
 
 

Delft University of Technology

Three Symmetries for Data-Driven Pedestrian Inertial Navigation

Wahlstrom, Johan; Kok, Manon

DOI
10.1109/JSEN.2022.3146646
Publication date
2022
Document Version
Final published version
Published in
IEEE Sensors Journal

Citation (APA)
Wahlstrom, J., & Kok, M. (2022). Three Symmetries for Data-Driven Pedestrian Inertial Navigation. IEEE
Sensors Journal, 22(6), 5797-5805. https://doi.org/10.1109/JSEN.2022.3146646

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JSEN.2022.3146646
https://doi.org/10.1109/JSEN.2022.3146646


IEEE SENSORS JOURNAL, VOL. 22, NO. 6, MARCH 15, 2022 5797

Three Symmetries for Data-Driven
Pedestrian Inertial Navigation

Johan Wahlström and Manon Kok

Abstract—The last years have seen a growing body of
literature on data-driven pedestrian inertial navigation. How-
ever, despite this, it is still unclear how to efficiently combine
classical models and other a priori information with existing
machine learning frameworks. In this paper, we first cate-
gorize existing approaches to data-driven pedestrian inertial
navigation, including approaches where a machine learning
algorithm is embedded into an overarching classical frame-
work and purely data-driven frameworks. We then propose an
estimation framework where navigation estimates obtained
by classical means are fed to a machine learning algorithm
which is trained to correct and improve the estimates. Further,
we describe three symmetries that can be used to constrain
the proposed estimation framework and thereby improve its
performance. These are 1) the rotational symmetry of pedes-
trian dynamics, 2) the rotational symmetry of the sensors, and
3) the temporal symmetry of pedestrian dynamics. To demon-
strate the usefulness of the proposed framework, we use
data from foot-mounted inertial sensors utilizing zero-velocity
updates under mixed walking and running. Machine learning
corrections are implemented using both neural networks and
Gaussian processes.

Index Terms— Inertial navigation, Gaussian processes,
neural networks, pedestrian navigation.

I. INTRODUCTION

TRADITIONALLY, the idea of inertial navigation has
been to estimate position by integrating accelerome-

ter and gyroscope measurements twice and thrice, respec-
tively [1]. This idea is formalized by the kinematic inertial
navigation equations, which are the foundation of a wide range
of systems for pedestrian navigation. Within foot-mounted
inertial navigation, the kinematic inertial navigation equations
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are combined with a zero-velocity model, which adds pseudo
measurements of zero velocity whenever the sensor measure-
ments indicate that the foot is stationary [2].

Motivated by the widespread success of machine learning,
there have been several attempts at designing data-driven
pedestrian inertial navigation systems [3]–[18]. However,
despite a considerable amount of literature on the topic,
data-driven approaches have not yet outmaneuvered classical
algorithms in terms of performance. One potential explanation
is that inertial sensors are governed by exact physical laws,
described by the kinematic inertial navigation equations. Thus,
if the implementation is not sophisticated enough, the main
function of the machine learning algorithm will simply be
to relearn a model that is already known. In this case,
the marginal benefit of utilizing machine learning will be
small.

However, there is nothing within the concept of inertial
navigation itself that dictates that machine learning algorithms
should not be of use. Quite the contrary, as has been shown
multiple times, sensor errors and modeling errors lead to sys-
tematic estimation errors that cannot be described by standard,
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classical estimation frameworks using the kinematic inertial
navigation equations, the zero-velocity model, and/or heuristic
models for step estimation [19], [20]. Thus, the limited gain of
data-driven approaches should not be taken for granted. Rather,
as we will argue in the present paper, the lack of progress is
a result of applying machine learning algorithms in a way
that fails to utilize the distinct symmetries embedded into the
pedestrian inertial navigation problem.

To begin with, this paper proposes an estimation frame-
work where machine learning methods are used to correct
estimates produced by classical methods for pedestrian inertial
navigation. The proposed estimation framework is then used
to illustrate three spatial and temporal symmetries that can
be exploited to improve the estimation performance. While
some of these symmetries have been utilized in previous work,
this is the first time that they are formalized and described
in a single, unified framework. Finally, the efficiency of the
estimation framework is illustrated using mixed walking data
from foot-mounted inertial sensors, with the model-based
estimation framework implemented as a zero-velocity-aided
inertial navigation system.

