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Propositions

accompanying the dissertation

LOCALITY IN SPACE AND TIME FOR DATA-EFFICIENT VISUAL
RECOGNITION

by

Osman Semih KAYHAN

1. CNNs excel at exploiting biases in datasets. (this thesis)

2. Data augmentation cannot satisfy the data hunger of deep networks. (this thesis)

3. Convolution was, is, and will be a cornerstone of computer vision.

4. Accusing researchers of creating ethically biased machine learning algorithms re-
sembles a modern day witch-hunt.

5. There is no unfair algorithm, there is always an unfair human being.

6. The Internet is evolving into the biggest platform for controlled experiments.

7. There is no catastrophic forgetting, every decision in the past affects the future.

8. Positive discrimination is not a solution for diversity.

9. Abundance will bring poverty.

10. Mixing cultures brings high development.
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SUMMARY

Spatial localization in time is vital for humans. Therefore we desire that computer vision
algorithms are also able to spatially and temporally localize objects and actions. These
algorithms generally learn from given data and discover patterns, parts, motions, and
their locations by exploiting inductive biases that are essential for learning. However,
localization is complex, error-prone and hard to inspect. In this thesis, we investigate
location biases and how CNNs explore and exploit location and temporal information in
the image and video domain.

An interesting finding of the thesis is that heuristics about what is outside the image
(border handling) enables CNNs to exploit absolute spatial location and break transla-
tion equivariance. The thesis proposes a simple solution to eliminate the spatial location
biases. The proposed solution improves translation equivariance and provides data effi-
ciency and robustness.

Furthermore, the thesis investigates object and part locations on images. First, the
thesis studies object-context relationships of modern object detectors and reveals in-
sights about helpful location biases. In addition, the effect of unhelpful location biases
is investigated for a visual verification task. These analyses show that object detectors
can hallucinate the location of an object with high confidence score even if the object is
not in the image. Based on these insights, the thesis provides suggestions for researchers
on how to choose an object detector for their specific tasks.

Another interesting finding of this thesis shows limitations of data augmentation
techniques to resolve robustness issues of pose estimation methods when dealing with
occlusions. Even if data augmentation alleviates some problems caused by sampling bi-
ases, it can only yield limited improvement and the performance saturates after applying
a stack of augmentations.

Finally, the thesis investigates temporal location information and demonstrates
spatio-temporal location biases in video data. A time-efficient video labeling solution
that uses latent space feature similarity is proposed to annotate long-untrimmed videos.
Besides, using only keyframe labels with Positive-Unlabeled learning achieves high-
quality action proposals that can be utilized with many temporal action localization
methods. The proposed method can provide data and label efficiency.

Taken together, this thesis investigates how CNNs use location information and in-
troduce location biases that can result in positive as well as negative outcomes on vari-
ous computer vision tasks.

xi





SAMENVATTING

Ruimtelijke lokalisatie in de tijd is van belangrijk voor de mens. Daarom willen we dat
computer vision-algoritmen ook in staat zijn om objecten en acties ruimtelijk en tempo-
reel te lokaliseren. Deze algoritmen leren uit data en ontdekken patronen, onderdelen,
bewegingen en hun locaties door gebruik te maken van inductieve vooroordelen die es-
sentieel zijn voor leren. Lokalisatie is echter complex, foutgevoelig en moeilijk te inspec-
teren. In dit proefschrift onderzoeken we locatievooroordelen en hoe CNN’s locatie- en
temporele informatie in het beeld- en videodomein verkennen en exploiteren.

Een interessante bevinding van het proefschrift is dat heuristieken over wat zich bui-
ten het beeld bevindt de CNN’s in staat stelt om de absolute ruimtelijke locatie te be-
nutten en de positie-equivariantie te doorbreken. Het proefschrift stelt een eenvoudige
oplossing voor om de ruimtelijke locatiebias te elimineren. De voorgestelde oplossing
verbetert de positie-equivariantie en zorgt voor data-efficiëntie en robuustheid.

Verder onderzoekt het proefschrift object- en onderdeel-locaties in afbeeldingen.
Ten eerste bestudeert het proefschrift object-context relaties van moderne objectdetec-
toren en onthult inzichten over nuttige locatievooroordelen. Daarnaast wordt het effect
van locatie vooroordelen onderzocht voor een visuele verificatietaak. Deze analyses to-
nen aan dat objectdetectoren de locatie van een object met een hoge betrouwbaarheids-
score kunnen hallucineren, zelfs als het object niet in het beeld staat. Op basis van deze
inzichten biedt het proefschrift onderzoekers suggesties voor het kiezen van een object-
detector voor hun specifieke taken.

Een andere interessante bevinding van dit proefschrift toont beperkingen aan van
data-augmentatietechnieken om robuustheidsproblemen van pose - schattingsmetho-
den op te lossen bij het omgaan met occlusies. Zelfs als gegevensvergroting enkele pro-
blemen verlicht die worden veroorzaakt door bemonsteringsbias, kan dit slechts een
beperkte verbetering opleveren en de prestaties verzadigen na het toepassen van veel
augmentaties.

Ten slotte onderzoekt het proefschrift tijdelijke locatie-informatie en demonstreert
het ruimtelijk-temporele locatievooroordelen in videogegevens. Er wordt een tijdbespa-
rende oplossing voor het labelen van video’s voorgesteld die gebruikmaakt van gelijkenis
van latente ruimtefuncties om lange ongeknipte video’s te annoteren. Bovendien levert
het gebruik van alleen keyframe-labels met Positive-Unlabeled learning actievoorstellen
van hoge kwaliteit op die kunnen worden gebruikt met veel lokalisatiemethoden voor
tijdelijke acties. De voorgestelde methode kan gegevens- en labelefficiëntie opleveren.

Alles bij elkaar genomen, onderzoekt dit proefschrift hoe CNN’s locatie-informatie
gebruiken en locatievooroordelen introduceren die zowel positieve als negatieve resul-
taten kunnen opleveren bij verschillende computervisietaken.

xiii
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2 1. INTRODUCTION

Well before Einstein physically linked space and time, there was already a strong se-
mantic –humanly meaningful– connection between the here and the now. The time of
sunset is linked to a safe place to sleep; while sunrise unlocks hunting grounds and berry
locations. Mapping such important locations describes the known world, where beyond
the boundaries of such maps, the unknown lurks. Going beyond the boundaries and ex-
ploring these unknown locations led to several important historical events in time such
as the circumnavigation of Africa, and linking Europe to the Americas. In modern times,
where social media and the internet hosts our digital images and videos, the connection
between time and space is exemplified by photos on a timeline, images and videos with
GPS tags, automatically generated moving image slideshows, etc. Because humans de-
rive meaning from time and space, the where and the when permeate our digital images
and videos.

Automatic analysis tasks for images and videos reflect the importance of time and
space. Where an automatic image classification task has a computer assign a label to the
whole image, an object detection task also requires a precisely localized box around the
detected objects. For detecting small parts, such as a wrist, shoulder, knee, etc, as used
in automatic human pose estimation, the part location is given by predicting a point per
part. Similarly, for automatic video analysis, the absolute position in time plays no role
in action recognition, as an action may occur anywhere in the video. Yet, for temporal
action localization, the start and end times of an action are also required. How spatial
and temporal positions are handled, determines what automatic image and video anal-
ysis task are relevant for the application at hand.

The current approaches to automatic image and video analysis are based on deep
learning. Deep learning is a type of machine learning based on neural networks, where
instead of giving precise instructions on how to do a task, the machine is given many
examples of what the outcome of a task should be. Thus, when spatial or temporal lo-
cation information is required in the automatic analysis, a deep learning system needs
examples that have the relevant location information annotated. Such annotations are
expensive, as they require human effort, where the amount of effort is correlated with
the precision of the annotated location information: annotating if an object is present in
an image is less effort than annotating its location by a bounding box, which in turn, is
less effort than annotating precise part locations. Annotating spatial-temporal locations
in videos adds an additional temporal dimension which increases annotation efforts fur-
ther. Deep learning approaches are crucially dependent on large amounts of annotated
examples, and there is substantial human effort required in annotating these examples.

It is impossible to collect and annotate all possible locations for an object in images
and videos. The object position in an image depends on the arbitrary camera location
and viewpoint and can vary arbitrarily. Thus, machine learning methods are trained
on a subset of all possible locations. This subset of locations, in turn, then determines
what the machine learns, and it is thus not guaranteed that a machine learning approach
trained on one particular subset of locations will generalize to recognizing a different
subset of locations. For example, when humans take a photograph, the sky is typically
in the top of the image. In contrast, a camera mounted on a flying drone does not have
this bias, and during its maneuvers might even fly upside down, yielding the sky at the
bottom of the image. A machine learning algorithm trained on object locations in pho-
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Figure 1.1: Example of convolution. The top row illustrates a shift of the input image, where the rook is moved
from the top left to the bottom right of the image. The response of applying the convolution operator with the
indicated filter in the center, is illustrated in the bottom row: If the patch shifts, the response shifts accordingly
from the top left to the bottom corner as well.

tographs taken by humans, might thus not recognize locations in drone images.

Instead of a data-driven approach, which relies on representative data samples of all
relevant object locations, a powerful alternative is to remove the ability to exploit loca-
tion information from the machine learning algorithm. Incorporating such prior knowl-
edge can thus substantially reduce the data collection and annotation effort. For image
recognition approaches, the current default approach is to use a CNN (Convolutional
Neural Network) which has exactly this goal: A CNN aims to remove location informa-
tion by adding the convolution operator to a deep network. A convolution can be seen
as forcing the machine learning algorithm to use a sliding window over all locations in
the image or video, which should make it impossible to single out specific locations. To
give an example, in Fig. 1.1, if a patch in an input image is shifted, the outcome of a con-
volution is equivalently shifted. The CNN is the current dominant deep learning image
recognition paradigm, illustrating the role of location —or to be more precise, the power
of ignoring location— in current visual machine learning approaches.

Humans care about location information in images and videos and consequently,
location plays an important role in automatic visual analysis applications. Automating
such application is well suited to a machine learning approach, and deep learning in
particular. Machine learning methods depend crucially on giving examples and thus
rely on valuable human annotations. The annotation effort can severely be reduced by
adding prior knowledge to machine learning, where the marriage of the convolution op-
erator and deep learning yields the CNN, which is the current default image recognition
approach. This PhD thesis revolves around these topics; it investigates location infor-
mation in deep learning approaches for images and videos while reducing the required
annotation-effort.
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Thesis chapter
Topic 2 3 4 5 6 7

Position in images
Object classification X
Object detection X X
Part detection X

Position in videos
Action recognition X X
Action localization X

Position bias
Absolute X
Relative X X X

Annotation reduction
Efficient labeling X
Data efficiency X X

Table 1.1: Topic distribution over the thesis chapters. The thesis studies locality in image and videos while
reducing the annotation effort.

1.1. FOCUS OF THE THESIS
The distribution of topics over the thesis chapters is given in Table 1.1.

right_ear left_ear

left_shoulder

right_eye left_eye

nose

left_wrist
left_elbow

right_shoulder

right_elbow

right_wrist

right_hip
left_hip

right_knee

right_ankle

left_knee

left_ankle

Figure 1.2: (left) Handwritten digit classification [1], (middle) the detection of the objects on the road [2], (right)
Human body part locations [3].

Position in images. The considered automatic applications using location for im-
ages include object classification: deciding if an object is present somewhere in the im-
age; object detection: predicting object location in the form of a rectangular bounding
box around the object; part detection: predicting human part locations such as wrist,
shoulder, head, etc., as a 2D point. Fig. 1.2 illustrates the three types of position consid-
ered in the thesis.

Position in videos. The considered location applications for video are action recog-



1.1. FOCUS OF THE THESIS

1

5

nition: deciding if an action occurs in any time in the video, and action localization:
which also requires determining the temporal beginning and end of each action. Fig. 1.3
illustrates these two types of video positions considered in the thesis.

Temporal Localization

Kicking the Ball

Figure 1.3: Visualization of Kicking the Ball action video [4]. Action recognition task only indicates the action
class. For action localization task, in addition to the action class, temporal bounds of the action is required.

Position bias. The thesis investigates two types of position bias; Absolute position
can be indexed on a coordinate system, such as the (x, y) pixel positions and the frame
number in a video. Relative position is about the relative positional relation between
the object and its surroundings, such as the relation of a boat surrounded by water, or a
human head above a torso. Fig. 1.4 illustrates these two types of position bias considered
in the thesis.

Figure 1.4: (left) Absolute position of rook [5], (right) Relative position of the surfer’s head above his torso [6].

Annotation reduction. For reducing the annotation effort, the thesis considers ef-
ficient labeling which makes the labeling process itself faster and easier, while it also
considers data efficiency which focuses on reducing the dependency of the deep learn-
ing algorithms on the amount of annotated data samples. Fig. 1.5a illustrates an example
of making video labeling more efficient; whereas Fig. 1.5b shows the effect of data effi-
ciency by losing less accuracy in the small data regime.
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Figure 1.5: Annotation reduction. (a) Using group labeling makes annotation of videos more efficient [7]. (b)
Using more data efficient methods provide comparable result with less labeled data [8].

1.2. OVERVIEW OF SUBSEQUENT CHAPTERS
The rest of the thesis is structured as follows. Chapter 2 investigates the convolution op-
erator which powers the convolutional neural network (CNN) which is arguably the cur-
rent strongest inductive prior in visual deep learning. The convolution can be seen as a
sliding dot product and shares parameters at each location in the image, which attempts
to remove the effect of absolute position information. The chapter shows that border
effects, i.e. how the convolution operator is defined on the border of the image, allow
common CNN architectures to exploit absolute position information in images and in
video. By properly handling these border effects, the absolute position information is
lost, offering increased data efficiency.

Chapter 3 evaluates the contextual relative object position on current deep learned
object detectors. We qualitatively evaluate the effect of the object context on the three
most prevalent types of object detectors and analyze correlations object/context corre-
lations.

Chapter 4 explores object detection in images for automatic visual inspection. We
define visual verification as determining if relevant object parts are present and at it’s
correct location. To evaluate visual verification, we introduce a new dataset of 10k im-
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ages, where each image contains a bicycle. Each bicycle image has 22 densely annotated
bike parts, where each part state is labeled as intact, missing, occluded or broken. We
analyze how object detectors perform on this task, that common evaluation measures
are not sufficient to evaluate visual verification, and show that object detectors are sen-
sitive to part positions and thus might hallucinate non-existing parts as being present in
the expected location.

Chapter 5 studies the role of relative locations for handling occlusions in body parts
localization for human pose estimation using deep learning. A standard approach in
deep learning is to use data augmentation which adds transformed copies of the input
data to the deep network training set. Examples of data augmentation include different
crops, locations, orientations, noise levels of input images. The chapter investigates how
sensitive human pose estimation methods are to occlusions and how well data augmen-
tation can pose a solution.

Chapter 6 explores how to efficiently annotate videos with spatio-temporal labels.
To speed up the annotation effort, each video frame is mapped to a 2D point by us-
ing t-SNE, and by exploiting the redundancy between video frames, similar frames are
mapped close to each other. This allows efficient annotation by allowing easy frame
grouping in 2D, making it possible to annotate several frames at once.

Chapter 7 investigates data efficiency in temporal video action localization, where
the goal is to segment actions from long, untrimmed videos. Data efficiency is achieved
by a weakly-supervised action proposal network, PUNet which uses a single frame tem-
poral label rather than temporal action bounds. A single frame is faster to annotate since
the exact temporal bounds no longer need to be labeled.
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ABSTRACT

In this paper we challenge the common assumption that convolutional layers in modern
CNNs are translation invariant. We show that CNNs can and will exploit the absolute spa-
tial location by learning filters that respond exclusively to particular absolute locations by
exploiting image boundary effects. Because modern CNNs filters have a huge receptive
field, these boundary effects operate even far from the image boundary, allowing the net-
work to exploit absolute spatial location all over the image. We give a simple solution to
remove spatial location encoding which improves translation invariance and thus gives
a stronger visual inductive bias which particularly benefits small data sets. We broadly
demonstrate these benefits on several architectures and various applications such as im-
age classification, patch matching, and two video classification datasets. 1

1For the code:

https://github.com/oskyhn/CNNs-Without-Borders

https://github.com/oskyhn/CNNs-Without-Borders
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Class 1: Top-left Class 2: Bottom-right

Figure 2.1: We place an identical image patch on the top-left or on the bottom-right of an image. We evaluate
a standard fully convolutional network [3, 5, 33–36] if it can classify the patch location (top-left vs bottom-
right). We use 1 layer, a single 5x5 kernel, zero-padding, same-convolution, ReLu, global max pooling, SGD,
and a soft-max loss. Surprisingly, this network can classify perfectly, demonstrating that current convolutional
layers can exploit the absolute spatial location in an image.

2.1. INTRODUCTION
The marriage of the convolution operator and deep learning yields the Convolutional
Neural Network (CNN). The CNN arguably spawned the deep learning revolution with
AlexNet [2] and convolutional layers are now the standard backbone for various Com-
puter Vision domains such as image classification [3–5], object detection [6–8], seman-
tic segmentation [9–11], matching [12–14], video [15–17], generative models [18–20], etc.
The CNN is now even used in other modalities such as speech [21–23], audio [24–26],
text [27–29], graphs [30–32], etc. It is difficult to overstate the importance of the convo-
lution operator in deep learning. In this paper we analyze convolutional layers in CNNs
which is broadly relevant for the entire deep learning research field.

For images, adding convolution to neural networks adds a visual inductive prior that
objects can appear anywhere. Convolution can informally be described as the dot prod-
uct between the input image and a small patch of learnable weights –the kernel– sliding
over all image locations. This shares the weights over locations yielding a huge reduction
in learnable parameters. Convolution is equivariant to translation: If an object is shifted
in an image then the convolution outcome is shifted equally. When convolution is fol-
lowed by an operator that does not depend on the position, such as taking the global
average or global maximum, that gives translation invariance and absolute location is
lost. Translation invariance powers the visual inductive prior of the convolution opera-
tor, and we will demonstrate that improving translation invariance improves the prior,
leading to increased data efficiency in the small data setting.

In this paper we challenge standard assumptions about translation invariance and
show that currently used convolutional layers can exploit the absolute location of an ob-
ject in an image. Consider Fig. 2.1, where the exactly identical image patch is positioned
on the top left (class 1) or on the bottom right (class 2) in an image. If a fully convolu-
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tional CNN is invariant, it should not be able to classify and give random performance
on this task. Yet, surprisingly, a simple standard 1-layer fully convolutional network with
a global max pooling operator can perfectly classify the location of the patch and thus
exploit absolute spatial location.

We show that CNNs can encode absolute spatial location by exploiting image bound-
ary effects. These effects occur because images have finite support and convolving close
to the boundary requires dealing with non-existing values beyond the image support [37,
38]. Boundary effects allow CNNs to learn filters whose output is placed outside the im-
age conditioned on their absolute position in the image. This encodes position by only
keeping filter outputs for specific absolute positions. It could, for example, learn filters
that only fire for the top of the image, while the bottom responses are placed outside the
image boundary. Boundary effects depend on the size of the convolution kernel and are
small for a single 3x3 convolution. Yet, CNNs stack convolution layers, yielding receptive
fields typically several times the input image size [39]. Boundary effects for such huge
kernels are large and, as we will demonstrate, allows CNNs to exploit boundary effects
all over the image, even far away from the image boundary.

