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a b s t r a c t

Information on whether a musician in a large symphonic orchestra plays her instrument at a given time stamp

or not is valuable for a wide variety of applications aiming at mimicking and enriching the classical music

concert experience on modern multimedia platforms. In this work, we propose a novel method for generat-

ing playing/non-playing labels per musician over time by efficiently and effectively combining an automatic

analysis of the video recording of a symphonic concert and human annotation. In this way, we address the

inherent deficiencies of traditional audio-only approaches in the case of large ensembles, as well as those of

standard human action recognition methods based on visual models. The potential of our approach is demon-

strated on two representative concert videos (about 7 hours of content) using a synchronized symbolic music

score as ground truth. In order to identify the open challenges and the limitations of the proposed method,

we carry out a detailed investigation of how different modules of the system affect the overall performance.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Rapidly developing multimedia technology has opened up new

possibilities for bringing the full symphonic music concert experi-

ence out of the concert hall and into people’s homes. New emerging

platforms, like RCO Editions1 and the Berliner Philharmoniker’s Digi-

tal Concert Hall2 are enriching audio-visual recordings of symphonic

music performances to make them more informative and accessible

offline, in a non-linear fashion and from multiple perspectives. Such

platforms rely on the new generation of automatic music data anal-

ysis solutions. For instance, loudness and tempo can be estimated

continuously over time and visualized as animations [8]. Notes can

be detected and analyzed to reveal and visualize repeated parts of

a piece [21]. Sheet music scores can be synchronized to the audio

recording to allow users to follow the scores while listening to the

music [2]. Furthermore, the sound produced by different instruments

can be isolated via source separation [11], which could be deployed

to zoom in on a particular instrument or instrumental section [12].

While the solutions mentioned above primarily rely on an analysis

of the audio channel of the performance recording, the visual channel

has remained underexploited. In addition to enabling the develop-

ment of new functionalities of platforms like RCO Editions and Berliner
∗ Corresponding author.

E-mail addresses: A.Bazzica@tudelft.nl, alessio.bazzica@gmail.com (A. Bazzica),

C.C.S.Liem@tudelft.nl (C.C.S. Liem), A.Hanjalic@tudelft.nl (A. Hanjalic).
1 http://www.concertgebouworkest.nl/en/rco-editions/
2 http://www.digitalconcerthall.com/
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hilharmoniker’s Digital Concert Hall not covered by audio analysis, the

nalysis of the visual channel could also help to resolve some of the

ritical challenges faced by audio analysis. For instance, achieving re-

iable sound source separation is challenging in the case of large en-

embles where the sound produced by many different instruments

verlaps both in time and frequency [7].

In this paper, we focus on the analysis of the visual channel of

he audio-visual recording of a symphonic music performance and

ddress the problem of annotating the activity of individual musi-

ians with respect to whether they play their instruments at a given

imestamp or not. The envisioned output of the solution we propose

n this paper is illustrated in Fig. 1, where playing and non-playing

usicians are isolated as indicated by respectively the green and red

ectangles.

Knowing the playing (P) and non-playing (NP) labels for each mu-

ician allows the annotations of an audio-visual recording to be en-

iched in a way that is complementary and supportive to audio-only

nalysis. For instance, repeats and solo parts could be detected also

y analyzing the sequences of P/NP labels to allow novel non-linear

rowsing functionalities (e.g., skip to solo trumpets, skip to “tutti”).

he problem of performance-to-score synchronization, which is typ-

cally addressed through audio-to-audio alignment [22], could also

e approached in a multimodal fashion by combining state-of-the-

rt auditory features and P/NP labels [5].

Related methods operating on the visual channel typically de-

loy a standard classification paradigm and learn visual models for

uman actions [28,39]. The disadvantage of this approach in the
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Envisioned output of the method proposed in this paper. Green (red) bounding

boxes mark the musicians that play (don’t play) their instrument at a given time stamp.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article).

p

e

m

c

b

u

e

n

n

c

e

P

f

t

S

a

p

t

t

o

p

a

r

p

o

r

t

2

o

t

Fig. 2. Excerpt of a score: same instrument, different instrumental parts.

Fig. 3. Examples of video frames showing different settings of musicians and their

instruments on the stage during the symphonic music performance.
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3 http://en.wikipedia.org/wiki/Unison#Divisi
roblem context of symphonic music concert videos is that the mod-

ls may not be generic enough to cover the wide variety of instru-

ents used and the ways the P/NP activities of individual musicians

ould be visually recorded. Additionally, a realistic view at the relia-

ility of solving this classification problem reveals the need for man-

al human intervention in order to correct unavoidable classification

rrors, in particular in a professional context when high-quality an-

otation output is required.

The method we propose in this paper is geared not only towards

eutralizing the disadvantage mentioned above, but also towards in-

orporating human intervention in the way that is as efficient and

ffective as possible. We implement our proposed solution to assign

/NP labels per musician to the timeline of a symphonic music per-

ormance as a modular framework so that we can provide answers to

he following research questions:

• RQ1: How reliably can we isolate clusters of images depicting in-

dividual musicians from the keyframes extracted from a music

video?
• RQ2: How accurately can sequences of P/NP labels be generated?
• RQ3: What is the tolerance of the proposed framework to errors

in different modules?
• RQ4: Is a static image informative enough to reveal whether a mu-

sician is playing an instrument?
• RQ5: What is the relation between the amount of human inter-

vention and the quality of the obtained P/NP label sequences?

The paper is organized as follows. We start by explaining in

ection 2 the context in which we operate in this paper and that char-

cterizes the realization and recording of a typical symphonic music

erformance. By taking into account the properties of the work con-

ext and the related limitations, we proceed in Section 3 by analyzing

he usability of the existing related work and in Section 4 by stating

ur novel contribution and explaining the rationale behind our pro-

osed framework. We introduce the notation, set the goals and make

ssumptions in Section 5. We present our method in Section 6 elabo-

ating on the realization of different framework modules. After we ex-

lain the experimental setup in Section 7, we present our assessment

f the framework in Section 8 where we also provide answers to the

esearch questions posed above. We conclude with a discussion sec-

ion in which we also present future research directions (Section 9).

. Characteristics of a symphonic orchestral recording

A symphonic orchestra consists of a large number of musicians

rganized in sections (string, brass, woodwind or percussion). Sec-

ions are further divided into instrumental parts. Each instrumental
art consists of a number of musicians playing one particular instru-

ent and following a specific musical score. For instance, in Fig. 2

he instrumental parts “Violino I” and “Violino II” play different notes

ven if the instrument is the same (violin). According to the scores,

hen one musician belonging to one instrumental part is (not) play-

ng, all the other musicians performing the same instrumental part

re expected to be (in-)active as well. This usually holds even in the

ivisi case3.

Performance recordings may differ depending on several factors

ike, for instance, the type of environment (indoor vs. outdoor), the

umber of cameras and whether camera motion occurs. In this pa-

er we focus on the indoor case and we consider two possible types

f recording: single- and multiple-camera recordings. The former is

ade from a fixed point of view and with a fixed zoom factor. In this

ay, the whole ensemble is always visible and each musician cov-

rs the same region of the video frames throughout the video. The

atter typically involves multiple-cameras positioned around and on

he stage, with the possibility to zoom and pan. This type of record-

ng typically serves as input to a team of experts in order to cre-

te an edited video using a script (e.g., “when the 100th bar of the

cores starts, the 3rd camera switches to a close-up on the first clar-

net player”). Thereby, the visual channel mainly focuses on (parts of)

he orchestra, but can also show the conductor and the audience in

he concert hall.

Both in the single- and multiple-camera recordings, depending

n the camera position, some musicians appear frontally, some non-

rontally, and some even from the back, (fully) occluding their instru-

ents. As illustrated in Fig. 3, the setting of the orchestra on the stage

s rather dense, resulting in significant occlusion of individual mu-

icians and their instruments. A video frame taken from the visual

ecording of the performance can therefore contain multiple musi-

ians, not necessarily belonging to the same section or instrumental

art.

The characteristics of the context in which we operate, as de-

cribed above, have significant impact on the extent to which we can

ely on the existing related work in conceptually developing our pro-

osed solution, but also on the way how we approach the definition

nd implementation of the modules of our framework. This will be

xplained in more detail in the following sections.

. Related work

The problem of extracting the sequence of P/NP labels for each

usician continuously over time from an audio-visual recording of a

http://en.wikipedia.org/wiki/Unison#Divisi
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Fig. 4. Examples of the setting of musicians and their instruments as considered by

the existing vision-based approaches.
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symphonic music performance has not been directly tackled so far.

We explore here, however, the usability of a number of related ap-

proaches.

3.1. Detecting the playing/non-playing activity

Regarding the detection of P/NP activity in general, we classify

the existing work into hardware-based, score-based, audio-based and

vision-based approaches.