II. RESEARCH CONTEXT

In this section, we will first review the main idea of
inertial navigation as well as previous work on data-driven
pedestrian inertial navigation. Following this, we will motivate
our approach to data-driven pedestrian inertial navigation and
present the model that will be used in the remainder of the
paper.

A. Inertial Navigation
Inertial navigation benefits from a kinematic equation that

directly relates the sensor measurements to the navigation
quantities of interest. In discretized and linearized form, this
equation can be written as xk+1 = f(xk, uk) + wk , where
x denotes the navigation state (comprising three-dimensional
position p, velocity v, and orientation R), u denotes the
inertial measurements, and w denotes process noise. Refer
to [21] for more details on the kinematic inertial navigation
equations f . Due to the threefold gyroscope integration, stand-
alone navigation based on the kinematic inertial navigation
equations will lead to a cubic position error growth [22].
Therefore, the equations are typically complemented with a
stabilizing measurement model yk = h(xk) + ek , based on
motion models, map information, or measurements from other
sensors, thereby resulting in the state-space model

xk+1 = f(xk, uk) + wk, (1a)

yk = h(xk) + ek, (1b)

where y and e denote measurements and measurement noise,
respectively.1 Given initialization parameters, noise parame-
ters, and measurements {uk}N

k=1 and {yk}N
k=1, it is possible to

obtain state estimates {x̂k}N
k=1 by applying a nonlinear filter or

1In foot-mounted inertial navigation, a zero-velocity detector produces a
binary output which indicates whether the foot is stationary at a given
sampling instance. At sampling instances k where the foot is presumed to be
stationary, pseudo measurements of zero velocity are added, so that yk = 0
and h(xk) = vk .

Fig. 1. Process diagrams illustrating the information flow within
(a) classical pedestrian inertial navigation (Section II-A), (b) data-driven
pedestrian inertial navigation where machine learning is used to solve
a problem within an overarching classical framework (Section II-B),
(c) data-driven pedestrian inertial navigation which discards classical
models (Section II-B), and (d) our approach to data-driven pedestrian
inertial navigation (Section II-C).

smoother to (1); see Fig. 1 (a). However, inertial navigation
systems of this form are often plagued by modeling errors
and systematic sensor errors (including biases and scale factor
errors) [20]. In addition, there may exist motion patterns that
are not accounted for in the motion models in h(·). Next,
we will describe how these problems have been tackled using
machine learning.

B. Previous Research on Data-Driven Pedestrian Inertial
Navigation

Roughly speaking, there have been two lines of research
within data-driven pedestrian inertial navigation. The first
approach is to use machine learning to solve a clearly spec-
ified problem within an overarching classical framework; see
Fig. 1 (b). We will give two examples of this approach. The
first example is the use of data-driven zero-velocity detec-
tors [3]–[10], whose output is used as input to the nonlinear
filter or smoother that is used to solve (1). The second example
is to replace uk in (1a) with a function learned from data [18].
Conceptually, this can be described as first correcting inertial
measurements using data-driven inference, and then applying
the standard inertial navigation equations on these corrected
measurements.

The downside of confining a machine learning algorithm
within the bounds of a classical algorithm is that the resulting
navigation system still will be limited by the constraints
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Fig. 2. By utilizing the rotational symmetry of pedestrian dynamics
we ensure that the machine learning algorithm produces the same
corrections, as seen from the pedestrian, regardless of the walking
direction. The blue arrows represent the classically estimated change
in position over a specific time interval, and the red arrows represent the
associated machine learning correction.

of the classical algorithm. Specifically, in our first example
with data-driven zero-velocity detectors, the navigation system
will, regardless of how good the detector is, still be limited
by the shortcomings of the zero-velocity model (non-zero
mean of ZUPT errors, temporal correlation of ZUPT errors,
etc.) [20]. Similarly, the downside of replacing uk in (1a)
with a function learned from data is that this is an unnatural
approach for breaking the cubic position error drift resulting
from navigation based only on (1a), or for learning motion
models related to the navigation state x, for example, motion
models that constrain the speed to be within a specific interval.

