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Information on whether a musician in a large symphonic orchestra plays her instrument at a given time stamp
or not is valuable for a wide variety of applications aiming at mimicking and enriching the classical music
concert experience on modern multimedia platforms. In this work, we propose a novel method for generat-
ing playing/non-playing labels per musician over time by efficiently and effectively combining an automatic
analysis of the video recording of a symphonic concert and human annotation. In this way, we address the
inherent deficiencies of traditional audio-only approaches in the case of large ensembles, as well as those of
standard human action recognition methods based on visual models. The potential of our approach is demon-
strated on two representative concert videos (about 7 hours of content) using a synchronized symbolic music
score as ground truth. In order to identify the open challenges and the limitations of the proposed method,
we carry out a detailed investigation of how different modules of the system affect the overall performance.

Keywords:

Cross-modal analysis
Music information retrieval
Human-object interaction
Diarization

Clustering

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Rapidly developing multimedia technology has opened up new
possibilities for bringing the full symphonic music concert experi-
ence out of the concert hall and into people’s homes. New emerging
platforms, like RCO Editions' and the Berliner Philharmoniker’s Digi-
tal Concert Hall? are enriching audio-visual recordings of symphonic
music performances to make them more informative and accessible
offline, in a non-linear fashion and from multiple perspectives. Such
platforms rely on the new generation of automatic music data anal-
ysis solutions. For instance, loudness and tempo can be estimated
continuously over time and visualized as animations [8]. Notes can
be detected and analyzed to reveal and visualize repeated parts of
a piece [21]. Sheet music scores can be synchronized to the audio
recording to allow users to follow the scores while listening to the
music [2]. Furthermore, the sound produced by different instruments
can be isolated via source separation [11], which could be deployed
to zoom in on a particular instrument or instrumental section [12].

While the solutions mentioned above primarily rely on an analysis
of the audio channel of the performance recording, the visual channel
has remained underexploited. In addition to enabling the develop-
ment of new functionalities of platforms like RCO Editions and Berliner
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E-mail addresses: A.Bazzica@tudelft.nl, alessio.bazzica@gmail.com (A. Bazzica),
C.CS.Liem@tudelft.nl (C.C.S. Liem), A.Hanjalic@tudelft.nl (A. Hanjalic).
1 http://www.concertgebouworkest.nl/en/rco-editions/
2 http://www.digitalconcerthall.com/
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Philharmoniker’s Digital Concert Hall not covered by audio analysis, the
analysis of the visual channel could also help to resolve some of the
critical challenges faced by audio analysis. For instance, achieving re-
liable sound source separation is challenging in the case of large en-
sembles where the sound produced by many different instruments
overlaps both in time and frequency [7].

In this paper, we focus on the analysis of the visual channel of
the audio-visual recording of a symphonic music performance and
address the problem of annotating the activity of individual musi-
cians with respect to whether they play their instruments at a given
timestamp or not. The envisioned output of the solution we propose
in this paper is illustrated in Fig. 1, where playing and non-playing
musicians are isolated as indicated by respectively the green and red
rectangles.

Knowing the playing (P) and non-playing (NP) labels for each mu-
sician allows the annotations of an audio-visual recording to be en-
riched in a way that is complementary and supportive to audio-only
analysis. For instance, repeats and solo parts could be detected also
by analyzing the sequences of P/NP labels to allow novel non-linear
browsing functionalities (e.g., skip to solo trumpets, skip to “tutti”).
The problem of performance-to-score synchronization, which is typ-
ically addressed through audio-to-audio alignment [22], could also
be approached in a multimodal fashion by combining state-of-the-
art auditory features and P/NP labels [5].

Related methods operating on the visual channel typically de-
ploy a standard classification paradigm and learn visual models for
human actions [28,39]. The disadvantage of this approach in the

1077-3142/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.cviu.2015.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.09.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:A.Bazzica@tudelft.nl
mailto:alessio.bazzica@gmail.com
mailto:C.C.S.Liem@tudelft.nl
mailto:A.Hanjalic@tudelft.nl
http://www.concertgebouworkest.nl/en/rco-editions/
http://www.digitalconcerthall.com/
http://dx.doi.org/10.1016/j.cviu.2015.09.009
http://creativecommons.org/licenses/by/4.0/

A. Bazzica et al. / Computer Vision and Image Understanding 144 (2016) 188-204 189

%

Fig. 1. Envisioned output of the method proposed in this paper. Green (red) bounding
boxes mark the musicians that play (don’t play) their instrument at a given time stamp.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article).

problem context of symphonic music concert videos is that the mod-
els may not be generic enough to cover the wide variety of instru-
ments used and the ways the P/NP activities of individual musicians
could be visually recorded. Additionally, a realistic view at the relia-
bility of solving this classification problem reveals the need for man-
ual human intervention in order to correct unavoidable classification
errors, in particular in a professional context when high-quality an-
notation output is required.