We have the following contributions. We show how boundary effects in discrete con-
volutions allow for location specific filters. We demonstrate how convolutional layers in
various current CNN architectures can and will exploit absolute spatial location, even
far away from the image boundary. We investigate simple solutions that removes the
possibility to encode spatial location which increases the visual inductive bias which is
beneficial for smaller datasets. We demonstrate these benefits on multiple CNN archi-
tectures on several application domains including image classification, patch matching,
and video classification.

2.2. RELATED WORK AND RELEVANCE
Fully connected and fully convolutional networks. Initial CNN variants have convolu-
tional layers followed by fully connected layers. These fully connected layers can learn
weights at each location in a feature map and thus can exploit absolute position. Variants
of the seminal LeNet that included fully connected layers experimentally outperformed
an exclusively convolutional setup [40]. The 2012 ImageNet breakthrough as heralded
by AlexNet [2] followed the LeNet design, albeit at larger scale with 5 convolutional and
2 fully connected layers. Building upon AlexNet [2], the VGG [4] network family variants
involve varying the depth of the convolutional layers followed by 3 fully connected lay-
ers. The fully connected layers, however, take up a huge part of the learnable parameters
making such networks large and difficult to train.

Instead of using fully connected layers, recent work questions their value. The Net-
work In Network [34] is a fully convolutional network and simply replaces fully con-
nected layers by the global average value of the last convolutional layer’s output. Such
a global average or global max operator is invariant to location, and makes the whole
network theoretically insensitive to absolute position by building on top of equivariant
convolutional layers. Several modern networks are now using global average pooling.
Popular and successful examples include the The All Convolutional Net [35], Residual
networks [3], The Inception family [5], the DenseNet [33], the ResNext network [36] etc.
In this paper we show, contrary to popular belief, that fully convolutional networks will
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exploit the absolute position.

Cropping image regions. Encoding absolute location has effect on cropping. Exam-
ples of region cropping in CNNs include: The bounding box in object detection [8, 9,
41]; processing a huge resolution image in patches [42, 43]; local image region match-
ing [12–14, 44]; local CNN patch pooling encoders [45–47]. The region cropping can be
done explicitly before feeding the patch to a CNN as done in R-CNN [41], high-res im-
age processing [42] and aggregation methods [48, 49]. The other approach to cropping
regions is implicitly on featuremaps after feeding the full image to a CNN as done in
Faster R-CNN [8], BagNet [47], and CNN pooling methods such as sum [46], BoW [50],
VLAD [45, 51], Fisher vector [52]. In our paper we show that CNNs can encode the ab-
solute position. This means that in contrast to explicitly cropping a region before the
CNN, cropping a region after the CNN can include absolute position information, which
impacts all implicit region cropping methods.

Robustness to image transformations. The semantic content of an image should
be invariant to the accidental camera position. Robustness to such geometric transfor-
mation can be learned by adding them to the training set using data augmentation [53–
57]. Instead of augmenting with random transformations there are geometric adverserial
training methods [58–60] that intelligently add the most sensitive geometric transforma-
tions to the training data. Adding data to the training set by either data augmentation
or adverserial training is a brute-force solution adding additional computation as the
dataset grows.

Instead of adding transformed versions of the training data there are methods specif-
ically designed to learn geometric transformations in an equivariant or invariant rep-
resentation [61–63] where examples include rotation [64–68], scale [69–73] and other
transformations [74–78]. Closely related is the observation that through subsequent
pooling and subsampling in CNN layers translation equivariance is lost [79, 80]. In our
paper, we also investigate the loss of translation equivariance, yet do not focus on pool-
ing but instead show that convolutional layers can exploit image boundary effects to
encode the absolute position which was also found independently by Islam et al [81].

Boundary effects. Boundary effects cause statistical biases in finitely sampled data
[82, 83]. For image processing this is textbook material [37, 38], where boundary han-
dling has applications in image restoration and deconvolutions [84–86]. Boundary han-
dling in CNNs focuses on minimizing boundary effects by learning separate filters at
the boundary [87], treating out of boundary pixels as missing values [88], circular con-
volutions for wrap-around input data such as 360◦ degree images [89] and minimizing
distortions in 360◦ degree video [90]. We, instead, investigate how boundary effects can
encode absolute spatial location.

Location information in CNNs. Several deep learning methods aim to exploit an
absolute spatial location bias in the data [91, 92]. This bias stems from how humans
take pictures where for example a sofa tends to be located on the bottom of the image
while the sky tends to be at the top. Explicitly adding absolute spatial location infor-
mation helps for patch matching [93, 94], generative modeling [95], semantic segmen-
tation [92, 96], instance segmentation [97]. In this paper we do not add spatial location
information. Instead, we do the opposite and show how to remove such absolute spatial
location information from current CNNs.
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V-Conv

S-Conv
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Figure 2.2: How convolution ignores positions close to the border. We show the first and the last position
for three convolution types: Valid (V-Conv), Same (S-Conv) and Full (F-Conv) applied to an input with finite
support (green) and border padding (red). Note that for V-conv, the blue filter at position 1 is never applied to
the green input positions 1 and 2. For S-Conv, the pink filter position 1 is never applied to green input position
1. F-Conv has all filter values applied on the image.

Visual inductive priors for data efficiency. Adding visual inductive priors to deep
learning increases data efficiency. Deep networks for image recognition benefit from a
convolutional prior [98] and the architectural structure of a CNN with random weights
already provides an inductive bias [99–101]. The seminial Scattering network [102] and
its variants [103, 104] design a convolutional architecture to incorporate physical pri-
ors about image deformations. Other work shows that adding priors increases data effi-
ciency by tying parameters [75], sharing rotation responses [67], and a prior scale-space
filter basis [105]. In our paper we show that removing the ability of convolutional layers
to exploit the absolute position improves translation equivariance and invariance which
enforces the visual inductive prior of the convolution operator in deep learning.

2.3. HOW BOUNDARY EFFECTS ENCODE LOCATION
We explore common convolution types for boundary handling with their image padding
variants and explore their equivariant and invariant properties. In Fig. 2.2 we illustrate
the convolution types. For clarity of presentation we mostly focus on d = 1 dimensional
convolutions in a single channel, although the analysis readily extends to the multi-
dimensional multi-channel case. We use the term ’image’ broadly and also includes
feature maps.

Boundaries for convolution on finite samples. Let x ∈Rn be the 1-D single channel
input image of size n and f ∈ R2k+1 denote a 1-D single channel filter where for con-
venience we only consider odd sized filters of size 2k + 1. The output y[t ] for discrete
convolution is

y[t ] =
k∑

j=−k
f[ j ]x[t − j ]. (2.1)

Images have finite support and require handling boundary cases, for example where t −
j < 0 and x[t − j ] falls outside the defined image. Providing values outside the image
boundary is commonly referred to as padding. We consider two cases. Zero padding
assumes that all values outside of the images are zero. Circular padding wraps the image
values on one side around to the other side to provide the missing values.
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2.3.1. COMMON CONVOLUTIONS FOR BOUNDARY HANDLING

Valid convolution (V-Conv). V-Conv does not convolve across image boundaries. Thus,
V-conv is a function Rn → Rn−2k where the output range of Eq. (2.1) is in the interval:

t ∈ [k +1,n −k]. (2.2)

It only considers existing values and requires no padding. Note that the support of
the output y has 2kd fewer elements than the input x, where d is the dimensionality of
the image, i.e, the output image shrinks with k pixels at all boundaries.

Same convolution (S-Conv). S-Conv slides only the filter center on all existing image
values. The output range of Eq. (2.1) is the same as the input domain; i.e. the interval:

t ∈ [1,n]. (2.3)

The support of the output y is the same size as the support of the input x. Note that
2kd values fall outside the support of x, i.e, at each boundary there are k padding values
required.

Full convolution (F-Conv). F-Conv applies each value in the filter on all values in
the image. Thus, F-conv is a function Rn → Rn+2k where the output range of Eq. (2.1) is
in the interval:

t ∈ [−k,n +k]. (2.4)

The output support of y has 2kd more elements than the input x, i.e, the image grows
with k elements at each boundary. Note that 4kd values fall outside of the support of the
input x: At each boundary 2k padded values are required.

2.3.2. ARE ALL INPUT LOCATIONS EQUAL?
We investigate if convolution types are equally applied to all input position in an im-
age. In Fig. 2.2 we illustrate the setting. To analyze if each location is equal, we mod-
ify Eq. (2.1) to count how often an absolute spatial position a in the input signal x is used
in the convolution. The count C (·) sums over all input positions i where the convolution
is applied,

C (a) =∑
i

k∑
j=−k

Ji = a − jK, (2.5)

where J·K are Iverson Brackets which evaluate to 1 if the expression in the brackets is true.
Without boundary effects C (a) always sums to 2k +1 for each value of a.

When there are boundary effects, there will be differences. For V-Conv, the input
locations i are determined by Eq. (2.2) and the equation becomes

CV (a) =
n−k∑

i=k+1

k∑
j=−k

Ji = a − jK, (2.6)

where i no longer sums over all values. Thus, for all locations in the input image the
function CV (t ) no longer sums to 2k + 1 as it does in Eq. (2.5), instead they sum to a
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lower value. In fact, it reduces to

CV (a) =


a if a ∈ [1,2k]

n −a +1 if a ∈ [n −2k,n]

2k +1 Otherwise.

(2.7)

This shows that for V-Conv there are absolute spatial locations where the full filter is not
applied.

For S-Conv, where Eq. (2.3) defines the input, the count is

CS (a) =
n∑

i=1

k∑
j=−k

Ji = a − jK, (2.8)

where i sums over all values, and slides only the filter center over all locations. Thus, for
S-Conv, when the locations are a ≤ k or a ≥ n −k, the function CS (a) no longer sums to
2k +1. This reduces to

CS (a) =


a +k if a ∈ [1,k]

n −a + (k +1) if a ∈ [n −k,n]

2k +1 Otherwise.

(2.9)

This means that also for S-Conv there are absolute spatial locations where the full filter
is not applied.

S-Conv with circular padding ’wraps around’ the image and uses the values on one
side of the image to pad the border on the other side. Thus, while for S-Conv, Eq. (2.9)
holds for the absolute position i , it is by using circular padding that the value x[i ] at
position i is exactly wrapped around to the positions where the filter values were not
applied. Hence, circular padding equalizes all responses, albeit at the other side of the
image. Zero padding, in contrast, will have absolute spatial locations where filter values
are never applied.

For F-Conv, in Eq. (2.4), the counting equation becomes

CF (a) =
n+k∑

i=−k

k∑
j=−k

Ji = a − jK. (2.10)

F-Conv sums the filter indices over all indices in the image and thus, as in Eq. (2.5), all
locations i sum to 2k +1 and thus no locations are left out.

We conclude that V-Conv is the most sensitive to exploitation of the absolute spatial
location. S-Conv with zero padding is also sensitive to location exploitation. S-Conv with
circular padding is not sensitive, yet involves wrapping values around to the other side,
which may introduce semantic artifacts. F-Conv is not sensitive to location information.
In Fig. 2.3 we give an example of all convolution types and how they can learn absolute
spatial position.
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Figure 2.3: A 2D Example where a pixel on the top left input (Class-1) and the same pixel on the bottom-right
input (Class-2) can be classified using convolution. Comparing the output of 4 convolution types shows that
V-Conv and S-Conv for Class-1 can no longer detect the pixel, while Class-2 still has the pixel. S-Conv with
circular padding and F-Conv always retain the pixel value.

2.4. EXPERIMENTS
Implementation details for Full Convolution. For standard CNNs implementing F-

Conv is trivially achieved by simply changing the padding size. For networks with resid-
ual connections, we add additional zero padding to the residual output to match the
spatial size of the feature map.

2.4.1. EXP 1: HOW FAR FROM THE IMAGE BOUNDARY CAN ABSOLUTE LO-
CATION BE EXPLOITED?

CNNs can encode absolute position by exploiting boundary effects. In this experiment
we investigate how far from the boundary these effects can occur. Can absolute position
be encoded only close to the boundary or also far away from the boundary? To answer
this question we revisit the location classification setting in Fig. 2.1 while adding an in-
creasingly large border all around the image until location can no longer be classified.
In Fig. 2.4 we show the setting.

Class-1 Class-2 Border=16 Border=32 Border=64

Figure 2.4: Exp 1: Example images. Evaluating how far from the image boundary absolute location can be
exploited. The task is to classify the location of a 56x56 resized Imagenet image placed in the top-left (class-1)
and bottom-right (class-2), see also Fig. 2.1. We add a border on all 4 sides of the image, where we increase the
border size until location can no longer be classified.

We randomly pick 3,000 samples from ImageNet validation set, resize them to 56x56
and distribute them equally in a train/val/test set. For each of the 3k samples we create
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two new images (so, 2,000 images in each of the 3 train/val/test sets) by taking a black
112x112 image and placing the resized ImageNet sample in the top-left corner (class-1)
and in the bottom-right corner (class-2), see Fig. 2.1. To evaluate the distance from the
boundary we create 7 versions by adding a black border of size∈ {0,16,32,64,128,256,512}
on all 4 sides of the 112x112 image, see Fig. 2.4 for examples.
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Figure 2.5: Exp 1: Evaluating a BagNet-33 [47] (left), a ResNet-18 [3] (middle) and a DenseNet-121 [33] (right)
on how far from the boundary absolute location can be exploited, see Fig. 2.4. The x-axis is the border size
added to all 4 sides of the image and the y-axis is accuracy. All models can classify absolute position. The small
RF of the BagNet allows for classification close to the border. The ResNet-18 and DenseNet-121 have larger
RFs and can classify location far from the boundary. Random convolutional weights stay relatively close to the
boundary while training on ImageNet learns filters that can go further. Training from scratch does best. Note
that the most distant location from an image boundary for a kxk image is a border size of k/2, i.e, a border size
of 128 corresponds to a 256x256 image.

We evaluate three networks with varying receptive field size. BagNet-33 [47] is a
ResNet variant where the receptive field is constrained to be 33x33 pixels. ResNet-18 [3]
is a medium sized network, while a DenseNet-121 [33] is slightly larger. We evaluate three
settings: (i) trained completely from scratch to see how well it can do; (ii) randomly ini-
tialized with frozen convolution weights to evaluate the architectural bias for location
classification; (iii) ImageNet pre-trained with frozen convolution weights to evaluate the
location classification capacity of a converged realistic model used in a typical image
classification setting.

Results in Fig. 2.5 show that all settings for BagNet, ResNet and DenseNet can clas-
sify absolute position. Random weights can do it for locations relatively close to the
boundary. Surprisingly, the pretrained models have learned filters on ImageNet that can
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classify position further away from the boundary as compared to random initialization.
The models trained from scratch can classify absolute position the furthest away from
the boundary. The BagNet fails for locations far from the boundary. Yet, the medium-
sized ResNet-18 can still classify locations of 128 pixels away from the boundary, which
fully captures ImageNet as for 224x224 images the most distant pixel is only 112 pixels
from a boundary. We conclude that absolute location can even be exploited far from the
boundary.

2.4.2. EXP 2: BORDER HANDLING VARIANTS

Figure 2.6: Exp 2: Example images of the Red-Green two class classification dataset for evaluating exploitation
of absolute position. The upper row of images is class 1: Red-to-the-left-of-Green. The lower row of images is
class 2: Green-to-the-left-of-Red. The Similar Testset is matching the Train-Val set in absolute location: Class 1
at the top and class 2 at the bottom. The Dissimilar testset is an exact copy of the Similar testset where absolute
location is swapped between classes: Class 1 at the bottom, Class 2 at the top. If absolute location plays no role
then classification on the Similar Testset would perform equal to the Dissimilar Testset.

Border handling is the key to absolute location coding. Here we evaluate the effect of
various border handling variants on absolute location exploitation. To do so, we create
an image classification task unrelated to the absolute position and introduce a location
bias which should have no effect on translation invariant architectures.

We construct the Red-Green data set for binary image classification of the relative
order of colored blocks of 4x4 on a black 32x32 image. Class 1 has Red to the left of Green;
class 2 has Green to the left of Red, see Fig. 2.6. The classification task is unrelated to the
absolute position. We introduce a vertical absolute position bias by placing class 1 on
the top of the image (8 pixels from the top, on average), and class 2 on the bottom (8
pixels from the bottom, on average). We then construct two test sets, one with similar
absolute location bias, and a dissimilar test set where the location bias switched: class 1
at the bottom and class 2 on top, see Fig. 2.6.

The train set has 2,000 images, the validation and test sets each have 1,000 images.
Experiments are repeated 10 times with different initialization of the networks. A 4-layer
fully convolutional deep network is used for evaluation. The first two layers have 32 fil-
ters and last two layers 64 filter followed by global max pooling. Sub-sampling for layers
2, 3, 4 uses stride 2 convolution.

We evaluate the border handling of Section 2.3. V-Conv uses only existing image val-
ues and no padding. For S-Conv we evaluate zero and circular padding. F-Conv has zero
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Type Pad Similar test Dissimilar test

V-Conv - 100.0±0.0 0.2±0.1
S-Conv Zero 99.8±0.1 8.4±0.7
S-Conv Circ 73.7±1.0 73.7±1.0
F-Conv Zero 89.7±0.5 89.7±0.5

Table 2.1: Exp 2: Accuracy on the Red-Green dataset shown in Fig. 2.6. Type is the convolution type, pad is how
padding is done. Results are given on the Similar test set with matching absolute positions and the Dissimilar
test set with an absolute position mismatch. Stddevs are computed by 10 repeats. Valid and same-zero exploit
location and do poorly on the Dissimilar test set. Same-circ is translation invariant yet invents disturbing new
content. Full-zero is translation invariant, doing well on both test sets.

padding. Results are in Table 2.1. V-Conv and S-Conv-zero have the best accuracy on
the Similar test set, yet they exploit the absolute location bias and perform poorly on the
Dissimilar test set, where V-Conv relies exclusively on location and confuses the classes
completely. S-Conv-circ and F-Conv perform identical on the Similar and Dissimilar test
sets; they are translation invariant and thus cannot exploit the absolute location bias.
F-Conv does better than S-Conv-circ because circular padding introduces new content.
F-Conv does best on both test sets as it is translation invariant and does not introduce
semantic artifacts.

2.4.3. EXP 3: SENSITIVITY TO IMAGE SHIFTS
Does removing absolute location as a feature lead to robustness to location shifts? We
investigate the effect of image shifts at test time on CNN output for various architectures
on a subset of ImageNet. We train four different architectures from scratch with S-Conv
and F-Conv: Resnet 18, 34, 50 and 101. To speed up training from scratch, we use 20% of
the full ImageNet and take the 200 classes from [106] which is still large but 5x faster to
train. To evaluate image shifts we follow the setting of BlurPool [80], which investigates
the effect of pooling on CNN translation equivariance. As BlurPool improves equivari-
ance, we also evaluate the effect of BlurPool Tri-3 [80].

