
 
 

Delft University of Technology

SynTest-Solidity: Automated Test Case Generation and Fuzzing for Smart Contracts

Olsthoorn, Mitchell; Stallenberg, D.M.; van Deursen, A.; Panichella, A.

DOI
10.1109/ICSE-Companion55297.2022.9793754
Publication date
2022
Document Version
Accepted author manuscript
Published in
The 44th International Conference on Software Engineering - Demonstration Track

Citation (APA)
Olsthoorn, M., Stallenberg, D. M., van Deursen, A., & Panichella, A. (2022). SynTest-Solidity: Automated
Test Case Generation and Fuzzing for Smart Contracts. In The 44th International Conference on Software
Engineering - Demonstration Track: Companion Proceedings, ICSE-Companion 2022 (pp. 202-206).
(Proceedings - International Conference on Software Engineering). IEEE / ACM.
https://doi.org/10.1109/ICSE-Companion55297.2022.9793754
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-Companion55297.2022.9793754
https://doi.org/10.1109/ICSE-Companion55297.2022.9793754


SynTest-Solidity: Automated Test Case Generation and Fuzzing
for Smart Contracts

Mitchell Olsthoorn
Delft University of Technology

Delft, The Netherlands
M.J.G.Olsthoorn@tudelft.nl

Dimitri Stallenberg
Delft University of Technology

Delft, The Netherlands
D.M.Stallenberg@student.tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.vanDeursen@tudelft.nl

Annibale Panichella
Delft University of Technology

Delft, The Netherlands
A.Panichella@tudelft.nl

ABSTRACT

Ethereum is the largest and most prominent smart contract platform.
One key property of Ethereum is that once a contract is deployed,
it can not be updated anymore. This increases the importance of
thoroughly testing the behavior and constraints of the smart con-
tract before deployment. Existing approaches in related work either
do not scale or are only focused on finding crashing inputs. In this
tool demo, we introduce SynTest-Solidity, an automated test case
generation and fuzzing framework for Solidity. SynTest-Solidity
implements various metaheuristic search algorithms, including ran-
dom search (traditional fuzzing) and genetic algorithms (i.e., NSGA-
II, MOSA, and DynaMOSA). Finally, we performed a preliminary
empirical study to assess the effectiveness of SynTest-Solidity in
testing Solidity smart contracts.

CCS CONCEPTS

• Software and its engineering → Search-based software en-

gineering; Software testing and debugging.

KEYWORDS

search-based software testing, test case generation, fuzzing, soft-
ware testing, smart contracts

ACM Reference Format:

Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Annibale
Panichella. 2022. SynTest-Solidity: Automated Test Case Generation and
Fuzzing for Smart Contracts. In 44th International Conference on Software
Engineering Companion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh,
PA, USA.ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.
3516869

1 INTRODUCTION

Smart contracts are agreements between multiple parties on how
certain tasks (e.g., releasing or transferring funds) need to be ex-
ecuted. More specifically, they are short programs deployed to a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3516869

Figure 1: Online web service for generating test cases with

SynTest-Solidity.

distributed ledger (blockchain) that run when predetermined con-
ditions have been met. This allows automating the execution of an
agreement with a deterministic outcome without a trusted inter-
mediary. Smart contracts have been gaining popularity in recent
years. The largest and most prominent smart contract platform is
Ethereum, which uses the Solidity programming language [9].

One key property of smart contracts is that they can not be up-
dated anymore after their deployment. This property prevents the
creator of a smart contract modifying the contract for their own
benefit (e.g., only allowing themselves to retrieve funds). However,
this introduces certain challenges, such as when a contract contains
a bug. Therefore, it is critical to thoroughly test the behavior and
constraints of the smart contract as early as possible in the devel-
opment lifecycle. Since smart contracts have complex interactions,
manual testing becomes very difficult and error-prone [3].