The method we propose in this paper is geared not only towards
neutralizing the disadvantage mentioned above, but also towards in-
corporating human intervention in the way that is as efficient and
effective as possible. We implement our proposed solution to assign
P/NP labels per musician to the timeline of a symphonic music per-
formance as a modular framework so that we can provide answers to
the following research questions:

o RQ1: How reliably can we isolate clusters of images depicting in-
dividual musicians from the keyframes extracted from a music
video?

* RQ2: How accurately can sequences of P/NP labels be generated?

* RQ3: What is the tolerance of the proposed framework to errors
in different modules?

* RQ4: [s a static image informative enough to reveal whether a mu-
sician is playing an instrument?

* RQ5: What is the relation between the amount of human inter-
vention and the quality of the obtained P/NP label sequences?

The paper is organized as follows. We start by explaining in
Section 2 the context in which we operate in this paper and that char-
acterizes the realization and recording of a typical symphonic music
performance. By taking into account the properties of the work con-
text and the related limitations, we proceed in Section 3 by analyzing
the usability of the existing related work and in Section 4 by stating
our novel contribution and explaining the rationale behind our pro-
posed framework. We introduce the notation, set the goals and make
assumptions in Section 5. We present our method in Section 6 elabo-
rating on the realization of different framework modules. After we ex-
plain the experimental setup in Section 7, we present our assessment
of the framework in Section 8 where we also provide answers to the
research questions posed above. We conclude with a discussion sec-
tion in which we also present future research directions (Section 9).

2. Characteristics of a symphonic orchestral recording
A symphonic orchestra consists of a large number of musicians

organized in sections (string, brass, woodwind or percussion). Sec-
tions are further divided into instrumental parts. Each instrumental

Trombe in Es.

Timpani in Es. B.

Fig. 3. Examples of video frames showing different settings of musicians and their
instruments on the stage during the symphonic music performance.

part consists of a number of musicians playing one particular instru-
ment and following a specific musical score. For instance, in Fig. 2
the instrumental parts “Violino I” and “Violino II” play different notes
even if the instrument is the same (violin). According to the scores,
when one musician belonging to one instrumental part is (not) play-
ing, all the other musicians performing the same instrumental part
are expected to be (in-)active as well. This usually holds even in the
divisi case?.

Performance recordings may differ depending on several factors
like, for instance, the type of environment (indoor vs. outdoor), the
number of cameras and whether camera motion occurs. In this pa-
per we focus on the indoor case and we consider two possible types
of recording: single- and multiple-camera recordings. The former is
made from a fixed point of view and with a fixed zoom factor. In this
way, the whole ensemble is always visible and each musician cov-
ers the same region of the video frames throughout the video. The
latter typically involves multiple-cameras positioned around and on
the stage, with the possibility to zoom and pan. This type of record-
ing typically serves as input to a team of experts in order to cre-
ate an edited video using a script (e.g., “when the 100™ bar of the
scores starts, the 3" camera switches to a close-up on the first clar-
inet player”). Thereby, the visual channel mainly focuses on (parts of)
the orchestra, but can also show the conductor and the audience in
the concert hall.

Both in the single- and multiple-camera recordings, depending
on the camera position, some musicians appear frontally, some non-
frontally, and some even from the back, (fully) occluding their instru-
ments. As illustrated in Fig. 3, the setting of the orchestra on the stage
is rather dense, resulting in significant occlusion of individual mu-
sicians and their instruments. A video frame taken from the visual
recording of the performance can therefore contain multiple musi-
cians, not necessarily belonging to the same section or instrumental
part.

The characteristics of the context in which we operate, as de-
scribed above, have significant impact on the extent to which we can
rely on the existing related work in conceptually developing our pro-
posed solution, but also on the way how we approach the definition
and implementation of the modules of our framework. This will be
explained in more detail in the following sections.

3. Related work

The problem of extracting the sequence of P/NP labels for each
musician continuously over time from an audio-visual recording of a

3 http://en.wikipedia.org/wiki/Unison#Divisi
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symphonic music performance has not been directly tackled so far.
We explore here, however, the usability of a number of related ap-
proaches.

