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ABSTRACT Quantum communication enables the implementation of tasks that are unachievable with
classical resources. However, losses on the communication channel preclude the direct long-distance trans-
mission of quantum information in many relevant scenarios. In principle, quantum repeaters allow one to
overcome losses. However, realistic hardware parameters make long-distance quantum communication a
challenge in practice. For instance, in many protocols an entangled pair is generated that needs to wait in
quantum memory until the generation of an additional pair. During this waiting time the first pair decoheres,
impacting the quality of the final entanglement produced. At the cost of a lower rate, this effect can be
mitigated by imposing a cutoff condition. For instance, a maximum storage time for entanglement after
which it is discarded. In this article, we optimize the cutoffs for quantum repeater chains. First, we develop
an algorithm for computing the probability distribution of the waiting time and fidelity of entanglement
produced by repeater chain protocols which include a cutoff. Then, we use the algorithm to optimize cutoffs
in order to maximize the secret-key rate between the end nodes of the repeater chain. In this article, we find
that the use of the optimal cutoff extends the parameter regime for which secret key can be generated and,

moreover, significantly increases the secret-key rate for a large range of parameters.

INDEX TERMS Quantum communication, quantum repeater chains.

I. INTRODUCTION

The realization of a quantum internet [1] will allow any
two parties on Earth to implement tasks that are impossible
with its classical counterpart [2]. Quantum communication
schemes rely on the distribution of entanglement between
spatially separated parties, which in practice is precluded
over long distances due to loss in the communication
channel (usually glass fiber or free space). This problem can
be overcome by dividing the distance between the sender and
receiver of the quantum information into smaller segments,
which are connected by intermediate nodes called quantum
repeaters [3].

Most repeater schemes require quantum memories [4], [S].
Moreover, in many protocols an entangled pair is generated
that needs to wait in a quantum memory until the generation
of an additional pair. During this waiting time the first pair
decoheres, reducing the quality of the final entanglement
produced. At the cost of a lower rate, this effect can be
mitigated by imposing a cutoff condition. For instance, a
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maximum storage time for entanglement after which it is
discarded [6].

Cutoffs have been considered for entanglement genera-
tion in different contexts [6]—[17]. Notably, they play a key
role for generating entanglement already in multipair exper-
iments between adjacent nodes [8]. They also promise to be
helpful in near-term quantum repeater experiments [9], [10],
[14]. In the multirepeater case, it is possible to obtain analyt-
ical expressions for the waiting time for general families of
protocols [15], [16], though in general it appears challeng-
ing to extend those methods to characterize the quality of
the states produced. Santra et al. [11] analytically optimized
the distillable entanglement for a restricted class of quantum
repeater schemes.

In this article, we focus on the type of quantum repeater
schemes that rely on heralded entanglement generation, pu-
rification and swapping, but not on quantum error correction
codes, sometimes referred to as the “first generation of quan-
tum repeaters” [4], [5]. In particular, we study a very general
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class of first-generation repeater schemes including proba-
bilistic swapping, distillation and cutoffs and characterize
their performance in the presence of memory decoherence.
We sidestep the challenge of analytical characterization by
computing the probability distribution of the waiting time
and fidelity of the first generated entangled pair between the
repeater’s end nodes. For this, we improve the closed-form
expressions by Brand et al. [18] to get faster algorithm run-
times and extend the expressions to repeater schemes which
involve distillation and cutoffs. The runtime of the algo-
rithm which evaluates these expressions is polynomial in the
prespecified size of the computed probability distribution’s
support.

In the second part of the article, we optimize the choices of
the cutoff to maximize the secret-key rate. We study different
cutoff strategies and find that the use of the optimal cutoff
extends the parameter regime for which secret key can be
generated and moreover significantly increases the secret-
key rate for a large range of parameters. We also analyze
the dependence of the optimal cutoff on different properties
of the hardware and find that memory quality highly influ-
ences the effectiveness of the cutoff, whereas the influence is
small for success probability of entanglement swapping. In
addition, our numerical simulations show that for symmetric
repeater protocols with evenly spaced nodes, a nonuniform
cutoff (different cutoff time in different parts of the repeater
chain) does not yield a significant improvement in end-to-end
node secret key rate compared to a uniform cutoff.

This article is organized as follows. In Section II, we de-
scribe the class of repeater schemes under study and elab-
orate on the hardware model used in our simulations. Sec-
tion III presents the closed-form expressions and their evalu-
ation algorithms for the waiting time distribution and output
quantum states of repeater schemes which include cutoffs.
The second part of the work, on optimization of the cutoff,
consists of Section IV, where we provide details on the op-
timization procedure, and the results of the numerical opti-
mization as presented in Section V. Section VI ends our work
with a conclusion.

Il. PRELIMINARIES

A. CLASS OF REPEATER PROTOCOLS CONSIDERED

A quantum repeater chain connects two endpoints via several
repeaters and aims to generate entanglement between the
endpoints. In this section, we elaborate on the class of quan-
tum repeater chain protocols we study in this work, which
is an extension of the class studied in [18] with the addition
of cutoffs. While doing so, we refer to both the endpoints
and the repeater stations as nodes and to an entangled state
between two nodes as a link.

The class of quantum repeater protocols studied in this
work are composed of the following four building blocks or
PROTOCOL-UNITS: elementary link generation (GEN), entan-
glement swap (SWAP), entanglement distillation (DIST) and
cutoff (cuTOFF). See Fig. 1(a). All of these processes can
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FIGURE 1. Class of repeater chain protocols considered in this work is
composed of four different types of protocol-units. (a) Four
protocol-units: elementary-link generation between adjacent nodes
(GEN), entanglement swapping for connecting two short-distance links
in a single long-distance one (SWAP), entanglement distillation for
converting two low-quality links in a single high-quality link (DIST) and
discarding two links (CUTOFF), for example if their generation times
differ by more than a prespecified cutoff time. The repeater chain
protocols we consider in this work are composed of combinations of the
four PROTOCOL-UNITs, provided that each CUTOFF is succeeded by a
SWAP or DIST. The in-/outgoing arrows of each protocol-unit indicate the
number of entangled links that the block consumes/produces. (b)
Example of a composite protocol on three nodes (end nodes A and B and
single repeater M). At the start of the protocol, two fresh elementary
links are generated (GEN) in parallel between adjacent nodes A and M
and subsequently selected through a CUTOFF block. The first two links
that survive the cutoff are then distilled (DIST) into a single link of higher
quality. Asynchronously, the nodes M and B generate (GEN) pairs of links
until the distillation (DIST) succeeds. Once distillation on both sides of
node M has succeeded, the resulting links A <~ M and M < B are
converted via a swap into a single entangled link between the end nodes
A and B.

fail, but the involved nodes receive a success or failure mes-
sage. That is, they are heralded. In what follows, we describe
these four PROTOCOL-UNITS in more detail and subsequently
explain how they can be composed into a repeater scheme
that spans multiple nodes.

The first block GEN represents the generation of fresh en-
tanglement between two adjacent nodes. We refer to those
entangled pairs as an elementary link. The GEN block thus
spans precisely two nodes, takes no input and outputs a single
link.

The second and third blocks are entanglement swap
(swap) and entanglement distillation (D1ST). In the setting of
two nodes A and B with a middle station M in between, an
entanglement swap [19], [20] takes two links A <> M and
M < B and outputs a single link A <> B. It spans at least
three nodes. Next, entanglement distillation probabilistically
transforms two low-quality links between the same pair of
nodes to a new one with higher quality [21], [22]. The pisT
block thus spans at least two nodes, takes two links as input
and outputs a single link, where each link is shared by the
same pair of nodes. Both swaP and DIST consist of local
operations including measurements and classical communi-
cation. They can succeed or fail. In case of success, the nodes
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will keep idling until the entanglement is consumed. In case
of failure, both input links are lost.