Over the last few years, various techniques have been used to
assist developers with testing Solidity smart contracts, like fuzzing,
formal verification, and test case generation. Tools like sFuzz [4]
have successfully used fuzzing techniques to produce test input data
that causes errors or unwanted effects within the contract. However,
since fuzzers only generate input data but no actual (runnable) test
cases, they cannot create compositional tests (i.e., a test case with
multiple requests) nor test for the desired behavior of the contract.

https://orcid.org/0000-0003-0551-6690
https://orcid.org/0000-0003-4850-3312
https://orcid.org/0000-0002-7395-3588
https://doi.org/10.1145/3510454.3516869
https://doi.org/10.1145/3510454.3516869
https://doi.org/10.1145/3510454.3516869


ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Annibale Panichella

On the other hand, formal verification approaches aim to mathemat-
ically verify the behavior of a contract by transposing the contract
into a formal proof language. In general, this approach does not
scale and requires developers to provide a complex model of the
desired behavior [1]. To the best of our knowledge, we have not
found any study that indicates this is different for smart contracts.
Lastly, test case generation allows developers to test smart contracts
for both bugs and behavior in a more efficient and scalable way. In
addition, this allows generated tests to be added to the existing test
suite for regression testing purposes. To the best of our knowledge,
there exists only one related work that focusses on test case gen-
eration for Solidity [2]. However, the research prototype used in
the study is not specifically adapted for the Solidity language. For
example, it does take into account Solidity-specific types, such as
different sizes for integers, nor distingushes between signed and
unsigned types. Besides, the tool does not generate assertions.

We have developed a tool, called SynTest-Solidity1, to allow
developers to more effectively and efficiently test their smart con-
tracts. Our tool makes use of a genetic algorithm to evolve a set
of initial randomly generated test cases to satisfy predefined test
criteria (i.e., function, line, and branch coverage). It does this by ex-
tracting objectives from the contract, feeding these into the search
algorithm, and evaluating the produced test cases using Truffle (de-
facto testing library for Solidity) and Ganache (local development
blockchain). Developers can interact with our tool in two different
ways. The first is a command line interface (CLI) that simplifies
testing during development and allows developers to change the
different parameters of the test case generation process. The second
is an online web service that makes it possible for developers to
use our tool without installing or setting it up locally. SynTest-
Solidity is publicly available on NPM2 and GitHub3. Instructions
on how to set up and run the tool can be found on both platforms.

We performed a preliminary empirical study to test the effective-
ness of SynTest-Solidity at generating test cases for 20 real-world
Solidity smart contracts. This study shows that SynTest-Solidity
can achieve, on average, 61 % branch coverage for these contracts.

2 TOOL

The goal of SynTest-Solidity is to allow developers to effectively
and efficiently test the behavior and constraints of their smart con-
tracts. The tool is primarly aimed at developers of smart contracts.
In this section, we will discuss how developers can use our tool
within their development workflow, explain the internal worflow
of the tool, and the technical challenges this tool solves.

2.1 Usage Scenarios

To test their smart contracts, developers can use our tool in two
ways. The first is on the command line using our CLI interface and
the second is through our online web service.

2.1.1 Command Line Interface. The tool provides an easy-to-use
Command Line Interface (CLI) that is publicly available and can
be installed through the Node Package Manager (NPM). The CLI
is highly configurable and offers a range of options, including
1https://www.syntest.org/
2https://www.npmjs.com/package/@syntest/solidity
3https://github.com/syntest-framework/syntest-solidity

Figure 2: Architectural overviewof the SynTestweb service.

changing the search algorithm, its internal parameters, and the
search budget. A developer interested in generating test cases for
Solidity smart contracts needs to install our tool from the NPM
repository and run the following command: syntest-solidity
--include="<PATH_TO_THE_CONTRACT>" --algorithm="DynaMOSA"
--search-time=120". This command will start the test case gen-
eration process, which includes analysis of the contract, search
optimization, test case evaluation, and finally the assertion genera-
tion. These steps will be further discussed in Section 2.2.

2.1.2 Web Service. In addition to the CLI, we provide an online
web service4 which allows users to interact with SynTest-Solidity
without having to install the tool locally. Fig. 1 depicts the main
interface of the web service. A developer can submit their contract
to the web service and request it to be analyzed by clicking on
the analyze button. This will start the test case generation process,
at the end of which the generated test cases can be downloaded
directly from the webpage. The webpage will also display relevant
statistics, such as the number of lines and branches that are covered
by the test cases.