The second approach to data-driven pedestrian inertial
navigation is to discard all applicable models, including the
kinematic inertial navigation equations, and force a machine
learning algorithm to learn everything from scratch; see
Fig. 1 (c). This approach has been taken in [12]–[15], where
raw inertial measurements u or standard statistical features
based on these measurements were fed to a deep neural net-
work. The downside here obviously is that the inference frame-
work has to relearn the already well-known kinematic inertial
navigation equations (as well as other applicable models) from
data. Thereby, we are wasting data and computational power
that otherwise could have been spent more wisely.

C. Our Approach to Data-Driven Pedestrian Inertial
Navigation

Intuitively, the best way to combine machine learning and
classical algorithms is to keep all applicable models and
extend them with some structure that is learned from data.
The argument for not “throwing away” applicable models
should be especially clear as it pertains to the kinematic
inertial navigation equations (1a), which are valid in all inertial
sensing, regardless of the motion dynamics.2 The efficiency of

2Note that although the state-space model (1) describes a navigation
system including the kinematic inertial navigation equations, the argument
for incorporating applicable models in data-driven inference is also valid for
navigation systems based on empirical step length estimation models [23].

incorporating the kinematic inertial navigation equations into
a deep learning framework has been demonstrated in [11].
Specifically, it was shown that by feeding a neural network
with navigation estimates x̂, instead of with raw inertial
measurements u, it is possible to both increase the estimation
performance and reduce the computational complexity.

To formalize this discussion, imagine that we first solve the
state-space model (1) by classical means (that is, by applying
a nonlinear filter or smoother), and then use the resulting
navigation estimates {x̂k}N

k=1, possibly in combination with
the inertial measurements {uk}N

k=1, as input to a data-driven
function g which outputs improved navigation estimates ˆ̂x.
Thus, when estimating xk , we arrive at the inference model

ˆ̂xk = g(x̂k−l(k)+1:k , uk−l(k)+1:k ). (2)

Here, g denotes some chosen data-driven inference algorithm.
It should be noted that g may include a feature extraction
step; we don’t make the assumption that the arguments
x̂k−l(k)+1:k and uk−l(k)+1:k are sent directly to a machine
learning algorithm.

For simplicity, we have constrained the inference model
in (2) to only use estimates and measurements over a sampling
window of length l(k), which ends at k. Further, the inference
model is assumed to be applied for all k ∈ K, where K is some
chosen set of sampling instances. It is assumed that l(k) and K
are chosen so that g uses sampling instances in between two
sequential elements in K. For example, if k1 ∈ K and k2 ∈ K
while k �∈ K for all k1 < k < k2, then l(k2) = k2 − k1 and
ˆ̂xk2 = g(x̂k1+1:k2 , uk1+1:k2 ). The discussion of how to choose
l(k) is deferred to Section III-C.

The estimation procedure is illustrated in Fig. 1 (d) and
summarized as follows.

III. THREE SYMMETRIES FOR DATA-DRIVEN

PEDESTRIAN INERTIAL NAVIGATION

In this section, we will use the estimation framework
presented in Section II-C to describe three symmetries that
may be used in the data-driven inference.

A. The Rotational Symmetry of Pedestrian Dynamics
Pedestrian dynamics is symmetric in the sense that, dis-

regarding the presence of local obstacles such as walls and
buildings, a given movement is equally likely to happen in
any of the directions in the horizontal plane. Thus, a person’s
movement characteristics do not differ depending on whether
he or she is walking south or north. Likewise, the corrections
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Fig. 3. By utilizing the rotational symmetry of the sensors we ensure that the developed navigation system produces the same estimates under all
possible rotations of the inertial measurements. The top row illustrates how a set of pedestrian movements together with a specific sensor placement
produces sensor measurements which are used to estimate the pedestrian movements. The bottom row illustrates how the same movements
together with a rotated sensor placement will produce rotated sensors measurements which, assuming that we utilize the rotational symmetry of the
sensors, will produce the same estimated movements. In this way, the navigation system becomes invariant to the relative orientation of the sensors
and the user.