Diagonal Shift. We train the network with the usual central crop. Each testing image
is diagonally shifted starting from the top-left corner towards the bottom-right corner.
We shift 64 times 1 pixel diagonally. Accuracy is evaluated for each pixel shift and aver-
aged over the full test set.

Consistency. We measure how often the classification output of a model is the same
for a pair of randomly chosen diagonal shifts between 1 and 64 pixels [80]. We evaluate
each test image 5 times and average the results.

Results are given in Table 2.2. For each architecture, using F-Conv improves both
the classification performance and the consistency of all the models. The highest clas-
sification accuracy gain between S-Conv and F-Conv is 3.6% and the best consistency
gain is 2.49% with Resnet-34. BlurPool makes S-Convs more robust to diagonal shifts
and increase consistency. When F-Conv and BlurPool are combined, the accuracy on
diagonal shifting and consistency are improved further. Resnet-34 (F+BlurPool) obtains
more 4.85% of accuracy and 3.91% of consistency compared to the S-Conv baseline. If
we compare each Resnet architecture, the deepest model of the experiment, Resnet-101,
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Diagonal
Shift S-Conv F-Conv S+BlurPool F+BlurPool

RN18 79.43 82.74 81.96 83.95
RN34 82.06 85.66 83.73 86.91
RN50 86.36 87.92 87.50 88.93
RN101 86.95 87.78 88.22 88.73

Consistency S-Conv F-Conv S+BlurPool F+BlurPool

RN18 86.43 88.38 88.32 90.03
RN34 87.62 90.12 89.21 91.53
RN50 90.21 91.36 91.68 92.75
RN101 90.76 91.71 92.36 92.86

Table 2.2: Exp 3: Diagonal shift and consistency result for different Resnet architectures. S+BlurPool repre-
sents S-Convs with BlurPool Tri-3. Similarly, F+BlurPool corresponds the combination of F-Conv and BlurPool.
In the most cases, F-Conv outperforms S-Conv and S+BlurPool (except for Resnet-101) in terms of diagonal
shifting accuracy on testing set. Similar trend can be seen for consistency experiment, yet for Resnet-50 and
Resnet-101, S+BlurPool has more consistent outputs. F+BlurPool achieves the highest score for both cases with
all the architectures.

improves the least, both for classification and consistency. Resnet-101 has more filters
and parameters and it can learn many more varied filters than other models. By this, it
can capture many variants of location of objects and thus the gap between methods for
Resnet-101 are smaller.

2.4.4. EXP 4: DATA EFFICIENCY

Does improving equivariance and invariance for the inductive convolutional prior lead
to benefits for smaller data sets? We evaluate S-Conv and F-Conv with the same ran-
dom initialization seed for two different settings: Image classification and image patch
matching.

Image classification. We evaluate ResNet-50 classification accuracy for various train-
ing set sizes of the 1,000 classes in ImageNet. We vary the training set size as 50, 100, 250,
500, and all images per class.

Patch matching. We use HardNet [107] and use FPR (false positive rate) at 0.95 true
positive recall as an evaluation metric (lower is better). We evaluate on 3 common patch
matching datasets (Liberty, Notre Dame and Yosemite) from Brown dataset [108] where
the model is trained on one set and tested on the other two sets. Hardnet uses triplets
loss and we vary the training set size as 50k, 100k, 250k, 500k triplet patches. Each test
set has 100k triplet patches.

Results are given in Fig. 2.7. For both image classification as for patch matching S-
Conv and F-Conv perform similar for a large amount of training data. Yet, when reducing
the number of training samples there is a clear improvement for F-Conv. For ImageNet
with only 50 samples per class S-Conv scores 26.4% and F-Conv scores 31.1%, which
is a relative improvement of 17.8%. For patch matching, S-Conv scores 0.145 and F-
Conv 0.083 which is a relative improvement of 75%. Clearly, removing absolute location
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Figure 2.7: Exp 4: Data efficiency experiments. We reduce the amount of training data per class for the 1,000
classes of Imagenet for image classification and full Liberty, Notre Dame and Yosemite for patch matching. F-
Conv outperforms S-Conv in both modality with smaller data size. (left) The Imagenet plot demonstrates the
obtained accuracy difference when the number of data samples per class. The difference between F-Conv and
S-Conv increases when the sample size decreases. (right) Correspondingly, F-Conv results in a performance
increase for patch matching.

UCF101 HMDB51

Baseline
(S-Conv)

Ours
(F-Conv)

Baseline
(S-Conv)

Ours
(F-Conv)

RN-18 38.6 40.6* 16.1 19.3
RN-34 37.0 46.9 15.2 18.3
RN-50 36.2 44.1 14.3 19.0

Table 2.3: Exp 5: Action recognition with 3D Resnet-18, 34 and 50 by using S-Conv and F-Conv methods. F-
Conv outperforms S-Conv on UCF101 and HMDB51 datasets. S-Conv obtains its best result with the most
shallow network, Resnet-18, however F-Conv still improves the results even the model becomes bigger. (*)
Enabling Fconv also in the temporal dimension improves the performance by 1.6%.

improves data efficiency.

2.4.5. EXP 5: SMALL DATASETS
Here we evaluate if the improved data efficiency generalize to two small datasets for ac-
tion recognition. We select small sized data sets where training from scratch gives sig-
nificantly worse results due to overfitting and the common practice is pre-training on a
huge third party dataset. We compare the standard S-Conv with the proposed F-Conv
where both methods are trained from scratch.

Action Recognition. We evaluate on two datasets: UCF101 [109] with 13k video clips
from 101 action classes and HMDB51 [110] with 51 action classes and around 7k anno-
tated video clips. We evaluate three 3D Resnet architectures [16], Resnet-18, 34 and 50.

We show results in Table 2.3. F-Conv models outperform the S-Conv models. In-
terestingly, in UCF101 experiment, the baseline performance decreased by 2.4% from
Resnet-18 to Resnet-50; however, F-Convs still continue to improve the performance
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Figure 2.8: Exp 5: Training curves for 3D Resnet-18 S-Conv (left) and F-Conv (right) with HMDB51 dataset.
Because the dataset is small, both models overfit. F-Conv achieves relatively 38.8% less overfitting than S-
Conv.

by 3.6% for same architectures. Besides, enabling Fconv in the temporal dimension
increases the performance of Resnet-18 by 1.6%. According to Kensho et al [16] a 3D
Resnet-18 overfits with UCF101 and HMDB51 which we confirm, yet F-Conv we overfit
less than S-Conv. In Fig. 2.8, the difference between train and test of a 3D Resnet18 with
S-Conv is 35.69%, however F-Conv has 25.7% overfitting. Similarly, S-Conv is relatively
41% more overfitted than F-Conv in Fig. 2.9. Consequently, both methods overfit due to
the number of parameter and the lack of data.

2.5. LIMITATIONS AND CONCLUSION
One limitation of our method is the extra computation required for padding. There is no
extra cost of using circular padding instead of zero padding. For using F-Conv instead of
S-Conv, the costs are similar to using S-Conv instead of V-Conv, and we found a Resnet-
50 with F-Conv 15% slower to train on Imagenet.

Note that if absolute spatial location is truly discriminative between classes, it should
be exploited [111], and not removed. For many internet images with a human photogra-
pher, there will be a location bias as humans tend to take pictures with the subject in the
center, sofas on the bottom, and the sky up. The difficulty lies in having deep networks
not exploit spurious location correlations due to lack of data. Addressing lack of data
samples by sharing parameters over locations through added convolutions in deep net-
works is a wonderfully regularizer and we believe that convolutional layers should truly
be translation equivariant.

To conclude, we show that in contrary to popular belief, convolutional layers can
encode the absolute spatial location in an image. With the strong presence of the con-
volution operator in deep learning this insight is relevant to a broad audience. We ana-
lyzed how boundary effects allow for ignoring certain parts of the image. We evaluated
existing networks and demonstrated that their large receptive field makes absolute spa-
tial location coding available all over the image. We demonstrate that removing spatial
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Figure 2.9: Exp 5: Training curves for 3D Resnet-18 S-Conv (left) and F-Conv (right) with UCF101 dataset. Both
models overfit, but S-Conv has higher difference between training and testing results (49.1%). F-Conv has
34.8% of gap and thus overfits less.

location as a feature increases the stability to image shifts and improves the visual induc-
tive prior of the convolution operator which leads to increased accuracy in the low-data
regime and small datasets which we demonstrate for ImageNet image classification, im-
age patch matching, and two video classification data sets.
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ABSTRACT

Which object detector is suitable for your context sensitive task? Deep object detectors ex-
ploit scene context for recognition differently. In this paper, we group object detectors into
3 categories in terms of context use: no context by cropping the input (RCNN), partial con-
text by cropping the featuremap (two-stage methods) and full context without any crop-
ping (single-stage methods). We systematically evaluate the effect of context for each deep
detector category. We create a fully controlled dataset for varying context and investigate
the context for deep detectors. We also evaluate gradually removing the background con-
text and the foreground object on MS COCO. We demonstrate that single-stage and two-
stage object detectors can and will use the context by virtue of their large receptive field.
Thus, choosing the best object detector may depend on the application context. The code1

and dataset will be available.

1https://github.com/oskyhn/Detectors-Context

https://github.com/oskyhn/Detectors-Context
https://github.com/oskyhn/Detectors-Context
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Figure 3.1: ROI handling in deep object detectors. Crop-Input (no context) crops the ROI from the input image
before the CNN. Crop-FM (partial context) inputs the full image and crops the ROIs from the featuremap.
NoCrop (full context) has a single-stage and uses the full image as input to the CNN.

3.1. INTRODUCTION

Objects are rarely photographed alone. An image may contain several other objects
or varying scene background. This background context may correlate with the object
and thus possibly exploited by a learned object detector such as detecting a chair next to
a table and missing the same chair in a football field. For some applications, the context
should not matter like an object placed in a box of a retail system. For other applications,
the context is an important cue, such as images from an MRI scanner. In this paper we
evaluate the effect of context on popular deep object detectors.

For deep object detectors, there are works on the context around the object [1], as
scene context [2–4], as combinations of local parts and the global image structure [5, 6],
by using multi-scale fusion and attention [7], and by using recurrent neural networks [8].
Besides, to have a robust decision, [9] uses mixup augmentation and [10] investigates
how to disentangle object from its co-occurring context. [11] investigates the contextual
effect on visual recognition with various ways and compare with human performance.
[12] explores the bounds of object classes by using contextual information and show the
cases when is beneficial to use or discard. Differently, we classify object detectors in
terms of context use and analyze the effect of context for these detector types.

Popular deep object detectors follow either a single-stage or a two-stage approach.
Two-stage detectors consist of class agnostic region proposals and detection parts. RCNN
[13] is the earliest deep two-stage detector that crops the ROIs from the input image be-
fore feeding the CNN backbone, without accessing context. Faster RCNN [14] introduces
the trainable Region Proposal Network (RPN) and each candidate region is cropped from
deep featuremap. Faster RCNN is the most common two-stage detector and a great in-
spiration to other detectors [5, 6, 15, 16], hence we evaluate Faster-RCNN as the proto-
typical two-stage detector. Single-stage detectors do not use any proposal method and
obtain the detection in a single run. YOLO [17] treats detection as a regression problem
and detects the objects from a full image. In YOLOv2 [18] and YOLOv3 [19], the method
is improved by using a deeper backbone model, multi-scale training, high resolution in-
put and anchor boxes. SSD [20] predicts category scores and box offsets for a fixed set of
anchors from different scales. RetinaNet [21] proposes focal loss which focuses on the
hard training samples and converges faster. EfficientDet [22] scales the model and pro-
poses fast multi-scale feature fusion. For our experiments, we choose YOLOv3 since it
uses anchor boxes and multi-scale training, thus comparable with Faster RCNN.

In this paper, we assume that context is formed as everything around the object in-
cluding other objects. We classify object detectors on how they use context (Fig. 3.1): (i)
no context (RCNN), (ii) partial context (Faster RCNN) and (iii) full context (YOLO) on a
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fully-controlled dataset, see Fig. 3.2. Using context is beneficial if the object correlates
with its environment. However, the performance is reduced when the context is inco-
herent. We demonstrate the effect of context on detector performance by increasing the
context around to object in each testing case. Also, we indicate how much contribution
the detector can obtain by only using the context information without a visible main
object.

We have the following contributions: First, we show that modern deep object detec-
tors can access context by virtue of their receptive field size even if the object regions are
cropped from the featuremap. Second, the effect of context is evaluated quantitatively
on most common object detection networks. To conclude, we indicate that single and
two stages networks employ contextual information except methods crop the ROIs from
the input such as RCNN.

3.2. EXPERIMENTAL EVALUATION OF CONTEXT

We analyze the effects of various contextual correlations for common detector types
on a fully-controlled context dataset and evaluate context with natural images.

We categorize deep object detectors (see Fig. 3.1) as:
Crop-Input. We base this class of detectors on the seminal RCNN [13] approach,

which originally uses class agnostic object proposal bounding boxes [23] that are cropped
from the input and fed to a CNN backbone for feature extraction, then the extracted fea-
tures are used for detection. Since the method crops the proposals from the input image
before feature extraction, it does not access any context beyond the bounding box, thus
we call it ’no context’ method. In reality, a network may retrieve minimal context be-
tween an object and the area inside the bounding box.

Crop-FM. This class of detectors crops bounding boxes from CNN featuremaps. The
seminal example is based on Faster RCNN [14] which has two stages: a detection head for
object classification and an RPN which outputs candidate object boxes. These boxes are
cropped by ROI pooling from featuremaps. These featuremaps are deep in the network
and thus are the result of convolutions with a large receptive field. Due to such large
receptive fields, the featuremap crops include context information beyond the cropped
regions which can be exploited for recognition.

NoCrop. This class of object detectors does not crop at all and includes most of the
single-stage object detectors such as YOLO detectors [17–19]. Predictions are made by
using the full featuremap and thus can exploit all context.

3.2.1. EVALUATING OBJECT-CONTEXT CORRELATIONS

It is difficult to vary the correlation between an object and its context in real images.
Thus, we create a fully controlled context-sensitive dataset from the 10-class Fashion
MNIST [24]. To vary object-context correlation we create 6,000 images (2000 per training,
validating and test set) to form the Quadrant-FMNIST (Q-FMNIST) dataset by placing
images in quadrants. We create a 2-class object detection problem where the top-left
quadrant has the object of interest (class-1: ’Pullover’ and class-2: ’Shirt’) and the other
3 quadrants are filled with images of other 8 classes which is how we vary object-context
correlation. Namely, these 8 classes become background for each image. We have 5
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Figure 3.2: Q-FMNIST training and testing samples from each class. Controlled setting where the main object
(top left) is surrounded by a varying degree of object-context correlations.

degrees of object-context correlations, shown in Fig. 3.2.

No context: The background is full black.

Uncorrelated context: The 3 locations of the template are filled randomly from the
8 context classes.

Semi-correlated context: Up-right corner, bottom-left corner and bottom-right cor-
ner locations of class-1 are filled with respectively ’Dress’, ’Coat’ and ’Bag’ classes (com-
mon context for class-1) by the probability of 75% and with ’Trouser’, ’Sandal’ and ’Ankle
bot’ classes by 25%. Similarly, class-2 images are filled with ’Trouser’, ’Sandal’ and ’Ankle
bot’ classes (common context for class-2) by 75% and ’Dress’, ’Coat’ and ’Bag’ classes by
25%.

Fully-correlated context: This mode represents the cases when the objects are ob-
served always in similar context, such as cows and horses are together on a grass field.
The context is placed in a structured way in terms of location, the same context occurs in
the same place in the train and test set. For class-1 images, coat, dress and bag objects are
placed respectively up-right corner, bottom-left corner and bottom-right corner. Like-
wise, For class-2, sandal, trouser and ankle bot objects are placed with the same order as
the coat, dress and bag objects. The context objects are not alternated.

Anti-correlated context: Training set is built by using fully-structured context train
set, however, testing is done by filling with incoherent context by switching the class-
specific context. This mode illustrates the cases when the object is seen in an unusual
context, such as a shoe in a plate. Class-1 images are filled with ’Trouser’, ’Sandal’ and
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Context Crop-Input Crop-FM NoCrop

No context 87.9±1.0 88.1±0.4 86.9±0.7
Uncorrelated 87.9±1.0 86.7±0.7 83.7±1.1
Semi-correlated 87.9±1.0 89.3±0.8 90.4±0.5
Fully-correlated 87.9±1.0 99.7±0.1 100±0.0
Anti-correlated 87.9±1.0 1.8±0.2 0.0±0.0

Table 3.1: Accuracy on Q-FMNIST. Context affects Crop-FM and NoCrop detectors. For correlated context
results improve. Uncorrelated context is worse than no context. Anti-correlated context is detrimental.

’Ankle bot’ classes and likewise class-2 images are filled with ’Dress’, ’Coat’ and ’Bag’
classes respectively up-right corner, bottom-left corner and bottom-right corner. Namely,
the context of class-1 and class-2 are swapped.

We instantiate each of the three deep object detector classes in Fig. 3.1 with two con-
volution layers with 6 and 16 3x3 filters, two max pooling layers, one fully connected
layer with 128 neurons and softmax classifier. We use the ground truth location to crop
bounding boxes for the Crop-Input model. For the Crop-FM model, RoiAlign [25] is used
for cropping ROIs from the featuremap. Each method is trained 5 times for 15 epochs
with the AdaDelta optimizer.

Results. In Table 4.1, the Crop-Input detector disregards all context. For the Crop-
FM and NoCrop detectors, the ’no context’ setting gives an object-only baseline. Adding
’semi-structured context’ improves, and adding ’fully correlated context’ even more. In-
terestingly, adding ’uncorrelated context’ decreases results, whereas ’anti-correlated con-
text’ completely misclassifies the objects. As the NoCrop detector uses the full image, it
is more sensitive to context changes than the Crop-FM. Being more sensitive can be an
advantage for correlated object-contexts, yet can be detrimental for random context or
when an object is placed outside the usual context where the context may outweigh the
object itself.

3.2.2. EVALUATING CONTEXT ON NATURAL IMAGES

We investigate the context for natural images on the COCO minival 2014 split [26]. We
evaluate two settings: Hiding background and Hiding foreground, see Fig. 3.3. We begin
with the ground truth object bounding box. For hiding BG, we start without any context
using a black background and incrementally add more background pixels on each side
of the object. For hiding FG, we start without an object and make the bounding box black
and incrementally add object pixels towards the center on each side. We increase pixels
in the range ∈ {0,5,10,25,50,100,150,200,250, ..} until reaching the full image for both
settings. If the context of an image reached an image border on one side, it stops there,
yet, the change continues on the other object sides.