The last PROTOCOL-UNIT is CUTOFF, which takes two links
as input (not necessarily between the same nodes). It accepts
or rejects the two input links depending on a success con-
dition. In case of success, it leaves the two input links un-
touched and outputs them again. In case of failure, both input
links are discarded. In this work, we study three different
success conditions. In the first two, DIF-TIME-CUTOFF and
MAX-TIME-CUTOFF, “success” is declared if respectively
the difference or the maximum of the input links’ production
times does not exceed some prespecified cutoff threshold.
In the third strategy, FIDELITY-CUTOFF, the input states
are passed on only if they are both of sufficient quality. This
success condition translates to a cutoff on the individual
input states’ fidelity with a maximally entangled state (see
Section II-B).

We now explain how the PROTOCOL-UNITS described
above can be composed into a single repeater protocol span-
ning a chain of nodes. See Fig. 1(b) for an example. Each
composite protocol on a chain of nodes starts with one or
multiple GEN blocks between each pair of adjacent nodes for
fresh elementary link generation. A protocol then consists of
stacking instances of the other three PROTOCOL-UNITS in such
a way that the output link(s) of one are used as input link(s) to
the other. The only restriction on how the PROTOCOL-UNITS
can be stacked is that both output links of CUTOFF are used
as inputs for one DIST or SWAP block. As a consequence of
the stacking, any repeater protocol in the class we study has
a tree structure [see also Fig. 1(b)]. If a block at the root of
a tree fails, then its input links are discarded and the GEN
blocks at the tree’s leaves will restart.

We note that the class of repeater protocols described
above includes, for instance, the well-known family of re-
peater schemes described by Briegel et al. [3], [23].

B. MODEL

We here describe how we model each of the four PROTOCOL-
UNITs described in Section II-A, which is identical to the
modeling in [18], except for the newly introduced CUTOFF
unit. For each PROTOCOL-UNIT, we describe the success con-
dition as well as the quantum state that it outputs.

First, we model the fresh entanglement generation (GEN)
using schemes which generate links in heralded attempts of
duration Lipternode /¢, Where Lipternode 1S the internode distance
and c is the speed of light in the used transmission medium,
e.g., glass fiber [4]. We assume that each attempt is indepen-
dent and succeeds with constant probability 0 < pgen < 1.
For simplicity, we assume that the nodes are equally spaced
with internode distance L, so that each attempt in elemen-
tary link generation takes duration Aty = Ly/c, which will
be the time unit in our numerical simulation.

We model the elementary link as a Werner state p(w) with
constant Werner parameter w = wy [24]

1
p(w) = w|®) (] + (1 — w)f (1)
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where the Bell state
|DF) = (100) + |11))/v/2
is a maximally entangled two-qubit state and
L4/4 = (10)(0 + 1) (1) ® (10)(0] + [1)(1]) /4

is the maximally mixed state on two qubits. We refer to
the parameter w with 0 < w < 1 as the Werner parameter.
Since a Werner state is completely determined by its Werner
parameter, we use the Werner parameter to indicate the quan-
tum state.

Equivalent to the Werner parameter, we will also express
the state’s quality using the fidelity, which for general density
matrices p and o is defined as

2
F(,o,a)::Tr( ﬁaﬁ) .

The fidelity between a Werner state p(w) and |®) (P
equals

143
Foltow
4

We emphasize that both the closed-form expressions and
the algorithm we present in Section III are compatible with a
more general representation of quantum states using density
matrices, by replacing the Werner parameter with a density
matrix. We choose the Werner state for the clarity of the
presentation. It is a pessimistic approximation because any
two-qubit state can be transformed into a Werner state with
local operations and classical communication without chang-
ing the fidelity [25].

For the other PROTOCOL-UNITS, the success conditions are
summarized in Table 1. In short: we model entanglement
swapping (SWAP) as succeeding with a constant probabil-
ity pswap. For entanglement distillation (DIST), we use the
BBPSSW protocol [21] which we adapt by bringing the out-
put state back into Werner form. The latter operation does not
change the output state’s fidelity with the target state |®T).
The success probability pgis of distillation is a function of
the input states’ Werner parameters (see [ 18] for details). The
cutoff (CUTOFF) success condition depends deterministically
on the waiting time or the fidelity of the input links.

The states that any PROTOCOL-UNIT outputs are Werner
states at any time of the execution of the protocol. Indeed,
a successful entanglement swap or distillation attempt maps
Werner states to Werner states (see [18] for a brief expla-
nation). Also, the CUTOFF leaves the input states untouched
in case of success, thereby outputting Werner states if it got
those as input. For each PROTOCOL-UNIT, the Werner param-
eters of the output links wqy are a function of those of the
input links and are given in Table 1.

In addition to the fact that the PROTOCOL-UNITs change the
quantum states they handle, the local quantum memories that
are used to store the links are imperfect. In our model, a link
with initial Werner parameter w, which lives in memory for
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TABLE 1. Overview of Success Probability and the Output Werner Parameter for Each Protocol-Unit

PROTOCOL-UNIT

success probability p

Werner parameter wout

generation (GEN) Pgen (constant)

entanglement swapping (SWAP)  pswap (constant)

otherwise

wo

/ /
’LUA‘U)B

o 1+ w,w w'y +wy + 4w’ W
entanglement distillation (DIST)  pgist = - AB A B A_B
2 6pdist
1 if |tA — tB| <T , ,
DIF-TIME-CUT-OFF Peut = . wy, wy
0  otherwise
1 if wy > wew and w'y > w
_ A = Weut B = Wecut / /
FIDELITY-CUT-OFF ¢ = ; w
Peu {0 otherwise A B
1 ifmax(ta,tg) <7
MAX-TIME-CUT-OFF Peut = {0 ’ = w'y, wh

where (ta,wa) and (tg,wg) are the waiting time and Werner parameter of the links A and B provided as
input to the PROTOCOL-UNIT. Parameters 7 and wey, are the cut-off thresholds on time and Werner parameter,

respectively. The primed notation denotes Werner P

until the other is finished: w’y = wx - e~ (lta—ts

arameter with decay in (2) applied to the link that waits
te)/teoh if X denotes the input link that finishes earlier

and wa = wx - e~ te/teon otherwise. The parameter t. denotes the time used for classical communication
and local operations. The expressions for SWAP and DIST are derived in Appendix A of Ref. [18]. For an
explanation of the different PROTOCOL-UNITS, see section II-A.

time At until it is retrieved, decoheres to Werner parameter

Wdecayed = W - e~ A/ feon (2)
where 7.0 1s the joint coherence time of the two involved
memories.

In summary, for a given composite protocol (including the
cutoff condition T or wey for each cUTOFF block), the simu-
lation of the entanglement distribution process is determined
by four hardware parameters: the success probability of el-
ementary link generation pgen, the swap success probability
Dswap> the Werner parameter of the elementary link wg and
the memory coherence time fcop.

C. WAITING TIME AND PRODUCED END-TO-END STATE
IN REPEATER SCHEMES USING PROBABILISTIC
COMPONENTS
In this article, we study the time until the first entangled pair
of qubits is generated between the end nodes of the repeater
chain (called “waiting time” from here on) and the state’s
quality, expressed as its Werner parameter (recall that the
end-to-end state is a Werner state, see Section II-B). Be-
cause the repeater chain protocols we study in this work are
composed of probabilistic components, both the waiting time
and the end-to-end state’s Werner parameter are random vari-
ables. See Fig. 2 for an illustration of the random behavior of
the waiting time. We characterize the quality by the averaged
Werner parameters of all states generated at the same time
step ¢. The algorithm we present in this work computes the
probability distribution Pr(7 = t) of the waiting time 7" and
the average Werner parameter W (¢) of the end-to-end state
which is delivered at time ¢.

‘We finish this section by noting that by considering the av-
erage Werner parameter, we ignore the “history” of a link, re-
sulting in a suboptimal estimation of the fidelity of the states.