3.1.1. Approaches based on dedicated hardware

Probably the most intuitive approach to inferring the activity of a

particular musician is via dedicated hardware [19,30]. While theoret-

ically effective, the critical deficiency of such an approach is that it

requires obtrusive settings, which are unnatural in the work context

described in the previous section. For instance, a webcam may need

to be mounted above the vibraphone in order to detect which bars

are covered by the mallets [30].

3.1.2. Score-based approaches

An alternative to deploying obtrusive dedicated hardware is to

rely on the data from the regular audio-visual recording, possibly in

combination with the available supplementary material. For instance,

the P/NP states could be inferred by analyzing a synchronized mu-

sic score, that is, by looking at presence of notes and rests in each

bar as done in [5]. Such a method allows to infer P/NP labels for ev-

ery instrumental part at every time point. However, as pointed out in

[11], even if full scores are freely available for many classical pieces,

they are rarely aligned to a given audio recording. In order to pur-

sue this strategy, the score and the performance recording need to

be synchronized using existing alignment methods [14,24]. Perform-

ing such synchronization can be challenging, especially in presence of

structural variations between the score and the recording (e.g., omis-

sion of repetitions, insertion of additional parts). However, in prac-

tice, even though partial alignment methods exist, likely failures in

the structural analysis and subsequent segment matching steps can

lead to corrupted synchronization results [20,31].

3.1.3. Audio-based approaches

Source separation techniques could be considered to isolate the

sound of each instrument and infer P/NP labels by analyzing the iso-

lated instrument-level signals. In view of the context in which we

operate, however, this approach is not likely to be successful. Typi-

cally, only a limited number of instruments can be recognized with

an acceptable accuracy. In [18], the authors address the challenging

problem of recognizing musical instruments in multi-instrumental

and polyphonic music. Only six timbre models are used, hence this

approach has limited utility for symphonic orchestras where more

models would be needed. In [4] the number of recognized instru-

ments is 25, but the recognition is performed in those parts of a piece

in which a single instrument is played alone. This limits the applica-

bility of this approach in our work context to the rare solo segments

only. While it was shown in [11] and [33] that effective audio source

separation needs prior information derived by synchronized music

scores, such an informed source separation approach would include

the limitations of those related to score synchronization, as discussed

above.

3.1.4. Vision-based approaches

Insufficient applicability of audio-based approaches in our work

context makes us investigate the alternatives relying on the visual

channel. When video recordings are available, we can see musicians

interacting with their instruments. They hold them in a certain way

when playing, while they assume different body poses when not

playing. In the former case, musicians also move in order to make mu-

sic (e.g., bowing, pressing keys, opening valves, moving torso to help
lowing). Hence, visual appearance and motion information could

e potentially useful in inferring whether musicians are playing or

esting.

In view of the above, one could explore human-object interaction

HOI) by analyzing visual object appearances in a static image – i.e.,

keyframe extracted from a video. For this purpose, investigation of

resence of objects of interest (in this case, music instruments), spa-

ial relationships between objects and human body parts has been

ound promising [38,39]. Dedicated datasets have been developed for

his line of research, a good example of which is the “people playing

usical instrument” (PPMI) dataset [38].

Alternatively, in video action recognition, both visual appearance

nd motion information are exploited [23,25,28]. State-of-the-art

erformance with popular datasets, like the UCF101 [29], shows that

everal actions, like “playing violin”, can be detected.

The aforementioned methods for HOI detection and video action

ecognition are based on a supervised classification approach. While

uch methods are sophisticated and in general have the potential to

utperform previously discussed non-visual approaches, they require

isual input of a particular type in order to train reliable classifiers.

or example, as illustrated in Fig. 4, the PPMI dataset consists of im-

ges containing sufficiently large and well visible regions correspond-

ng to a human and an instrument. This makes the aforementioned

ethods not applicable to the situations addressed in this paper and

llustrated by the orchestra settings in Fig. 3.

.2. Detecting, isolating and recognizing musicians

In order to design a system which yields a sequence of P/NP la-

els for each musician, we first have to solve the musician diariza-

ion problem. In other words, we want to understand which musician

ppears when and where in the video frames. The related literature

or this task includes works about detecting, tracking and recogniz-

ng people in videos. Then, for each musician appearing in the scene,

he regions of the video frames which are informative for the infer-

nce of the sought P/NP labels have to be isolated by means of image

egmentation.

When the input video consists of a set of fixed-camera recordings,

he positions of the musicians in the scene can be manually anno-

ated using a reference video frame from each video (e.g., the first

ne). Such a manual initialization step is time inexpensive and can be

one because the musicians do not change their position throughout

he performance. Therefore, the annotated coordinates can be used

or the whole recording.

In the case of a video recording consisting of different shots result-

ng from camera zoom-in and pan actions, manual-only annotation of

usicians becomes too complex and needs to be helped by automatic

isual analysis tools. Off-the-shelf face detectors, face clustering and

ecognition methods can be deployed for this purpose, possibly sup-

orted by a face tracking algorithm to collect and verify the evidence

rom consecutive video frames [9,27].
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Specifically related to face clustering, state-of-the-art solutions

re typically based on context-assisted and constrained clustering

37,40], possibly including human intervention in order to produce

igh quality results [41]. For instance, clothing information is ex-

loited to discriminate people with similar faces but dressed differ-

ntly [40]. Cannot-link constraints are used to avoid that two faces

etected in the same image fall into the same cluster. People can be

racked and must-link constraints can be inferred by the generated

ace tracks [37]. Face-related visual features can be extracted for ev-

ry detection, or just when the estimated quality of the face image

s good enough to extract reliable information [3]. Finally, to avoid

hat too many face clusters are generated for the same identity, semi-

utomatic algorithms can be used to iteratively merge clusters [41].

The existing methods are typically tested only on frontal faces.

lternatively, as done in [3], the detected profile faces are continu-

usly tracked over time, but used at the clustering step only when a

witch to a (near-)frontal view occurs. In view of our problem con-

ext described in Section 2, this focus on (near-)frontal faces makes

he methods described above insufficiently suitable as modules of our

nvisioned framework. This was also revealed by an initial investiga-

ion we performed to inform the design choices for this framework,

he results of which are reported in Section 7.1.1.

. Contribution and rationale

In view of the fact that the visual channel of the symphonic mu-

ic recordings is available, and based on the conclusions drawn in

ection 3.1 regarding the performance-related and practical disad-

antages of hardware-, score- and audio-based methods, in our ap-

roach we focus on the visual channel to infer the P/NP activity per

usician. In order to cope with inevitable errors of automated visual

nalysis of challenging HOI cases in our application context and to se-

ure high accuracy of the obtained P/NP label sequences, we choose

or a semi-automatic approach, where human intervention is effi-

iently and effectively combined with automated analysis. The value

f such hybrid approach for video annotation has already been shown

n the past (e.g., [35]).

The proposed method involves two main steps, musician diariza-

ion and label assignment per musician and time stamp. Learning

rom the analysis of the related work, we pursue the development

f the solutions for both steps by making the following critical design

hoices.

Regarding the musician diarization step, as argued in Section 3.2,

e need a more reliable method for identifying the musicians than

hat the state-of- the-art in the field currently offers. While we can

ely on standard face detection methods, the choice of the face clus-

ering method leaves room for improvement, primarily in view of the

equirement to obtain the face clusters that are as pure as possible.

his purity is essential because errors in clustering directly propagate

o the resulting P/NP label sequences. We have initially considered

he approach described in [41], which semi-automatically merges

n initial set of face clusters assuming that all of them are close to

eing 100% pure. However, our preliminary experiments deploying

his method on our concert video data have revealed that only a

art of the generated clusters can be obtained as almost 100% pure,

hile the remaining clusters are too noisy. Moreover, as reported in

ection 7.1.1, we found that different features and image regions from

hose reported in [41] may yield much better face clusters on our

ata. We therefore investigated alternative ways to increase the num-

er of pure face clusters by strategically employing human annota-

ors. Beside alleviating the impact of unavoidable non-pure clusters,

uch a semi-automatic strategy can be exploited to efficiently and ef-

ectively reject clusters of non-relevant targets – i.e., conductor and

udience but also false face detections. Our approach turns out to

equire significantly simpler visual analysis tools than the complex,

ophisticated person identification methods discussed in Section 3.2.
Once the musician diarization problem is solved, we infer the

/NP activity per musician. As opposed to the methods discussed in

ection 3.1.4, we deploy the information in the visual channel in such

way to better exploit and match the characteristics of the work con-

ext we address, however, at the same time, being able to handle the

ull scope of content generated in such context – i.e., any performance

f any symphonic orchestra. Specifically, instead of aiming to develop

eneric HOI models via a supervised learning approach, we base our

olution on the clustering principle. We search for clusters ad-hoc, for

given video of a performance. Thereby, we focus on the following

luster categories in which we group the detected musicians’ images:

i) musician identity, (ii) point of view and (iii) playing/non-playing

ctivity. Creating clusters for these categories, labeling them appro-

riately and propagating the labels to the individual video frames

ill then automatically result in the targeted P/NP label sequences.

he advantage of this approach, as opposed to those based on train-

ng the HOI models, is that there is no dependence on the type of

nstruments nor on the actual way how HOI is represented – i.e., in

hich way a musician interacting with her instrument is depicted

n a particular recording, as long as HOI activity is depicted consis-

ently along the video. In our work context, consistency in general

an be assumed due to the following characteristics: (a) the number

f musicians is limited, (b) the setting of the orchestra on the stage

s constant within one performance, and (c) the variations by which

usicians appear in the video are limited by the limited number of

amera views.