Fig. 2 shows the architecture of the backend of the web service.
This architecture consists of a webpage written in Vue that commu-
nicates with the service backend through websockets. The service
backend is built with Node.js. Its role is to validate the user input
and manage the sessions. Whenever a new contract is submitted,
the service backend enqueues the job in the RabbitMQ message
broker. The purpose of the message broker is to keep track of all
the current submitted jobs and make sure that the workers process
them. The workers are Node.js programs which retrieve jobs from
the broker and perform the actual test case generation. The worker
will create the files and folders required for SynTest-Solidity to
run, after which it runs the tool and returns the resulting statistics
and test files. The architecture is made such that the number of
workers can be scaled based on the demand.

2.2 Tool Workflow

2.2.1 Analysis. To generate a test-suite, SynTest-Solidity uses
white-box heuristics. Hence, the tool needs access to the source
code for instrumentation which allows the tool to collect coverage
information at runtime. The different steps of our tool are depicted
in Fig. 3. The tool takes as input a smart contract, parses the source
code to build the Control Flow Graph (CFG), and extracts the search
objectives.

2.2.2 Search. The search process starts after extracting the ob-
jectives and instrumenting the code, as shown in Fig. 3. The tool

4https://tool.syntest.org/

https://www.syntest.org/
https://www.npmjs.com/package/@syntest/solidity
https://github.com/syntest-framework/syntest-solidity
https://tool.syntest.org/


SynTest-Solidity: Automated Test Case Generation and Fuzzing for Smart Contracts ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: Internal architecture of SynTest-Solidity

boasts a number of different search algorithms, including random
search, NSGA-II, MOSA, and DynaMOSA. For the purposes of this
tool demo, we focus on the Dynamic Many-Objective Search Algo-
rithm (DynaMOSA), which is the state-of-the-art meta-heuristic
for white-box unit testing [6].

DynaMOSA evolves a set of randomly generated test cases.
These test cases are generated using a sampler that provides the
list of callable methods (i.e., public and external methods) and
constructors for the contract under test (CUT). A test case is en-
coded as a sequence of method calls. The root of the sequence is
the contract deployment/instantiation made by invoking one of the
public constructors. The remaining method calls in the sequence are
obtained by randomly invoking some public and external meth-
ods in the CUT. Notice that the length of the test case is variable
and can change through the generations.

The initial tests are iteratively evolved using crossover andmuta-
tion. The former operator creates new tests by swapping statements
between pairs of tests (called parents). The latter operator applies
small changes to the newly generated test cases, called offspring.

The population for the next generation is obtained by selecting
the best test cases among parents and offspring using the preference
criterion and the non-dominated sorting [6]. The goal of these two
heuristics is to promote test cases that are closer to reaching the
uncovered branches and lines in the code. The process is repeated
until the predefined budget is depleted.

Note that DynaMOSAonly optimizes the yet uncovered branches
and lines. Every time an uncovered branch (or line) is reached, the
corresponding test case is saved into the archive. The final test suite
is composed of all test cases stored in the archive.

2.2.3 Text Execution. Our tool needs to execute each test case to
determine how close that test is to covering the objectives. This is
performed by the objective functions, which measure the distance
to reaching an uncovered branch or line in the code using state-of-
the-art heuristics, i.e., the approach level and the normalized branch
distance [6]. The flow of steps performed during test execution is
also shown in Fig. 3.

A test case is first converted into a JavaScript test. This test
is then executed on a fresh Ganache blockchain instance. This
local blockchain instance hosts the CUT deployed using the Truffle
framework. The test execution results are then collected and used

to compute the approach level and the branch distance for the yet
uncovered branches and lines.

2.3 Solidity-specific Features

SynTest-Solidity provides support for all data types and other
features that are unique and specific to Solidity. In the following,
we briefly elaborate on these features and how they are handled.

2.3.1 Data Types. The Solidity programing language includes mul-
tiple data types, including boolean, number, bytes, strings, and
arrays. Compared to other languages (e.g., Java), Solidity includes
multiple subtypes for both integers and doubles. There are two
main subtypes of integers: signed integers (int) and unsigned in-
tegers (uint). These subtypes also have different sizes, ranging
from uint8 up to uint256, which correspond to 8 and 256 bits,
respectively. Similarly, double numbers can be both signed (fixed)
or unsigned (ufixed) and have different sizes in the number of bits
(e.g., ufixed128x18, etc.).