4103015

To see this, consider for example the three-node protocol of
Fig. 1(b). In this protocol, the following two series of events
lead to an output entangled pair between nodes A and B at
time + = 10. (i) All GEN blocks fail at each timestep ¢ < 10
but succeed at time ¢ = 10, after which all other PROTOCOL-
UNITs also succeed immediately. (ii) The PROTOCOL-UNITS
between A and M all succeed at time ¢ = 1, while the GEN
blocks between M and B succeed at time ¢ = 10, followed by
all other remaining PROTOCOL-UNITS also succeeding at time
t = 10. In case (i), no entanglement has waited in memory,
whereas in case (ii), the produced link between A and M has
waited ten timesteps and decohered in that time. By keeping
track of the timestamps at which the several PROTOCOL-UNITS
succeeded, one could distinguish these two scenarios. Since
the resulting fidelity estimation computation is rather com-
plex and in this work, we focus on quantifying the effect of a
cutoff, we leave such advanced fidelity estimation for future
work.

I1Il. COMPUTING THE WAITING TIME DISTRIBUTION
AND THE OUTPUT WERNER PARAMETER

In this section, we present closed-form expressions of the
waiting time probability distribution and Werner parameter
of the output links for each PROTOCOL-UNIT, as function of
waiting time distribution and Werner parameter of its in-
put links. Expressions for a composite protocol are obtained
by iterative application over the PROTOCOL-UNITS that the
protocol consists of. These expressions naturally lead to an
algorithm for their evaluation, which we also present in this
section.

Closed-form expressions for GEN and swap were already
obtained by Brand er al. [18], who explicitly mentioned
that their approach does not generalize straightforwardly
to pist. Here, we include pIST and even CUTOFF, provided
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FIGURE 2. Visualization of the waiting time until end-to-end entanglement is delivered for a three-node repeater chain. The repeater scheme c
the generation of two elementary links, followed by an entanglement swap on the two links. (a) Single link is generated in fixed-duration attempts,
which succeed probabilistically and thus may fail (green line segment), after which generation is re-attempted until success (blue line segment). After
that, the link is stored until it is consumed (dotted orange line segment). (b) Run of the three-node protocol until the first swap attempt, which consists
of first preparing two input links in parallel, followed by a Bell state measurement (BSM). The link that is generated earlier than the other needs to wait
in the memory (link 1 in the figure, the “waiting” is indicated by the dotted orange line). While waiting, the earlier link’s quality decreases due to
decoherence. The total waiting time before the BSM equals the maximum of the generation times of the two links. The BSM operation can fail, in which
case the two links are lost and need to be regenerated. (c) Full run of the three-node protocol, consisting of failed entanglement swaps (green dashed
box) on fresh links until the first successful swap (blue dashed box). The total waiting time is the sum of the waiting times for the parallel generation of

each pair of elementary links, up to and including the first successful swap.

the latter is succeeded by swAP or DIST. The novel idea is
to use separate expressions for the waiting time probabil-
ity distribution of a successful and failed attempt. We then
express the total waiting time distribution and the Werner
parameter as those of the successful attempt averaged by
the occurrence probability of all possible sequences of failed
attempts, where the weighted average is efficiently com-
puted using convolution. As an additional benefit, the evalu-
ation algorithm for SwaP is faster than the one presented by
Brand et al.

In the following, we first derive general closed-form ex-
pressions for the waiting time distribution and Werner param-
eter of one PROTOCOL-UNIT in Section III-A. We then give
specific expressions for each PROTOCOL-UNIT individually in
Sections III-B to III-E. In the last section (Section III-F), we
show how these expressions can be converted into an efficient
algorithm. We also explain how to modify the closed-form
expressions using the discrete Fourier transform, motivated
by its use in [26] and [27]. These modified expressions lead
to an even faster algorithm for computing the waiting time
and Werner parameter, which we provide in Appendix B. We
denote the random variables of the waiting time and average
Werner parameter as T and W (¢), with subscript A and B for
the input links and “out” for the output link (see Fig. 3).

A. GENERAL CLOSED-FORM EXPRESSIONS FOR WAITING
TIME AND PRODUCED STATES FOR ALL PROTOCOL-UNITS
1) RANDOM VARIABLE EXPRESSION FOR THE WAITING
TIME OF PROTOCOL-UNITS

We start by presenting an expression for the random variable
Toui- To study the waiting time distribution, we divide the

VOLUME 2, 2021

Pr(Ty = t)
Wa(t)

Wout(t)
Pr(Tg = t)
Wy (t)

FIGURE 3. Workflow of the algorithm for one protocol-unit (swap or
dist). It takes the waiting time distribution and Werner parameter of the
two input links and computes those of the output.

PROTOCOL-UNIT

(SWAP/DIST)

total waiting time into the waiting time for each attempt.
An attempt can fail or succeed and it repeats until the first
successful attempt occurs (see Fig. 2). The total waiting time
Toue 1s given by

K

Tow = Z M(i)

i=1

3

where M@ are i.i.d. random variables characterizing the
waiting time of each attempt and therefore each is a function
of the waiting time of two input links T, T3. For example,
for swap, we have M = max(Tp, Tg), i.e., we need to wait
until both links are ready to perform the operation. K is the
number of attempts we need until the first successful attempt
occurs, which is also a random variable.

Since the success probability of one attempt can be time-
dependent, in general, K is correlated to M), To make this
correlation between K and M in (3) explicit, we introduce
a random variable Y. Y denotes the binary random variable
describing success (1) or failure (0) of a single attempt, sub-
jected to the success probability p. The success probability p
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of one attempt is given by p = p(ta, tg) in Table 1 and it can
be understood as the success probability with given waiting
time 74, tg of the input links

pla,tg) =Pr(Y = 1|Tp =1, Tg = 1).

Notice that, although the success probability can depend on
Werner parameters, i.e., p(ta, g, wa, W), we can always
reduce the Werner parameter dependence to time dependence
by plugging in wy = Wa(t4) and wg = Wp(tp).

With the above definition, we rewrite (3) with a sum over
all possible number of attempts weighted by its occurrence
probability [6]

[ee) k—1 k
Tow=Y A {(YOTT(1-¥?) |- oML @)
k=1 j=1 i=1

The expression in round brackets evaluates to 1 precisely if
Y® = 1andY) = Oforall j < k, and to 0 in all other cases.
This factor thus makes that only the sum Y%, M@ is taken
for which k is the first successful attempt. Notice that ¥/)
and MV are correlated for all i = j because they describe the
same attempts. In the next section, we go further to compute
the probability distribution of T5,;.

2) CLOSED-FORM EXPRESSION FOR THE WAITING TIME
DISTRIBUTION

In the following, we give an expression of the waiting time
distribution Pr(7y = t) for one PROTOCOL-UNIT.

We consider the generation time of a successful or failed
attempt separately and use the joint distribution of M and
Y. We define the joint distribution that one attempt suc-
ceeds/fails and takes time ¢ as

Pi(t):=Pt(M =t,Y =1)

= Y Pr(Tpn =1x,Tg =15) - plia. 1B) )

A tg:max(ta,1g )+He=t

Pi(t) :=Pr(M =1,Y = 0)

= Y Pr(Ta=taTg =1p)-[I — pl(ta.t8) (6)

ta tgmax(ta, 1)+ =t

where ¢ is the time used for classical communication and
local operations. In the above equation, we iterate over all
possible combinations of the input links’ generation time 74,
tg that leads to a waiting time ¢ for this attempt.

With the definition (5) and (6), the sum of the waiting time
for all attempts can be obtained by

Pr(Tu =1)= [(tii PE”) . Ps} I

k=1

where * is the notation for convolution and the sum over k
considers all the possible numbers of attempts. The notation
*'J‘;% Pf(J ) represents the convolution of £ — 1 independent

4103015

functions P;. In the above equation, the discrete linear con-
volution is defined by

1
[ Ll =) [t =1 fo(d). ®)
t'=0
If f1, f» describe two probability distributions of two random
variables, their convolution is the distribution of the sum of
those two random variables. However, neither P; or Py char-
acterizes a random variable since they are joint distributions
including Y. That is to say, P; and Pr do not sum up to 1.