In view of the above, our proposed approach can now conceptu-

lly be summarized as follows. By exploiting the redundancy of each

nalyzed video recording (e.g., multiple occurrences of the same cam-

ra angle), we accumulate information on the dominant appearances

f various musicians in terms of their instrument-playing activities.

hese dominant appearances are then turned into clusters that co-

ncide with P/NP activities to be labeled accordingly, through human

ntervention. This combination aims to achieve high level of output

uality eliminating the need for extensive model training and mak-

ng the annotation problem more tractable. We refer to Section 6 for

detailed explanation of the different steps of our method.

. Notation, goals and assumptions

Given a multi-camera video recording of a symphonic music per-

ormance, we aim at inferring for each performing musician the P/NP

abels over time. A label is assigned at regular intervals (e.g., every

econd) at the time point t starting from the first frame in the video.

he videos generated by different cameras are denoted as the set

= {vi(n)} where n ∈ N = {0 . . . L − 1} denotes the frame index and

is the total number of frames. All the videos are synchronized in

ime and have the same length L. We further denote by MGT the set

f performing musicians, where GT stands for “ground truth”, and by

MGT| the set size.

In view of this notation, our goal is to learn the function PNPm(t) :

→ {P, NP, X}, which determines the P/NP label at the time points

∈ T for each musician m ∈ MGT. The additional label X represents

he cases when the label is not determined. As discussed in Section 7,

e evaluate the accuracy of the learned PNP functions as well as the

mount of determined P/NP labels.

While we count on multi-camera recordings (see Section 2), the

inimum required number of cameras for our approach is one and

amera motion is allowed (e.g., panning, zoom-in, zoom-out). The

ethod does not require information about which instruments are

layed during the performance. Furthermore, we do not make any

ssumption regarding the timeline coverage. In other words, while

e do not require that every musician is continuously captured by

camera during the performance, it can also happen that at a given

ime point the same musician is captured by multiple cameras. We

nly require that for each musician m ∈ M her corresponding
GT
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Fig. 5. Illustration of the modular framework implementing the proposed method for extracting P/NP labels per musician from a video recording.
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instrumental part is known. This knowledge allows to make a par-

tition of MGT = ∪H
h=1

Mh
GT

into H mutually disjoint subsets and to

recover part of the missing P/NP labels as described in Section 6.6.

6. Method description

In this section, we describe the framework representing the re-

alization of our proposed method and illustrated in Fig. 5. First, the

keyframes are extracted from the given multiple-camera recording

and processed to detect and isolate musicians in the scene (details re-

ported in Section 6.1). A musician diarization problem is then solved

by combining face clustering and human annotation (respectively

discussed in Sections 6.2 and 6.4.1). In this way, all the images belong-

ing to each performing musician will be effectively and efficiently iso-

lated and linked to the correspondent musician identity label.

At this point, instead of using pre-trained visual models which

independently infer playing and non-playing labels for each single

image, we rely on a novel unsupervised method for the reasons dis-

cussed in Section 3.1.4. Such method, described in Section 6.3, aims

at learning ad-hoc discriminative visual patterns for each performing

musician to be used for distinguishing playing activities from non-

playing ones. This approach produces sub-clusters of P/NP images

which will be manually labeled accordingly using the procedure de-

scribed in Section 6.4.2. Finally, the sought P/NP label sequences are

computed as described in Section 6.5.

6.1. Keyframe-based face detection and scene segmentation

For every video vi(n) ∈ V, one keyframe fk
i

is extracted at prede-

termined time points nk
i

(e.g., at regular intervals) where nk
i

is the kth

time point for the ith video. The set of keyframes extracted from vi(n)

is denoted as Fi = {fk
i
}K−1

k=0
.

For each keyframe, we detect faces and estimate the head pose

angle. Regarding face detection, we rely on standard, off-the-shelf ap-

proaches, as described in detail in Section 7.3.1. In this way we build

the sets Dk
i

= {dk,l
i

}, where dk,l
i

is the lth detection in the keyframe fk
i
.

Each detection d is defined as (b, θ ) where b = (x, y, w, h) is the vec-

tor encoding the face bounding box geometry and θ ∈ [−90,+90] is

the estimated head pose.

Finally, we exploit the face bounding box geometry using simple

but effective heuristics to identify visual information supplementary

to the face that can be valuable for the subsequent clustering steps.

Here we focus in particular on the hair and upper body of the musi-

cian, and related to the latter, on those regions where the instrument

can be expected. Given a face detection d = (b, θ), the two additional

bounding boxes are inferred using the Vitruvian man ratios as done
n [9]. The hair bounding box is defined as (x, y − h/4, w, h/4). As for

he upper body segmentation, we extend the heuristic presented in

9], which is limited to the frontal faces, in order to infer the region

f interest for any value of θ ∈ [−90,+90]. The upper body bound-

ng box is therefore computed as a function of b and θ . The under-

ying idea is to look at the region of the image in the direction of

he musician’s gaze where we expect to see the instrument. If θ >
�(< −θ�), we look at the right(left) side of the face bounding box.

hen θ ∈ [−θ�, +θ�], we center the face bounding box horizontally.
� is the critical angle used to discriminate frontal and profile faces.

he upper body region includes the head and the torso. The torso has

height of 2.6 × h and a width of 2.3 × w [9]. An illustration of the

esults of this segmentation process is given in Fig. 6.

.2. Musician diarization via face clustering

Grouping the detected faces into clusters of individual musicians

an be performed in different ways. We consider four possibilities

hat we refer to as (i) unconstrained, (ii) context-assisted, (iii) con-

trained, and (iv) context-assisted and constrained. The unconstrained

ethod relies on the visual information only consisting of visual fea-

ures extracted from the face and hair regions. In addition to visual

nformation, context-assisted methods also rely on the visual context

f the detected face. The upper body region extracted for a face may

elp discriminating between those musicians whose faces look sim-

lar, but who play different instruments. Similarly, a scene descriptor

ould be deployed to discriminate between similar faces belonging to

usicians placed in different parts of the orchestra. In the constrained

ethod, we again deploy face- and hair-related visual features, but

lso exploit the fact that multiple face detections in the same frame

hould belong to different identities. We build a sparse matrix of

annot-link constraints CL for each pair of faces (dk,l
i

, dk,l′
i

)|l �= l′ de-

ected in the same keyframe. CL is then used to ensure that multiple

etections in the same keyframe fall in different face clusters. An-

ther type of constraint which could be deployed is the must-link

onstraint. During a shot, the detected faces could namely be tracked

nd therefore linked over time. However, taking this into account

ould increase the complexity of the system and might not generate

xact constraints as in the case of the CL set (e.g., due to the mistakes

ith crossing face tracks generating wrong must-link constraints). Fi-

ally, the context-assisted and constrained method exploits both visual

ontext information and the cannot-link constraints.

As for choosing a suitable number of clusters, we consider the

ollowing information that can be reasonably defined a priori. The

umber of musicians |MGT| may vary, but a typical symphonic ensem-

le ranges from 50 to 100 players. In addition to the orchestra, some
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Fig. 6. Example of keyframe segmentation. For each detected face, the upper body region is determined considering the estimated head pose. In this way, we find the region of the

image where the HOI is expected to be visible.

o

t

t

d

c

e

t

r

a

a

g

c

a

p

f

6

i

t

t

E

o

T

S

t

m

n

l

c

f

g

d

d

f

f

s

Fig. 7. Example of labeled sub-clusters generated for a flute player (only a few repre-

sentative images per cluster are shown).
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f the frames also show the conductor and the audience. Together,

he musicians, conductor and audience form the set E of “entities”

o be isolated. Furthermore, the same entity can be recorded from

ifferent cameras/viewpoints, and also with variations (e.g., due to

amera zoom-in). Therefore, the number of expected clusters can be

stimated as �α × |E|	, where α ≥ 1 is a factor which accounts for

he number of cameras and additional variations in the types of the

ecorded visual material.