For Crop-Input we use a variation of R-CNN [13] where we use a softmax classifier
based on an ImageNet pretrained Alexnet. The object crops are resized as 227x227 and
trained from scratch 35 epochs with SGD for an initial learning rate of 1e-3. For Crop-FM,
we use Faster RCNN with ROI Align to crop ROIs from the featuremap. An existing COCO
pretrained network is used with a Resnet-50 backbone with an FPN [15]. For NoCrop, we
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Figure 3.3: Example of hiding background (left) and hiding foreground (right). Hiding BG incrementally adds
background pixels. Hiding FG incrementally adds object pixels.
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Figure 3.4: Hiding Background and Foreground experiments on 80-class COCO with RCNN, Faster RCNN and
YOLO. The x-axis shows how many pixels of context (Hiding BG) or object (Hiding FG) is available from each
side. Both plots confirm Faster RCNN is less sensitive to context than YOLO. For Hiding BG, 50-100 pixels extra
has best object-context correlation, which reduces when adding more background. For Hiding FG, R-CNN
needs only 100 pixels to classify an object.

use YOLO version 3 [19] which is fully-convolutional and has 75 layers with skip connec-
tions. To evaluate hiding BG and FG setups, we use classification accuracy. The effect of
localization is minimized as following: For RCNN, ground truth box locations are used to
crop the objects from the input image. For Faster RCNN, IoU threshold is set as 0.25. For
YOLO, the prediction is counted as correct If the center location of predicted and ground
truth boxes for correct class label remain in the same grid cell.

Hiding BG. Results in Fig. 3.4 (left) confirms that the Crop-Input R-CNN does not
depend on context. The Crop-FM Faster RCNN outperforms the NoCrop YOLO when
no context is available. Both detectors have their peak when 100 pixels is added to each
side of the object: 90.2% for Faster RCNN and 87% for YOLO. We hypothesize that the
object-context correlation is best around 100 pixels and decreases as more background
is taken into account.

For Hiding BG, in Fig. 3.5 (top) we show the classes that have the smallest and the
largest difference between no context and full context. For Faster RCNN, bottle class is
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Figure 3.5: Evaluation of class-specific result of Faster RCNN and YOLO on COCO, (top) Hiding Background
and (bottom) Hiding Foreground. Data points represent the 3 best and 3 worst-performing classes for each
method according to difference between context/object and full image.

highly context dependent and loses 61% without context. Besides, sink performs 2%
better without context. For YOLO, baseball glove, handbag and book lose more than 65%
due to lack of context. However, cat, bed and giraffe obtain better result when no context
is used. Interestingly, 3/4 of classes obtains better result with using some amount of
context rather than using full context. The fact also explains the performance increases
in Fig. 3.4 (left) between 50 and 300 context ranges.

Hiding FG. Results in Fig. 3.4 (right) shows that YOLO is best in exploiting context
when the full object is removed. Interestingly, the performance of Faster RCNN is still far
from random for 80 classes without actually seeing the object while RCNN scores truly
random with 1

80 ≈ 1.3%. RCNN can classify an object when more pixels are available and
after 100 pixels, adding more pixels does not help. Surprisingly, when comparing Hiding



3.3. DISCUSSION AND CONCLUSION

3

41

FG with Hiding BG it shows that YOLO is 4.7% better for not having the object when
compared to not having the context.

For Hiding FG, in Fig. 3.5 (bottom) we show the classes that have the smallest and the
largest difference between no object and full image. Without seeing the actual object,
Faster RCNN and YOLO can still classify a traffic light. Classes like dog and fire hydrant
lose more than 70% performance for both methods when no object parts are visible.
These classes have high robustness to context change (Fig. 3.5 - top), thus their object
parts are crucial for their detection. Surprisingly, tvmonitor can be identified by YOLO
3.5% better without seeing the object itself.

3.3. DISCUSSION AND CONCLUSION
In this paper, we investigate the effect of context on 3 different deep object detectors,

(i) cropping the input (RCNN), (ii) partial context (Faster RCNN) and (iii) full context
(YOLO). Experiments with Q-FMNIST and COCO datasets show that single and two stage
methods access the context because of their large receptive fields excluding RCNN since
it crops the ROIs from the input. Hiding BG and FG experiments indicate that context
often improves the result until some extend and sometimes it degrades the performance.
For YOLO, having no object visible outperforms having no context visible.

Generating realistic toy dataset for context experiments is challenging. Even if Q-
FMNIST dataset is limited, it still provides controlled-context setup to compare common
detectors. Besides, in hiding BG and FG experiments, object size matters and the effect of
object size may supply insightful results, however, we focus on overall and class-specific
performance indications rather than object sizes.
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Repetition does not transform a lie into a truth.

Franklin D. Roosevelt
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ABSTRACT

We show that object detectors can hallucinate and detect missing objects; potentially even
accurately localized at their expected, but non-existing, position. This is particularly prob-
lematic for applications that rely on visual part verification: detecting if an object part is
present or absent. We show how popular object detectors hallucinate objects in a visual
part verification task and introduce the first visual part verification dataset: DelftBikes1,
which has 10,000 bike photographs, with 22 densely annotated parts per image, where
some parts may be missing. We explicitly annotated an extra object state label for each
part to reflect if a part is missing or intact. We propose to evaluate visual part verification
by relying on recall and compare popular object detectors on DelftBikes.

1https://github.com/oskyhn/DelftBikes

https://github.com/oskyhn/DelftBikes


4.1. INTRODUCTION

4

47

4.1. INTRODUCTION

IoU 0.86 

Faster RCNN

IoU 0.83 

RetinaNet

IoU 0.84 
Yolov3

Figure 4.1: Hallucination examples on DelftBikes for Faster RCNN [2], RetinaNet [3] and YOLOv3 [4]. Faster
RCNN and RetinaNet detect the front wheel and YOLOv3 predicts the saddle with a high IoU score. Deep
object detectors may detect non-existent objects at their expected locations.

Automatically localizing and detecting an object in an image is one of the most impor-
tant applications of computer vision. It is therefore paramount to be aware that deep
object detectors can hallucinate non-existent objects, and they may even detect those
missing objects at their expected location in the image, see Fig. 4.1. Detecting non-
existing objects is particularly detrimental to applications of automatic visual part ver-
ification or visual verification: determining the presence or absence of an object. Ex-
amples of visual verification include infrastructure verification in map making, missing
instrument detection after surgery, part inspections in machine manufacturing etc. This
paper shows how popular deep detectors hallucinate objects in a case study on a novel,
specifically created visual object part verification dataset: DelftBikes.

Visual verification as automatic visual inspection is typically used for manufacturing
systems with applications such as checking pharmaceutical blister package [5], compo-
nents on PCBs [6, 7], solder joint [8], parts of railway tracks [9], rail bolts [10], aeronautic
components [11, 12], objects [13], and parts under motion [14]. In this paper, we do
not focus on a particular application. Instead, we evaluate generic deep object detectors
which potentially can be used in several visual inspection applications.

There are important differences between visual verification and object detection. An
object detector should not detect the same object multiple times. For visual verifica-
tion, however, the goal is to determine if an object is present or absent, and thus having
an existing object detected multiple times is not a problem, as long as the object is de-
tected at least once. This makes recall more important than precision. Moreover, there
are differences in how much costs a mistake has. The cost for an existing object that is
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a b
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Figure 4.2: Example images of our DelftBikes visual verification dataset. Each image has a single bike with
22 bounding box annotated parts. The similar pose, orientation and position can be misleading for context-
sensitive detectors as often one or two parts are missing (the saddle in (a), the wheels in (e) etc.).

not detected (false negative) is that a human needs to check the detection. The cost for
a missing object that is falsely hallucinated as being present (false positive) is that this
object is a wrongly judged as intact and thus may cause accidents in road infrastructure,
or may cause incomplete objects to be sent to a customer. The costs for hallucinating
missing objects is higher than missing an existing object. These aspects motivate us to
not use the evaluation measure of object detection. Object detectors are typically evalu-
ated with mean Average Precision (mAP) and because detections of non-existent objects
at lower confidence levels does not significantly impact mAP, the problem of object hal-
lucination has largely been ignored. Here, we propose to evaluate visual verification not
with precision but with a cost-weighted variant of recall.

Object hallucination by deep detectors can be causes by sensitivity to the absolute
position in the image [15, 16] while also affected by scene context [17–21]. Here, we focus
on the visual verification task, its evaluation measure, a novel dataset, and a comparison
of popular existing detectors. Investigating context is future work.

Existing object detection datasets such as PASCAL VOC [22], MS-COCO [23], Ima-
genet det [24], and Open Image [25] have no annotated object parts. Pascal-Parts [26]
and GoCaRD [27] include part labels, yet lack information if a part is missing and where,
as is required to evaluate visual verification. Thus, we collected a novel visual verifica-
tion dataset: DelftBikes where we explicitly annotate all part locations and part states as
missing, intact, damaged, or occluded.

We have the following contributions:
1. We demonstrate hallucination in object detection for 3 popular object detectors.
2. A dataset of 10k images with 22 densely annotated parts specifically collected and

labeled for visual verification.
3. An evaluation criteria for visual verification.

4.2. DELFTBIKES VISUAL VERIFICATION DATASET
DelftBikes (See Fig. 4.2) has 10,000 bike images annotated with bounding box loca-

tions of 22 different parts where each part is in one of four possible states:
intact: The part is clearly evident and does not indicate any sign of damage. All the im-
ages in Fig. 4.2 have an intact steer.
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damaged: The part is broken or has some missing parts. In Fig. 4.2-g, the front part of
the saddle is damaged.
absent: The part is entirely missing and is not occluded. Fig. 4.2-e has missing front and
back wheels.
occluded: The part is partially occluded because of an external object or completely in-
visible. The saddle in Fig. 4.2-b is covered with a plastic bag.

intact damaged occluded absent
Object States
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Figure 4.3: The distribution of part states for train and test sets in DelftBikes. The ratio of part states are roughly
similar for train and test sets. The intact parts have the highest ratio by around 60%. Approximately 20% of
parts in the dataset are absent. The damaged and occluded parts constitute 20%.

The distribution of part states is approximately similar for training and testing set,
see Fig. 4.3. The part state distribution shows 60.5% intact, 19.5% absent, 14% occluded,
and 6% damaged. The front pedal, dress guard, chain and back light have respectively
the highest number of intact, absent, occluded and damaged part states. Note that even
if a part is absent or occluded, we still annotate its most likely bounding box location.
DelftBikes contains positional and contextual biases. In Fig. 4.4 where we plot an el-
lipse for each part in the dataset in terms of their mean position, height and width. It is
possible to recognize the shape of a bike, which indicates that there are strong part-to-
part position and contextual relations. Its those biases that learning systems may falsely
exploit and cause detector hallucinations.

4.3. EXPERIMENTS ON DELFTBIKES
The dataset is randomly split in 8k for training and 2k for testing. We use a COCO pre-
trained models of Faster RCNN [2] and RetinaNet [3]. Both networks have a Resnet-
50 [28] backbone architecture with FPN. The networks are finetuned with DelftBikes for
10 epochs using SGD with a initial learning rate of 0.005. The YOLOv3 [4] architecture is
trained from scratch for 200 epochs using SGD with an initial learning rate of 0.01. Other
hyperparameters are set to their defaults. We group the four part states in two categories
for visual verification: (i) missing parts consist of absent and occluded states and (ii)
present parts include intact and damaged states. During training, only parts with present
states are used.

Detection. We first evaluate traditional object detection using AP. For object detec-
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Average part locations

back wheel
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lock
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steer

back handle
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back break
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Figure 4.4: Averaging position and size for all 22 parts in DelftBikes resembles a bicycle, illustrating the prior in
absolute position and the contextual part relations.

tion, the missing parts are not used during training nor testing. In Fig. 4.5, we show re-
sults for an IoU of 0.5:0.95 for the 3 detectors. For most of the classes, Faster RCNN and
RetinaNet obtain approximately a similar result and YOLOv3 is a bit behind. Front wheel
and back wheel are large and well detected. The small parts like bell and dynamo have
under 12% AP score because they are small parts and often not present. The other parts
are below 50% AP, where half of the parts have less than 20% AP, which makes DelftBikes
already a challenging and thus interesting object detection dataset.

Recall of missing parts. Here, we analyze the hallucination failure of the detectors
by evaluating how many non-existing parts they detect in an image. We calculate the
IoU score for each detected missing part on the test set. We threshold these false detec-
tions in terms of their IoU scores to evaluate if the missing parts are still approximately
localized. We define the recall score which is the ratio between the number of detected
missing part at a given IoU threshold and the total number of missing parts.We show
recall for varying IoU threshold for each method in Fig. 4.6. For a reasonable IoU of
0.5, RetinaNet and YOLOv3 detect approximately 20% of missing parts and Faster RCNN
14%. Without looking at position, (IoU=0), RetinaNet and YOLOv3 detect as much as
almost 80% of missing parts. Interestingly, Faster RCNN, with similar mAP object detec-
tion score as RetinaNet, detects only 32% of missing parts. For Faster RCNN, the most
hallucinated part with 14% is gear case. For YOLOv3, a missing dynamo is most detected
and RetinaNet hallucinates most about the dress guard.

Evaluating visual verification. For visual verification, we want high recall of present
parts and low recall of missing parts where detecting the same object multiple times does
not matter. Besides, wrongly detected missing parts (false positives) cost more than not
detected present parts (false negatives). Thus, our Fv v evaluation score is based on recall
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Figure 4.5: Object detection results on DelftBikes. Results per category and overall performance. Notice that
half of the detections are below 20% AP score. In most of the cases, Faster RCNN and RetinaNet perform
similarly and YOLOv3 is behind them.

and inspired by the Fβ score [29] so we can weight detection mistakes differently as

Fv v = (1+β2)RP (1−RM )

β2(1−RM )+RP
. (4.1)

RP is the present recall and RM the missing recall calculated at a certain IoU threshold.
The β parameter allows to weight the detection mistakes, where we set the β parameter
to 0.1 so that detections of missing parts are 10x more costly than not detected present
parts.
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Figure 4.6: Recall of missing parts on DelftBikes for varying Intersection over Union (IoU). We annotated likely
position of missing parts, and the recall of such missing parts should be as low as possible. All methods wrongly
detect missing parts at approximately their expected location, as in Fig. 4.1.

Visual verification results. Visual verification performance is estimated by using the
recall of present and missing parts. We have two setups for visual verification calculation:
with and without localization. Visual verification with localization: the present recall has
an IoU threshold of 0.5, where the missing recall is less relying on position and we set its
IoU threshold to 0.1. Visual verification without localization: we set all IoU thresholds
to 0. This, in addition, allows us to evaluate a full-image multi-class multi-label classifi-
cation (MCML) approach. An Imagenet pretrained ResNet-50 architecture is fine-tuned
with BCE with logits loss and SGD with an initial learning rate of 0.05 for 15 epochs. After
every 5 epoch, the learning rate is reduced by a factor of 10. The network obtains 91% of
recall for present parts and 32% of recall for missing parts.

Results are shown in Table 4.1. For the with localization results, Faster RCNN outper-
forms RetinaNet and YOLO in terms of lower recall of missing parts by 28% and a higher
Fv v score by 72%. RetinaNet and YOLOv3 detects more than 60% of missing parts and
achieve only 38% and 36% of Fv v score respectively. In Fig. 4.5, the AP scores of Faster
RCNN and RetinaNet are quite similar, yet the Fv v performance of Faster RCNN is almost
2 times higher than RetinaNet. RetinaNet has 7% more intact recall score than YOLOv3,
however, the difference for Fv v is only 2%. For the without localization results, when the
present and missing IoU thresholds are set to 0, all the methods obtain more than 90%
present recall. Interestingly, the MCML method, which only needs full image class labels,
outperforms RetinaNet and YOLOv3 detectors and performs similar to Faster RCNN.
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Method T P T M RP RM Fv v

With localization

Faster RCNN 0.5 0.1 0.83 0.28 0.72
RetinaNet 0.5 0.1 0.90 0.62 0.38
YOLOv3 0.5 0.1 0.83 0.64 0.36

Without localization

Faster RCNN 0.0 0.0 0.92 0.32 0.68
RetinaNet 0.0 0.0 0.99 0.79 0.21
YOLOv3 0.0 0.0 0.95 0.77 0.23
MCML 0.0 0.0 0.91 0.32 0.68

Table 4.1: Visual verification of Faster RCNN, RetinaNet, YOLOv3 and MCML for different present (T P ) and
missing (T M ) IoU thresholds on DelftBikes. (top) When (T P ,T M ) equals to (0.5,0.1): RetinaNet has highest re-
call for present parts. Faster RCNN detects the fewest missing parts and has best Fv v score. (bottom) When lo-
calization is discarded: MCML method outperforms RetinaNet and YOLOv3 and results similarly Faster RCNN
in Fv v score.

4.4. DISCUSSION AND CONCLUSION
We show hallucinating object detectors: Detectors can detect objects that are not in the
image even with a high IoU score. We show hallucination in the context of a visual part
verification task. We introduce DelftBikes, a novel visual verification dataset, with object
class, bounding box and state labels. We evaluate visual verification by recall, where
the cost of falsely detected missing parts is more expensive than a missing present part.
For object detection, Faster RCNN and RetinaNet has similar AP score, however, Faster
RCNN is the better for visual verification.
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ABSTRACT

Occlusion degrades the performance of human pose estimation. In this paper, we intro-
duce targeted keypoint and body part occlusion attacks. The effects of the attacks are sys-
tematically analyzed on the best performing methods. In addition, we propose occlusion
specific data augmentation techniques against keypoint and part attacks. Our extensive
experiments show that human pose estimation methods are not robust to occlusion and
data augmentation does not solve the occlusion problems. 1

1For the code:

https://github.com/rpytel1/occlusion-vs-data-augmentations

https://github.com/rpytel1/occlusion-vs-data-augmentations
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Figure 5.1: Qualitative example how HRNet-32 [19] predictions change after keypoint blackout on the nose
(first row) and part blurring on the corpus (second row). For both examples keypoints change for head, nose,
eyes and ears.

5.1. INTRODUCTION

Human Pose Estimation is the task of localizing anatomical keypoints such as eyes,
hips, knees and localizing body-parts like head, limbs, corpus, etc., with many appli-
cations in segmentation [2–4], action recognition [5–7], pose tracking [8, 9], gait recog-
nition [10, 11], autonomous driving [12–14], elderly monitoring [15, 16] and social be-
haviour analysis [17, 18]. All these applications rely on correct and robust pose estima-
tion. In this paper we investigate the robustness of human pose estimation methods to
a natural and common effect: Occlusions.

Occlusions are common and occur frequently in the wild as for example by a random
object, another person [20], and self-occlusion [21]. Prior works address occlusion in a
general way and exploits segmentation [13] or depth information [22]. Where [23] eval-
uates robustness with image and domain-agnostic universal perturbations. In contrast,
we systematically analyze targeted occlusion attacks not only for keypoints, but also for
and body parts and investigate the sensitivity of pose estimation to occlusion attacks.

A promising solution to occlusions is data augmentation, which is practically a de-
fault setting for deep learning applications [24] where image flipping, rotation, and scal-
ing offer endless data variations [24–26]. As such, regional dropout and mixup methods
improve the generalization performance of image classification [27–34], object localiza-
tion and detection [35–37] and segmentation [38]. In pose estimation, [39] applies region
based augmentation by exchanging a single keypoint patch with a random background
patch. More recent approaches [19, 40] use half-body augmentation wherewith the pres-
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Figure 5.2: Visualization of keypoint annotations in COCO dataset and proposed part mapping.

ence of more than 8 keypoints, by choosing upper or lower body keypoints. We imple-
ment systematic data augmentation methods for occlusion for keypoint and body parts
to investigate how data augmentation can remedy occlusion attacks.

