<]
TUDelft

Delft University of Technology

Diffraction grating parameter retrieval using non-paraxial structured beams in coherent
Fourier scatterometry

Soman, S.; Pereira, S. F.; Gawhary, O. El

DOI
10.1088/2040-8986/ac4abb

Publication date
2022

Document Version
Final published version

Published in
Journal of Optics (United Kingdom)

Citation (APA)

Soman, S., Pereira, S. F., & Gawhary, O. E. (2022). Diffraction grating parameter retrieval using non-
paraxial structured beams in coherent Fourier scatterometry. Journal of Optics (United Kingdom), 24(3),
Article 034006. https://doi.org/10.1088/2040-8986/ac4abb

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1088/2040-8986/ac4abb
https://doi.org/10.1088/2040-8986/ac4abb

Journal of Optics

Diffraction grating parameter retrieval using non- T
. M . UKI Imizu, Liang-Chia en, Dae

paraxial structured beams in coherent Fourier Wook Kim et al.

scatterometry " mensions i exreme uiravigier

scatterometry by modeling systematic
errors

To cite this article: S Soman et al 2022 J. Opt. 24 034006 Mark-Alexander Henn, Hermann Gross,
Sebastian Heidenreich et al.

- Interferometric coherent Fourier
scatterometry: a method for obtaining high

) ) . sensitivity in the optical inverse-grating
View the article online for updates and enhancements. problem

S Roy, N Kumar, S F Pereira et al.

This content was downloaded from IP address 154.59.124.113 on 14/03/2022 at 13:23


https://doi.org/10.1088/2040-8986/ac4abb
https://iopscience.iop.org/article/10.1088/1361-6501/abc578
https://iopscience.iop.org/article/10.1088/1361-6501/abc578
https://iopscience.iop.org/article/10.1088/0957-0233/25/4/044003
https://iopscience.iop.org/article/10.1088/0957-0233/25/4/044003
https://iopscience.iop.org/article/10.1088/0957-0233/25/4/044003
https://iopscience.iop.org/article/10.1088/0957-0233/25/4/044003
https://iopscience.iop.org/article/10.1088/2040-8978/15/7/075707
https://iopscience.iop.org/article/10.1088/2040-8978/15/7/075707
https://iopscience.iop.org/article/10.1088/2040-8978/15/7/075707
https://iopscience.iop.org/article/10.1088/2040-8978/15/7/075707
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsu83AnE0U-s2WLD2wmBxI_xOHHpi7hihglHmwESYCrtOJrs8fZ0PR35gZXqWmzyIT2bWGb2gP-_xScxSheSwxsLdOITo2v8f4cq1nQv69dR0az9Ijx9kfHsISgkhGnnQGyeRT0AA2PWpP26tVA8In0xXk0m6LJe2xTV7wSwnXJSzt4hd5tttj7EHyaXDVC6DsarDA4vMV8BxDaLG8XmiTVSh9ycKeaH9aYY3JJAcirebSob6-BMoxbLYqUdfU6wGux2ff7AY4vWodHUkp-18DsyLlJJRr7PDzg&sig=Cg0ArKJSzFQ5cxl73fYQ&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

OPEN ACCESS
I0OP Publishing

Journal of Optics

J. Opt. 24 (2022) 034006 (9pp)

https://doi.org/10.1088/2040-8986/ac4abb

Diffraction grating parameter retrieval
using non-paraxial structured beams

in coherent Fourier scatterometry

S Soman*©, S F Pereira and O El Gawhary

Optics Research Group, Imaging Physics Department, Faculty of Applied Sciences, Delft University of
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

E-mail: s.soman@tudelft.nl

Received 15 November 2021, revised 9 January 2022
Accepted for publication 12 January 2022
Published 3 February 2022