The values for α and |E| can be chosen rather freely, as long as they

re large enough. This is due to the subsequent labeling step in which

ll the detected clusters where musician m appears are merged to-

ether into one set Sm containing all the detections dk,l
i

of that musi-

ian, independent of the camera viewpoint, HOI activity or other vari-

tions. Therefore, while the detected clusters should be sufficiently

ure, over-segmentation is not problematic. The labeling step is per-

ormed manually and is explained in Section 6.4.1.

.3. Generating clusters of playing and non-playing HOI

Once the set Sm is generated, we follow the hypothesis that the

mages contained in there can be distinguished from each other using

wo dominant dimensions: camera viewpoint and performed HOI ac-

ion. Under this assumption, we divide each set Sm into sub-clusters.

ach sub-cluster should contain the images of the musician m with

ne specific HOI action recorded from a specific camera viewpoint.

his results in a set of Cm mutually disjoint subsets Sc
m such that

m = ∪Cm
c=1

Sc
m. We estimate the number of sub-clusters Cm by first es-

imating the number of camera viewpoints |PoVm| on the musician

. Then, the number of sub-clusters corresponding to a playing or

on-playing HOI is 2 × |PoVm|.

The number of viewpoints on a musician m is estimated as fol-

ows. To maximize the accuracy of the clustering process at this stage,

ompared to Section 6.2, we choose for a more sophisticated method

or estimating |PoVm|. We do this by analyzing how the bounding box

eometry b, the head pose θ and the camera/video index i values are

istributed. By empirical evaluation, we found that the number of

ense regions formed by the set of (w × h, i) pairs, respectively the

ace bounding box area and the camera/video index of each detected

ace dk,l
i

belonging to m, is a suitable and consistent choice.

Then, in order to generate the sub-clusters Sc
m, we follow these

teps:

1. for each dk,l
i

∈ Sm, we extract an image Ik,l
i

from the keyframe fk
i

2. for each image Ik,l
i

, we extract a vector xk,l
i

of visual appearance

features

3. we build a descriptor matrix Xm having |Sm| rows, where each row

is a feature vector xk,l
i

4. we cluster the detections in Sm by running a clustering algorithm

taking Xm as input and with the number of clusters to be gener-

ated being set to Cm.

In order to assess the informativeness of different regions of the

mage, we consider two options for extracting Ik,l
i

, which capture the

ace and the upper body regions. As for the way we visually describe

he segmented images, we consider global and local features. As for

he latter, we aim at exploiting as much as possible the redundancy of

he images belonging to each musician. We therefore train one visual

ord vocabulary for each set Sm instead of training a vocabulary for

he whole recording. By training ad hoc vocabularies, we expect that

he discriminative power of the trained visual words is optimized for

ach musician. In Section 7.1.2, we report the details about the used

eatures and the optimal parameters (e.g., number of visual words).

The obtained sub-clusters directly imply the P and NP labels to be

ssigned to them and therefore the quality of sub-clusters also deter-

ines the quality of our P/NP annotation framework. We explain the

ub-cluster annotation process in Section 6.4.2. Examples of labeled

ub-clusters are shown in Fig. 7. Unlike in the case of face clusters

abeling, non-pure or otherwise ambiguous sub-clusters are not dis-

arded, but annotated using the label X (undetermined).
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Fig. 8. Examples of different types of error generated at the face and/or the PNP clustering steps. While the errors of type B have a direct negative impact on the accuracy, an error

of type A1 or A2 leads to a P/NP labeling error depending on the timestamp of the detection belonging to the “wrong” musician.

Fig. 9. Example of reference table provided to the face clusters’ annotators.

p

fi

w

p

l

F

s

r

a

o

c

b

c

l

T

m

m

a

f

t

w

6

k

s

P

f

q

o

l

i

o

b

[

This clustering step is fundamental to make the subsequent hu-

man annotation process efficient. In fact, if every single detection

were manually annotated, the complexity of the human annotation

task would be O(|MGT| × L) – i.e., linear to the number of musicians

multiplied with the temporal length of the recording. Since we as-

sumed that the number of points of view |PoVm| is limited, the com-

plexity of the human annotation task using our approach becomes

O(|MGT|) – i.e., linear to the number of musicians.

6.4. Human annotation

Our proposed framework illustrated in Fig. 5 involves two manual

labeling steps, the first one annotating the face clusters by the corre-

sponding musician ID and the second one annotating the sub-clusters

in terms of P and NP labels.

In general, the annotation process of a cluster of images works as

follows. The annotator inspects the content of a given cluster which

is rendered, for instance, as a grid of images. Then, the purity of the

given cluster is evaluated. A cluster is pure if most of the images be-

long to one class. We call such class dominant. If there is a dominant

class, it is used as label for the cluster. Conversely, a non-pure cluster

is discarded in order to prevent that the labeling accuracy will be low.

We assume that: (i) human annotators are able to detect the pres-

ence of a dominant class, and (ii) human annotators can recognize

the dominant class (if present). More details about the two manual

labeling steps are reported below.

6.4.1. Face clusters annotation

The annotator is provided with a reference table of musician IDs

like the one in Fig. 9. The images within a face cluster are shown to

the annotator and the annotator decides first whether the cluster is

pure enough, that is whether the cluster has a dominant musician ID.

If the annotator finds the cluster to be pure enough, then she uses

the reference table to check whether the dominant identity belongs

to one of the musicians. If a musician is dominant in the face cluster,

then the corresponding label is chosen and automatically propagated

to all the face detections belonging to the given cluster. In the cases

of a non-musician dominant label (conductor, audience or non-face

images) and a non-pure cluster, the cluster is discarded and the face

detections belonging to it will not be used anymore.

A first type of error that can occur at this step is the error of type A

(e.g., Fig. 8 a and b): if a cluster is not discarded and therefore labeled

with m ∈ MGT, any image not belonging to the musician m will gen-

erate a musician labeling error. The impact of this error type on the

accuracy of P/NP labeling is discussed in more detail below.

6.4.2. P/NP clusters annotation

For this task, the annotator does not need any reference table and

we expect that no specific expertise is required in order to distinguish

playing and non-playing actions for any musical instrument. We also

assume that each sub-cluster can be annotated independently.

Given a sub-cluster Sc
m to be labeled, the annotator once again

decides first whether it is sufficiently pure. Differently from the
revious annotation task, the purity now has two dimensions. The

rst one is related to the presence of a dominant P/NP class, that is

hether the majority of the images show either a playing or non-

laying HOI. When a dominant class is chosen, all the images not be-

onging to that class will generate a P/NP labeling error of type B (e.g.,

ig. 8c). The second purity dimension deals with the error of type A

ince a sub-cluster may contain images of other musicians due to er-

ors at the face clustering phase. Considering these two aspects, we

ssume that a sub-cluster is discarded if it contains too many errors

f type A and/or B.

Finally, regarding the error of type A, we distinguish two cases oc-

urring when a P/NP cluster Sc
m is not discarded and contains images

elonging to one or more musicians m′ �= m. The error of type A1 oc-

urs when an image of a different musician m′ has the same P/NP

abel as the one which is dominant in the sub-cluster (e.g., Fig. 8a).

he error of type A2 occurs when an image of a different musician
′ has not the sub-cluster’s dominant P/NP label (e.g., Fig. 8b). The

ain impact of these types of error is that a spurious observation is

dded to the musician m and removed from the musician m′. Then,

or the musician m, the system may generate an additional and even-

ually wrong P/NP label according to factors, which depend on the

ay P/NP sequence are generated as explained in Section 6.5.

.5. Generating sequences of P/NP labels

Taking the sub-clusters labeled as either P, NP or X and the

eyframe’s timestamps associated to the images belonging to the

ub-clusters as input, we now proceed with generating the function

NPm(t) : T → {P, NP, X} that produces the P/NP/X label sequence

or each musician m ∈ MGT.

As defined in Section 5, we aim at reconstructing the PNP se-

uence for every musician at regular time intervals (e.g., every sec-

nd). The reason why we do not extract the labels for every frame

ies in the inherent nature of the P/NP labels. As explained in [5], it

s not likely that two or more P/NP switches occur in a short period

f time, because during short musical rests musicians keep a playing

ody pose. Hence, we adopt the same sliding window approach of

5] and we derive P/NP labels periodically for every musician. A large



A. Bazzica et al. / Computer Vision and Image Understanding 144 (2016) 188–204 195

Fig. 10. Illustration of the process of creating the P/NP label sequences for a musician

m via majority voting. In this example, we focus on the case of two cameras recording

the musician m = 39 and we set the sliding window size to 1 second (for the sake of

simplicity). Given 8 labeled sub-clusters Sc
39, every second the available P/NP labels are

sought in the labeled sub-clusters. The retrieved labels are used to build the sets w to

which a majority voting is applied to determine the final label.
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indow size (e.g., 5 seconds) accounts for the time required to switch

rom a playing to a non-playing body pose (and vice versa).