3.1. Detecting the playing/non-playing activity

Regarding the detection of P/NP activity in general, we classify
the existing work into hardware-based, score-based, audio-based and
vision-based approaches.

3.1.1. Approaches based on dedicated hardware

Probably the most intuitive approach to inferring the activity of a
particular musician is via dedicated hardware [19,30]. While theoret-
ically effective, the critical deficiency of such an approach is that it
requires obtrusive settings, which are unnatural in the work context
described in the previous section. For instance, a webcam may need
to be mounted above the vibraphone in order to detect which bars
are covered by the mallets [30].

3.1.2. Score-based approaches

An alternative to deploying obtrusive dedicated hardware is to
rely on the data from the regular audio-visual recording, possibly in
combination with the available supplementary material. For instance,
the P/NP states could be inferred by analyzing a synchronized mu-
sic score, that is, by looking at presence of notes and rests in each
bar as done in [5]. Such a method allows to infer P/NP labels for ev-
ery instrumental part at every time point. However, as pointed out in
[11], even if full scores are freely available for many classical pieces,
they are rarely aligned to a given audio recording. In order to pur-
sue this strategy, the score and the performance recording need to
be synchronized using existing alignment methods [14,24]. Perform-
ing such synchronization can be challenging, especially in presence of
structural variations between the score and the recording (e.g., omis-
sion of repetitions, insertion of additional parts). However, in prac-
tice, even though partial alignment methods exist, likely failures in
the structural analysis and subsequent segment matching steps can
lead to corrupted synchronization results [20,31].

3.1.3. Audio-based approaches

Source separation techniques could be considered to isolate the
sound of each instrument and infer P/NP labels by analyzing the iso-
lated instrument-level signals. In view of the context in which we
operate, however, this approach is not likely to be successful. Typi-
cally, only a limited number of instruments can be recognized with
an acceptable accuracy. In [18], the authors address the challenging
problem of recognizing musical instruments in multi-instrumental
and polyphonic music. Only six timbre models are used, hence this
approach has limited utility for symphonic orchestras where more
models would be needed. In [4] the number of recognized instru-
ments is 25, but the recognition is performed in those parts of a piece
in which a single instrument is played alone. This limits the applica-
bility of this approach in our work context to the rare solo segments
only. While it was shown in [11] and [33] that effective audio source
separation needs prior information derived by synchronized music
scores, such an informed source separation approach would include
the limitations of those related to score synchronization, as discussed
above.

3.1.4. Vision-based approaches

Insufficient applicability of audio-based approaches in our work
context makes us investigate the alternatives relying on the visual
channel. When video recordings are available, we can see musicians
interacting with their instruments. They hold them in a certain way
when playing, while they assume different body poses when not
playing. In the former case, musicians also move in order to make mu-
sic (e.g., bowing, pressing keys, opening valves, moving torso to help

Fig. 4. Examples of the setting of musicians and their instruments as considered by
the existing vision-based approaches.

blowing). Hence, visual appearance and motion information could
be potentially useful in inferring whether musicians are playing or
resting.

In view of the above, one could explore human-object interaction
(HOI) by analyzing visual object appearances in a static image - i.e.,
a keyframe extracted from a video. For this purpose, investigation of
presence of objects of interest (in this case, music instruments), spa-
tial relationships between objects and human body parts has been
found promising [38,39]. Dedicated datasets have been developed for
this line of research, a good example of which is the “people playing
musical instrument” (PPMI) dataset [38].

Alternatively, in video action recognition, both visual appearance
and motion information are exploited [23,25,28]. State-of-the-art
performance with popular datasets, like the UCF101 [29], shows that
several actions, like “playing violin”, can be detected.

The aforementioned methods for HOI detection and video action
recognition are based on a supervised classification approach. While
such methods are sophisticated and in general have the potential to
outperform previously discussed non-visual approaches, they require
visual input of a particular type in order to train reliable classifiers.
For example, as illustrated in Fig. 4, the PPMI dataset consists of im-
ages containing sufficiently large and well visible regions correspond-
ing to a human and an instrument. This makes the aforementioned
methods not applicable to the situations addressed in this paper and
illustrated by the orchestra settings in Fig. 3.