ˆ̂x − x̂ should be identical, as seen from the pedestrian, regard-
less of the walking direction. For example, if x̂ underestimates
the stride length, the function g should adjust the step length
estimates accordingly, and do so in the same way for all
steps, regardless of the horizontal direction in which the step
was taken. Since inertial measurements are independent of the
initial horizontal alignment of the sensor unit, this symmetry is
automatically embedded into data-driven inference algorithms
that only use raw inertial measurements as input. However,
when also using navigation estimates as input, as in the
model (2), more care must be taken.

To illustrate how to utilize the rotational symmetry of pedes-
trian dynamics, let’s assume that we follow the estimation
scheme outlined in Section II-C. Thus, we have obtained the
estimates {x̂k}N

k=1 by applying a nonlinear filter or smoother
to (1), and then wish to improve upon these estimates by
learning some data-driven function g, modeled as in (2).
To start with, we will consider a machine learning correction
ˆ̂x − x̂ only dependent on the velocity v̂ and the rotation R̂.
Moreover, we will only consider the output of g mapped to the
position estimates ˆ̂p.3 This will be denoted ˆ̂p = gp(x̂). We then
incorporate the rotational symmetry of pedestrian dynamics by
constraining this function to be of the form

gp(x̂) = R̂�hp(R̂v̂) + p̂. (3)

In other words, we learn gp(x̂) by learning hp(R̂v̂). Here, R̂ is
the 3D rotation matrix from the navigation frame to the sensor
frame.4 The output from hp(R̂v̂) is the positional correction
ˆ̂p − p̂ expressed in the sensor frame. Therefore, hp(R̂v̂) is

3Note that the position estimates ˆ̂p may not be consistent with the speed
estimates v̂.

4One alternative is to use a rotation matrix that only performs a yaw rotation,
since pedestrian dynamics only is invariant with respect to rotations around
the vertical axis. However, based on our experiments, this does not lead to
any performance improvement.

multiplied by R̂ to rotate the correction to the navigation
frame. The formulation in (3) is illustrated in Fig. 2.

In summary, it is possible to see that the formulation in (3)
means that the positional correction, as seen by the pedestrian,
that is, R̂( ˆ̂p − p̂) = hp(R̂v̂), will

1) be independent of the walking direction θ .
2) depend on the velocity in the sensor frame R̂v̂, not on

the velocity in the navigation frame v̂.
The velocity output ˆ̂v = gv is treated in a completely

analogous manner. Rotation corrections ˆ̂R = gR are concep-
tually analogous, but somewhat more complicated due to the
nonlinear algebra of three-dimensional rotations. For brevity,
we will not discuss in detail how to utilize the rotational
symmetry of pedestrian dynamics for rotation corrections.

B. The Rotational Symmetry of the Sensors
Consider a pedestrian equipped with a body-worn inertial

measurement unit. Further, assume that the pedestrian is
engaged in some specific motions resulting in the inertial
measurements {uk}N

k=1, where the inertial measurements uk =
[a�

k ��
k ]� consist of both accelerometer measurements a and

gyroscope measurements �. Now, consider a separate scenario
where the sensor unit is rotated, with respect to the pedestrian,
based on the rotation matrix R�, but still kept at the same
position on the pedestrian’s body. In this case, assuming that
there are no sensor errors, the same pedestrian motions will
result in the inertial measurements {u�

k}N
k=1, where u�

k =
[(R�ak)� (R��k)�]� for all k. In other words, a rotation of
the sensor unit placement leads to a rotation of the resulting
inertial measurements.