For each musician m, each label is generated through a voting pro-

ess illustrated in Fig. 10. At every timestamp t ∈ T , a set w is built

y exploiting the labeled sub-clusters Sc
m associated with the musi-

ian m as follows. We look for the images Ik,l
i

∈ Sc
m extracted within

he current sliding window time interval. This search can lead to a

ariable number of results, depending on how many cameras record

in the considered period of time. For each found image, one P/NP

abel is added to w, inherited from the sub-cluster the image belongs

o. Discarded sub-clusters are ignored. Consequently, w is either an

mpty set or contains one or more labels. In the former case, the la-

el assigned at the timestamp t is X because there is no observation

f m in the considered time window. In the latter case, P(NP) is as-

igned if the number of P(NP) labels in w is greater than the number

f NP(P) labels. If the numbers of P and NP labels in w are equal, the

abel X is assigned.

.6. Dealing with missing observations

As pointed out in Section 5, there is no guarantee that each musi-

ian is always visible from at least one camera. If a musician does not

ppear in a keyframe, no P/NP label can be inferred using the pro-

edure explained above. However, the domain knowledge on the or-

hestral setting (Section 2) allows us to infer the labels for individual

usicians from all the other musicians playing the same instrumen-

al part and thus belonging to the subset Mh
GT

. In this case, for each

ubset Mh
GT

, the expected sequence of labels is the same for every

usician m ∈ Mh
GT

.

We propose two different strategies to extrapolate the labels: (i)

ighest timeline coverage (highest TC), and (ii) merging. Given Mh
GT

, the

ighest TC approach assigns one of the existing PNP functions to all

ther musicians in Mh
GT

. The optimal PNP function for a given instru-

ental part h is that computed for the musician m� such that m� =
rg min

m∈Mh
GT

|{t : PNPm(t) = X}|. The rationale behind this strategy

s to base the extrapolation on the musician for which the number

f observations is maximized. Differently, the merging strategy com-

utes a new PNP function for each instrumental part by combining

ll the labeled sub-clusters Sc
m belonging to the musicians perform-

ng the considered instrumental part. As opposed to relying on the

trongest evidence as in the previous strategy, here we combine all
he available evidence belonging to a certain instrumental part. For

his purpose, we deploy a modified version of the majority voting

pproach described in Section 6.5. When w is populated, instead of

onsidering the sub-clusters Sc
m of a single musician, we consider all

he sub-clusters Sc
m such that m ∈ Mh

GT
.

. Experimental setup

In this section, we detail how we implemented the proposed

ramework, present our dataset, and explain how we conducted the

xperimental evaluation.

.1. Framework implementation

The design choices and the parameter selection underlying the re-

lization of our framework (presented in Section 6) were informed

ollowing the protocol described in Sections 7.1.1 and 7.1.2.

.1.1. Musicians diarization

We describe the way we implemented the four face clustering

ethods introduced in Section 6.2 and explain how we selected fea-

ures and parameters.

The B-cubed precision/recall [1] was adopted to assess the quality

f the produced clusters. We chose the number of face clusters by

pproximating the number of entities |E| to the number of musicians.

n the case of the development set, |E| was set to 7. A suitable value

or factor α taking into account the variations of various types was

ound by inspecting multiple options, namely 1, 1.5, 2, 2.5, 3, 4, 5, 10,

5 and 20 (generating from 7 to 140 face clusters).

For clustering itself, we used k-means in the unconstrained case

nd COP k-means [36] in the constrained one. The constrained face

lustering methods were not assessed using the development set be-

ause COP k-means has no parameters to be tuned and the number

f cannot-link constraints generated for the development set was too

ow.

As for the unconstrained face clustering, we considered two op-

ions, both relying on state-of-the-art visual features. In the first one,

e deployed Local Binary Patterns (LBP) and Histograms of Oriented

radients (HOG) from the face bounding box as done in [41]. In the

econd one, we focused on the face bounding box extended to the hair

egion from which we extracted Pyramid HOG (PHOG), Joint Compos-

te Descriptor (JCD), Gabor texture (Gabor), Edge Histogram (Edge-

ist) and Auto Color Correlogram (ACC) [17]. In both cases, we evalu-

ted the impact of applying the Principal Component Analysis (PCA)

15] retaining 99% of the total variance.

In the context-assisted case, we included a description of the

cene and/or a description of the upper body region. As for the former,

iven a detection dk,l
i

, we extracted the JCD, PHOG and ACC global fea-

ures from a downsampled copy of the keyframe fk
i
. The upper body

egion was always described by LBP, PHOG, JCD, Gabor, EdgeHist and

CC. For both scene and upper body descriptors, we assessed the im-

act of including and excluding this information and also the option

f including it by first applying PCA retaining a number of possible

atios of total variance (namely, 50, 70 and 99%).

By inspecting the results summarized in Fig. 12, we found that

he optimal set of features to assess the face similarity is that ex-

racted from the face-hair region and consisting of PHOG, JCD, Gabor,

dgeHist and ACC applying the PCA (see Fig. 12a). By comparing the

lots in Fig. 12, we see how different combinations of contextual fea-

ures affect the performance. The upper body features leads to the

trongest improvement and the optimal ratio of retained variance for

he PCA is 99% (see Fig. 12c). The scene features, whose optimal ratio

f retained variance for the PCA is 70%, do not add a significant con-

ribution (see Fig. 12b and d). Finally, the optimal value of α we chose

as 15 because by increasing it to 20 we observe a saturation in the

erformance.



196 A. Bazzica et al. / Computer Vision and Image Understanding 144 (2016) 188–204

f

s

a

b

d

t

7

s

a

c

t

7

(

t

b

f

t

T

p

t

i

m

f

s

t

i

7

n

i

f

p

t

1

p

p

T

d

d

p

t

d

O

l

a

t

7

p

(

m

o

e

e

r

b

t

c

t

7.1.2. P/NP clustering

For each set Sm of images belonging to one musician, we estimated

the number of points of view (see Section 6.3) as follows. The list of

(w × h, i) pairs derived from Sm was first normalized (zero mean, unit

variance). Then, we used DBSCAN [10] to automatically estimate the

number of formed dense regions. We required that a dense region

had at least 10 samples and the dense region radius parameter ε was

set to 0.4. Pairs not belonging to any dense region were ignored.

As discussed in Section 6.3, the P/NP clusters Sc
m were produced

considering two possible image regions and two possible types of

feature. Evaluating on the dedicated development set, we found the

following optimized global feature sets: face images were best de-

scribed using Gabor, JCD and PHOG without applying the PCA, while

upper body images by EdgeHist, Gabor, PHOG and ACC retaining 95%

of the total variance. As for the local features, we considered two pos-

sible options, namely SIFT and OpponentSIFT [32], aggregating them

either via bag-of-words (BoW) [6] or via spatial pyramid (SP) [16]. We

also evaluated different visual words vocabulary sizes, namely 200,

400 and 1000 visual words (1000 only used with BoW). For each mu-

sician, that is for each set Sm, the visual word vectors were assigned

via mini-batch k-means [26] applied to the visual words vocabulary

training set, built by randomly sampling 500,000 feature vectors from

the images in Sm. Using the development set, we found that the op-

timal way of describing both face and upper body images was using

OpponentSIFT with 200 visual words, but aggregating the former via

SP and the latter via BoW.

Image clustering was performed using the k-means algorithm. In

order to assess the significance of the obtained results, we also in-

cluded a random baseline method which simply works by randomly

assigning the images in a given set Sm to the sub-clusters Sc
m.

7.2. Simulating the human annotation

In this work we address a number of research questions for which

the experiment has to be repeated several times using different

(types of) features and parameters. This is particularly true for the

research question RQ3, for which we want to assess the overall im-

pact of errors in different modules. In this context, deploying the two

human annotation task presented in Sections 6.4.1 and 6.4.2 for ev-

ery run is not feasible. In fact, in the full experiment we generate

dozens of thousands of image clusters to be annotated. Another rea-

son for not performing human annotation at this stage is that we do

not know yet how to instruct human annotators with respect to how

tolerant or strict they should be when coming across non-pure image

clusters. We therefore made a number of assumptions and simulated

human annotation using the available ground-truth information, also

quantifying the perceived purity of a cluster of images and assessing

the impact of different levels of strictness.

7.2.1. Modeling the human annotator

Following the annotation process and the assumptions reported

in Section 6.4, we modeled a human annotator as follows. The core

idea is to define a rejection threshold with which a cluster is discarded

if the frequency of the dominant class is below such threshold. For

each cluster, we compute a histogram of frequencies having one bin

per class. If the highest frequency is below the rejection threshold, the

cluster is discarded, otherwise it is kept and labeled with the domi-

nant label. In our experiments, we used a number of distinct thresh-

old values in order to study the impact on the overall performance.