Instead, we have
YR+ P =1. ©)
t t

Therefore, the convolution here cannot be simply interpreted
as a sum of two random variables. Instead, it is the summed
waiting time conditioned on the success/failure of each at-
tempt.

As we will show in Section III-F, (7) is sufficient for the
derivation of the main algorithm for computing the proba-
bility distribution of T, we present in this work. The algo-
rithm’s runtime is partially determined by the sum and the
convolution in the summand in (7). Fortunately, these can
be eliminated by the use of the discrete Fourier transform,
resulting in a faster alternative algorithm. Below, we use the
Fourier transform to derive an equivalent expression to (7).
The alternative algorithm is given in Appendix B.

Since the discrete Fourier transform acts on a finite se-
quence of numbers, we first truncate the probability distri-
bution at a fixed time L, i.e., we obtain the finite sequence
Pr(Tou =Dt =0,1,2,...,L}. If X:=xp,x1,...,X—1 18
a sequence of complex numbers, then its Fourier transform
F(X) is the sequence yg, y1, ..., y._1 given by

L1
Vi= ) X-exp(=2mi-j-k/L) (10)
k=0

where i is the complex unit. The Fourier transform is a linear
map and moreover it converts convolutions into element-
wise multiplication, i.e., F (X'* X') = F(¥) - F(X'). As a con-
sequence, taking the Fourier transform of both sides of (7)
yields

k—1

FeeT =01=Y_ | | [TF(P) | - 7RI | ©.

k=1| \j=1

Because Pf(j ) are identical distribution for all J, we use the
identity Y po; x*~D = 1/(1 — x) to obtain

Py
el } ). (11)

A g |
Pr(Tow = 1) = F [—1 i

3) CLOSED-FORM EXPRESSION FOR THE WERNER
PARAMETER

Here, we derive the expression for the Werner parameter
Wout (7).
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To arrive at Wy (), we first compute the average Werner
parameter of the output link of one attempt, given that it
succeeds and finishes at time ¢

W (1)

> Pr(Ty =ta, Tz =1B) - [P - Woul(ta, 1B)

ta tg: max(ta, tg) + te=t

Py(1)
12)

Here, wgy is the Werner parameter of the output link of
a successful attempt and p the success probability (see
Table 1). We again simplify the notation with wey(#a, 18) =
Wout(?, 1B, Wa(2A), Wr(t)).

Next, we take a weighted average of W, over all possible
sequences of failed attempts, followed by a single successful

attempt:
o0 k—1 .
> [(j*] Pé”) * (P, -Ws)] ®
k=1 =
Wout(t) = 13
out( ) Pr(Tout — I) ( )
where *'ﬁ;{ Pf(j ) computes the waiting time distribution of

k — 1 failed attempts and the additional convolution is the
weighted average.

For (7), which is an expression for the probability distri-
bution of 7oy, we obtained a more compact equivalent, (11),
by moving to Fourier space. By an analogous derivation, we
can get a more compact expression for Wy than (13)

FIPs - Ws]] 1
1 — F[P] ] Pr(Tow = 1)

Wou (1) = F~! [ ®. (14
B. SPECIFIC CASE: GEN

We give here the expression for PROTOCOL-UNIT GEN. Since
GEN does not have input links, the output does not rely on
the expression introduced in the Section III-A. Because one
attempt in GEN takes one time step and the success probabil-
ity pgen is a constant, the waiting time can be described by a
geometric distribution

Pr(Touw = 1) = pgen(l — pgen) "

The output state is a Werner state with Werner parameter wg
as described in Section II-B.

C. SPECIFIC CASE: SWAP

For entanglement swap, since pgyap is constant, Y is not cor-
related with M. As aresult, P and P; differ only by a constant
coefficient [see (5) and (6)]. Therefore, we can factor the
constant out and get

oo
_ k
Pr(Tow =1) = Zpswap(l - pswap)k ! |:ji1m:| (15)

k=1

where

m(t) :=Pr(M =t) = Z

tA tg:max (tp, tg) =t
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Pr(Ta = ta, Tg = 1B).

The constant time . is set to 0. This is exactly the geometric
compound distribution obtained in [18].

For the Werner parameter, we can directly use (13) and
obtain

o]
_ k—1
Wout = Zpswap(l - pswap)k ! |:(ij m) * (m ’ Wb/)i| :

k=1
(16)
Compared to the expression in [18], this expression replaces
the iteration over all pair of possible input Werner parameters
for each k by convolution.
Both expressions above can also be written in
Fourier space by substituting Py = pswapm(t) and
Pr = (1 — pswap)m(t) in (11) and (14).

D. SPECIFIC CASE: DIST

For entanglement distillation, the success probability
depends on the Werner parameters. As discussed in
Section III-A, we can compute T, and Wy, because
we iterate over all possible combinations of fn and fg
and we use W(r) to reduce the dependence on Werner
parameters to the dependence on the waiting time. The
calculation goes as follows. First, we compute Pr and P
using p(ta, tp) = pdiss(W(ta), W(tp)) (see Table 1). Then,
we plug in Pr and P in (7) to compute 7Tgy. Finally, Wy, can
be calculated similarly using Table 1, (12), and (13).

E. SPECIFIC CASE: CUT-OFF

CUTOFF selects the input links and accepts them if the cutoff
condition described in Section II-B is fulfilled. We consider
only the case where CUTOFF is followed by SWAP or DIST, so
that the two blocks together output a single entangled link.

1) WAITING TIME DISTRIBUTION
We define a new binary variable Y., representing whether
the cutoff condition is fulfilled. The corresponding success
probability is described by pcy in Table 1. In addition, we
also define the waiting time of one cutoff attempt as Z, in
contrast to M for a swap or distillation attempt. For CUTOFF,
we need to distinguish the waiting time of a successful and
a failed attempt. In the case of success, we always have
Zs = max(Ty, Tp), i.e., we wait until two links are produced.
However, in the case of failure, the waiting time is differ-
ent for different cutoff strategies. With the notation Zy =
ti1(Ta, Tg), we have the following: for DIF-TIME-CUTOFF,
tail(Ta, Tg) = min(Tp, Ty ) + 7, because there is no need to
wait for the second link longer than the cutoff threshold. For
MAX-TIME-CUTOFF, tg,;(Ta, Tg) is the constant 7, i.e., the
maximal allowed waiting time. For FIDELITY-CUTOFF, it is
ttai1(Ta, Tg) = max(Ty, Tp).

Similar as the nested structure shown in Fig. 2, a swap
or distillation attempt is now composed of several cutoff
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attempts. We can write its waiting time M as

k—1 k—1
k ) k i
M= Z Yc(ut) (1 - thft) ' |:Z§ ) + Z (Zlgl)):|
k j i=1

j=1
This expression will replace M = max(Ty, Tg) used in (4).
For 7 =00 or wey =0, i.e., no cutoff, Y is always 1.
Therefore, k = 1 is the only surviving term and the two ex-
pressions coincide.

To calculate the waiting time distribution, we need three
joint distributions—P{ for unsuccessful input link prepara-
tion because of the cutoff, Ps”f for successful preparation but
unsuccessful swap/distillation, and P; ; for both successful

Pi(t) =Pr(M =1, Yoy = 0)
IA B Ifail A 1B) +1c =1
“[1 = peud (Ta, Tp)
Psl’f(t) =PM=t,Yoy =1,Y =0)
A, tg:Max (I, tg) +te=t

“[Peut - (1 — p)I(a, 1)
Ps/)s(t) =PM=t,You=1,Y=1)

= 2

ta,tgimax (ta, 1g) +tc =t

Pr(Ty =ta, T = 1B)
Pr(Tpy =tp, Ty =)

Pr(Ta = ta, Tg = 1B)

“[Peu - PItA, 1B).