®

CrossMark

Abstract

In recent years, a lot of works have been published that use parameter retrieval using orbital
angular momentum (OAM) beams. Most make use of the OAM of different Laguerre-Gauss
modes. However, those specific optical beams are paraxial beams and this limits the regime in
which they can be used. In this paper, we report on the first results on retrieving the geometric
parameters of a diffraction grating by analysing the corresponding complex-valued (i.e.
amplitude and phase) Helmholtz Natural Modes (HNM) spectra containing both the azimuthal
(i.e. n) and radial (i.e. m) indices. HNMs are a set of orthogonal, non-paraxial beams with finite
energy carrying OAM. We use the coherent Fourier scatterometry (CFS) setup to calculate the
field scattered from the diffraction grating. The amplitude and phase contributions of each HNM
are then obtained by numerically calculating the overlap integral of the scattered field with the
different modes. We show results on the sensitivity of the HNMs to several grating parameters.

Keywords: scatterometry, optical metrology, structured beam, coherent Fourier scatterometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Semiconductor devices have been a major driving force in the
rapid technological advances witnessed during the last few
decades. The continuous reduction in the size of these devices
have made a tremendous impact on our lives both at an indi-
vidual and societal level. Although the reduction in device size
improves the processing speed and lowers the power consump-
tion, it comes at the cost of introducing many manufacturing
challenges. With the increasing patterning resolution, determ-
ination of the different pattern parameters of nanostructures
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such as a diffraction grating (period, line-width, height and
side wall angles) with sub-nanometer precision becomes one
of the key challenges for ensuring a good device performance
of a lithographic scanner [1-5].

The fundamental challenge for metrology in manufacturing
applications is the inspection of small structures while main-
taining good yield and profitability [6]. This limits the use of
methods such as Scanning Electron Microscopy and Atomic
Force Microscopy as they can be destructive, slow or demand-
ing in terms of operating conditions. Optical scatterometry
provides a fast, low cost, precise, and non destructive alternat-
ive, making it one of the most prevalent inline metrology tech-
niques in the semiconductor industry. Assuming enough prior
knowledge on the sample is available (a condition which is
not always met), scatterometry can be considered as a model-
based metrology technique based on the light scattered from
an object. A unique solution to the inverse scattering problem
can be obtained if some information about the object geometry

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Phase (a) and normalised amplitude (b) profiles of a few HNMs in the Fourier domain. The normalised amplitude profile is the

same for all modes.

is known a priori [7, 8]. Within the field of scatterometry,
there are a number of different measurement strategies that
are often used to characterise different symmetric and asym-
metric pattern parameters including coherent Fourier scattero-
metry (CFS), white light interference Fourier scatterometry,
spectroscopic ellipsometry, and Mueller polarimetry [9-17].
In CFS, a coherent beam is tightly focused on the sample
and the far field patterns are recorded on a CCD camera. These
far field maps are compared to rigorous simulations calculated
for a range of different grating parameters. Conventional CFS
uses truncated Gaussian beams for the coherent illumination of
the back focal plane of the objective. Recently, several works
have been published demonstrating the use of coherent struc-
tured light beams illumination in both CFS [18] and other scat-
terometric methods [19-25]. Most of them use the Laguerre-
Gauss modes, a set of solutions to the paraxial Helmholtz
equation, for the illumination. They have the advantage of
being shape invariant within the paraxial domain. In this paper,
we introduce the use of Helmholtz Natural Modes (HNMs) in
CFS to characterise the geometric parameters of a diffraction
grating [26]. HNMs are solutions to the Helmholtz equation
(and therefore are not limited to the paraxial regime) and make
a complete, finite-energy, orthogonal, propagation invariant
set of modes. Due to the presence of a helical phase pro-
file, HNMs naturally carry orbital angular momentum (OAM).
They also carry a new type of radial topological charge (in
the form of a radial phase profile of the angular spectrum of a
HNM), that has been shown to play a key role in the so-called
spin—orbit coupling for electromagnetic fields [28, 29]. Being
a complete and orthogonal basis means that any arbitrary field
can be written as a unique expansion of HNMs. While we

invite the reader to the reference on the theory of HNMs, here
below we briefly recall their basic properties. We will do that
by using the scalar theory of optics. For the extension to vec-
torial electromagnetic fields we refer to E1 Gawhary et al [28].
Let U(x,y,z) be a scalar monochromatic field satisfying the
Helmholtz equation and A() (p, ¢) be its angular spectrum in
the Fourier domain in the reference plane z=0 with (p, )
being the spatial frequencies in the cylindrical coordinates.
The expansion of A(%)(p, ¢) in HNMs is given as