As described in the above paragraph, a given set of move-
ments can lead to different measurements, as dependent on
the rotation of the sensors with respect to the user. Ideally,
all these different measurements should produce the same
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navigation estimates (that is, the correct ones). Therefore,
it is intuitive to constrain the machine learning algorithm to
produce the same output under all possible rotations of the
inertial measurements. Applying this to the estimation scheme
presented in Section II-C, we arrive at the constraint

g(x̂k−l(k)+1:k , uk−l(k)+1:k )=g(x̂k−l(k)+1:k , u�
k−l(k)+1:k ) (4)

for all k ∈ K, where

u�
k = [(R�ak)� (R��k)�]� (5)

for all k and any rotation matrix R� that is independent of k.
The constraint is illustrated in Fig. 3. One way to implement
this constraint is by feeding the machine learning algorithm
with lots of examples where the constraint is true. Specif-
ically, given a training example {ˆ̂x�

k , x̂�
k−l(k)+1:k , u�

k−l(k)+1:k }
where u�

k = [(a�
k )� (��

k )�]�, it is possible to create a new
training example {ˆ̂x�

k , x̂�
k−l(k)+1:k , u� �

k−l(k)+1:k }, where u� �
k =

[(R�a�
k )� (R���

k )�]� for all k. This method has previously
been used in [5]. A more rigorous way of enforcing the
constraint (4) could be to integrate it into a constrained neural
network [24].

By utilizing the constraint (4), the inference will become
invariant to the relative orientation of the sensor unit and the
user. This is particularly useful in scenarios that permit the
sensor unit to be positioned at an arbitrary orientation with
respect to the user. However, the drawback of the constraint is
that it is derived under the assumption of small sensor errors,5

and it may therefore be unsuitable in situations where this
assumption is not true. In Section IV-D, we investigate the
marginal benefit of utilizing the rotational symmetry of the
sensors in a foot-mounted inertial navigation system.

C. The Temporal Symmetry of Pedestrian Dynamics
We will now discuss how to set the window length l(k) over

which to perform the data-driven inference (see Section II-C).
Several publications have used sampling windows of equal
time length, that is, l(k) is set as a constant l. Typical time
lengths are one second [15], [18] and two seconds [11], [14].
However, when the window length is set as a constant, you
have no control over what part of the gait cycle that is included
in a given sampling window. In practice, this means that
you force the machine learning algorithm to learn by itself,
from data, how to interpret the context of a given set of
measurements.

A more natural approach is to adapt the window length
to the temporal length of a step [13]. In this way, we can
improve the estimation performance by exploiting the fact that
pedestrians move about by taking a large number of individual
walking steps with similar gait characteristics. To implement
this approach, we first need to use a step detector to find
the sampling instances where each individual step begins and

5Assume that there is additive accelerometer noise, so that ak = atrue
k +

δak , where atrue
k represents the true accelerometer dynamics and δak is

the accelerometer noise. Following the rotation R�, we will obtain the
accelerometer measurements a�

k = R�atrue
k + δak . In this case, the only way

in which we can have a�
k = R�ak for all rotation matrices R� is if δak = 0.

The analogous argument can be made for the gyroscope measurements.

Fig. 4. The window length l (k) over which to perform the data-driven
inference can either (a) be set as a constant l (k) = l, or (b) be adapted
to the temporal length of a step.

ends. We then set l(k) equal to the length of the step (measured
in sampling instances) that ends at sampling instance k. The
difference between a fixed window length and a window length
adapted to the temporal length of a step is illustrated in
Fig. 4. In Section IV-E, we compare the performance of fixed
and adaptive window lengths within foot-mounted inertial
navigation.

IV. NUMERICAL RESULTS

This section demonstrates the performance of the esti-
mation framework described in Section II-C when utiliz-
ing the symmetries presented in Section III. The code and
the data is available at https://github.com/johanwahlst/Three-
Symmetries. The performance evaluation was based on the
data set described in [25]. This data set includes measure-
ments from a foot-mounted inertial measurement unit6 (Xsens
MTx-28A53G25, temperature-compensated internally by the
device) as well as ground truth position and orientation data
from a high-accuracy camera tracking system (Bonita by
Vicon) using eight infrared (IR) cameras and strobes. All data
had a sampling rate of 100 [Hz]. Refer to [25] for more details
on the experimental setup.