We have the following contributions: First, we conduct a structured investigation
on the occlusion problem of pose estimation and introduce occlusion attacks. Second,
we investigate occlusion-based data augmentation methods. Third, we show that data
augmentation does not provide robustness to occlusion attacks.

5.2. RELATED WORK

Human Pose Estimation. Deep learning methods in human pose estimation can be
divided into 2 categories: bottom-up and top-down. Bottom-up approaches [25, 41, 42],
firstly localize identity-free keypoints and then group them into person instances. Top-
down approaches [19, 40, 43, 44] firstly detect a person in the image and then perform
a single person estimation within the bounding box. The top-down approaches achieve
the state of the art results on various multi-person benchmarks such as COCO [45], MPII
[46]. Within top-down approaches 2 categories can be distinguished: regressing direct
location of each keypoint [47, 48] and keypoint heatmaps estimation [19, 40, 44, 49, 50]
followed by choosing the locations with the highest heat values as the keypoints. The
best performing methods on COCO keypoint challenge use a cascade network [43, 51]
to improve keypoint prediction. The ’SimpleBaseline’ [40] proposes simple but effective
improvement by adding few deconvolutional layers to enlarge the resolution of output
features. HRNet [19] which is built from multiple branches can produce high-resolution
feature maps with rich semantics and performs well on COCO. Some works advance per-
formance of HRNet via improvement over standard encoding and decoding of heatmaps
[52] and basing data processing on the unit length instead of pixels [53] with an ad-
ditional off-set strategy for encoding and decoding. Because of their good accuracy
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Figure 5.3: Robustness comparison of HRNet [19] and SimpleBaseline [40] against (a) keypoint and (b) part
occlusion attacks. HRNet is more robust against both attacks, yet both attacks drop performance, where part
attacks deteriorate more.

and wide adaptation, we focus on top-down methods, HRNet and SimpleBaseline and
bottom-up approach Higher HRNet.

Occlusion in pose estimation. Occlusion in pose estimation is an under-studied
problem. In [23] analyses of occlusions are done for deep pose estimators by domain-
agnostic universal perturbations. More recently, attempts to solve the occlusion prob-
lem in pose estimation are suggested via the usage of segmentation of occluded parts
[13] and depth of in an image [22]. OcclusionNet [54] predicts occluded keypoints via
graph-neural networks yet it is applied only on vehicles. Different from these methods,
in our paper we introduce keypoint occlusion attacks and body part occlusion attacks
and give a structured analysis of occlusion on human pose estimation.

Data augmentation. Data augmentation is a strong, simple and popular approach
to increase model robustness. Removing part of the image improves generalization of
image classification [27, 32, 34] and object localization-detection [35–37]. Mixup [28, 30,
33] approaches which create a combination of two images are often used in image clas-
sification. [38][55] combine regional dropout and MixUp methods for image segmenta-
tion [38] and image classification [55] task. [39] proposes a cutmix-like approach where
a small patch from the background is pasted on the single keypoint or vice versa. For the
human pose estimation methods [47, 50, 56], scaling, rotation and flipping is commonly
used as data augmentation. Random cropping is also used in bottom-up approaches
[25, 41, 42]. More recent top-down approaches [19, 40, 43] employ the usage of half body
transform by a probability of 0.3 choosing either upper or lower body keypoints. We in-
troduce and evaluate new data augmentation methods for keypoint and for body parts
specifically designed against occlusion attacks for human pose estimation.

5.3. SENSITIVITY TO OCCLUSION ATTACKS

We investigate the effect of occlusion attacks on MS COCO dataset [45]. COCO con-
tains challenging images with the unconstrained environment, different body scales, va-
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riety of human poses and occlusion patterns. The dataset contains over 200k images
with 250k person instances labelled with 17 keypoints. Models are trained on COCO
train2017 datasets which includes 57k images and 150k person instances. The evalua-
tion is done on val2017 set which contains 5k images.

The occlusion attack experiments are conducted with HRNet [19] and Simple Base-
line [40] for two aspects: (i) keypoint attacks, where the occlusion area is a centred circle
on the chosen keypoint, (ii) body part attacks, where the occlusion area is the minimum
rectangle covering all keypoints of a chosen part. The COCO keypoints and the proposed
groups of body parts can be seen in Figure 5.2. For the analyses, COCO pretrained HRNet
and Simple Baseline are evaluated by the performance of the network against keypoint
and part occlusion attacks on COCO validation set.

HRNet and SimpleBaseline produce heatmap instead of predicting direct single loca-
tion for each keypoint. The ground truth heatmaps are generated by using 2D Gaussian
of size 13x13. Thus, as a default, we choose the size of the occlusion circle with a radius
of 6 pixels for keypoint attacks to cover the keypoint heatmap. We have 3 different key-
point attacks: (i) Gaussian blur (blurring) attack, (ii) attack by filling with black pixels
(blackout), (iii) attack by filling with a mean intensity value of a given image (meanout).

Body parts occlusion attacks are designed to draw a minimum rectangle which cov-
ers all the keypoints of a chosen part. Similar to the keypoint attacks, we have 3 different
part attacks which are applied to the occlusion area: blurring with the kernel size 31
and sigma 5, blackout and meanout. These attacks can be applied on both small parts
such as head, arms, hips and larger parts like upper body, lower body, left and right side
(Figure 5.2 b and c).

We compare HRNet and Simple Baseline according to their robustness to keypoint
and part occlusion attacks. Figure 5.3 shows that both attacks are quite successful as
occlusion causes the performance to drop. HRNet is more robust against keypoint and
part occlusion attacks. For further analyses, we only use HRNet as a baseline for our
investigations.

5.3.1. HOW SENSITIVE TO KEY POINT OCCLUSION ATTACKS?
First, we analyze the effect of the occlusion size on the average performance of the pose
estimator on all keypoints. Figure 5.4 indicates that pose estimator performance is in-
versely proportional to the occlusion size and blurring, blackout, and meanout attacks
on average perform similarly. The size of the occlusion decreases the average perfor-
mance of the estimator by approximately 3% when the radius of the occlusion circle is
chosen as 18 pixels.

Second, we show the class-specific performance drops for each individual keypoints
for each attack. In Figure 5.5, attacking nose causes serious loss in mAP, almost 5% for
blackout, 4.4% for meanout and 1.2% for blurring. The empirical results indicate that the
nose is the most important keypoint since the occlusion of the nose causes notable per-
formance drop. After the nose, each eye influences the performance of other keypoints
mostly by approximately 1% with each occlusion attack. Keypoints from less densely
annotated places like ankles or wrists are the least influential.

If we check the analysis of the reduced accuracy per keypoint for the case of attack-
ing nose (Figure 5.6a), the most affected keypoints are the ones within close distance,



5.3. SENSITIVITY TO OCCLUSION ATTACKS

5

63

4 6 8 10 12 14 16 18
Occlusion size

5

4

3

2

1

0

Lo
ss

 i
n
 m

A
P

method
blurring
meanout
blackout

Figure 5.4: The relation between occlusion size and average loss in performance for keypoint level methods.
Occlusion size greatly affects the performance.

which are eyes and ears due to being a part of the head. Interestingly, occluding nose
affects the performance of the left eye estimation more than occluding the left eye it-
self, respectively by approximately 10% and 5% (Figure 5.6a, 5.6b). If we investigate per
keypoint performance for occluding left ankle, it can be seen that the deprivation is by
several magnitudes smaller than in case of the nose or left eye occlusions. From the
observation of the analyses, it can be drawn that HRNet [19] is not robust to keypoint
occlusion attacks.

5.3.2. HOW SENSITIVE TO PART OCCLUSION ATTACKS?
We analyze the effect of the part occlusion attacks on each body parts given in Figure 5.2.
Attacking the upper body, left and right sides influence the overall performance the
most, by more than 44%, 24% and 24% with blackout attack respectively since these three
parts include the majority of the keypoints (Figure 5.7). When we examine keypoint-
specific accuracy drops for the remaining keypoints of the upper body, it is clear that
blackout is the most influential attack, with a drop of almost 3% for left and right ankle
(Figure 5.8a). If we investigate per-keypoint behaviour for the corpus (Figure 5.8b), we
observe significant degradation of the performance on all the keypoints, with left and
right ankle affected the most. Interestingly, attacking on one side improves performance
of the the other side (Figure 5.8c). Attacking on left side increases the mAP score of right
side such as shoulder, ear, elbow keypoints. The analysis demonstrates that the pose
estimator is sensitive to part occlusion attacks.
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Figure 5.5: Overall loss in mAP after performing keypoint level occlusion. L. and R. correspond to the left
and right side respectively. To note that, the occluded keypoint is included in the evaluation. Occluding nose
causes the highest loss in performance.
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point causes a significant drop in the
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(b) When we occlude the left eye, there
is a smaller loss in keypoint-specific per-
formance for the left eye than while oc-
cluding nose.
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Figure 5.6: Loss in AP for top 5 keypoints with largest deprivation, when an individual key point is occluded.
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Figure 5.7: Change in mAP for various parts occluded. Upper body and sides are the parts that cause the
highest loss in the performance.
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(a) Significant loss in performance for all
of the remaining keypoints. Blackout af-
fects the method most.
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(b) Similar loss across remaining key-
points, indicating that corpus is one of
the most influential parts.
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(c) Occluding the left side of the body
improves the performance of right
shoulder, ear and elbow.

Figure 5.8: Change in AP for top 5 keypoints with the largest difference, when chosen part is occluded.

5.4. OCCLUSION AUGMENTATION AGAINST ATTACKS
We evaluate two main human pose estimation datasets: COCO [45] has 200k images

with 250k person instances, labelled with 17 keypoints and MPII [46] has 40k persons,
each labelled with 16 joints. The train, validation and test sets include 22k, 3k and 15k
person instances respectively. For the evaluation of MPII dataset, the validation set is
used since the labels of the test set are not available.

For training HRNet [19] models on COCO [45] and MPII [46] we follow the original
pipeline of HRNet. For COCO dataset, human detection boxes are extended to fit 4:3 as-
pect ratio, and cropped from the image and resized to 256x192. The pose estimator is
trained with the keypoint location of the joints. The data augmentations that are used in
HRNet training include random rotation ∈ [−45o ,45o], random scale ∈ [0.65,1.35], ran-
dom flipping and half-body augmentations. The Adam optimizer [57] is used to train the
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network with the learning rate schedule following [40], starting with 1e −3 and reduced
to 1e −4 and 1e −5 at 170th and 200th epochs respectively and the training is completed
at the 210th epoch. For MPII dataset, the training procedure of HRNet is as followed:
256x256 input size is used and half-body augmentations are discarded. For the evalua-
tion of the models, Object Keypoint Similarity (OKS) for COCO and Percentage of Correct
Keypoints (PCK) for MPII are used.

During testing, HRNet firstly employs an object detection algorithm to obtain boxes
with a single person. Afterwards the pose estimator produces the keypoint location of
the joints.

5.4.1. OCCLUSION AUGMENTATION

(a) Blurring on left hip (almost not
visible).

(b) Cutout on left hip. (c) Multi keypoint Cutout.

(d) Part Blurring. (e) Part Cutout. (f) PartMix on the right leg with a
pasted random arm.

Figure 5.9: Targeted keypoint augmentations: a, b, c and targeted part augmentations: d, e, f.

We investigate the following three methods: (i) Targeted Blurring, (ii) Targeted Cutout,
(iii) Targeted PartMix. The augmentation techniques are called as targeted, because we
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apply them on target locations of keypoints or parts instead of random location in the
image. It is important to state that the proposed augmentation techniques are intro-
duced after the bounding box person detection, and it thus does not affect the object
detection method.

Targeted Blurring. We use Gaussian blur for two types of targeted blurring: (i) key-
point blurring with a kernel size of 9 pixels (Figure 5.9a) and (ii) part blurring with a
kernel size of 31 pixels shown in Figure 5.9d.

Targeted Cutout. The size of the keypoint cutout (Figure 5.9b-5.9c) and part cutout
(Figure 5.9e) are similar to the blurring equivalents. Instead of blurring, the area is col-
ored with mean value of the image.

Targeted PartMix. The method is designed to mitigate the occlusions caused by an-
other person (Figure 5.9f). In this approach, a different part from a random image is
pasted in the place of a body part area. In this process, the keypoint labels of newly
pasted part are not introduced to heatmap labels. This augmentation is only performed
on body parts. Similar to the part level blurring and cutout augmentation methods, the
occluded keypoints under the pasted area are still predicted.

5.4.2. ANALYSES OF OCCLUSION AUGMENTATION

All the following augmentation methods, except baselines, already include flipping, ro-
tation, scaling and half-body augmentations. Each network obtains the boxes from Cas-
cade RCNN [58] detector which has ResNet50 backbone. The results of each method can
be seen in Table 5.1.

Baselines. Table 5.1 indicates 3 baseline variants. Firstly, HRNet without any aug-
mentations obtains only 65.3% mAP score. Secondly, adding flipping, rotation and scal-
ing augmentations improve non-augmented baseline by 8.6%. Last variant is half body
augmentation which adds only 0.4% improvements on rotation and scaling augmenta-
tions.

Single keypoint augmentations. We check the performance of 3 different augmen-
tations: blurring, cutout and a combination of two of them which are applied on a single
keypoint with the varying probability of 0.2 and 0.5 (Figure 5.9a-5.9b). We observe the
highest improvement for blurring and cutout by 0.2% when the probability is chosen as
0.5 (Table 5.1). Other single keypoint variants do not improve the performance.

Multi-keypoint augmentations. We applied random multi-keypoint variant blur-
ring and cutout with a maximum of 5 keypoints with a probability of 0.2 (Figure 5.9c).
The augmentation decreases the model performance by 0.4%.

Part augmentations. 4 different part augmentation methods are used: part blur-
ring, part cutout, a combination of both them and PartMix (Figure 5.9d, 5.9e and 5.9f
respectively). To demonstrate the effect of each augmentation, we apply them with a
probability of 0.2 and 0.5. In addition, the effect of removing the labels of the occluded
keypoint is also investigated as removal column in Table 5.1.

In the bottom part of Table 5.1, cutout and PartMix show 0.2% and 0.1% improve-
ments respectively. In all the variants of blurring, small degradation or no improvement
is observed. The combination of part level variants of cutout and blurring indicate some
decreases of the performance for the removal configuration with probability of 0.2 and
0.5 and do not improve in non-removal configuration.
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Evaluation results

Augmentation level removal p AP AP 50 AP 75 AP M AP L AR

Baseline (no augments) - - - 65.3 86.4 72.6 62.6 70.7 70.2
Baseline (flip, rot, scale) - - - 73.9 90.0 80.9 70.4 80.3 78.3
Baseline (flip, rot, scale, half-body) - - - 74.3 90.6 81.7 70.7 80.7 78.8

Blurring
k ✗ 0.2 74.3 90.4 81.6 70.8 80.6 78.7
k ✗ 0.5 74.5 90.4 81.8 70.8 80.8 78.7

Cutout
k ✗ 0.2 74.3 90.4 81.7 71.0 80.3 78.7
k ✗ 0.5 74.5 90.5 81.7 70.9 80.7 78.8

Cutout + Blurring
k ✗ 0.2 74.0 90.4 81.1 70.4 80.3 78.4
k ✗ 0.5 74.3 90.5 81.1 70.8 80.6 78.6

Blurring
p ✔ 0.2 74.3 90.5 81.7 70.6 80.8 78.6
p ✔ 0.5 74.0 90.5 81.1 70.5 80.4 78.4
p ✗ 0.5 74.1 90.3 81.1 70.6 80.2 78.5

Cutout
p ✔ 0.2 74.2 90.5 81.2 70.8 80.4 78.6
p ✔ 0.5 74.2 90.3 81.1 70.6 80.4 78.6
p ✗ 0.5 74.5 90.5 81.6 70.9 80.7 78.8

Cutout + Blurring
p ✔ 0.2 73.4 90.3 80.8 69.9 79.5 77.8
p ✔ 0.5 73.9 90.4 81.0 70.5 80.0 78.3
p ✗ 0.5 74.3 90.4 81.2 70.6 80.5 78.6

Multikeypoint (max. 5) - - 0.2 73.9 90.1 80.9 70.5 80.2 78.3

PartMix
- ✔ 0.5 74.3 90.5 81.1 70.7 80.6 78.7
- ✗ 0.5 74.4 90.7 81.5 71.1 80.5 78.8

Table 5.1: Comparison of augmentation variants on COCO validation set for HRNet using CascadeRCNN
bounding boxes. Upper-part indicates single-keypoint augmentation and bottom-part shows multiple-
keypoint augmentation. k and p in the level column represent keypoint and part augmentations respectively.
Removal column indicates if the occluded keypoints are removed from prediction. Column p is the probability
of augmentation. Keypoint cutout and blurring, and part cutout and PartMix improve the performance. Other
variants obtain results either on a par with baseline or worse than baseline.

To conclude to findings from the Table 5.1, flipping, rotation and scaling augmen-
tations add a huge performance gain to the HRNet. However, including half-body, the
occlusion based augmentation methods do not improve the performance of the pose
estimator significantly.

The effect of the object detection algorithms. HRNet [19] is a top-down approach
which utilizes an object detection algorithm to obtain human instances. Therefore, the
performance of the pose estimation considerably depends on the detection performance,
namely detected human instances.

By the evidence of the Table 5.1, we choose keypoint blurring, part cutout and Part-
Mix methods for further analysis as they are the most promising augmentations.

We evaluate the pose estimation performances of vanilla HRNet and also of HRNet
with the chosen augmentation methods with two 2-stage detectors, Faster RCNN [59]
with XCeption 101 backbone and Cascade RCNN [58]; 2 single-stage detectors, RetinaNet
[60] and EfficientDet D7 [61]; and by using ground truth boxes of human instances (Fig-
ure 5.10).



5

68 5. TILTING AT WINDMILLS

Ground truth Efficient Det D7 Faster RCNN 
 (Xception 101)

Cascade RCNN 
(R50)

RetinaNet(101)
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 in

 m
A

P

76.5 75.0 74.4 74.3 74.1

Difference over baseline
model
Baseline
Blurring keypoint
PartMix (no remove)
Cutout part (no remove)

Figure 5.10: Performance of chosen augmentations for HRNet-32 on various detection backbones and ground
truth boxes. The ground truth bounding box performs best. Yet, none of the data augmentation methods help
to improve performance over 0.2% for any object detector.

Evaluation results

Augmentation level remove p Head Shoulder Elbow Wrist Hip Knee Ankle Total

Baseline - - - 97.1 95.9 90.4 86.4 89.1 87.2 83.3 90.3
Blurring k ✗ 0.5 97.3 95.9 90.5 86.2 89.2 86.4 83.1 90.3
Cutout p ✗ 0.5 97.2 96.3 90.7 86.7 89.4 86.7 83.3 90.5
PartMix - ✗ 0.5 97.4 96.2 91.0 86.8 89.2 86.7 83.0 90.5

Table 5.2: Results on MPII dataset. Keypoint blurring obtains on a par with the HRNet baseline, yet part cutout
and PartMix increase the performance.