A high threshold corresponds to a strict annotator (high precision),

while a lower value is a more tolerant one (balanced precision and

recall).

7.2.2. Simulating the face clusters annotation

When labeling face clusters, we assigned the histogram bins as

follows: one for each musician m ∈ M , one for the conductor, one
GT
or the audience, and one for false positive face detections. We con-

idered three types of human annotators by using the values 50, 70

nd 90% for the rejection threshold. When the voted label did not

elong to a musician, the face cluster was discarded. In order to un-

erstand to what extent face clustering is a critical step, we also used

he face clustering ground-truth labels (ideal case).

.2.3. Simulating the P/NP clusters annotation

When labeling a sub-cluster Sc
m, we computed the histograms as-

igning three bins associated to playing, non-playing and outlier im-

ges. The latter was used when an image of a different musician oc-

urred, that is when an image belonged to a musician m′ �= m. We

ested the following rejection thresholds: 50, 60, 70, 80 and 90%.

.3. Dataset

We experimented on a dataset which in total consists of 29 videos

about 7 hours) from which we extracted more than 100,000 de-

ections belonging to 105 different musicians. The dataset was built

ased on video recordings of two symphonic music concerts per-

ormed by two different professional orchestras and is representa-

ive for the context in which we operate, as described in Section 2.

he first recording contains the four movements of Beethoven’s Sym-

hony No. 3 Op. 55, performed by the Royal Concertgebouw Orches-

ra (Amsterdam, The Netherlands) and it is a multiple-camera record-

ng. The second one is a fixed, single-camera recording of the fourth

ovement of Beethoven’s Ninth Symphony performed by the Sim-

ònica del Vallès Orchestra (Barcelona, Spain). The two recordings, re-

pectively referred to as “RCO” and “OSV”, are available on request. To

he best of our knowledge, there is no other available dataset consist-

ng of real world data that we could have used alternatively.

.3.1. RCO dataset

The RCO dataset (Fig. 11a) is organized into 4 sets of 7 synchro-

ized videos where each set represents the multiple-camera record-

ng of a movement (6 h and 40 min in total). The number of per-

orming musicians is 54 and they are organized into 19 instrumental

arts and playing 11 different instruments. The recording also cap-

ures the audience and the conductor. From each video, we extracted

keyframe every second producing 24,234 keyframes in total.

For each keyframe we detected the faces and estimated the head

oses. This was done by combining a number of off-the-shelf multi-

ose face detectors [34,42] via non-maximum suppression (NMS).

he way we estimated the head pose is an adaptation of the method

escribed in [3]. The adaptation was required in order to integrate the

etector from [42] for which we initialized the confidence of its out-

ut to the acceptance threshold level (see [3]) in order to maximize

he face detection recall. The choice of combining different types of

etectors has significantly increased the number of detected faces.

verall, 66,380 face have been found which are distributed as fol-

ows: 1716 belonging to the conductor, 4539 to the audience, 3844

re false positives and the remaining 56,281 are distributed across

he 54 musicians.

.3.2. OSV dataset

The OSV dataset is a fixed, single-camera recording in which the

erformers appear at the same position throughout the whole event

see Fig. 11b). Faces approximately cover an area of 20 × 20 pixels,

uch smaller compared to those of the RCO dataset. The positions

f the faces were manually annotated using a random frame as ref-

rence and then the head poses were, again manually, assigned to

very face. Therefore, the face clustering step is not necessary for this

ecording since the musician identity is only a function of the face

ounding box position in the reference keyframe. In this case, we ex-

racted a keyframe every 2 s because, being the recording a fixed-

amera one, oversampling in time would have been unnecessary for

he goals of our experiment.
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Fig. 11. Proposed datasets used in this work.

(a) unconstrained (b) context-assisted (scene only)

(c) context-assisted (upper body only) (d) context-assisted (scene and upper body)

Fig. 12. Face clustering evaluation on the dedicated development set. Each dot represented an evaluated combination of types of feature, amounts of retained variance while

applying the PCA and factors affecting the number of generated face clusters. The lines are used to highlight the chosen combinations and how the performance changes when the

number of generated cluster is changed (e.g., 10x means 10 times the number of musicians in the development set, namely 10 × 7).
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.3.3. Development set

As shown in Fig. 11a, part of the data extracted from the RCO

ataset was used as development set. The reason why we did not in-

lude data from the OSV dataset there is twofold. First, we wanted to

ssess the general applicability of our method to an unseen record-

ng. Hence, we followed a leave-one-recording-out approach while

earching for visual features and parameters. Second, we find the RCO

oncert a more general case than the OSV due to the additional vari-

tions caused by panning and zoom-in camera actions.

The face clustering development set was generated by randomly

ampling 1575 face detections belonging to the conductor, audience,

musicians performing different instrumental parts and also belong-

ng to the false detections.

The development set was used to inform the design choices and

elect parameters of our framework. All the remaining data was used

t the evaluation step.

.4. Ground truth

The ground truth for evaluating the face clustering method was

reated by the authors, by annotating the 66,380 faces detected in

he RCO dataset. The true P/NP labels were derived using synchro-

ized symbolic information. As for the RCO dataset, we used four

IDI files synchronized to the video files provided by Grachten et al.

13], from which we extracted the P/NP labels with the method de-

cribed in [5]. The Music Technology Group (Pompeu Fabra Univer-

ity, Spain) provided us with the video recording and a set of files

ncoding synchronized note onsets and offsets for each instrumen-

al part. In both cases, each performing musician was bound to the

orresponding instrumental part / MIDI track in order to build the

orresponding ground truth P/NP sequence.

.5. Evaluation approach

The goal of the experimental evaluation in this paper was three-

old. First, we assessed the performance of the key-modules of our
ramework, including P/NP labeling (Section 8.2) as well as face label-

ng – i.e., musician diarization (Section 8.1). The quality of P/NP label

equences is the key result serving to demonstrate the effectiveness

f our proposed method. However, we also evaluated the face label-

ng step to understand how inevitable errors there affect the quality

f P/NP label sequences.

Second, as reported in Section 8, we assessed the quality of the ob-

ained P/NP label sequences also relatively, using a random baseline

s a reference. Relying on a random baseline was the only possible

hoice here, and this for the following reasons. The related literature

oes not offer a solution for yielding one sequence of P/NP labels for

ach performing musician. In fact, as discussed in Section 3, existing

udio-based and visual-based classifiers cannot be directly applied

o the type of audio-visual content considered in this paper. Replac-

ng the semi-automatic framework modules described in Sections 6.3

nd 6.4.2 is only theoretically possible. As explained in Section 3.1.4,

xisting vision-based classifiers require input of a particular type and

re instrument-dependent.

Finally, in Section 8.6, we compared the efficiency of P/NP label-

ng using our method with the efficiency of the purely manual P/NP

abeling in order to determine how much human annotation can be

peeded up, while maintaining the same high quality of the P/NP la-

el sequences.

.6. Evaluation measures

In this section, we describe the evaluation measures used to assess

he quality of the labels produced after the human annotation steps

escribed in Sections 6.4.1 and 6.5.

Once the face clusters had been generated and labeled, we jointly

valuated precision, recall and number of labeled (or non-discarded)

ace detections. The average precision and the average recall were

ombined together into the average F1-score. The percentage of non-

iscarded face detections was simply determined by counting how

any images inherit a label from non-discarded face clusters.
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Fig. 13. Example of how A and TC scores are computed for P/NP label sequence

assessment.

Fig. 14. We compared four feature sets (represented by different markers) using ei-

ther the constrained clustering (filled markers) or the unconstrained one (empty mark-

ers). We also evaluated three different rejection thresholds (different colors). The plot

shows three results. First, combining face and upper body visual information produces

the best results. Second, adding scene visual information and/or using the cannot-link

constraints does not significantly improve. Third, a higher rejection threshold effec-

tively filters out non-pure clusters.
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For each musician the system produces a sequence of P/NP/X la-

bels to be compared to the corresponding ground truth sequence.

As illustrated in Fig. 13, we evaluated the labeling performance in-

tegrally aggregating the results obtained for all the musicians. The

performance with respect to the grond truth was assessed using two

scores: accuracy (A) and timeline coverage (TC). The former is defined

as the percentage of matching labels and it is computed only consid-

ering the known labels, namely those for which the value is different

from X. The TC score is defined as the ratio between the number of

non X-valued labels and the ground truth sequence length. It is an in-

dicator of how many detections are used by the system and its upper

bound is defined by the percentage of available musician detections.

We recommend to use accuracy instead of other scores, like preci-

sion and recall, because we need to assess how well the system pro-

duces both playing and non-playing labels. The timeline coverage was

chosen to observe how many labels are effectively generated by the

system, but also to measure the impact of rejecting non-pure image

clusters.