AO (p, ) = ZCm,n exp (iZWmA\/g)

(=)

exp (ing)

ey

where m and n are integers withm, n =0, 1, £2, ... and C,, ,
are the complex coefficients that define how much each single
HNM contribute to making the field U(x,y,z). Each mode is
uniquely represented by two integers: the radial index, m, and
the azimuthal index, n. The radial index refers to the number
of periods contained in the radial phase distribution of each
mode. The azimuthal index is equal to the topological charge
corresponding to the helical phase distribution of each mode.
Throughout the paper, a single HNM is represented using the
notation HNM(,, .y and we have used the terms ‘modes’ and
HNMs synonymously. The amplitude and phase distributions
of a few HNM:s in the Fourier domain are given in figure 1.
For more details regarding the mathematical properties of
the modes, the readers are advised to go through the [26, 27].
The main characteristic which makes these modes appeal-
ing for metrology is that the decomposition of a generic field
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Figure 2. (a) The basics of a coherent Fourier scatterometry setup. The numerical aperture of the objective considered in this work is 0.8.
(b) Profile of the diffraction grating used. The trapezoidal profile is parameterised by the period, mid-CD, height, and left and right SWAs of
the grating. Transverse Electric (TE) and magnetic TM polarisations represent EM fields at the pupil plane with the electric field parallel

and perpendicular to the grating lines respectively.

into HNMs is essentially propagation invariant, in the sense
the propagation affects the coefficients C,, , of an expansion
in HNMs in the same way, without altering their relative
strengths. This property is in stark contrast with other, oth-
erwise very useful bases, like Zernike’s polynomials, just to
name the most important of them. If free-space propagation
does not affect the weights of a decomposition, then any
change due to the interaction with an object can be easy to
detect and process. In this paper we have tackled, for the first
time to the best of our knowledge, the problem of investigating
how the interaction with a diffraction grating affects the HNM
decomposition of a light probe. More specifically, we have
examined the sensitivity of the amplitude and phase distribu-
tions for different modes due to variation in the far field maps
arising from the changes of different geometrical paramet-
ers of the grating, including height, period, mid-CD (critical
dimension) and symmetric and asymmetric side wall angles
(SWAs) through simulations. In the next section, we briefly
introduce the simulation setup followed by the major results
and observations.

2. Simulation setup

The simulations of the interaction between the incident field
and the 1D-periodic diffraction grating have been done using
the rigorous simulation method known as the RCWA (Rigor-
ous Coupled Wave Analysis) [30-33]. Figure 2(a) shows the
setup used for the simulations. Light from a laser is coupled
to a single mode fiber, collimated and sent to a beam split-
ter. The light from the beam splitter is focused on the sample
using a microscope objective having a numerical aperture of
0.8. The scattered light and spurious reflections are collec-
ted by the same focusing lens and the far field distribution
is calculated. The distribution represents the total scattered
light from all incident angles within the numerical aperture
of the objective. The input source wavelength was taken to be
532 nm. For practical considerations input beams with only
one polarisation were considered, namely the TM polarisation

(polarisation at the pupil plane is perpendicular to the grating
lines). The desired output polarisation was obtained using a
polariser in front of the detector. The input field had uniform
amplitude and constant phase at the back focal plane of the
microscope objective. This is often used as a standard input
beam and can be used to show the generalisability of using
HNMs as a basis for decomposing an arbitrary field. The scat-
terer considered was a diffraction grating with a trapezoidal
profile as shown in figure 2(b). The grating is made of Silicon
periodic structures on a Silicon substrate. The refractive index
for Silicon was calculated to be ng; = 4.1360 — i0.010205 at
532 nm wavelength [34]. Air of refractive index n,; = 1 was
used as the superstrate. Gratings with different periods from
300 to 650 nm, having heights from 100 to 500 nm and mid-
CD from 100 nm to 0.9 times the grating period have been
simulated. The wavelength and substrate were chosen due to
their commonplace usage. The period values were chosen such
that the first diffraction order gets captured by the objective
lens.