The considered trajectory consisted of about five minutes
of mixed walking and running in a lab area of about 20 [m2]
and is illustrated in Fig. 5. The model-based estimation form-
ing the first half of the inference framework described in
Section II-C (the blue box in Fig. 1 (d)) was a foot-mounted
inertial navigation system utilizing zero-velocity updates [2].
The estimates were computed using an extended Kalman
smoother [26] implemented with the SHOE detector [27]. The
position, velocity, and orientation estimates were initialized
with a standard deviation of 10−5 [m], 10−5 [m/s], 100 [◦]

6In this paper, we have chosen to use data from foot-mounted inertial sensors
since this is the sensor placement producing the most accurate pedestrian
inertial odometry. However, note that the three symmetries presented in
Section III are equally applicable to data from other sensor placements,
including measurements from smartphone-embedded sensors.
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Fig. 5. Ground truth positions for the trajectory used in the experiments.
The starting position is marked with ‘X’. The data was taken from
ID 15 in [25].

Fig. 6. Position estimates from foot-mounted inertial navigation system.

(roll and pitch angles), and 0.1 [◦] (yaw angle), respectively.
The first sampling instance used in the smoother was chosen
to be a sampling instance with a detected zero-velocity event,
and the initial velocity estimates were therefore set to zero.
Further, the position and yaw estimates were initialized to
align with the ground truth data,7 and the roll and pitch angles
were estimated based on the 20 first accelerometer readings
(all during standstill). The resulting position estimates are
shown in Fig. 6.

In the remainder of this section, we will discuss how to
implement a machine learning correction (the red box in
Fig. 1 (d)) to the inertial odometry in Fig. 6 with the aim
of getting as close as possible to the ground truth in Fig. 5.
The general setup is described in Sections IV-A and IV-B.
The main results are presented in Section IV-C, while
Sections IV-D and IV-E detail further investigations of the
symmetries discussed in Sections III-B and III-C, respectively.
The relation between Section III and the numerical results
presented in this section is detailed at the end of Section IV-A.

A. Feature Extraction
This subsection describes how the features that were used

as input to the machine learning algorithm were computed

7Before we could start training and testing machine learning algorithms,
it was necessary to align the position and orientation estimates obtained from
the zero-velocity-aided inertial navigation system with the ground truth data
(Fig. 6 shows the position estimates after alignment). This process is described
in the appendix.

from the estimates provided by the foot-mounted inertial
navigation system. A step segmentation algorithm based on
detected zero-velocity events was first used to identify sam-
pling instances that separate the individual steps. These sam-
pling instances formed the set K at which to apply machine
learning corrections (see Section II-C). Thus, if we assume
that K = {k1, k2, k3, . . . }, where all sampling instances in
K correspond to detected zero-velocity events, the first step
occurred between sampling instances k1 and k2, the second
step occurred between sampling instances k2 and k3, etc.

We then computed the change in position, as seen from
the sensor frame, over each individual step. For example,
assume that two sequential steps start at sampling instances
k1 and k2. The three-dimensional position differential over the
corresponding step was then computed as

sk1 = R̂k1 (p̂k2 − p̂k1 ) (6)

where p̂k1 and p̂k2 are the positions at the start and end
of the step, respectively, while R̂k1 is the matrix describing
rotations from the navigation frame to the sensor frame at
sampling instance k1. Fig. 7 illustrates the first two (horizon-
tal) elements in the position differentials as computed from
the foot-mounted inertial navigation system and the ground
truth data over the full trajectory. In a few instances, ground
truth data was missing at sampling instances in K. The cor-
responding steps were simply excluded from the training and
testing phases. We experimented with including raw inertial
measurements or simple statistical quantities based on these
measurements as features, however, this was not found to
improve performance.

Looking back at the symmetries described in Section III it
can be seen that

• The rotational symmetry of pedestrian dynamics was
utilized by expressing the features in the sensor frame
rather than in the navigation frame. That is, we used
R̂k1 (p̂k2 − p̂k1 ) rather than p̂k2 − p̂k1 .8

• The temporal symmetry of pedestrian dynamics was
utilized by computing features based on the dynamics
over a given step.

The rotational symmetry of the sensors could not be utilized
with the features described in this section. Instead, this symme-
try was utilized in the experiments described in Section IV-D.