SynTest-Solidity handles all these subtypes as it encodes inte-
gers (and float numbers) with an extra bit for the sign and different
upper and lower bounds depending on the number of required bits.
Note that SynTest-Solidity generates tests in JavaScript, which
uses 52 bits for numbers. To allow representing larger numbers
(up to 256 bits) required for Solidity, SynTest-Solidity uses the
BigNumber library that allows arbitrary-precision arithmetic.

2.3.2 Solidity Addresses. Address is a special data type in Solidity
and represent the intended recipient of a transaction. An address
has 160 bits or 40 hex characters. An address always has a 0x prefix
in its hexadecimal format (base 16 notation). SynTest-Solidity
uses two strategies to handle and instantiate addresses. The first
strategy extracts address literals from the source code of the CUT.
These constants are used as seeds when generating test cases with
50 % probability. This means that constant addresses in the code
are (with some probability) used in the generated test cases. The
address 0x0 (or zero-address) is a special constant used to indicate
that a new contract is being deployed.

The second strategy uses pre-allocated addresses that are al-
located by the Truffle framework when the contract is deployed
at the beginning of each test case. These pre-allocated addresses



ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Mitchell Olsthoorn, Dimitri Stallenberg, Arie van Deursen, and Annibale Panichella

are accessible with the statement account[index], where index
points to the pre-allocated address to consider.

2.3.3 Transactions. Interactions with smart contracts are made via
transactions. Transactions correspond (1) to either sending Ether to
another account, (2) executing a contract method/function, or (3)
adding a new contract to the network. Hence, a method call in the
test case is required to have a recipient address in addition to the
actual input parameters for the method being invoked. Therefore, a
method call is encoded in SynTest-Solidity as an array of (1) input
parameters, (2) return values, and (3) the address of the recipient.

2.3.4 Assertions. SynTest-Solidity generates assertions at the
end of the search process as a post-process step. It does this by
collecting the runtime values (e.g., contract states and return values
of invoked methods) from the final execution of the test cases. A
specific type of assertion regards the runtime exceptions that can be
thrown when the state-reverting security conditions (i.e., revert
and require) are not satisfied. If a test case triggers these runtime
exceptions, the assertion generated by our tool asserts that the
expected exception is triggered.

3 EVALUATION

To evaluate SynTest-Solidity, we tested 20 Solidity smart con-
tracts submitted to etherscan.io. In particular, the selected contracts
are written in Solidity versions 5 and 6, which are currently sup-
ported by our tool. We randomly selected these contracts among
those that have been submitted to etherscan.io multiple times for
security checking between January and June 2021. For the selection,
we excluded duplicates and analyzed their cyclomatic complexity
(CC) to exclude trivial contracts with no branching statements. As
suggested by existing guidelines in the literature [6, 7], test case
generation tools should be assessed on code units (e.g., classes
in Java) with a cyclomatic complexity above two (CC>2). In our
context, the 20 selected contracts have functions with cyclomatic
complexity above three. The contracts and their characteristics
are summarized in Table 1. The size of the contracts ranges from
23 LOC for MetaCoin to 307 for Revive.

While the benchmark might not be large enough for a complete
empirical assessment, our goal is to show the ability of our tool in
generating test cases with high code coverage and assertions for
non-trivial, real-world smart contracts. Assessing the tools on a
larger and more extensive benchmark is part of our future agenda.

Empirical set-up In this evaluation, we use the parameter val-
ues suggested in the related literature [6]. More specifically, we run
DynaMOSA, which is the state-of-the-art search algorithm for unit-
level test case generation [6]. In addition, we use a population size
of 10 test cases. New test cases are generated using the single-point
crossover with probability pc = 0.80. Test cases are further changed
using the uniform mutation with the probability pm = 1/n, where
n is the length of the test case. This operator either adds, deletes,
or changes statements within each test case. These three mutation
operators are equally probable.