The prime notation indicates that they describe the waiting
time of one attempt in CUTOFF, in contrast to one attempt in
swap or distillation.

For one attempt in swap/distillation with time-out, we then
get similarly to (7)

P(t)=Pr(M =1,Y =1) = Z [(’Epf@) * PS”S] (1)

Jj=

k
k21 o) /
Pi(t) =Pr(M =1,Y =0) = P P
(1) = Pr(M = 1,Y = 0) ;[(/.fl g )* S,f] ®
as well as the expressions in Fourier space analogous to (11)
FIP.]
P()=PM=1,Y =1)=F ' | —2>_
(1) = Pr( )=F [1—f[PgJ
FIP,]
P(t)=Pr(M =1,Y =0)=F ' | —=—|.
((1) = Pr( ) [l_ﬂpﬂ

The total waiting time then follows by substituting the ex-
pressions for Pr and Ps above in (7) or (11).

For entanglement swap, i.e., constant success probability
Pswap, Simplification can be made for this calculation. In this
special case, P, and P differ only by a constant and the
same holds for Py and P.

4103015

2) WERNER PARAMETER
For the Werner parameter, we now need three steps.

We start from calculating the resulting Werner parameter
of a swap or distillation for the very last preparation attempt
where Yoy = Y = 1. Itis denoted by W, and we only need to
replace P by P and p - wout bY peut - P - Wour in (12).

Next, we compute the Werner parameter W(7) as a func-
tion of time ¢ that includes the failed cutoff attempts, in ana-
log to the derivation of (13). Wi(¢) is the Werner parameter
that the pair of output links of cuTOFF will produce, given
that the swap or distillation operation following is successful:

> [ (arm) < oxmo] o
W) = = .
0

Finally, we consider the time consumed by failed attempts in
SWAP or DIST and obtain

> (an) @m0
k=l L=
Wout (1) = Pr(Tom = 1) .

Using the Fourier transform, the two expressions above
become

FIP-WT 1
| s s
W) = F |: 1— FIP] ]Ps
I .F[Ps ) WS] 1
Wout(t) =F |: 1 — ]:[Pf]i| Pr(Tout = t).

F. CONVERTING THE CLOSED-FORM EXPRESSIONS INTO
AN EFFICIENT ALGORITHM

In the sections above, we presented closed-form expressions
for Ty and Wy, for each of the four PROTOCOL-UNITS, as a
function of waiting time distribution and Werner parameter
of the input links. In order to convert these expressions into
an algorithm, we take the same approach as in [18] and cap
the infinite sum in (7) and (13) by a prespecified truncation
time #irunc. This yields a correct Pr(Toy = t) and Wy () for
t €{l,..., tyunc} Since in each of the expressions with an
infinite sum above, Pr(T,y = t) and Wy (¢) are only depen-
dent on waiting time and Werner parameter of input links
produced at time ¢’ < 7.

We now show that the algorithm scales polynomially in
terms of fyunc. To analyze the complexity, we divide the
algorithm into two parts: computing the distribution for one
attempt, i.e., the iteration over all possible values of Ty, T
[(5), (6), and (12)] and for the whole PROTOCOL-UNIT[(7) and
(13)].

The complexity for the first part is O(2,,,.) since it iterates
over two discrete random variables up to #irync. For the second
part, because we need at least one time step in each attempt,
i.e., Pr(T = 0) = 0, only the first #;ync convolutions will have
nonzero contribution. We can perform the convolution it-
eratively for each k using at most fyypc convolutions. The
complexity of one convolution with fast Fourier transform
(FFT) is O(tyunc 108 tirunc) [28]. Thus, the complexity of the
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second part scales as (’)(ttzmnc log firunc)- The overall complex-
ity, therefore, is (9(t12nmc log tirunc)-

In Appendix B, we show that with further simplifica-
tion of (5) and (6) as well as expressions in Fourier space
[see (11) and (14)], the complexity can be reduced to
O(trunc 108 tirunc ), With an exponentially vanishing error.

The preceding discussion shows that the algorithm is ef-
ficient as a function of the truncation time. However, for
fixed truncation time, the probability mass captured by the
algorithm decreases as the number of nodes increases. For
protocols without cutoff, variations of the arguments in [18]
would allow to prove that the algorithm introduced here is
also efficient for fixed probability mass. Unfortunately, the
arguments do not translate to protocols with cutoff. This is
because for these protocols, the truncation time that covers
a fixed probability mass can grow exponentially with the
number of nodes, i.e., such an algorithm can not exist.

As an example, consider a nested protocol on 2" repeater
segments (n =0, 1,2,...), which for n =1 consists of a
GEN block only, and for each additional level n > 1, each
pair of adjacent links is connected by a cuTOFF followed
by a swap. We set T = 0 for each cutoff, i.e., all elementary
links need to be generated at the same time and also all en-
tanglement swaps should succeed at the first attempt for the
links to survive all the cutoffs. Since 2" elementary links need
to be generated and the protocol consists of 2" — 1 swaps,
the probability of successful end-to-end entanglement before
time 7 equals 1 — (1 — p) with p = pic!- pi2. ie., de-
creases exponentially in the number of nodes N = 2" + 1.

IV. OPTIMIZATION

In this section, we describe the details of our optimization
over cutoffs, including the figure of merit and optimization
method.

In our numerical study, we use the secret-key rate of the
BB84 protocol [29] as a figure of merit to assess the per-
formance of composite repeater protocols. We compute the
secret-key rate R as the secret-key fraction divided by the
average waiting time

R=— (17)
=<

The secret-key fraction r describes the amount of secret key
that can be extracted from the generated entanglement and is
given by [30] and [31]

r(w) = max {0, 1 — hlex(w)] — hlez(w)]} ~ (18)

where h(p) = —plog,(p) — (1 — p)log,(1 — p) is the bi-
nary entropy function and ey (ez) is the quantum bit error rate
in the X (Z) basis. Since the quantum states tracked by our
algorithm are Werner states at any point in the execution of
the composite repeater protocol (see Section II), the quantum
bit error rate can be expressed as function of the end-to-end
state’s Werner parameter

1—w

2

ez(w) = (01{p(w)|01) + (10[p(w)[10) =
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for a Werner state p(w) defined in (1). The same result holds
for ex because of the symmetry of the Werner state. In Ap-
pendix C, we detail how we compute the secret-key rate with
truncated waiting time distribution and Werner parameter
obtained from the algorithm in Section III-F.

Since we have discrete time steps, we need an optimization
algorithm which is compatible with a discrete search space.
We choose the differential evolution algorithm implemented
in the SciPy-optimization library of the Python programming
language [32], [33].

V. NUMERICAL RESULTS

In this section, we optimize over repeater protocols with
cutoffs in order to maximize the rate at which secret key
can be extracted from the produced end-to-end entangle-
ment. First, we use our algorithm from Section III and the
DIF-TIME-CUTOFF strategy (see Section II) to study the effect
of the cut-off on the waiting time and fidelity and show that
the use of a cutoff boosts secret-key rate. We then extend
our study to two other cutoff strategies, MAX-TIME-CUTOFF
and FIDELITY-CUTOFF, and compare their performance. For
all three cutoff strategies, we observe that the resulting re-
peater protocols produce secret key at significantly higher
rates than their no-cutoff alternatives. Finally, we focus on
the DIF-TIME-CUTOFF strategy and analyze the sensitivity of
the optimal cutoff threshold with respect to the hardware
parameters.

We investigate repeater protocols with three nesting levels
where at each nesting level the range of entanglement is dou-
bled by an entanglement swap. The protocol thus spans 2° =
8 segments (8 + 1 = 9 nodes). Each entanglement swap op-
eration is preceded by a cutoff, i.e., the scheme is of the form

GEN — (— CUTOFF — SWAP)S. (19)

Because cutoff is aimed to mitigate the loss of decay during
the storage, we focus on parameter regimes where memory
decoherence is the bottleneck for achieving high-fidelity en-
tanglement.