To analyse the change in the amplitude and phase distribu-
tion of each mode after scattering, the amplitude and phase of
the far field pattern was expanded as a sum of different HNMs.
The coefficient corresponding to each mode was obtained by
calculating the overlap integral of the scattered field with dif-
ferent modes using the equation,

. 1 o)
1 [l oo exp | —i2mmA\/z —p
Conn = 5- / / A (p,0) ( )
T Jo Jo

(-
x exp (—ing) pdpdé. 2

3. Results

To investigate the effect of the variation of period on amplitude
and phase distribution of the modes, the value of the period of
the grating was varied from 300 to 650 nm while keeping the
mid-CD and height constant at 200 nm and the left and right
SWAs at 90°. In this case, we observe that the phase of certain
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Figure 3. The change in amplitude and phase of (a) (0,0) and (b) (—2,0) modes with respect to variation in period. The height and mid-CD
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Figure 4. The change in amplitude and phase of the modes (a) (2,4) and (b) (3,4) with respect to variation in height of the grating. The
period and mid-CD were kept constant at 410 nm and 210 nm respectively. The phase angles were unwrapped by adding multiples of 27
whenever the jump between consecutive angles were greater than 7 radians. The amplitude is normalised by the total energy of all the

modes.

modes follows a linear relationship with the change in period.
Figure 3 shows the amplitude and phase values for the modes
(0,0) and (—2,0). As the period increases beyond 332.5 nm,
more of the +1st orders are captured within the numerical
aperture. This causes a gradual redistribution of energy from
the lower-order HNMs to the higher-order HNMs which can
more accurately represent the diffracted field. This is apparent

from comparing the amplitude variations of the modes (0,0) to
that of (—2,0).

Figure 4 shows the phase and amplitude distributions of the
modes (2,4) and (3,4) as the height is increased. The height of
the grating was varied from 100 to 500 nm while the period
and mid-CD was kept constant at 410 nm and 210 nm, respect-
ively. Similarly, the effect of the mid-CD was studied by
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simulating different gratings with mid-CD from 100 to 360 nm
while the period and height were kept constant at 400 nm
and 120 nm respectively. The output of the modes (0,0) and
(0,2) are shown in figure 5. The side wall angles in both cases
are kept at 90°. We observe that the phase of certain modes
decrease monotonically with increase in height and mid-CD.
For example, in case of the height parameter, the phase of
the mode (2,4) is a linear function of the height while the
phase of the mode (3,4), as shown in figure 4(b), is non-unique
for different values of height. Figure 5(a), shows the beha-
viour of the mode (0,2) when the mid-CD is increased. The
amplitude of the mode changes in a cyclic manner while the
phase of the mode decreases as a monotonous function of mid-
CD. Thus, different modes exhibit different behaviour as the
different geometric parameters are varied. In some cases the
value of the parameter can be obtained using linear regression
calculations.

Side wall angles are notorious for being harder to meas-
ure compared to other geometric parameters. A change in
side wall angles by a few degrees causes only a small change
in the total volume of the grating structure. The interaction
between the incident field and the scattering object is influ-
enced by the volume of the scattering object. Thus changes
in geometric parameters that do not cause a large change in
the volume are considerably harder to detect. Figure 6 shows
amplitude and phase values for a few HNMs. It is apparent
that the phase of the (0,2) mode exhibits a similar linearity
as observed in case of the other geometric parameters. The