8. Results

This section reports the results and provides the reader with

the answers to the research questions defined in Section 1. First,

we addressed RQ1 in Section 8.1, where we evaluated different op-

tions to solve the musician diarization problem. Then, in Section 8.2

we focused on the P/NP labeling problem addressing RQ2 and RQ3.

We added a failure analysis section (Section 8.3) in which we ex-

plained how the system fails. This provides insights about the in-

formativeness of static images (RQ4). The results obtained when

adopting the two proposed strategies dealing with missing observa-

tions are reported in Section 8.4. Then, we qualitatively compared

the ground truth and the generated P/NP sequences using the OSV

dataset (Section 8.5). Finally, we answered RQ5 by measuring the

achieved efficiency and effectiveness of the human annotation tasks

(Section 8.6).

8.1. Face labeling

We evaluated the proposed semi-automatic method producing

face labels on the RCO test set. This set consists of 64,805 detec-

tions belonging to 54 musicians. With these detections we generated

191,745 cannot-link constraints (see Section 6.2).

Fig. 14 shows that the most informative regions are the face and

the upper body. Including scene information does not significantly

improve the performance and the same holds for the cannot-link

constraints. While including scene information did not impact the

computation time, running the constrained version of k-means led

to a significantly longer execution time. In general, we see that our

method generates face labels with high average precision and recall.

However, this result was not obtained just via the face clustering step

but also using the human annotators’ ability to discarding non-pure

clusters. In fact, in the best case we already observe that about 20% of

the detections fell into discarded face clusters. This means that a part

of the clusters was not sufficiently pure.
.2. P/NP labeling

This section analyzes and compares the results obtained for the

CO and the OSV datasets. The research questions RQ2 and RQ3 were

ddressed in Section 8.2.3.

The plots reported in Sections 8.2.1 and 8.2.2 show the accuracy

nd the timeline coverage for the different types of features and re-

ions of the image also including the results obtained with the ran-

om baseline method. As for the adopted notation, each point corre-

ponds to the combination of an image region (upper body vs face),

f type of features (global vs local) and of rejection threshold used

hen labeling the P/NP clusters (50, 60, 70, 80 and 90%). A dedicated

arker is used for the random baseline method.

.2.1. Evaluation on the RCO dataset

The RCO dataset allowed us to assess the full system that is, we

ould observe how different ways of generating the face labels af-

ected the performance at the P/NP labeling step. To this end, we eval-

ated four cases. First, we considered the case of ideal input, in which

the ground truth face labels were used. Then, we considered three

different ways of obtaining the face labels by varying the rejection

threshold used to label the generated face clusters. More specifically,

we used the RCO test data, which includes the detections of 52 musi-

cians. Setting α to 15 and approximating the entities set size |E| to the

umber of musicians generated 780 face clusters. Then we simulated

he annotation using three different rejection thresholds: 50% (toler-

nt annotator), 70% and 90% (strict annotator). In this experiment we

sed the unconstrained context-assisted face clustering method – i.e.,

e exploited face similarity and context information extracted from

he upper body and the scene (see Section 6.2). The overall numbers

f generated P/NP clusters were 530, 384, 354 and 342 for the face la-

els input of the types “ideal”, 0.5, 0.7 and 0.9, respectively. In Fig. 15,

hich summarizes the results, we observe four facts.

First, regardless of the input to the P/NP clustering step, there

s a consistent trade-off between accuracy and timeline coverage.

he stricter the annotator is (higher P/NP rejection threshold), the

ower the number of produced P/NP labels is. More in detail, the fig-

res show that the timeline coverage decrease is much larger than

he accuracy increase. This means that quite often the purity of the

roduced P/NP clusters is below the highest rejection thresholds. In

ection 8.3 we investigate the reasons why the P/NP clusters are not

lways pure enough.

Second, global features always outperform local ones and the up-

er body region is more informative than the face region. What is
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(a) RCO, using ground truth face labels. (b) RCO, face clustering rejection threshold: 50%.

(c) RCO, face clustering rejection threshold: 70%. (d) RCO, face clustering rejection threshold: 90%.

(e) Legend

Fig. 15. Evaluation of the P/NP labels produced by the system. The vertical dashed lines show the upper bound for the timeline coverage, which is limited by the availability of face

detections. The upper body region described with global features outperforms other combinations. Tuning the system for very high accuracy has a large negative impact on the

timeline coverage. This shows that discriminating playing and non-playing HOIs requires information beyond a global description of a static upper body image.

Fig. 16. Informativeness of the face region: even when the torso region is not visible we can guess whether a musician is playing by analyzing the face expression.
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urprising is that faces are already a good indicator to infer P/NP la-

els. The advantage of this image region over the upper body one is

hat occlusions here seldom occurs. When the instrument or the hu-

an body parts are not visible, face cues can be always exploited.

o show this, we give an example in Fig. 16. A relaxed, unfocused, or

ontemplative expression (Fig. 16a–c) is likely to be linked to a non-

laying action, as opposed to a concentrated one (Fig. 16) that is likely

o indicate a playing activity.

Third, when the rejection threshold for the sub-cluster annota-

ion is set to 50%, the timeline coverage in Fig. 15 is always close to

ts upper boundary (the markers in the four plots are close to the

ertical dashed lines). Such boundary is determined by the available

ace detections and it shows the highest possible timeline coverage.

his result was expected because, by setting the rejection threshold

o 50% and having only two possible labels (P and NP), no cluster is

iscarded. Still, a number of additional X labels can be generated by

he process explained in Section 6.5 due to conflicting cluster labels

n case of multiple views on the same musician. However, the plots

eveal that this seldom happens.

e

p

Finally, by setting again the rejection threshold to 50%, we also

bserve that the accuracy is always above 75%. This happens because

he numbers of P and NP labels in the ground truth are not equal. For

his reason, in order to assess whether the proposed method is gen-

rating P/NP clusters at all, the random baseline method is included.

hat we see is that the baseline always performs worse, both in

erms of timeline coverage and accuracy. This shows that our method

ffectively discriminates playing and non-playing actions.

.2.2. Evaluation on the OSV dataset

In the OSV dataset, 63 musicians are recorded by a fixed camera.

ompared to RCO, there is no point-of-view variability and all the

usicians are always visible. The number of P/NP clusters is 126. For

his recording we only evaluated local and global features extracted

rom the upper body region. The made this choice because, as ex-

lained in Section 7.3.2, the face region in the OSV dataset is too small.

ven we could not use this recording to evaluate the full proposed

ystem, it is an additional test case to also assess whether and to what

xtent other recordings and recordings of a different type can be ex-

loited for P/NP detection.
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Fig. 17. Results for the OSV dataset. Even if the video resolution is low, with a fixed

camera we accumulate a sufficient number of images for each musician from the same

point of view. Due to this, playing and non-playing images can be discriminated with

high accuracy.
Fig. 18. Good P cluster containing some NP images, which are included because the

differences in the mouth region are not dominant, sufficiently influencing the cluster

formation.
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The OSV images are challenging because they have a low reso-

lution. However, the system is still able to well discriminate P/NP

actions as shown by the results in Fig. 17. This becomes evident by

comparing the random baseline performance with that of our image

clustering methods. Increasing the rejection threshold from 50% up to

80%, we see that the number of discarded images decreases linearly

at relatively small steps. This means that the majority of the gener-

ated P/NP clusters were pure enough. However, when we look at the

strictest rejection threshold, we observe that the accuracy increase

is small while the number of determined P/NP labels decreases at a

much higher rate. Therefore, as we did for the RCO dataset, we con-

clude that there are additional factors determining the playing/non-

playing status of musicians which are not taken into account in our

solution.

8.2.3. Overall judgment

By evaluating on the RCO and the OSV datasets, we answered to

the research questions RQ2 and RQ3.

We conclude that the most P/NP discriminative region is the up-

per body. However, we remark that faces by themselves are already

surprisingly informative. Regarding the accuracy of the system, we

see that it ranges between 70 and 94% depending on the strictness of

the annotators. However, targeting to a high accuracy has a significant

impact on the number of discarded detections especially in the case

of a multiple-camera recording in which it is hard to continuously

accumulate observations over time for each performing musician.

As for the impact of different modules, we have two conclusions.

First, we see that the overall timeline coverage is directly affected by

the number of available face detections. This indicates that the face

detectors should be tuned to perform with high recall in order to de-

termine as many P/NP labels as possible for each musician. Second,

we observe that the musician diarization module has a limited im-

pact on the overall accuracy because most of the face clusters are suf-

ficiently pure.

8.3. Failure Analysis

As pointed out in Sections 8.2.1 and 8.2.2, a fraction of the pro-

duced sub-clusters Sc
m is not sufficiently pure. By inspecting the pro-

duced P/NP clusters, we found that subtle discriminative cues in the

images sometimes occur. For instance, in Fig. 18, we see that the

mouth region for the French horn player is the discriminative region.