We set an overall search budget of 30 minutes per smart contract.
This search budget is larger than the one usually used in unit-
test generation in other languages (e.g., Java [6]). This is because

Table 1: Average (median) coverage achieved by SynTest-

Solidity over 20 independents runs

Contract LOC

Coverage

Function Branch Line

AavePoolReward 108 0.92 0.50 0.60
Baz 33 1.00 0.95 0.95
BirdOracle 134 0.89 0.59 0.66
Core_Fi_V3 62 0.88 0.56 0.59
CryptoGhost 165 1.00 0.84 0.79
CryptoSecureBankToken 254 0.93 0.50 0.73
DJCoin 195 0.88 0.67 0.77
EdenCoin 67 1.00 1.00 1.00
FreakCoin 139 1.00 0.60 0.69
GAZ_ERC20 71 0.55 0.55 0.54
INS 109 1.00 0.50 0.50
MetaCoin 23 1.00 0.88 0.89
Revive 307 0.84 0.41 0.64
Rootkit_finance 61 0.88 0.59 0.61
SLTDETHlpReward 291 0.78 0.49 0.63
Straight_Fire_Finance 62 0.88 0.59 0.61
TetherToken 98 1.00 0.50 0.58
ThriftToken 96 0.91 0.50 0.63
TimeMiner 174 1.00 0.67 0.81
WOLF 80 1.00 0.40 0.68
Mean 0.91 0.64 0.70

SynTest-Solidity has to deploy the contract under test to the
smart contract network before each test case.

Empirical results. We run SynTest-Solidity 20 times for each
smart contract to account for the randomness of the search pro-
cess. Table 1 reports the median results achieved by SynTest with
regard to function, branch, and line coverage. In all cases, SynTest-
Solidity was able to generate test suites with high function cover-
age, which is 91 % on average. For branch coverage, the results vary
between 40% achieved on Wolf and 100 % achieved for EdenCoin.
The produced branch coverage is greater than 50 % in all smart con-
tracts except three. As a consequence, SynTest-Solidity yielded
an average branch overage of 61 %. The results for line coverage
are in-line with those achieved for branch coverage. Indeed, the
mean line coverage is 68 %, with a minimum value of 54 % obtained
for GAZ_ERC20 and a maximum value of 100 % for EdenCoin.

4 CONCLUSIONS AND FUTUREWORK

In this paper, we demonstrated our tool, called SynTest-Solidity,
that allows developers to effectively and efficiently test Solidity
smart contracts. It achieves this by automating the process of test
case generation using state-of-the-art metaheuristic search algo-
rithms. As part of our future plan, we will extend the framework
with linkage learning-based evolutionary algorithms [8], MOSA [5],
and sFuzz [4]. Using these additional algorithms, we plant to per-
form a more extensive evaluation. SynTest is a modular frame-
work that allows the tool to be extented to other languages (e.g.,
JavaScript or TypeScript). This is something, we will be working
on in the future. Finally, we are planning to create a plugin for our
tool for the most popular code editors to make it even easier for
developers to use it.



SynTest-Solidity: Automated Test Case Generation and Fuzzing for Smart Contracts ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
press.

[2] Stefan Driessen, Dario Di Nucci, Geert Monsieur, and Willem-Jan van den Heuvel.
2021. AGSolT: a Tool for Automated Test-Case Generation for Solidity Smart
Contracts. arXiv preprint arXiv:2102.08864 (2021).

[3] Lu Liu, Lili Wei, Wuqi Zhang, MingWen, Yepang Liu, and Shing-Chi Cheung. 2021.
Characterizing Transaction-Reverting Statements in Ethereum Smart Contracts.
arXiv preprint arXiv:2108.10799 (2021).

[4] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[5] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Reformu-
lating branch coverage as a many-objective optimization problem. In 2015 IEEE
8th international conference on software testing, verification and validation (ICST).

IEEE, 1–10.
[6] Annibale Panichella, FitsumMesheha Kifetew, and Paolo Tonella. 2018. Automated

Test Case Generation as a Many-Objective Optimisation Problem with Dynamic
Selection of the Targets. IEEE Transactions on Software Engineering 44, 2 (Feb
2018), 122–158.

[7] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
2021. Sbst tool competition 2021. In 2021 IEEE/ACM 14th International Workshop
on Search-Based Software Testing (SBST). IEEE, 20–27.

[8] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2021. Improving
Test Case Generation for REST APIs Through Hierarchical Clustering. In 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 117–128.

[9] Maximilian Wohrer and Uwe Zdun. 2018. Smart contracts: security patterns in the
ethereum ecosystem and solidity. In 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE). IEEE, 2–8.


	Abstract
	1 Introduction
	2 Tool
	2.1 Usage Scenarios
	2.2 Tool Workflow
	2.3 Solidity-specific Features

	3 Evaluation
	4 Conclusions and Future Work
	References