As shown in (19), we consider in the numerical study
only protocols without distillation, which allows us to study
the improvement that cutoff brings to repeater protocols.
We leave a systematic study of distillation protocols with
cutoff for future work. Also, for simplicity, we ignore the
time needed for classical communication for swap as well
as the time to perform the local operations. The difference
is negligible since in the parameter regimes studied, most of
the time is used in repeating failed attempts rather than in
communication, as investigated in [18, Fig. 6].

The numerical results in this section were obtained us-
ing our open-source implementation [34] of the algorithm
from Section III on consumer-market hardware (Intel i7-
8700 CPU). We validated correctness of the implementation
by comparison with an extended version of the Monte Carlo
algorithm from [18] (see Fig. 4 and Appendix B for details).
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FIGURE 4. Probability distribution of the waiting time T and the average
fidelity F (t) of the end-to-end link for a protocol with and without a
cutoff on entanglements’ production time differences (solid and dashed
lines) for a nine-node repeater protocol of the form as in (19) (unit of
time is the attempt duration of elementary link generation, Lo/c). We
observe that the fidelity increases for most times ¢ while the probability
that the link is produced at time ¢ shifts to larger ¢, indicating a longer
waiting time. The secret-key rates computed from the data are 0 (without
cutoff) and 0.32 . 107 (with cutoff). The parameters used are

Poen = 1074, pyop = 0.5, wo = 0.98, L., = 4 - 10° and the cutoffs for the
three nesting levels are 7 = (1.7, 3.2, 5.5) - 10* (in increasing order of
number of segments spanned by the cutoff block). Computation time ~
20 s for 3 . 10° time steps. We observe good agreement with a Monte
Carlo algorithm (dots), which we use for validating the correctness of our
implementation (see Appendix A for details).

A. EFFECT OF DIF-TIME-CUT-OFF ON THE WAITING TIME
AND FIDELITY

We start by investigating the DIF-TIME-CUTOFF strategy,
where links are discarded if their production times differ by
more than a predetermined threshold . We compute waiting
time and average fidelity for a particular choice of the cutoff
threshold at each of the three levels and compare it with the
protocol without cutoff (cutoff duration T = oo at each nest-
ing level), see Fig. 4. We observe that the cut-off increases
fidelity at the cost of longer waiting time, as one would intu-
itively expect. We further quantify the time-fidelity tradeoff
for a range of cutoffs in Fig. 5. For maximizing the secret
key rate, we observe a single optimal choice of the cutoff
threshold .

B. EXTENSION TO OTHER CUTOFF STRATEGIES

We extend the analysis of the previous section to two other
cutoff strategies: a cutoff on the fidelity (FIDELITY-CUTOFF)
and on the total waiting time (MAX-TIME-CUTOFF, see Sec-
tion II and Table 1 for definitions). To be precise, we choose
the same nine-node protocol from (19) and use FIDELITY-
CUTOFF and MAX-TIME-CUTOFF as the CUTOFF unit, respec-
tively.

We observe that a single optimal cutoff threshold exists for
both strategies, as we saw before already for the DIF-TIME-
CUTOFF strategy in Fig. 5. For each strategy, we optimize
their cutoff parameters and plot the waiting time distribution
and fidelity distribution in Fig. 6. As shown in the figure,
although the FIDELITY-CUTOFF yields the highest secret-key
rate, the distribution and resulting secret-key rate of the
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FIGURE 5. Influence of choice of cutoff on average waiting time, average
fidelity and secret-key rate for repeater protocols of the form (19) where
the cutoff strategy is DIF-TIME-CUTOFF. (Top) Increasing the cutoff yields
higher average generation rate (reciprocal of average waiting time T) but
lower average fidelity F. (Bottom) The secret key rate R as a function of
the cutoff time. The used parameters are p,., = 1073, py.p = 0.5,

wo = 0.98 and t..,, = 4 - 10%. The chosen truncation time is 5 - 10°. The
cutoff time is chosen identical for all three swap levels. Unit of time is
the attempt duration of elementary link generation.

DIF-TIME-CUTOFF strategy are very close to those of
the FIDELITY-CUTOFF strategy. In contrast, the MAX-TIME-
CUTOFF strategy performs comparably worse in the achieved
secret-key rate (= 10%). We find similar behavior also in
other parameter regimes.

Since the DIF-TIME-CUTOFF strategy is straightforward to
implement in experiments while it performs only marginally
worse than the best of the three strategies (FIDELITY-CUTOFF),
we focus on this strategy for further analysis.

C. PERFORMANCE OF THE OPTIMAL CUTOFF FOR
VARYING HARDWARE PARAMETERS

We proceed with optimizing the cutoff in the DIF-TIME-
CUTOFF strategy to maximize the secret key rate for a range
of parameters. The maximal secret-key rates for different
repeater parameters are shown in Fig. 7(a)-(d). We observe
that cutoffs extend the parameter regime for which secret key
can be generated. One can also read from the figures how
much cutoff lowers the requirements on hardware parameters
for a given target secret key rate. To see how much one can
gain in the secret key rate by using cutoffs, we choose two pa-
rameters f.on and wg and plot the absolute increase in Fig. 8.
We observe that the use of the optimal cutoff increases the
secret key rate for the entire parameter range plotted and the
improvement is largest close to the threshold parameters at
which the no-cutoff protocol starts to produce nonzero secret
key.

In addition, we compare uniform and nonuniform cutoffs,
where “uniform” means that we choose the same cutoff time
for each nesting level. For the parameter regimes studied, we
observe that nonuniform and uniform cutoff perform simi-
larly, see Fig. 7(a)—(d).

Our next step is the sensitivity analysis of cutoff perfor-
mance in the hardware parameters. For this, we first choose
baseline values for the four hardware parameters and find
the corresponding optimal cutoff Tpageline. Given a target set
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FIGURE 6. Comparison between three different cutoff strategies: cutoff on the difference of entanglements’ production time (DIF-TIME-CUTOFF), the
fidelity (FIDELITY-CUTOFF) and the total waiting time (MAX-TIME-CUTOFF, see Section Il for definitions). For each strategy, we find the optimized cutoff
threshold when applied to the nine-node repeater chain protocol from (19) with parameters: p,., = 0.1, py., = 0.4, wo = 0.98, t.,, = 600. For each
cutoff strategy, the plot shows the numerically found waiting time and fidelity distribution for the optimal protocol. We observe that the
FIDELITY-CUTOFF strategy yields the largest secret-key rate. However, the DIF-TIME-CUTOFF strategy only performs slightly worse. We observed the same
behavior for all other parameter regimes we investigated.
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FIGURE 7. Effect of the optimal cutoff (cutoff on the difference in entanglements’ production times) on secret-key rate for different hardware
parameters, for the nine-node protocol as in (19). We choose a set of parameters as baseline parameters (p,., = 0.002, p,,., = 0.5, wo = 0.97 and
t..» = 35000) and in each plot in the figure, we vary only one of the four parameters. The top plots (a)-(d) show the performance of the protocol with
optimized cutoffs, where the optimization is implicitly performed for each data point separately. The set of cutoffs we optimize over is either
nonuniform (allow for different cutoffs at the three nesting levels of the protocols) or uniform (same cutoff at each level). We observe that the
performance difference between uniform and nonuniform cutoffs is small or even negligible. The plots also indicate parameter regimes in which the
protocol with the optimal cutoff generates key while its no-cutoff alternative does not (i.e., the no-cutoff has zero secret-key rate). The bottom plots
(e)-(h) show relative performance improvement (20) of the optimal cutoff (z......) for a given data point, versus the optimal cutoff 7,.iin. for the baseline
parameters (see above). The plots show that cutoff performance is most sensitive to coherence time (t..,), while it is least influenced by varying the
success probability entanglement swapping (p...,). For a detailed explanation see the main text. Note that the smaller the relative secret-key rate
improvement (vertical axis), the closer the performance of 7y, is to the performance of the optimal 7., which is why in the plots the
best-performing “nonuniform” cutoff shows smaller relative improvement than the best-performing “uniform” cutoff. The purple circles refer to the
baseline parameters, for which the relative improvement is 0 by definition.

of parameters that deviates slightly from the baseline values where R is the secret-key rate achieved by the repeater pro-
(optimal cutoff Tager), we quantify the sensitivity by their tocol. If this relative difference is small, the performance of
relative performance difference cutoff is insensitive to the parameter deviation.