All the augmentations indicate improvements using ground truth bounding boxes
by 0.2% for keypoint blurring and PartMix, and 0.4% for part cutout. All the chosen aug-
mentation methods obtain better result with Cascade RCNN and RetinaNet 0.1− 0.2%
depending on the augmentation. With EfficientDet D7 detector, keypoint blurring and
part cutout result in similar to baseline except 0.1% improvement by PartMix. For Faster-
RCNN, keypoint blurring shows 0.2% increase, yet part cutout degrades the performance
by 0.1%.

The performances of baseline and the augmentations vary depending on the object
detector. The augmentation methods improves the results slightly, yet the gain is in-
significant.

Performance on MPII. We also test the data augmentation methods on MPII dataset
(Table 5.2). If we check the total contribution of the proposed augmentations, keypoint
blurring result in on a par with baseline, yet part cutout and PartMix increase the per-
formance by 0.2% for the metric PCK@0.5. The largest improvement per keypoint is ob-
served for elbows by 0.6% and wrists by 0.3%, with the degradation on knees and ankles
by 0.4% and 0.2% respectively.

Similar to analyses on the COCO dataset, the proposed augmentations can only im-
prove the performance slightly.

How occlusion robust is data augmentation? Figure 5.11 shows the robustness of
the baseline and the proposed augmentations to the occlusion attacks. The analysis is
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Figure 5.11: Robustness comparison of proposed methods against (a) keypoint and (b) part occlusion attacks.
Part augmentations improve the baseline but does not solve occlusion.

done on COCO dataset and the results are shown as mAP score of all keypoints. We
can clearly see that training with the keypoint blurring augmentation makes the net-
work more robust against blurring attack, but there is no significant improvement for
the other keypoint attacks. In case of part attacks, we observe an improvement across all
augmentation methods over the baseline. For the part augmentations, there is a signif-
icant improvement against all part level attacks in comparison to baseline. Specifically,
PartMix has almost no advantages against keypoint attacks, however, it improves part
level methods about more than 5% in comparison to baseline. Part cutout obtains simi-
lar performance with PartMix against part attacks. Proposed augmentations reduce the
performance deprivations when we apply occlusion attacks, yet data augmentation still
does not solve the occlusion problem.

5.4.3. AUGMENTATION ON BOTTOM-UP METHOD: HIGHER HRNET

Evaluation results

Augmentation AP AP 50 AP 75 AP M AP L

Higher HRNet 67.1 86.2 73.0 61.5 76.1
Blurring (K) 66.5 86.3 72.1 60.6 75.7
Cutout part (no remove) 66.6 86.4 72.9 60.7 75.6
PartMix (no remove) 67.0 86.4 73.0 61.3 75.8

Table 5.3: Results for bottom-up method, Higher HRNet [25]. The keypoint blurring, part cutout and Partmix
degrade the performance of bottom-up methods. The augmentations do not help Higher HRNet.

We also apply occlusion augmentations on Higher HRNet [25], a bottom-up method.
Higher HRNet is built on HRNet-32 and inputs 512x512 sized images. The training proce-
dure follows Higher HRNet implementation from the paper. Unlike top-down methods,
Higher HRNet operates on full-image and try to obtain the keypoints of each instance
from the full-image. When applying the augmentations on Higher HRNet, we target all
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the human instances in the image.
Results in Table 5.3 show the augmentation methods to improve AP50 score slightly.

For AP, all augmentations degrade performance by 0.6% for keypoint level blurring, by
0.5% for part level cutout and by 0.1% for PartMix. Hence, using part and keypoint aug-
mentations do not improve the performance of a bottom-up method.

5.5. DISCUSSION AND CONCLUSION
In this study, we investigate the sensitivity of human pose estimators to occlusion. Firstly,
we introduce targeted keypoint and body part occlusion attacks to show how much oc-
clusion affects the performance. Secondly, keypoint and part based data augmenta-
tion techniques against occlusion are investigated. The structured analyses indicate that
deep pose estimators are not robust to occlusion. With all the bells and whistles, the cur-
rent and proposed data augmentation methods do not bring significant improvements
on the performance of the top-down pose estimators and even reduce the performance
for the bottom-up approaches. Our paper is important because it helps data scientists
looking for improvements against occlusions to not work on data augmentation. Bat-
tling occlusions is still an open problem for human pose estimation.

Part based attacks and augmentation are applied as a rectangle shape. This fact can
introduce unusual artefacts because natural occlusions can have arbitrary shapes. Each
keypoint augmentation is applied as a circle that covers the related keypoint, yet in re-
ality, keypoint occlusions can occur with numerous shapes and ways e.g. self occlusion,
occlusion by other object. Moreover, for bottom-up approaches, the input image into
the network may have more perturbations since the full image can contain multiple in-
stances. This fact can harm the learning process.

5.6. APPENDIX

5.6.1. ADDITIONAL RESULTS
HRNet results. For this experiment, we increase the input resolution of images from
256x192 to 384x256. The training process follows the aforementioned scheme for COCO
dataset.
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Figure 5.12: Higher resolution input for HRNet 32: the resolution is changed from 256x192 to 384x256. The
best performance across detection backbones is observed for PartMix.
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According to the analysis of the performance across a variety of detection backbones
shown in Figure 5.12, we notice that PartMix is consistently improving performance -
with the greatest boost of 0.4% for Cascade R-CNN and 0.3% for Faster RCNN. For both
keypoint blurring and part cutout, we observe no significant improvement or even the
performance decreases - for part cutout using EfficientDet, Faster RCNN and RetinaNet
and for Blurring using RetinaNet. All the presented augmentations show largest gain for
Cascade RCNN. Occlusion augmentations do not help to solve occlusion problems when
higher resolution input is used.
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Figure 5.13: Performance of chosen augmentations for SimpleBaseline on various detection backbones and
ground truth boxes. Using the ground truth bounding boxes outperforms all the SimpleBaseline methods with
a detection backbones.

SimpleBaseline results. The usability of occlusion augmentations are not only lim-
ited to HRNet, yet they can be used with other top-down methods like SimpleBase-
line [40]. In this experiment, we apply the occlusion augmentations on SimpleBaseline
method with different object detection backbones. The training procedure of the net-
work follows the original implementation.

By checking the performance across the various detection backbones we observe ei-
ther small or no improvement at all (Figure 5.13). PartMix show the most significant
improvement across detection backbones, with 0.4% boost in the performance for the
ground truth boxes and the boxes produced by Cascade RCNN, 0.2% for EfficientDet and
Faster RCNN and 0.1 % for RetinaNet. Cutout and Blurring improve at most 0.2% across
all the detection backbones, apart from 0.4% for Cutout using ground truth bounding
boxes. According to the results, proposed augmentation techniques do not solve occlu-
sion problems of SimpleBaseline method.

5.6.2. VISUALIZATION OF RESULTS
Figure 5.14 presents a qualitative comparison between ground truth, HRNet-32 Baseline
and keypoint blurring augmentation. In the first and second rows, keypoint blurring out-
performs the baseline by obtaining the position of the left wrist and knee keypoints re-
spectively. In the third row, both baseline and keypoint blurring produce wrong keypoint
predictions. Fourth row presents failure case when baseline produces near-optimal an-
notations, while the method with keypoint blurring predicts left ankle in place of the
right one.
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Ground truth Baseline T. Blurring (K)

Figure 5.14: Qualitative comparison between ground truth (left), baseline (middle) and keypoint Blurring (K)
(right). 1st and 2nd rows respectively - misplacement of left wrist keypoint and mismatch between knee key-
points in the baseline and keypoint blurring fixes the mistakes. 3rd row - both baseline and proposed method
produce wrong keypoints. 4th row - baseline produces near-optimal keypoints whilst keypoint blurring makes
mistake on left ankle keypoint. Data augmentation does not solve occlusion problem.
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VIDEO ANNOTATION

This chapter has been published as:
S. Poorgholi, O. S. Kayhan, and J. C. van Gemert, t-eva: Time-efficient t-sne video annotation, in International
Conference on Pattern Recognition (Springer, 2021) pp. 153–169. [1]
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ABSTRACT

Video understanding has received more attention in the past few years due to the availabil-
ity of several large-scale video datasets. However, annotating large-scale video datasets
are cost-intensive. In this work, we propose a time-efficient video annotation method us-
ing spatio-temporal feature similarity and t-SNE dimensionality reduction to speed up
the annotation process massively. Placing the same actions from different videos near
each other in the two-dimensional space based on feature similarity helps the annotator
to group-label video clips. We evaluate our method on two subsets of the ActivityNet (v1.3)
and a subset of the Sports-1M dataset. We show that t-EVA1 can outperform other video
annotation tools while maintaining test accuracy on video classification.

1https://github.com/spoorgholi74/t-EVA

https://github.com/spoorgholi74/t-EVA
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6.1. INTRODUCTION
The availability of large-scale video datasets [2–4] has made video understanding in

various tasks such as action recognition [5–7], object tracking [8–10] an attractive topic of
research. Various supervised methods [6, 7, 11] have improved video classification and
temporal localization accuracy on large-scale video datasets such as ActivityNet (v1.3)
[2]; however, labeling videos on such a large-scale dataset, requires a great deal of hu-
man effort. Therefore, other methods aim to train the networks for tasks such as video
action recognition in a semi-supervised [12, 13] manner without having the full labels.
To decrease the dependency on the quality and amount of annotated data, [14, 15] inves-
tigate pre-training features with internet videos with noisy labels in a weakly supervised
manner. However, these methods do not achieve higher accuracy on video classification
tasks than supervised models on large-scale video datasets such as Kinetics [3]. Instead
of using such techniques, we focus on reducing the annotation effort for adding more
training data.
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Figure 6.1: Comparison of annotation time using different tools versus video time for the ActivityNet [2] subset-
1. Our annotation method (t-EVA) outperforms the conventional (no specific tools) annotation and MuViLab
[16] in annotation time. With a window size of 128 time-steps (128-TS), our method can annotate 769 minutes
of video in 21 minutes. The MuViLab and conventional annotation numbers are extrapolated.

Fully-supervised models require much annotated data that is unavailable as videos
are unlabeled by nature, and annotating them is labor-intensive. Large scale datasets
[2, 3, 17] use strategies like Amazon Mechanical Turk (AMT) to annotate the videos. [3]
uses majority voting between multiple AMT workers to accept annotation of a single
video. Using such methods is not efficient for video annotation on a large scale as it
costs a lot in terms of time and money. MuViLab [16], an open-source software, enables
the oracle to annotate multiple parts of a video simultaneously. However, these methods
do not exploit the structure of the video data.

We introduce an annotation tool that helps the annotator group-label videos based
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on their latent space feature similarity in a 2-dimensional space. Transferring the high-
dimensional features obtained from 3D ConvNet to two dimensions using t-SNE gives
the annotator an easy view to group label the videos both, temporal labels and classifi-
cation labels. The annotation speed depends on the quality of the extracted features and
how well they are placed together in the t-SNE plot. If the classes are well-separated in
the t-SNE plot, group labeling becomes faster for the oracle.

We evaluate our method on two subsets of ActivityNet (v1.3 datasets)[2] and a sub-
set of Sports-1M dataset [4] with 15 random classes. Conventional annotation refers to
humans watching the videos and annotating the temporal boundaries of the human ac-
tions in videos without any specific tool. MuViLab is a more advanced open-source tool
that extracts short clips from each video and plays them simultaneously in a grid-like
figure beside each other. Oracle can annotate the video by selecting multiple short clips
at the same time and assigning the specific class. We show that t-EVA outperforms con-
ventional annotation techniques (with no specific tools) and MuViLab [16] in time of an-
notation (ToA) by a large margin on the ActivityNet dataset while still being able to keep
the test accuracy on video classification task within a close range of using the original
ground truth annotations (Figure 6.1).

6.2. RELATED WORK
Video Understanding. In the past, the focus was on the use of specific hand-designed

features such as HOG3D [18] SIFT-3D [19], optical flow [20] and iDT [21]. Among these
methods, iDT and Optical flow is being used in combination with CNNs in different ar-
chitectures such as two-stream networks [22]. Afterwards, some methods use 2D CNNs
and extract features from video frames and combine them with different temporal inte-
gration functions [23, 24]. The introduction of 3D convolutional [6, 25] in CNNs which
extend the 2D CNNs in temporal dimension show promising results in the task of action
recognition in large-scale video datasets. 3D CNNs in different variations such as single
stream and multiple-stream are among state of the art in the task of video understand-
ing [26–32]. In this paper, we utilize single a stream 3D CNN architecture to obtain video
features.

Dimensionality Reduction. Dimensionality reduction (DR) is an essential tool for
high-dimensional data analysis. In linear DR methods such as PCA, the lower-dimension
representation is a linear combination of the high-dimensional axes. Non-linear meth-
ods, on the other hand, are more useful to capture a more complex high-dimensional
pattern [33]. In general, non-linear DR tries to maintain the local structure of the data
in the transition from high-dimension to low-dimension and tends to ignore larger dis-
tances between the features [34]. t-Distributed Stochastic Neighbor Embedding (t-SNE)
introduced by [35] is a non-linear DR technique which is used more for visualization.
[36] shows that t-SNE is able to distinct well-separable clusters in low-dimensional space.
Moreover, some works [34, 37, 38] propose for more effective use of t-SNE . [34] proposes
a tool to support interactive exploration and visualization of high-dimensional data. An
alternative to t-SNE is UMAP [37]; however, t-SNE is well studied, shows good results,
and has the benefit of high-speed optimization [38]. t-EVA uses t-SNE to reduce the di-
mensionality of the feature representations.

Data Annotation is essential for supervised models. Different tools are proposed for
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making an easy annotation tool for videos and images. However, they usually do not
exploit the structure of the data, which is especially useful in videos [16, 39, 40]. Some
methods [41–44] are designed to make the process of image annotation easier. [41] of-
fers a real-time framework for annotating internet images, and [42] uses multi-instances
learning to learn the classes and image attributes together; however, none of these meth-
ods use a deep representation of data. In more recent works, [43] utilizes Deep Multiple
Instance Learning to automatically annotate images and [44] uses semi-supervised t-
SNE and feature space visualization in lower dimension to provide an interactive anno-
tation environment for images. [45] proposes a general framework for annotating images
and videos. However, to the best of our knowledge, our method is the first video annota-
tion platform that can exploit the structure of video using latent space feature similarity
to increase the annotation speed.

6.3. T-EVA FOR EFFICIENT VIDEO ANNOTATION

Figure 6.2: t-EVA pipeline: 1) Video clips are extracted from n consecutive frames [t0-tn ] (time-steps). 2)
Spatio-temporal features are extracted from the last layer of a 3D ConvNet before the classifier layer. 3) High
dimensional features are projected to two dimensions using t-SNE and are plotted on a scatter plot. 4) Oracle
annotates the clips represented in the scatter plot using a lasso tool. 5) The newly annotated data is added to
the labeled pool. 6) The network is fine-tuned for a certain number of epochs. This cycle is repeated until all
the videos are labeled, or the annotation budget runs out.

We propose incremental labeling with t-SNE based on feature similarity (Figure 7.2).
First, several videos are randomly selected from the unlabeled pool, and 3D ConvNet fea-
tures are extracted. The feature embeddings are transferred to a two-dimensional space
using t-SNE. As it can be seen in Figure 6.3, the oracle has two subplots for annotation:
(i) A plot in which the oracle can use a lasso tool to group label videos and (ii) Other plot
with the middle frame of each clip in which the oracle can move and zoom with the cur-
sor on the plot and observe where to annotate. After annotating the first set of videos, the
video clips are moved to the labeled pool, and the 3D network is fine-tuned for a certain
number of epochs with the newly labeled videos. We continue this process until all the
videos are labeled, or the annotation budget finishes.

We use 3D ConvNets to extract features from the videos and split each video v into k
shorter clips vi = [cl i p1, ...,cl i pk ] by sampling every n non-overlapping frames cl i pi =
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Figure 6.3: A minimal representation of the annotation tool. 1) The oracle can see the scatter plot (left) and
the corresponding frames from the videos (middle) in separate figures. 2) Based on the figures’ inspection, the
oracle can detect different clusters of an action class (kayaking) and use the lasso tool to select the cluster. 3)
In the end, the oracle assigns a label and based on the assigned class name, the selected points in the scatter
plot change color.

[ f r ame1, ..., f r amen]. Sampling in multiple time-steps enables us to capture different
lengths of actions in the dataset. Afterwards, each clip ci is fed into the 3D ConvNet, for
feature extraction. The features are extracted from the last convolution layer after apply-
ing global average pooling. In t-SNE, the pair-wise distances between feature vectors are
used to map features to 2D.

In this paper, we use the Barnes-Hut optimized t-SNE version [46], which reduces the
complexity of O(N l og N ) where N is the number of data-points.

6.3.1. HOW TO ANNOTATE?

An overview of the annotation procedure can be seen in Figure 6.3. First, the oracle
sees the scatter plot with all points with the same color representing the unlabeled pool
(Figure 6.3 left) and the corresponding middle frame of each clip in the video (Figure 6.3
middle). The oracle can move the cursor and zoom in the plot to inspect the frames with
more details. Second, using the lasso tool, the oracle can draw a lasso around the scatter
plots based on the visual similarity and inspection of the video frames. Third, oracle
assigns the labels, and the network is fine-tuned for a certain number of epochs. The
same process repeats until all the videos are annotated, or the annotation budget ends.

6.4. EXPERIMENTS

In this section, we first explain the benchmark dataset and evaluation metrics. In addi-
tion, we empirically show how our t-EVA method can speed up annotation for the Ac-
tivityNet dataset while keeping the video classification accuracy in a close range to the
usage of the ground truth labels. We also compare our results with MuViLab [16] an-
notation tool. Furthermore, we qualitatively show how t-EVA can help to annotate the
Sports1-M [4].
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6.4.1. DATASETS

ActivityNet (v1.3) is an untrimmed video dataset with a wide range of human activities
[2]. It comprises of 203 classes with an average of 137 untrimmed videos per class in
about 849 hours of video. We use two subsets of the ActivityNet dataset. The first subset
comprises 10 random classes, namely preparing salad, kayaking, fixing bicycle, mixing
drinks, bathing dog, getting a haircut, snatch, installing carpet, hopscotch, zumba con-
sisting of 607 videos with 407 training videos and 200 testing videos. The second sub-
set adds another 5 handpicked classes, which are playing water polo, high jump, discus
throw, rock climbing, using parallel bars, and they are visually close to some of the 10
random classes to make the classification task harder. The second subset comprises 950
videos with 639 videos in training and 311 videos in the test set.

Sports-1M is a large-scale public video dataset with 1.1 million YouTube videos of 487
fine-grained sports classes [4]. We choose a subset of 15 random classes of the Sports-1M
dataset, namely boxing, kyūdō, rings (gymnastics), yoga, judo, skiing, dachshund racing,
snooker, drag racing, olympic weightlifting, motocross, team handball, hockey, paintball,
beach soccer with 702 videos in total. The dataset provides video level annotation for the
entire untrimmed video; however, the temporal boundaries of the actions in the video
are not identified. Approximately 5% of the videos contain more than one action label.

