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In measurements and in simulations, the wind turbine 1 ° A -
s subject to randomly varying inflow conditions. For a
set of mean inflow conditions x, the loads are not - -
deterministic, but random variables of unknown
probability density function (pdf). , ,
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x| " underlying mean and variance of the pdf from a noisy
deterministic probabilistic database.

RESULTS

The predicted conditional pdf at specific values of x for a fixed-bottom offshore wind turbine are shown. H-GPR
shows a very good agreement with the full order model and a significant improvement over the more
commonly used GPR model. The work is currently being extended to floating wind turbines.
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x = [wind speed (u), turbulence intensity = , o= 0.08, significant wave height = 1m, wave period = 7s, wave direction = 0°]"
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