B. Training and Testing
The machine learning algorithms were used to correct both

the estimated position p̂ and the estimated yaw angle θ̂ .9

Thus, during the training phase, a training example was
created by pairing up the feature sk1 , computed using estimates
from the foot-mounted inertial navigation system, with the
outputs pk2 − pk1 and θk2 − θk1 , computed using ground
truth data. In order to utilize the entire trajectory for both
training and testing, we employed 10-fold cross-validation.

8Conceptually, using the change in position over a small time interval
as a feature is similar to using the speed; compare with the discussion in
Section III-A.

9These are the only navigation quantities whose estimation errors will grow
with time in a foot-mounted inertial navigation system with intermittent zero-
velocity updates.
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Fig. 7. The change in horizontal position over steps as measured by
ground truth data and as estimated by the model. Markers corresponding
to the same step are connected by a black line. All steps are shown in the
coordinate frame of the pedestrian; markers to the left and right represent
backwards and forwards steps, respectively.

Fig. 8. The horizontal position error as dependent on time.

Thus, within each iteration, 90% of the steps were used for
training and validation, and the remaining 10% were used for
testing. In this way, each iteration produced slightly different
machine learning corrections. By iterating over all available
data, we eventually obtained corrections for the whole data
set, and obtained improved position estimates by sequentially
correcting the position and yaw estimates after each step.

Two machine learning algorithms were compared: a neural
network (NN) and a Gaussian process (GP). Both the NN and
the GP were trained separately for each output dimension. The
NN was a feedforward network with a single hidden layer,
two neurons, and a hyperbolic tangent activation function.
The NN was trained using the Levenberg-Marquardt algorithm
to minimize the mean-square error over the validation set.
0.75 ·90% of the data was used for training, and 0.25 ·90% of
the data was used for validation. The GP used a squared expo-
nential covariance function. The kernel parameters and the
noise variance were estimated by means of marginal likelihood
maximization; thus, the GP did not use a dedicated validation
data set. The NN and the GP were deliberately chosen to be
relatively simple, to illustrate that the proposed estimation
framework does not require intricate parameter tuning and is
easy to reproduce with standard algorithms. The NN and the
GP were benchmarked against a static correction which, after
each step, subtracted the step-wise mean position and yaw
error from the position and yaw estimates, respectively.

TABLE I
POSITION RMSE OF THE CONSIDERED INFERENCE FRAMEWORKS

Fig. 9. Position estimates after neural network correction.

C. Results
Fig. 8 compares the horizontal position error of the stand-

alone foot-mounted inertial navigation system with the nav-
igation systems utilizing static corrections, NN corrections,
and GP corrections. While the error growth was significantly
reduced with a simple static correction, the performance
was enhanced even further with NN and GP corrections.
As demonstrated in Table I, the NN and GP managed to reduce
the position root-mean-square error (RMSE) computed over
the full data set by more than a factor of three. The periodic
pattern seen in Fig. 8 is caused by the yaw drift of the foot-
mounted inertial navigation system. This yaw drift is also
evident when comparing Fig. 5 and Fig. 6, or when studying
Fig. 7. As seen in Fig. 9, the NN correction produces a much
slower yaw drift.

D. The Rotational Symmetry of the Sensors
To investigate the utility of the rotational symmetry of the

sensors we had to use features that were dependent on the
rotation of the sensors with respect to the pedestrian. For this
purpose, we discarded the features described in Section IV-A,
and instead considered a three-dimensional feature set con-
sisting of the variance of the gyroscope measurements over
the considered step, computed along each spatial dimension.
Further, the training data set was augmented by generating a
number of randomized rotations, and then, for each such rota-
tion, using this to rotate the gyroscope measurements before
re-computing the features and adding them to the training data
set (this was previously described in Section III-B). In this
way, we simulated multiple sensor-pedestrian orientations in
the training data set. Each example in the original training data
set was used both in its original form and in combination with
all randomized rotations. Thus, using n randomized rotations
meant that the size of the training data set was increased by a
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Fig. 10. The horizontal position error as dependent on to what extent
the estimates utilize the rotational symmetry of the sensors.

