {−0.06, 0.7124}
Fuel and gearbox parameters

kLHVLower heating value ( ) 42700 kJ/kg

igbGearbox ratio ( ) 5.414

ItotTotal mass of inertia of propulsion system ( ) 200 kg/m2

ηtrmTransmission efficiency ( ) 0.95
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ϑ = 3Fig. 12.     Unstable  behavior  with  controller  from  [26], ,  due  to

neglecting propulsion dynamics.
 

 

TABLE V  

ϑ = 3
Simulation Results of the Proposed Robust Controller

Under Different Sea States, 

Sea state 0 1 2 3 4

RMSE

North (m) 0.01 0.02 0.03 0.05 0.06

East (m) 0.00 0.03 0.08 0.09 0.09

(◦)Yaw 0.00 0.01 0.02 0.06 0.08

Maximum offset

North (m) 0.01 0.03 0.09 0.15 0.21

East (m) 0.00 0.07 0.23 0.25 0.30

(◦)Yaw 0.00 0.02 0.09 0.20 0.30
 

 

TABLE VI  

ϑ = 3
Simulation Results of the Proposed Robust Controller

With Different Loads, 

Load (tonnes) 1600 1800 2000 2200 2400

RMSE

North (m) 0.03 0.03 0.03 0.04 0.04

East (m) 0.08 0.08 0.08 0.08 0.08

(◦)Yaw 0.03 0.02 0.02 0.03 0.02

Maximum offset

North (m) 0.09 0.08 0.06 0.09 0.10

East (m) 0.21 0.23 0.23 0.24 0.20

(◦)Yaw 0.08 0.08 0.09 0.11 0.08
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C,Ds,G,g0)

Other  system  parameters  are  provided  in Table VII ,  which
are used to generate the other system dynamics terms such as

 [29 ,  Section  7.3.1]  and  propulsion  dynamics
terms as elaborated in Section II.
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