In Fig. 7(e)-(h), we plot the relative performance differ-
ence for deviations in each of the four hardware parame-
ters separately. We find that the performance of the baseline
cutoff is influenced most by variation in coherence time,

R(Ttarget) — R(Tbaseline)
o e (20) while it is largely insensitive to change in the swap success

R (Ttarget )
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FIGURE 8. Absolute increase in secret key rate with the optimal cutoff
compared to no cutoff as a function of memory coherence time and
fidelity of the elementary links (= (1 + 3wo)/4, see Section Il), for the
9-node repeater protocols as in (19) where the used cutoff strategy is
DIF-TIME-CUTOFF. The black solid line separates the area where the
no-cutoff protocol produces no secret key (left of the line) and where its
secret-key rate is strictly larger than zero (right of the line). We observe
that for the entire parameter range depicted in the figure, cutoffs
increase the secret key rate and the absolute improvement is largest for
parameters close to the key-producing threshold for the no-cutoff
protocol (i.e., close to the black solid line). The plot consists of 126 data
points on a grid and the used parameters are p.., = 0.001 and

Pswap = 0.5. Time unit is the duration of a single elementary link
generation attempt.
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FIGURE 9. Optimal cutoff as a function of the memory coherence time in
the nested 9-node repeater protocols from (19), where the cutoff strategy
is (DIF-TIME-CUTOFF). We observe that the numerically found optimal
cutoff for different levels is a linear function of the coherence time. Solid
lines are linear fits. The hardware parameters used are the same as
those for Fig. 7(d). When considering the same protocol on fewer nesting
levels (three and five nodes, respectively), we observe similar behavior.

probability. For the coherence time and the remaining two
parameters, the elementary link quality and the success prob-
ability of elementary link generation, we distinguish the case
where the parameter is improved and the regime where the
parameter is made worse. We observe that a worse parameter
results in a significant performance difference with the opti-
mal cutoff, while the performance difference is small when
the parameter is improved.

We finish by investigating the most influential parameter,
the coherence time, in Fig. 9. We observe that the optimal
threshold depends approximately linearly on the memory
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coherence time, which could serve as a heuristic for choosing
a performant cutoff.

VI. CONCLUSION

In this article, we optimized the secret key rate over repeater
protocols including cutoffs. Our main tool is an algorithm for
computing the probability distribution of waiting time and fi-
delity of the first generated end-to-end link. The algorithm is
applicable to a large class of quantum repeater schemes that
can include cutoff strategies and distillation. Its runtime is
polynomial in the support size of the probability distribution
of waiting time.

Our simulations show that the use of the optimal cutoff
lowers the hardware quality threshold at which secret key can
be generated compared to the no-cutoff alternative. Further-
more, we observed an increase in secret-key rate for the entire
regime studied for which the no-cutoff protocol produces
nonzero key.

Regarding the choice of cutoff, we find that uniform cut-
offs lead to a negligible reduction in the secret key rate com-
pared to the optimal set of cutoffs which differ per nesting
level. Moreover, the optimal uniform cutoff is highly sensi-
tive to the quality of the memory, while it is barely influ-
enced by the success probability of swapping. Such sensi-
tivity could guide the heuristic cutoff optimization of more
complex protocols.

APPENDIX A

VALIDATION AGAINST A MONTE CARLO ALGORITHM

In this section, we verify that our implementation of the
deterministic algorithm presented in Section III is correct
by validation against the Monte Carlo sampling algorithm
from Brand et al. [18]. For all repeater schemes we ran (up
to 2!% + 1 nodes for some parameters), we observed good
agreement between the waiting time probability distribu-
tion and Werner parameter the algorithms computed, which
is convincing evidence that our implementation is correct.
Fig. 4 depicts the result of a typical run.

What follows is a brief description of the Monte Carlo
algorithm from Brand et al. [18], including an extension to
cUTOFF. Each run of the Monte Carlo algorithm samples a
tuple of waiting time and Werner parameter. It is defined re-
cursively by having a dedicated function for each PROTOCOL-
UNIT (described below) call the dedicated functions of
the two PROTOCOL-UNITs that produce its two input links.
The recursion follows the repeater protocol’s tree structure
(see Fig. 1), resulting in a sampling algorithm of waiting time
and Werner parameter of the entire repeater protocol.

The dedicated functions for each of the four PROTOCOL-
uNITs are as follows. If the protocol is only a GEN, the
Monte Carlo algorithm samples the waiting time from the
geometric distribution with parameter pgen and the Werner
parameter is the constant wy. For the other PROTOCOL-UNITS,
each of which takes two links as input, the algorithm begins
by initializing the total elapsed time ¢ = 0. Then, it enters a
loop which starts by calling the dedicated functions of the
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PROTOCOL-UNITS that produce the two input links, resulting
in two samples (t4, wy) and (tp, wg). The algorithm ran-
domly declares ‘success’ or ‘failure’ according to the success
probability in Table 1. If it succeeds, the function breaks the
loop and outputs ¢ + max(t4, ) and the resulting Werner pa-
rameter wou(t4, Wy, tg, wp) (see Table 1). If it fails, the total
elapsed time ¢ is increased by the waiting time (max(t4, )
for swaP and DIST, min(t4, tg) + T for cUTOFF) and the func-
tion goes back to the start of the loop.

APPENDIX B

ALTERNATIVE ALGORITHM AND ITS COMPLEXITY

In Section III-F, we presented an (’)(ttzmnc 10g tirunc )-
algorithm for evaluating analytically-derived expressions
for the waiting time distribution and average fidelity.
Here, we outline how the algorithm can be modified to
achieve a complexity reduction to O(fyunc 10g firune) for
protocols composed of PROTOCOL-UNITS in Table 1 except
for FIDELITY-CUTOFF. Similar to the algorithm from the
main text, the modified algorithm consists of two steps:
first, evaluating the expressions regarding a single attempt
[see (5), (6), and (12)], followed by computing expressions
regarding the whole PROTOCOL-UNIT [see (11) and (14)]. We
show a complexity reduction for both.

For the first part, we show how to evaluate (5), (6), and (12)
in time O(fyunc), improving on the O(#2,,.) runtime of the
algorithm in the main text. Our insight here is that p and p -
Wout, for SWAP and DIST (see Table 1), can always be written
in the form

> Oa) - g0m) 1)

i

where the ) and g are arbitrary functions on the real
numbers. For instance, given fp > g, we can write the
success probability of distillation pgi; with f(D(14) =
3 gV =1 and  fPa) = Jwalia) exp(—55%),
gP(1) = wg(tp) exp(B=). Consequently, each of (5),
(6), and (12) can be written in the form

Icoh

> Pr(Ty =ta, T = 15) - »_ £V (ta)g" (tn)
ta,tg max(fa,tg )=t i
(22)
which can be rewritten by splitting up the sum in the regime
ta >tgand i > ty

13
Y Pr(Ty=1.Tg =15)- Y fP0)g”(tg)

tg=0 i

t—1

+ ) Pr(Ta=iaTo=0-)_ fPuag”®). (23)

ta=0 i

The first term in (23) can be written as

Pr(Ty =1)- Yy fO1)- G (24)
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where we have defined

t
GO(t)="Y_ Pr(Ts =1p)g"”(tp).

tg=0

The expression for the second term in (23) can be found
analogously. Computing (24) for all ¢ is now performed by
first computing G (¢) for all ¢, which requires linear time in
frune, and then evaluating (24) for fixed ¢ in constant time.
Therefore, the complexity for computing (24) and also for
(22) for all 7 scales as O (fyunc )-

This complexity holds also for protocols with DIF-TIME-
CUTOFF and MAX-TIME-CUTOFF, as the cut-off condition ap-
pears only as an additional constraint on 74 and g in the sum
of (23). For the third cutoff strategy we consider in this work,
FIDELITY-CUTOFF, the cutoff condition is not a function of
time and therefore the above method does not work.