Fig. 11. The position root-mean-square error obtained with static and
adaptive sampling window lengths.

factor of n + 1. Fig. 10 shows the resulting position RMSEs
when using up to five randomized orientations. The results
were averaged over 10 simulations. As can be seen, the NN
obtains a significant performance improvement as a result of
utilizing this symmetry, while the performance improvement
of the GP is marginal.

E. The Temporal Symmetry of Pedestrian Dynamics
To investigate the utility of an adaptive sampling win-

dow length, we compared the position RMSE obtained with
adaptive and fixed sampling window lengths. Fixed sampling
window lengths of 80, 90, . . . , 160 samples were considered.
For comparison, the adaptive sampling window lengths ranged
from 73 to 180 samples, with a median length of 118 samples.
As seen in Fig. 11, the adaptive sampling window length
outperformed all fixed sampling window lengths for both
the NN and the GP. With a static correction, the adaptive
and fixed sampling window lengths had roughly the same
performance. One explanation for why an adaptive sampling
window length is particularly useful in foot-mounted inertial
navigation, is that it enables the training data to be computed
using only estimates from detected zero-velocity events. Gen-
erally, the estimation uncertainty of a foot-mounted inertial
navigation system will be lower in the temporal vicinity of
zero-velocity updates [26]. Therefore, the uncertainty of the
position differential sk1 defined in (6) will be lower if the
indices k1 and k2 are taken from detected zero-velocity events.

In addition, the ground truth data will be less variable in
the temporal vicinity of zero-velocity updates, which means
that the output data will be more robust against eventual
timestamp errors at these sampling instances. In summary,
an adaptive sampling window length can be said to improve
the accuracy of both the feature extraction and the output
data. Theoretical and experimental support of the usefulness of
adaptive sampling window length in data-driven foot-mounted
inertial navigation is provided by the reasoning above and
the results shown in Fig. 11, respectively. However, further
research is needed to validate these results in more diverse
scenarios and to study the performance of adaptive and fixed
sampling window length for other sensor placements.

One benefit of the GP in situations with large errors in
the feature extraction is that the estimated noise variance can
provide information about the quality of the training data.
In comparison to the NN and the GP, the static correction is
both less flexible and less sensitive to outliers in the training
data, which also explains its stable performance in Fig. 11.

V. SUMMARY

This article has proposed an inference framework for pedes-
trian inertial navigation where machine learning algorithms
are used to correct estimates produced by classical methods.
Further, we described three symmetries that can be integrated
into the inference to improve the estimation performance.
These are the rotational symmetry of pedestrian dynamics,
the rotational symmetry of the sensors, and the temporal
symmetry of pedestrian dynamics. Finally, data from a foot-
mounted inertial navigation system was used to demonstrate
the performance of the proposed inference framework and the
benefit of the symmetries. In particular, it was shown that an
adaptive sampling window length clearly outperforms all fixed
sampling window lengths.

APPENDIX

Four different alignments were made.
1) Rotational alignment of the position estimates.
2) Translational alignment of the position estimates.
3) Temporal alignment.
4) Alignment of the rotation estimates.

The first two alignments were made by minimizing the posi-
tion RMSE of the foot-mounted inertial navigation system over
the first three seconds of data (there is no point in using all
available data since a foot-mounted inertial navigation system
always drifts with time, even with perfect alignment). The first
alignment was used to ensure that the initial walking direction
was the same for the two trajectories. The second alignment
was used to ensure that the two trajectories started at the same
position.

The third and fourth alignments were made by minimizing
the root-mean-square error of the roll and pitch angles (the roll
and pitch estimates do not drift with time and it was therefore
possible to use all available data for the alignment). The third
alignment was used to remove any eventual constant offset in
the timestamps. The fourth alignment rotated the orientation
estimates to align these with the ground truth orientation data.
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Fig. 12. Ground truth position and position estimates from the foot-
mounted inertial navigation system over the first three seconds of data.

The optimization problems were solved using standard
nonlinear least-squares solvers [28]. The solutions were then
validated by visual inspection. As an example, Fig. 12 shows
the position estimates over the first three seconds of data.
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