However, our method has not been designed to explicitly take into
ccount this part of the image, therefore the images are clustered ac-

ording to the overall appearance of the upper body.

The aforementioned error belongs to a larger class of errors,

amely the false positives. By inspecting the videos, we observed that

hey occur for any type of instrument and that they are caused by

nticipation, which occurs when a musician gets ready to play in ad-

ance. This is also supported by the confusion matrices in Fig. 19. They

ll show that the amount of false positives (false P labels) is greater

han the amount of false negatives (false NP labels). Even if the P/NP

round truth has been generated taking into account anticipation [5],

he results reported in Fig. 19 let us believe that it starts much earlier

han expected.

Due to the aforementioned observations, we answer to RQ4 as fol-

ows. On the one hand, a more detailed analysis of the images can be

erformed (e.g., including features extracted by the mouth region)

hanks to which a static image could be enough for P/NP labeling. On

he other hand, we cannot exclude that an image itself is partially in-

ormative. For instance, we expect that musicians’ movements could

e informative as well. Additionally, timbral features from the audio

ecording can be used in a multimodal fashion.

.4. Evaluating the strategies for missing detections

In Section 6.6 we proposed two ways of dealing with the lim-

ted availability of observations (namely, highest TC and merging).

e evaluated the two strategies by considering the case of ideal face

lustering input, using global features extracted from the upper body

egion and by setting the P/NP clustering rejection threshold to 80%.

he results summarized in Table 1 show that both strategies are ben-

ficial. In fact, when nothing is done (standard case), the timeline cov-

rage is always the lowest.

In the highest TC case, the result is a direct consequence of using

he labels from the most visible musician. While in the merging strat-

gy, the advantage comes from the availability of multiple P/NP labels

btained by exploiting the musician redundancy within each instru-

ental part. Due to this redundancy, the voted labels can be inferred

ith more confidence at the majority voting step (see Section 6.5).

verall, the most effective strategy is merging.

.5. Qualitative assessment

We also qualitatively assessed the P/NP labeling performance

enerating a PNP matrix. This matrix shows all the P/NP sequences
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Fig. 19. The depicted confusion matrices show that the system has a bias towards false positives. Such a bias can be explained by the fact that the musicians usually get ready to

play sufficiently in advance.

Fig. 20. Comparing the P/NP matrices for the OSV performance. The merging strategy has been applied. Therefore both matrices have one row per instrumental part.

Table 1

Comparing the standard method with two possible strategies deal-

ing with missing observations. The scores are computed consid-

ering the ground truth face labels, global features extracted from

the upper body region and adopting 80% as rejection thresh-

old for the PNP clusters. The merging strategy significantly im-

proves the performance in the RCO case, while it has lim-

ited benefit in the OSV case. This is expected since the lat-

ter is a fixed camera recording and every musician is always

visible.

Strategy Standard Highest TC Merging

Score A TC A TC A TC

RCO 0.890 0.262 0.884 0.369 0.884 0.429

OSV 0.926 0.863 0.927 0.867 0.927 0.873
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roduced for different instrumental parts. In Fig. 20 compares the

round truth matrix and the one generated for the OSV dataset. The

atter is generated using global features extracted from the upper

ody region and by setting the P/NP clustering rejection threshold to

0%.

From this example, we observe that the dominant error is indeed

aused by the false positives and that for some instrumental parts a

ignificant number of labels are missing (in particular for the clarinet

nd the horn).
.6. Human annotation efficiency

We addressed the last research question (RQ5) by assessing the

alance between the efficiency and effectiveness of the human an-

otation required by our system. We evaluated whether the system

enerates a close-to-optimal number of P/NP clusters and measured

he ratio between the amount of required human annotations and

he number of generated P/NP labels. As for the notation used here,

e refer to Section 6.3.

First, we assessed whether our method produces too many or too

ew sub-clusters Sc
m. Fig. 21a and b report the results for the RCO and

he OSV dataset, respectively. The plots show how the timeline cover-

ge (TC) and the accuracy (A) change by varying the number of gen-

rated P/NP clusters. The results were obtained using the P/NP clus-

ering based on global features extracted from the upper body region.

o show the significance of the results, we also evaluated the random

aseline’s performance. In both cases, the ground truth face labels

re used and the P/NP clustering rejection threshold is set to 80%. For

ach musician we estimated the number of points of view and we

onsidered twice as many sub-clusters (as explained in Section 6.3).

hen, we used an additional factor β applied to increase (or decrease)

he number of sub-clusters per musician. For instance, when β = 5,

he number of sub-clusters is ten times the number of the estimated

oints of view. When β = 0.5 the number of sub-clusters is exactly
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Fig. 21. Assessing whether the amount of required human annotation by our system is optimal. We verify whether the system generates the optimal number of P/NP sub-clusters.

Generating too many clusters leads to unnecessary human labor, on the other hand the critical number of P/NP sub-clusters has to be generated in order to avoid too many non-pure

sub-clusters. We have added the horizontal dashed lines to compare the performance obtained by different values of β to that obtained when β is 1 – i.e., the default number of

generated P/NP clusters.
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the number of points of view. In summary, the value set for β affects

the overall number of sub-clusters
∑|MGT|

m=1
Cm.

In Fig. 21a, we see that on the left of β = 1, the performance

quickly decreases. By contrast, on its right side the timeline cover-

age slowly increases. This pattern is even more evident for the OSV

concert (Fig. 21b). In this case there is a sharp transition from the

case in which there is only one sub-cluster per musician (namely

when β ∈ {0.25, 0.50}) and a saturation of the performance for val-

ues of β bigger than the unity. Both results show that the way the

system chooses the number of sub-clusters is optimal to avoid un-

necessary over-segmentation. Adding too many clusters would lead

to extra manual annotation but with little advantage in terms of

accuracy and timeline coverage. Similarly, we see that the system

generates the critical number of sub-clusters which are necessary

to avoid that P and NP images consistently fall together into one

cluster.

Finally, we computed the ratios between the overall number of

detections and the number of produced sub-clusters. The former is

defined as
∑|MGT|

m=1
|Sm|, while the latter is defined as

∑|MGT|
m=1

Cm. For

the RCO dataset, the ratio is equal to 52204/530 = 98.5 and for the

OSV dataset 42084/126 = 334. This means that on average one hu-

man label is propagated to about 100 detections in the RCO dataset

and more than 300 in the OSV one.
. Discussion

In this final section, we report the limitations we have encoun-

ered while deploying a number of state-of-the-art methods hence

uggesting possible research directions for the future.

The face detection step is critical for our system since it directly af-

ects the timeline coverage. We found that off-the-shelf detectors are

ptimized to achieve high precision and that the recall is not satisfy-

ng like evident, for instance, from the example of Fig. 6 in which ap-

roximately only one third of the musicians is detected. Our attempt

o overcome this problem by combining multiple heterogeneous de-

ectors helped, but it may be useful to investigate more how to im-

rove the face detection recall in videos.

When clustering the faces, it is important to limit the number of

enerated clusters in order to reduce the amount of human annota-

ion. State-of-the-art face clustering solutions designed to limit the

umber of produced clusters are available. However, they work as-

uming that the initial clusters are nearly 100% pure. What we found

n our experiments is that this does not always hold. More specifi-

ally, we observed either very pure face clusters or fuzzy ones and

hat the latter usually contain images with lower resolution and/or

rofile faces. In order to maximize the utility of each detected face,

nd once again avoid negative impact on the timeline coverage, face
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lustering methods should be improved so that non-pure clusters are

etected and discarded or treated with alternative strategies.

Furthermore, a more detailed analysis of the image segmentation

rocess is needed. The idea of exploiting the head pose to determine

he upper body region of a musician seems to be effective. We evince

his by inspecting the results obtained at the P/NP clustering step

hen upper body images are clustered – i.e., empirical evaluation of

he segmentation process. However, it may be the case that the opti-

al size of the upper body bounding box changes for different types

f instruments. Hence, a more detailed analysis of the segmentation

rocess should be carried out, eventually measuring the performance

n analytical fashion rather than an empirical one.

Finally, by investigating the limitations of our approach, we

earned that there are cases in which a non-playing image is very

imilar to a playing one due to the anticipation before the actual note

nsets. What we have observed shows that the playing/non-playing

nformation is not simply encoded in the spatial configuration be-

ween the musical instruments and the body parts as assumed by

tate-of-the-art methods. Additional information has to be extracted

y, for instance, exploiting the richness in the face region, the musi-

ians’ movements and/or auditory features. A second issue to be con-

idered is how to possibly label the discarded images. For instance,

sing the non-discarded, and hence labeled, clusters of images, ad

oc classifiers could be trained to relabel the discarded face detec-

ions and the images from the discarded sub-clusters. Future work

ay also be directed towards the exploration of the additional infor-

ation resources mentioned above and the exploration of relabeling

trategies.
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