6.4.2. EVALUATION METRICS

To evaluate our method on ActivityNet subsets, we report the time of annotation (ToA)
as a metric to measure how fast the oracle can annotate a certain number of videos.
The ToA score is an average of three times repeating each experiment by the oracle. ToA
for conventional annotation and MuViLab on ActivityNet subset-1 is extrapolated since
annotating 13 hours of video using these methods is not feasible. We also report video
classification accuracy in the form of mean average precision (mAP) for the ActivityNet
subsets to measure the quality of annotation when the network is fine-tuned with our
annotations versus with the ground truth annotations. mAP is used instead of a confu-
sion matrix since some videos of ActivityNet contain more than one action [2].

For the Sports-1M [4] dataset, we perform a qualitative analysis of the t-SNE projec-
tions. To motivate our design choices beyond qualitative results, we introduce a realistic
annotation emulation metric to estimate the quality of t-SNE projections on a global and
local level. To report how well the t-SNE projection can separate the classes at a global
level, we use a measure of cluster homogeneity, and completeness. Homogeneity mea-
sures if the points in a cluster only belong to one class and completeness measures if all
points from one class are grouped in the same cluster. In an ideal t-SNE projection, all
the points in each cluster belong to one class (homogeneity=1.0), and all the points from
a class are in the same cluster (completeness=1.0), which makes the annotation process
much faster. For clustering, K-Means clustering with K being the number of classes is
used. We use the K-Means clustering algorithm because it is fast and has less hyperpa-
rameters to choose.

Since ToA can be a subjective metric, to evaluate the generalization of t-EVA and to
emulate the oracle’s annotation speed better, we also use a measure of local homogeneity
using K-nearest neighbors (KNN) with K=4 as in [44].

KNN can be used to estimate the local homogeneity between the features in lower di-



6

86 6. T-EVA

mensions. Higher KNN accuracy results in higher local homogeneity and better group-
ing; namely, the oracle can annotate the videos faster.

6.4.3. IMPLEMENTATION DETAILS
Feature Extraction. We use the 3D ResNet-34 architecture [47], pre-trained on Kinetics-
400, as a feature extractor for all the experiments owing to their good performance and
usage of RGB frames only. As in [47], each frame is resized spatially to 112×112 pixels
from the original resolution. Each video is transferred to clips by sampling every 32 con-
secutive frames. The feature extractor in every forward pass takes a clip in the form of
a 5D tensor as an input. Each dimension of the input tensor represents the batch size,
input color channels, number of frames, spatial height, and width, respectively. Namely,
an input tensor for a clip sampled at 32 frames can be shown as (1, 3, 32, 112, 112). The
features are extracted after the final 3D average pooling with an 8x4x4 kernel before the
classifier layer. The dimensions of the feature vectors are k×512 with k being the total
number of clips and later reduced to k×2 using t-SNE.

t-SNE. For dimensionality reduction, a Barnes-Hut implementation of t-SNE with
two components are used from the scikit-learn library [48]. The perplexity is set to 30,
and the early exaggeration parameter is 12, with a learning rate of 200. The cost function
is optimized for 2500 iterations.

Training. After annotating each set of videos, the network is fine-tuned for a certain
number of epochs. For training, the same 3D ResNet-34 [47] architecture is used. The
sample duration is chosen as 32 frames for each clip, and the input batch size is 32.
Stochastic gradient descends (SGD) is used as the optimizer with a learning rate of 0.1,
weight decay of 1e-3, and momentum of 0.9.

6.4.4. RESULTS ON ACTIVITYNET
ActivityNet Subset-1. First, we put all the 407 videos in the unlabeled pool. Then, we di-
vide the videos randomly into four different sets of unlabeled videos. The clips are gener-
ated with 32 consecutive frames, and the features are extracted using the 3D Resnet-34.
After annotating each set of unlabeled videos, the network is fine-tuned for 20 epochs
with the labeled videos. To note that, previously labeled videos are also used in the later
epochs. The process continues until the network reaches 100 epochs. Between epoch 60
and 100, the network is fine-tuned using all 407 videos. Meanwhile, we refine the labels
of the videos.

The videos are annotated incrementally, each time one set is labeled. Table 6.1 shows
that the annotation time drops after every iteration of annotation and fine-tuning. Be-
fore fine-tuning the network, the labeling of the first set takes 600 seconds. ToA reduces
150 seconds at epoch 60 when the network is fine-tuned with previously labeled videos.
Because of the incremental labeling and fine-tuning, the network learns to extract bet-
ter features from the videos, which can be better grouped in the t-SNE plot. It is also
expected that the oracle spends more time annotating the first few unlabeled set as the
network is not yet fine-tuned. The quality of annotation at the early stage significantly
impacts the next iterations of extracted features.

Annotation Speed. To evaluate the annotation speed, we choose three methods:
conventional, MuViLab [16], and t-EVA.
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Table 6.1: Oracle’s time of annotation (ToA) is shown on subset 1 of the ActivityNet (v1.3) dataset with 10 classes
containing 407 videos (∼13 hours). At every 20 iterations from 0 to 60, 102 new videos are annotated, and the
network is fine-tuned for 20 epochs. From epoch 60 to 100, no new video is added. The previous video labels
are refined by the oracle as the network can extract better features. The network is fine-tuned on the existing
labeled videos until epoch 100. It can be seen with incremental annotation and fine-tuning the annotation
time in the later epochs drops.

Epoch 0 20 40 60 80 100

ToA (seconds) 600 552 516 450 240 180

One way to increase the annotation speed of t-EVA is by putting more videos on the
screen for the oracle to annotate. However, it does not make the labelling process easier.
Since ActivityNet videos on average have 30 frames per second (FPS), every 32 time-steps
that we sample represent almost 1 second (∼ 32

30 ) of video. Putting all of the 407 videos
(13 hours) overflows the screen with the frames and makes the annotation harder for
the oracle. One way to prevent overflowing the figures with thousands of frames is to
increase the time-steps for sampling frames from each clip to the point that the network
can still preserve the clips’ temporal coherency. This way, we can show all of the videos
on the 2D plot with fewer points. Consequently, we design three different t-EVA in terms
of the number of time steps as t-EVA-32, 64, and 128.

Table 6.2: Comparison of time gain when annotating with different methods on a subset-1 of ActivityNet con-
taining 769 minutes of video. Our method (t-EVA) with 128 time-steps outperforms conventional, and MuVi-
Lab [16] methods with labeling 769 minutes of video in 21 minutes. Using more consecutive frames increases
annotation speed.

Conventional MuViLab t-EVA-32 t-EVA-64 t-EVA-128

Time Gain 3 x 4.5 x 18 x 24 x 36 x

First, we choose ActivityNet subset-1 with a total duration of 769 minutes. We anno-
tated 30 minutes of videos using MuViLab and Conventional methods and extrapolated
the result to match the total duration of ActivityNet subset-1. Additionally, the entire
subset-1 is annotated using different variants of t-EVA, and we compare the annotation
speed of all these methods (Table 6.2). The results show that labeling 769 minutes of
video takes approximately 42 minutes with the t-EVA-32 method. t-EVA-32 outperforms
both conventional and MuViLab methods on ActivityNet subset-1 in annotation speed
by a large margin by respectively 4 to 6 times faster. With t-EVA-64 and 128, time gain
can reach respectively 24 and 36 times more. Conventional annotation and MuViLab do
not take advantage of the temporal dimension of videos for annotation. Nevertheless,
our method exploits the spatio-temporal features and places similar actions near each
other in the t-SNE plot for the oracle to annotate the actions.

We also evaluate the performance of the network on the test set of ActivityNet subset-
1. In Figure 6.4, we compare the classification performance of the networks: (i) fine-
tuned with original ground truth labels and (ii) fine-tuned by using newly annotated
videos by 32, 64, and 128 time-steps. Annotating the videos with t-EVA method can
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Figure 6.4: Comparison of video classification performance in the form of mAP (%) between fine-tuning the
3D ConvNet on ground truth label versus fine-tuning with our annotation acquired using different time-steps
(TS). Fine-tuning the 3D ConvNet on the annotation generated by our method can achieve comparable video
classification accuracy to the ground truth.

achieve a classification performance of 67.2% with 32-TS, 65.9% with 64-TS, and 65.4%
with 128-TS, which is comparable to the training with ground truth labels (blue) by 69.7%
mAP.

Table 6.3 shows the speed-accuracy trade off between t-EVA and ground-truth anno-
tation. When the original ground truth labels are used for fine-tuning the network, we
obtain 69.7% of mAP. 407 videos can be labeled in 42 minutes with t-EVA-32 by losing
only 2.5% of performance in comparison to using ground truth labels. When the time-
steps are increased as 64 and 128, the annotation speed decreases respectively to 31 and
21 minutes, yet the classification performance also reduces by 3.8% and 4.3%. Using 128
time-steps (t-EVA-128) reduces test accuracy while increasing the annotation speed. The
decrease in accuracy compared to the 32-TS version is expected since the annotation is
more prone to noise when the time-step is increased to 128 frames. With 128-TS for each
clip, every point in the scatter plot represents 4 seconds of the video while it represents 1
second in the 32-TS version. Namely, labeling points wrongly in the 128 version (t-EVA-
128) brings more significant consequences in the fine-tuning process. However, Table
6.3 indicates that using 128-TS (t-EVA-128) compared to the 32-TS (t-EVA-32) increases
the annotation speed twice while the mAP score decreases less than 2%.

6.4.5. GENERALIZATION

To further demonstrate the generalization of our method, we conduct the same annota-
tion experiment on a more challenging subset of ActivityNet (v1.3) with 15 classes and a
subset of Sports-1M [4] with 15 random classes.

ActivityNet (v1.3) Subset-2. Subset 2 of ActivityNet (v1.3) contains 637 training videos
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Table 6.3: Comparison of video classification performance (mAP) and ToA (time of annotation) on ActivityNet
subset-1. This subset contains 407 videos in about 13 hours of video. Our method in 32 time-steps (t-EVA-32)
and 128 time-steps (t-EVA-128) achieves comparable test accuracy to the ground truth accuracy and requires
a much shorter time to annotate. There is a trade-off between annotation speed and performance.

Method GT t-EVA-32 t-EVA-64 t-EVA-128

mAP 69.7 % 67.2 % 65.9 % 65.4 %
ToA (minutes) - 42 31 21

and 311 test videos. The first iteration of features is extracted from the 637 training videos
and is annotated in 15 minutes by the oracle using t-EVA. After 20 epochs of fine-tuning,
the new features are extracted, and the labels are fine-tuned again by the oracle. After
this stage, the network is fine-tuned for 80 epochs. After fine-tuning for 100 epochs, our
method reaches a test accuracy of 66.4%, while the training with ground-truth labels
achieves an accuracy of 68.3% on the video classification task.

The 4-NN accuracy of the final features is 92.4%, which shows the quality of the ex-
tracted features is sufficient for the oracle to annotate. t-EVA can also perform well on
the ActivityNet subset-2. The fact validates that our method can also generalize on a
more challenging subset of ActivityNet.

Sports-1M. We further validate our method on a subset of Sports-1M [4] dataset with
15 random classes. We randomly sample 200 videos (∼860 minutes) from the total 702
videos available in the 15 classes. The features are extracted from 200 videos, and ground
truth labels of the two-dimensional features can be seen in Figure 6.5. Using 4-NN, we
obtain an accuracy of 92.3%, which shows the features can be annotated based on simi-
larity. Using our method, we were able to annotate 860 minutes of video in 28 minutes,
giving us a time gain of 30.7. t-EVA indicates an extensive time gain on the Sports-1M
dataset.

6.5. ABLATION STUDY
In this section, we conduct an ablation study to motivate our design choices in the fol-
lowing aspects: (i) dimensionality reduction method, (ii) t-SNE parameter selection, and
(iii) 2D versus 3D backbone for feature extraction.

6.5.1. DIMENSIONALITY REDUCTION
We investigate using PCA as a linear dimensionality method and t-SNE as a non-linear
dimensionality method for visualizing the high-dimensional features in two dimensions.
We use the extracted feature from the ActivityNet subset-1 with 407 videos. Figure 6.6-b
shows that qualitatively PCA is not able to group similar features and separate unalike
features from the videos in the transition to a lower dimension, making the annotation
more difficult. However, Figure 6.6-a indicates that t-SNE projection can maintain the
local structure of each class while separating the features from different classes. To re-
port the quality of projection in quantitative measures, we use KNN with K=4. The 4-NN
classification accuracy in Figure 6.6 for the t-SNE projection is 80.6%, and for the PCA
projection is 58.2%. Therefore, PCA, a linear dimensionality method, cannot reduce the
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Figure 6.5: t-SNE projection of extracted features from 200 videos from the Sports-1M [4] dataset with ground
truth labels as colors. 200 videos are from 15 random classes; however, some videos contain more than one
activity class. The 4-NN accuracy, which emulates the quality of the projection through measuring local ho-
mogeneity, is 92.3%, indicating such a figure is annotate-able by the oracle.

feature dimension while placing similar classes near each other.

Figure 6.6: Visual comparison of the projection quality of high-dimensional features to two dimensions using
t-SNE (a) and PCA (b). PCA is unable to maintain the structure of the high-dimensional data in two dimensions.

6.5.2. T-SNE PARAMETERS
We investigate using different perplexity parameters for the t-SNE projection. [35] rec-
ommend using perplexity parameter between [5-50], however larger and denser datasets
requires relatively higher perplexity. With low perplexity, the local structure of data in
each video dominates the action grouping from multiple video [49], but our goal is to
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Table 6.4: Comparison of homogeneity and completeness scores as a measure to emulate the quality of t-
SNE projection on a global-level. Higher homogeneity means all the points in a cluster belong to the same
class. Higher completeness means all the points belonging to a class are in the same cluster. t-SNE perplexity
parameter as 30 gives the highest homogeneity and completeness score.

px-5 px-15 px-30 px-50 px-100 px-120

Homogeneity 44.7% 58.7% 62.5% 61.3% 61.7% 61.5%
Completeness 42.5% 56.1% 60% 58.5% 59% 58.8%

group multiple actions from different videos. To emulate the t-SNE projection quality
for the annotation, we report homogeneity and completeness scores with different per-
plexities in Table 6.4. Perplexity 30 shows the highest homogeneity and completeness
scores, in other words, t-SNE projection with perplexity 30 can separate the classes bet-
ter than projecting with the other perplexity parameters. Therefore, using t-SNE with
perplexity 30 makes the group labeling process easier for the oracle.

6.5.3. 2D-3D COMPARISON

Figure 6.7: Comparison of t-SNE projection of extracted features from a 2D CNN versus a 3D ConvNet for
videos from 3 action classes of ActivityNet dataset [2]. Increasing the time-steps for sampling clips from the
videos causes the 2D CNN to lose the spatial information of the clips. However, the features from the 3D
ConvNet can maintain the coherency between the clips.

We investigate replacing the 3D ConvNet with a 2D CNN to compare the quality of
the feature embedding. For 3D ConvNet, 3D ResNet-34 pre-trained on Kinetics [3] and
for the 2D CNN ResNet-50 pre-trained on Kinetics [3] are used. We chose Resnet-50 in-
stead of Resnet-34 for the 2D CNN because the Kinetics pre-trained weights were only
available for ResNet-50. To experiment, we sample every 32 consecutive frames (time-
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steps) as a clip in the 3D ConvNet, and for the 2D CNN, we choose one frame for every 32
frames to represent that specific window. The experiment is done on the subset-1 of the
Activity-Net dataset with 10 classes. It can be seen in Figure 6.7 that we start the exper-
iments with 32 time-steps. With 32 time-steps, we can see the 2D CNN can capture the
same action in different videos but can not place them together as well as the 3D Con-
vNet. Therefore, the colors representing the classes are better gathered nearby in the 3D
ConvNet, making the annotation process faster than the 2D CNN projection. Moreover,
by increasing the time-steps for frame sampling, the 2D CNN, even with deeper archi-
tecture, starts losing the temporal coherency between the data-points because 2D CNN
only focuses on the spatial information between the frames. Focusing only on spatial
information can still work in lower time-steps (32-TS) since the frames from the same
action contain similar spatial information. However, using spatial information alone be-
comes problematic in higher time-steps as increasing the time-steps reduces the spatial
similarity between the frames.

Table 6.5: Comparison of 4-NN accuracy of extracted features from a 2D CNN (ResNet-50) and a 3D ConvNet
(3D ResNet-34) on subset-1 of ActivityNet [2]. Increasing time-steps cause the 2D CNN to lose the spatial
similarity between the frames and fail to group them in the t-SNE plot, while the 3D ConvNet can still group
similar actions even in higher time-steps.

32-TS 64-TS 128-TS

2D CNN 93.1 % 89.3 % 74.6 %
3D CNN 100 % 97.6 % 95.2 %

To evaluate our findings quantitatively, we use K-NN accuracy as a quantitative em-
ulation for the quality of features for annotation. Table 6.5 shows that increasing the
number of frames in the clips degrades the 4-NN accuracy of 2D CNN dramatically from
93% to 75%. However, 3D CNN only loses around 5% from 32 time steps to 128. The
local homogeneity decreases more drastically in 2D CNNs compared to 3D CNNs, which
makes annotation more difficult for the oracle. In other words, the 2D CNN alone can
not maintain the temporal structure of the data in higher time-steps. Thus, in the t-EVA
method, 3D features are extracted to use for group labeling.

6.6. CONCLUSION
This paper introduced a smart annotation tool, t-EVA, for helping the oracle to group la-
bel videos based on their latent space feature similarity in two-dimensional space. Our
experiments on subsets of large-scale datasets shows that t-EVA can be useful in anno-
tating large-scale video datasets, especially if the annotation budget and time are lim-
ited. Our method can outperform the conventional annotation method, and MuViLab
[16] time-wise in the order of magnitude with a minor drop in the video classification
accuracy. Besides, t-EVA is a modular tool, and its components can be easily replaced by
other methods. To illustrate, 3D ResNet can be changed to another feature extractor.

t-EVA method has a trade-off between annotation speed and network performance.
Increasing time steps can reduce the annotation time; however, the network’s accuracy
may also decrease.
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t-EVA can be sensitive to the initial state of the feature extractor. If the feature extrac-
tor can not separate classes well, it can take a longer time to annotate the videos initially.
After fine-tuning the network with new labels for a few epochs, the labeling time can re-
duce again. Besides, putting more video frames in the t-SNE plot can overflow the screen
and make the annotation process harder for the oracle.
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ABSTRACT

Popular approaches to classifying action segments in long, realistic, untrimmed videos
start with high quality action proposals. Current action proposal methods based on
deep learning are trained on labeled video segments. Obtaining annotated segments for
untrimmed videos is time consuming, expensive and error-prone as annotated temporal
action boundaries are imprecise, subjective and inconsistent. By embracing this uncer-
tainty we explore to significantly speed up temporal annotations by using just a single
key frame label for each action instance instead of the inherently imprecise start and end
frames. To tackle the class imbalance by using only a single frame, we evaluate an ex-
tremely simple Positive-Unlabeled algorithm (PU-learning). We demonstrate on THU-
MOS’14 and ActivityNet that using a single key frame label give good results while being
significantly faster to annotate. In addition, we show that our simple method, PUNet1, is
data-efficient which further reduces the need for expensive annotations.