The second part regards the evaluation of (7) and (13)
which is done exactly by the algorithm from the main text in
time O(ttzrunc log tunc )- Here, we give an O (tyync 10g trunc )-
algorithm which evaluates the equivalent expressions in
Fourier space given in Section III-F [see (11) and (14)]
with arbitrarily small error. We proceed in two steps. First,
we show how to evaluate the expressions in Fourier space
exactly in time O(t2,,. 10gt2,,.)- Then, we show how to
achieve a reduction to O(fgunc 108 firunc) With an arbitrarily
small error.

The expressions in Fourier space [see (11) and (14)] hold
for any t in case Py, Py and W; are defined for all # > 0.
However, in the implementation, we truncate the distribution
and only have access to them for 0 < ¢ < tyyn¢, €ach stored
as an array of length #n¢, and use the discrete Fourier trans-
form defined in (10). The convolution defined in this way is
a circular convolution

t
A1) =Y fit—1) - ()
=0
L—1
+ Y AL+1=1)- fo)  (25)

t'=t+1

where L is the length of the array and % denotes the circu-
lar convolution. The circular convolution introduces discrep-
ancy compared to the linear convolution defined in (8) be-
cause [f1%/21() = [f1 * f21(®) + [f1 * f2l(L + ). To avoid
this, we pad the arrays of P, Py and W, with zeroes un-
til a length of L = 2., which is longer than the size of
frune times convolution of arrays of size fyyne (see equiva-
lent expressions (7) and (13), and the algorithm presented in
Section III-F). That is, we set Py() = 0 and Ps(t) = O for
toune <t <L = ttzrunc. With this setup, the summand in the
circular convolution is always 0 for # > ¢ and it coincides
with the linear one. The complexity of the obtained algorithm
evaluating (11) and (14) is dominated by one Fourier trans-
form and one inverse Fourier transform on an array of length
O(t2,nc)- Since a Fourier transform on an array of length L
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can be performed in time O(LlogL), the algorithm has a
complexity of O(t2,nc 102 12ne)-

We now show that we can reduce this complexity by zero-
padding the arrays only until a length of Ctyyn. for some

predefined constant C, yielding an exponentially small error
€ = mtax (| Pr(Tow =1) — Pr(Tapprox = t)|) (26)

in C of the distribution Pr(T;pprox = t) obtained with circu-
lar convolution. The resulting algorithm has complexity of
O(Ctyync log(Ctirunc)) = O(tunc log firunc)-

The motivation behind this reduction is that Pr(Tyy = 1)
is the sum of all possible sequences of failed attempts [see
(7)] and is exponentially decreasing for large ¢. For a fixed
number of attempts k, the probability results from a success-
ful attempt after at least k — 1 failed attempts. Therefore, it
has an occurrence probability of at most (1 — p)~!, where
p is the success probability for a PROTOCOL-UNIT. To see
this mathematically, we use the Young’s convolution inequal-
ity [35] and obtain
k

—1 . _ _
* BV w P <IRITIRL < = p)ft @)

J

where the norm is defined by || f(¢)|| = Y, f(¢). In addition,
note that

k—1 i
|:'*1 Pf(J) % Ps] t)=0 for t> ktqunc
j=

because P(t) and Pg(¢) are finite arrays of length fuunc.
Hence, for t > Ktyune, we only need to consider the terms
with k > K + 1, i.e., cases with at least K failed attempts. As
aresult, we obtain a bound for the probability given in (7) for
t Z Kttrunc

(1—p)¥

Pr(lw=1)< Y (1-pf'=
p

k=K+1

The above expression bounds the distribution with an ex-
ponentially decreasing probability with respect to the mini-
mal number of failed attempts, which we now use to bound
the error. Because of the circular convolution (25), if we only
zero-pad to Ctyunc, the obtained distribution is given by

o0
Pr(Tapprox = 1) = Z Pr(Tou =7 + jClirunc)
j=0
for 0 <t < Ctyync. That is, the probability for ¢ > Ctyync
(j > 0) will be added to the first Ctypc €lements, introducing
an error in the final result. This error is bounded by

o]

_\jC _\C
oy U=pt _d-p)

p - 29

J=1

which is exponentially small in C. The same bound can be
given in analog for the calculation of Wy (¢) defined in (13)
by noticing that Wy(¢) < 1.

The above bound is only for a single PROTOCOL-UNIT and
does not account for the propagation of noise among different
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FIGURE 10. Computation time of the algorithm from Appendix B as a
function of the number of nodes in the repeater chain using
consumer-market hardware (Intel i7-8700 CPU). We plot the
computation time for three different p,,., and for protocols of the form
GEN = (— cuTtorr — swap)”, similar to (19), where n is the nesting level
and the number of nodes is 2" + 1. The truncation time is chosen such,
that 99% of the probability mass is covered. Note that the plot’s axes are
both given in logarithmic scale; in such a log-log plot, a polynomial
function is represented as a line. The used cutoff strategy is
DIF-TIME-CUTOFF and the other parameters used are: p,, = 0.1,

wo = 1.0, .oy = 500/p‘."a‘p, T= 42/pf;a'[,. In this plot, the number of

SW:

truncation time steps goes up to about 10°.

levels. However, in practice, as long as one chooses a C large
enough so that the error on each array value is below the
numerical accuracy, this improved algorithm gives the same
result as the algorithm provided in the main text. In addition,
the above bound is very loose. In our numerical study, we
find that, if the truncation time f#ync 1S chosen so that more
than 99% distribution is covered, it suffices to triple the size
of the array during the calculation, i.e., set C = 3.

Although in general there exists no efficient algorithm
which captures a constant fraction of the probability mass
for protocols including a cutoff (see Section III-F), we nu-
merically find that the algorithm outlined above scales poly-
nomially in the number of nodes in some parameter regimes,
see Fig. 10.

APPENDIX C

CALCULATION OF THE SECRET-KEY RATE

Here, we show how we calculate the secret-key rate with
truncated waiting time distribution.

One could think of the secret-key rate, computed with
finite truncation time #ypc < 00, as an approximation of the
real secret-key rate or, alternatively, as the rate achieved by
the following repeater protocol. The protocol starts with the
two parties at the end nodes agree on a truncation time fgync.
If up to t = fiunc the end-to-end link has not been delivered,
the protocol terminates and restarts from GEN. Therefore, the
number of protocol executions follows the geometric dis-
tribution with success probability py = Pr(T < fyync). The
waiting time for a failed protocol is #yynec While for a success-
ful one it follows the waiting time distribution Pr(7" = ¢) for
t < tiyunc- The average total waiting time is then the sum of
the time consumed in failed and successful executions

00 !
] Sl pR(T = 1)
T =1 ° k ) 1 - ¢ o .
trunc (1;_1 Pu( Pu) ) + Pr(T < tyunc)
(29)
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Accordingly, the average Werner parameter is an average
over the successful execution

W > W(e) - Pr(T = 1)
Pr(T < tirunc)

(30)

With the above equations, we calculate the secret-key rate
defined in (17). In this article, we choose heuristically a fync
such that Pr(T < tyunc) = 99%. With this choice, the differ-
ence in the secret key rate between protocols with finite and
infinite #ync is negligibly small.
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