side wall angle retrieval in turn is reduced to an application
of a simple linear regression. It is perhaps also interesting to
note a sudden dip in the amplitude distributions of the (0,0)
and (1,0) modes for side wall angles of 88°. It is surprising
that a difference of only 2° causes a sudden change in amp-
litude. To ensure that this minimum was due to a physical
process and not a numerical error, the far field intensity dis-
tributions of the gratings with SWAs close to 88° were plot-
ted as shown in figure 7. From the distributions, it seems that
near the centre of the Oth order, there is a shift from a local
intensity maxima to minima. This was further corroborated
by directly calculating the degree of correlation between dif-
ferent intensity distributions. The plot containing the differ-
ent correlation values is shown in figure 8. The dip in the plot
around 88° suggests that the far field pattern from the diffrac-
tion grating with side wall angles of 88° becomes quite differ-
ent compared to the other gratings. Thus, from both a visual
inspection of the far field intensity patterns and a quantitat-
ive computation of the degree of correlation among them it is
evident that the dip in the amplitude spectra of the modes dis-
cussed above is real and due to an actual change in the scattered
field from different gratings. This analysis confirms that
this specific feature was properly picked by decomposition
into HNMs.

Another aspect, which is highly relevant in practice, is to
see how an analysis of the HNMs spectrum enables us to
distinguish cases that are affected by different symmetries.
In order to address this case, the HNMs spectra from the
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decomposition of the fields scattered by symmetric and asym-
metric gratings were compared. The symmetric gratings had
side wall angles of 90°, identical to each other in both sides
of the single line of a gratings line. Asymmetric gratings, in
turn, had either a left or right side wall angle of 80° and the
other 90°. It is interesting to see how much we can learn about
the symmetry of the grating (namely, fully symmetric case,
left SWA larger than the right SWA or right SWA larger than
the left SWA) by analyzing the corresponding HNMs spec-
trum. Figure 9 shows the HNM spectra of the far field distri-
bution of the field scattered by a diffraction grating with period
450 nm, mid-CD 150 nm, and height 60 nm. Figure 10 shows
a similar plot using a grating of height 100 nm with the other

parameters being kept the same. When the grating is shallow
the radial modes with even azimuthal index are almost insens-
itive to asymmetry in SWAs. For deeper gratings, the differ-
ence between the amplitudes of the same set of radial modes
for symmetric and asymmetric gratings become more appar-
ent. This insensitivity could become a useful tool in situations
like overlay measurements where the contributions from the
asymmetric SWA is superimposed to the main overlay sig-
nal to be detected. In both cases, the amplitude spectra of the
modes with odd azimuthal charges seems to be different for
all the three gratings, suggesting that the odd modes are sens-
itive not only to the magnitude of the asymmetry but also to
its sign.
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Figure 10. The amplitude spectra of different HNMs obtained from the decomposition of the TM fields scattered from diffraction gratings
of period 450 nm, mid-CD 150 nm and height 100 nm with different SWAs. The symmetric grating has both left and right SWAs equal to
90° and the asymmetric gratings have SWAs with 80° on one side and 90° on the other.

4. Discussion

The goal of this work has been to show how the geometric
information of a diffraction grating is encoded into the weights
of the expansion in HNMs of the scattered field in a coherent
Fourier scatterometry configuration. This was done by ana-
lyzing the complex-valued HNM spectra containing both the
radial (i.e. m) and azimuthal (i.e. n) indices. The rigorous elec-
tromagnetic simulations done show that the phase of specific
HNMs have a linear relationship with the different geometric
parameters whose values can then be obtained directly using
linear regression calculations. The even azimuthal mode spec-
tra for shallow gratings is insensitive to the asymmetry of the
grating. The odd azimuthal modes, on the other hand can be
used to detect both magnitude and sign of the asymmetry.
In experimental conditions, once the phase and amplitude of
the fields are known [35], one could follow our method and

determine the expansion in HNMs. However, in order to com-
pare experiment with the simulations, more work should be
done in considering the noise and other experimental imper-
fections in the simulations.
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