1https://github.com/NoorZia/punet

https://github.com/NoorZia/punet
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Figure 7.1: Our proposed method. A single frame is labeled for each action instance. The detected results
are shown for THUMOS’14 dataset. Using a single frame, the PU learning network is able to detect action
boundaries with low error.

7.1. INTRODUCTION
With videos naturally untrimmed and multiple actions per video, doing temporal action
localization involves detecting all action labels, with their start and end time. Action
localization methods [2, 3] utilize a two stage approach: 1. proposal generation and 2.
action classification of each proposal.

Because proposal generation uses machine learning, it relies on annotated data. Such
annotations for untrimmed videos have each action instance labeled with a start and
end timestamp of the action and each video can have multiple, possibly overlapping,
action instances [4]. Obtaining these labels is time consuming and expensive [5]. More-
over, the labeling of the action instances is subjective and error prone [6] due to a dif-
ferent understanding of action duration, thus affecting the results of the model trained
using these labels [7]. Recent work in action recognition has shown that performance
improves by using most discriminative portions of the video for training [8]. Similarly,
work has been done to optimize the segment length and recognize human actions with
fewer frames [9, 10]. Using a single timestamp instead of start and end time for action
recognition has been shown to be a reasonable compromise between performance and
annotation effort [11]. In this paper, we question the need for more complex methods,
and evaluate an extremely simple idea: We propose labeling a single action frame as
"key frame" inside an action’s temporal window (Figure 7.1) and evaluate the simplest
approach we could find: Positive Unlabeled (PU) learning to detect action frames.

Our approach requires a single labeled key frame belonging to the action instance.
The remaining frames are a combination of background and unlabeled action frames,
referred together as ’unlabeled data’. If we consider the unlabeled data as negative, the
problem becomes imbalanced due to the high ratio of unlabeled data to positive which
we tackle in a PU learning [12] setting where the true positives are iteratively removed
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Figure 7.2: Overview. We use one labeled point for each action instance. The input is devided in non-
overlapping windows for training using PU learning at different scales with I3D encoded features to extract
proposals.

from the unlabeled data.
Our contributions are: 1) Instead of adding complexity, we evaluate the very sim-

ple Positive Unlabeled learning setting for action proposal generation using just a single
labeled frame per action instance. 2) This simplistic method is able to achieve good re-
sults. 3) PU-learning is data-efficient: It does well when using a small number of action
instances, allowing another reduction of the annotation effort.

Problem definition.
An untrimmed video sequence X = {xn}T

n=1 has T frames where xn is the n-th frame

in the video. Our single frame action annotations areΨg = {
ϕn = (

tm,n
)}Ng

n=1 where tm,n

is a selected frame at position m of the action instance n which we refer to as our key
frame and Ng is the total number of action instances. For proposal generation, we have
a binary action vs background classifier. We divide a video in non-overlapping windows,
and a window is labeled positive if it contains a key frame.

7.2. METHOD
PU learning. We draw inspiration from the simple and elegant PU-learning algorithm
[12] to train the binary action vs background classifier. It finds negative samples that are
most dissimilar from the positives by refining such ’reliable negatives’. A Positive ver-
sus Unlabeled classifier is trained and tested on the unlabeled training set where high-
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confidence predicted negative samples are deemed reliable negatives. The remaining
unlabeled samples are removed from the training set. The size of the reliable negatives
set is reduced iteratively by training a classifier using positive and reliable negative data
and evaluating on reliable negative data points. Reliable negatives classified as positives
are removed from the training set and this step is repeated until no positive classes are
identified or the size of reliable negatives is less than positive samples. This step reduces
the size of the negative samples and mitigates class imbalance.

Proposal generation and classification. The proposal generation module uses PU
classifier to generate candidate proposals for each window scale. The results from dif-
ferent window scales are aggregated to get the final proposals. We use a state of the art
action classifier [13] to classify our action proposals. The overview of PUNet can be seen
in Figure 7.2.

7.3. EXPERIMENTS
Implementation details. We use I3D [14] pretrained on Kinetics [15] to extract RGB

and optical flow features. The feature representations from RGB and optical flow are
concatenated to obtain (T × 2D) features for a video of duration T . From untrimmed
videos, we extract temporal windows of varying lengths, 16, 32, 48, 64, and 80 frames;
with no overlap. For the proposal classifier, we use a single layer Multi-Layer Perceptron
(MLP) with 100 hidden units. The single layer network is trained using adam optimizer
and 10−4 learning rate. To extract the initial set of reliable negatives, the predicted nega-
tives are thresholded based on their confidence score. The threshold value is set as 0.99.

Experimental Setup. We evaluate on THUMOS’14 [16], ActivityNet v1.2 and v1.3 [17]
datasets. The THUMOS’14 dataset has temporal annotations for 20 classes with 200
training and 213 test videos. ActivityNet v1.2 has 100 action classes and 4,819 training,
2,383 validation and 2,480 test videos. ActivityNet v1.3 has 200 action classes, 10,024
training, 4,926 validation and 5,044 test videos. For ActivityNet, we use the validation
videos for testing as the groundtruth for test videos is withheld. We measure perfor-
mance with the F1-score. For temporal action proposal generation, the Average Recall
(AR) as calculated at different IoU thresholds is used for evaluation. We also calculate AR
with an average number of proposals (AR@AN) to determine relation between recall and
number of proposals. For temporal action detection, mean average precision (mAP) is
reported.

Results. A good proposal generation method should generate high recall with few
proposals. PUNet compares well to most state of the art methods which use full super-
vision. We list the comparative results for THUMOS’14 in Table 7.1. We evaluate the
quality of our generated proposals by comparing the recall at different tIoU thresholds
(Figure 7.3). Our results have good recall at 100 proposals for tIoU 0.1 to 0.5. The results
for action detection indicate that our extremely simple PUNet does well when compared
to others. These results on THUMOS’14 are summarized in Table 7.2. Our method out-
performs all weakly supervised methods except BaSNet [21], against which it shows a
slight performance decrease while being more data efficient and having a simpler net-
work design. Besides, our iterative approach takes around 4.6 minutes to train even on
CPU. Our method can also be used to improve other single frame methods [11]. Com-
pared to fully supervised methods, our method gives good performance while utilizing
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Table 7.1: Comparison of our method with other state of the art proposal generation methods on THUMOS’14
dataset in terms of AR@AN. Our method outperforms all fully supervised methods at AR@50 and AR@100 ex-
cept BSN.

Supervision Method @50 @100

Full

DAPs [18] 13.56 23.83
Sparse [19] 13.42 21.44
SST [20] 19.90 28.36
TURN [2] 21.86 31.89
BSN [3] 35.41 46.06

Weak PUNet (ours) 32.72 40.61
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Figure 7.3: Comparison of our method with the state of the art fully supervised methods on THUMOS’14
dataset. Recall with 100 proposals at different tIoU thresholds show PUNet has high recall compared to all
fully supervised methods when tIoU < 0.5. At higher tIoUs, PUNet outperforms all fully supervised methods
except BSN.

significantly less annotation effort. Table 7.3 shows our results on ActivityNet v1.2 and
v1.3. For ActivityNet v1.2, we see that our method outperforms all weakly supervised
methods except BaSNet and is not too far behind the fully supervised method. On Activ-
ityNet v1.3, our method outperforms all weakly supervised methods including BaSNet.

Qualitative analysis. The qualitative analysis of our approach for key frame annota-
tion is shown in Figure 7.1. The GT denotes groundtruth segments and the labels denote
the key frame inputs to our network. Without any postprocessing, our proposal evalua-
tion model is able to capture the full extent of the temporal duration and not just the key
frames.

Data efficiency. We evaluate how the performance of PUNet changes when trained
with a small dataset. We train BaSNet and PUNet with various training set sizes of THU-
MOS’14 dataset and report the mean average precision. All classes are included in each
training set in an equal ratio.
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Table 7.2: Comparison of our method with the state of the art methods on the THUMOS’14 dataset. Average
mAP is reported at IoU thresholds from 0.1 to 0.5. Weak * indicate use of additional information in weakly
supervised approach. PUNet outperforms most weakly supervised and some fully supervised methods while
utilizing less annotations.

Supervision Method AVG mAP

Full
Yuan et al. [22] 35.7
TAL-Net [23] 52.3
P-GCN [24] 61.6

Weak (video)
UntrimmedNet [13] 29.0
Liu et al. [25] 40.9
BaSNet [21] 43.6

Weak* (single frame)
SF-Net [11] 51.5
PUNet (ours) 42.1
SF-Net + PUNet (ours) 53.6

Table 7.3: Comparison on ActivityNet (Anet) v1.2 and v1.3 with the current state of the art methods. PUNet has
comparable performance to fully supervised method and outperforms most weakly supervised methods for
action localization.

Supervision Method
AVG mAP

ANet v1.2 ANet v1.3

Full S-CNN [26] 26.6 -
CDC [27] - 23.8

Weak
Liu et al. [25] 22.4 21.2
BaSNet [21] 24.3 22.2

Weak* (single frame) PUNet (ours) 23.7 22.5

Results are shown in Figure 7.4. For small training sets, PUNet outperforms BaS-
Net. As the data size increases, the performance becomes more similar for both. With
20 training samples, PUNet achieves 14.7% performance gain. The performance gain
reduces as the training data set size increases.

Generalizability of proposals. We evaluate the generalization ability of PUNet by
testing its performance on unseen action classes. We randomly leave one, two and three
classes from our training set and test on our test set containing all 20 classes of THU-
MOS’14 data. As shown in Table 7.4, there is only a slight performance decrease when
testing on unseen classes and the method is able to generate high quality proposals on
unseen classes.

Annotation speed for different settings. Annotation time required to label a single
key frame and the full segment is measured for some videos from THUMOS’14 dataset.
Five videos are selected from THUMOS’14 dataset with different classes and six anno-
tators are chosen. Three annotators are asked to label the full segment and the remain-
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Figure 7.4: Data Efficiency. We compare the performance of BaSNet and PUNet when training data is reduced
per class from 1 to 5 videos. For small training set, PUNet has a higher relative performance. The performance
becomes similar when training set size increases.

Table 7.4: Generalization evaluation of PUNet on THUMOS’14 dataset. Action classes are removed from the
training set and the resulting model is evaluated on the full test set (seen + unseen classes) containing 20
classes.

# classes in training set AR@50 AR@100

17 31.8 38.5
18 32.4 39.3
19 32.5 40.2
20 32.7 40.6

ing three are asked to label a single frame for every action occurrence. On average, one
minute video takes 65 seconds for single frame labeling and 250 seconds for full segment
labeling.

7.3.1. HOW MANY ANNOTATIONS PER VIDEO ARE ACTUALLY NEEDED?
Videos in THUMOS’14 have 15 action instances on average which are spread unevenly
among the videos with a standard deviation of 24, and range from 1 to 128 per video.
The total labeled action instances in the training set are shown in Figure 7.5. We evalu-
ate whether annotations for all instances are needed to get an effective action proposal
network. F1-score is used to compare the maximum annotations per video ranging from
1 to 128.

After a maximum limit of 6 annotations per video, F1-score has low variance (Figure
7.5). PUNet is able to identify the unlabeled key frames effectively. Results indicate that
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Table 7.5: Effect of using limited annotations on action localization for THUMOS’14 dataset. We set the maxi-
mum annotations per video to 6 to train these models. The action instances needed reduce by one-third from
3007 to 947. The performance only decreases slightly for weakly supervised methods and increases by 0.9% for
fully supervised method.

Supervision Method Whole Partial

Full GTAD [28] 55.4 56.3
Weak BaSNet [21] 43.6 42.1
Weak* PUNet (Ours) 42.1 41.3

not all annotations are necessary to achieve a good performance.

Figure 7.5: Effect of changing the maximum number of annotations per video on the binary classifier perfor-
mance. After 6 annotations per video, the performance does not change much and the standard deviation
reduces. The mean value of F1-score from 1-128 annotations is 0.69 ± 0.05, and mean F1-score from 6-128
annotaions is 0.70 ± 0.008. Our method can achieve good results without using all the annotations.

In Table 7.5, we show that not all action annotations are required for good detection
performance by training fully and weakly supervised action localization networks. Thus,
we set the number of maximum annotations per video to 6 action instances. The number
of action instances reduces from 3007 to 947. We train PUNet with a maximum of 6
annotations per video and obtain a slight performance drop of 0.8%. Similarly, BaSNet
[21] is trained with the reduced video size and the results show a 1.5% reduction in mAP.
Fully supervised method, GTAD [28], is trained with only six labeled action instances and
the rest of the data is unlabeled. Interestingly, the performance increases by 0.9%. The
results indicate that the methods do not need all the labels to obtain good results.

7.4. CONCLUSION
We use key frame level supervision for training temporal action proposal model in

a PU-learning algorithm on three untrimmed datasets. Compared to fully supervised
methods and other weakly supervised methods, this extremely simple approach gen-
erates proposals with high recall and high temporal overlap. Experimental evaluation
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on THUMOS’14 shows that: (i) Using a key frame annotation gives comparable perfor-
mance to using fully supervised annotation which uses start and end annotations, (ii)
All action instances from one video are not necessary to achieve good detection results,
(iii) Our results are comparable to the state of the art methods and data efficient. We
conclude that annotation effort can be significantly reduced by labeling key frames and
for long untrimmed videos, only a limited number of action instances need to be labeled
and trained to achieve similar results.
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110 8. CONCLUSION

In this thesis, we investigate location and temporal information with CNNs. The in-
dividual chapters can be summarized as follows.

We investigate how absolute location is encoded in CNNs by exploiting image border
effects. We evaluate various convolution types in terms of their border handling, where
some methods break translation equivariance and therefore allow CNNs to exploit the
absolute spatial location. Recovering translation equivariance improves robustness to
translation and increases data efficiency.

We also investigates object locality by analyzing three different deep object detec-
tors and their object-context relationships. The results show that single-stage and two-
stage object detectors can access and use the context depending on the size of their re-
ceptive field. Context helps for most of the classes and eases the learning process. In
contrast, context hurts accuracy in the particular application of visually verifying if an
object is present in an image. To investigate visual verification, we introduce the Delft
Bikes dataset that includes 22 object parts of a bike with their location and state labels.
The analyses indicate that object detectors hallucinate bike parts with high overlap with
a possible correct position when the part is not visible in the image. Furthermore, the
thesis studies the effect of data augmentation on automatically human pose estimation,
specifically investigating occlusions. We design occlusion attacks to measure the robust-
ness of the current models and propose occlusion-based data augmentation techniques.
The results show that current pose estimators are sensitive to occlusion, and data aug-
mentation does not bring sufficient solution to the occlusion problems.

In addition to spatial localization, the thesis analyzes temporal localization in video.
We investigate time-efficient spatio-temporal video labelling by mapping frames to 2D,
where similar frames are mapped to similar 2D locations, which allows easy grouping
and offers a 6 to 12 times faster labeling. We further investigate how to reduce the tempo-
ral labeling effort for temporal action localization tasks. We propose a weakly-supervised
Positive-Unlabeled learning approach that uses only single frame labels and yields a la-
bel efficient solution.

THE LOCATION BIAS DILEMMA
Exploiting location information for automatic image and video analysis generally pro-
vides benefits (Chapter 2, 3, 5, 6 and 7) resulting in better accuracy; however, at the same
time, location sometimes results in detrimental outcomes (Chapter 2, 4 and 5). For ex-
ample, object detectors benefit from location biases (Chapter 3), yet, these very same
biases can also cause hallucination problems in visual verification (Chapter 4). Also for
videos, 3D CNNs can exploit the spatial context. As shown in Chapter 6, we can use
a trained 3D CNN backbone to obtain the embedding of video clips. When projecting
the video features on 2D space, the videos with similar context or background are often
placed closer to each other. If the action classes of the videos are similar, spatial context
provides useful solutions. On the other hand, if the different actions happen in a similar
place, for instance, doing two unrelated actions in the same kitchen, then the 2D pro-
jection may place semantically different video segments close to each other. Therefore,
the contribution of location biases depends on the tasks and models. This thesis makes
such location biases explicit, and thus raises awareness that location bias is an important
factor to take into account in automatic image and video analysis.
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EQUIVARIANT ARCHITECTURES VS DATA AUGMENTATION

Two chapters in this thesis each explore a different strategy for neural networks to deal
with transformations that should not change the final classification output. One strategy
is data augmentation (Chapter 5) where the existing data is augmented by adding trans-
formations of existing images to the training data. The other strategy is hard coding
equivariance and invariance to these transformations in the neural network architec-
ture itself (Chapter 2). These two strategies have the same goal, yet their differences
make them well-suited in different scenarios. The strategy of hard-coding equivari-
ance in the network architecture benefits in scenarios where there are a small number
of transformations which are known to occur often in the data [1–7]. In contrast, data
augmentation cannot give hard guarantees as it relies on stochastic training yet it eas-
ily allows for multiple transformations to occur at the same time [8, 9]. Interestingly,
in this thesis, we found that data-augmentation has difficulty when dealing with occlu-
sions (Chapter 5) and a neural network that encodes shift-equivariance will do its very
best to still exploit location information for cases where location information benefits
the learning objective. It would be interesting to do further research to explicitly con-
trast data-augmentation with equivariance, investigate their differences, and determine
in which cases equivariance is preferred, and in which cases data-augmentation.

GOING BEYOND THE BOUNDARIES

Chapter 2 shows that hard-coding position equivariance in the architecture can and will
let the network exploit border effects to make use of position information for image clas-
sification. It would be interesting to evaluate border effects for other tasks explored in
other chapters of the thesis, such as video analysis, object detection, and pose estima-
tion. What is more, other padding values and methods such as replication and reflection
padding might play another role in allowing the network to exploit position information.
Moving beyond border effects in position equivariance, there might be other short-cuts
that a network can exploit to break equivariance for other types of transformations such
as rotation [1, 2, 6, 10], mirroring [5, 10], and scaling [3, 4]. A generic testing frame-
work to evaluate the empirical equivariance of network architectures in a plug and play
manner would be a useful tool for the community.

HELPING HUMANS PERFORM VISUAL VERIFICATION

The new visual verification task proposed in chapter 4 is a specific use case for object
detection: detect if a common object is missing from its usual location. One direction
of follow-up research is an evaluation if the tight bounding box outcome as preferred
by an object detector matches with how humans see a detection, as it might be more
informative to show a bit more of the context around an object. Other extensions include
collecting larger and more varied datasets, and moving the visual verification task to
other domains such as 3D and video.
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Bahattin Karagözoğlu, Prof. Dr. Ali Y. Çamurcu, Prof. dr. Fevzi Yılmaz, Dr. İsa Yıldırım,
Prof. dr. Ender M. Ekşioğlu, Dr. Orhan Özhan, Dr. Sadullah Öztürk and Dr. Cenk Aksoylar
and my all other teachers who support me.

I should mention my Turkish friends who helped me to overcome my longing and
home-sickness and created such a joyful environment whilst I have been in the Nether-
lands. Hamdi was so helpful since the first day eased my adaptation process. He was
not just a friend, more of an older brother to me. I believe that we have an everlasting
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