3.2. Detecting, isolating and recognizing musicians

In order to design a system which yields a sequence of P/NP la-
bels for each musician, we first have to solve the musician diariza-
tion problem. In other words, we want to understand which musician
appears when and where in the video frames. The related literature
for this task includes works about detecting, tracking and recogniz-
ing people in videos. Then, for each musician appearing in the scene,
the regions of the video frames which are informative for the infer-
ence of the sought P/NP labels have to be isolated by means of image
segmentation.

When the input video consists of a set of fixed-camera recordings,
the positions of the musicians in the scene can be manually anno-
tated using a reference video frame from each video (e.g., the first
one). Such a manual initialization step is time inexpensive and can be
done because the musicians do not change their position throughout
the performance. Therefore, the annotated coordinates can be used
for the whole recording.

In the case of a video recording consisting of different shots result-
ing from camera zoom-in and pan actions, manual-only annotation of
musicians becomes too complex and needs to be helped by automatic
visual analysis tools. Off-the-shelf face detectors, face clustering and
recognition methods can be deployed for this purpose, possibly sup-
ported by a face tracking algorithm to collect and verify the evidence
from consecutive video frames [9,27].
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Specifically related to face clustering, state-of-the-art solutions
are typically based on context-assisted and constrained clustering
[37,40], possibly including human intervention in order to produce
high quality results [41]. For instance, clothing information is ex-
ploited to discriminate people with similar faces but dressed differ-
ently [40]. Cannot-link constraints are used to avoid that two faces
detected in the same image fall into the same cluster. People can be
tracked and must-link constraints can be inferred by the generated
face tracks [37]. Face-related visual features can be extracted for ev-
ery detection, or just when the estimated quality of the face image
is good enough to extract reliable information [3]. Finally, to avoid
that too many face clusters are generated for the same identity, semi-
automatic algorithms can be used to iteratively merge clusters [41].

The existing methods are typically tested only on frontal faces.
Alternatively, as done in [3], the detected profile faces are continu-
ously tracked over time, but used at the clustering step only when a
switch to a (near-)frontal view occurs. In view of our problem con-
text described in Section 2, this focus on (near-)frontal faces makes
the methods described above insufficiently suitable as modules of our
envisioned framework. This was also revealed by an initial investiga-
tion we performed to inform the design choices for this framework,
the results of which are reported in Section 7.1.1.

4. Contribution and rationale

In view of the fact that the visual channel of the symphonic mu-
sic recordings is available, and based on the conclusions drawn in
Section 3.1 regarding the performance-related and practical disad-
vantages of hardware-, score- and audio-based methods, in our ap-
proach we focus on the visual channel to infer the P/NP activity per
musician. In order to cope with inevitable errors of automated visual
analysis of challenging HOI cases in our application context and to se-
cure high accuracy of the obtained P/NP label sequences, we choose
for a semi-automatic approach, where human intervention is effi-
ciently and effectively combined with automated analysis. The value
of such hybrid approach for video annotation has already been shown
in the past (e.g., [35]).

The proposed method involves two main steps, musician diariza-
tion and label assignment per musician and time stamp. Learning
from the analysis of the related work, we pursue the development
of the solutions for both steps by making the following critical design
choices.

Regarding the musician diarization step, as argued in Section 3.2,
we need a more reliable method for identifying the musicians than
what the state-of- the-art in the field currently offers. While we can
rely on standard face detection methods, the choice of the face clus-
tering method leaves room for improvement, primarily in view of the
requirement to obtain the face clusters that are as pure as possible.
This purity is essential because errors in clustering directly propagate
to the resulting P/NP label sequences. We have initially considered
the approach described in [41], which semi-automatically merges
an initial set of face clusters assuming that all of them are close to
being 100% pure. However, our preliminary experiments deploying
this method on our concert video data have revealed that only a
part of the generated clusters can be obtained as almost 100% pure,
while the remaining clusters are too noisy. Moreover, as reported in
Section 7.1.1, we found that different features and image regions from
those reported in [41] may yield much better face clusters on our
data. We therefore investigated alternative ways to increase the num-
ber of pure face clusters by strategically employing human annota-
tors. Beside alleviating the impact of unavoidable non-pure clusters,
such a semi-automatic strategy can be exploited to efficiently and ef-
fectively reject clusters of non-relevant targets - i.e., conductor and
audience but also false face detections. Our approach turns out to
require significantly simpler visual analysis tools than the complex,
sophisticated person identification methods discussed in Section 3.2.

Once the musician diarization problem is solved, we infer the
P/NP activity per musician. As opposed to the methods discussed in
Section 3.1.4, we deploy the information in the visual channel in such
a way to better exploit and match the characteristics of the work con-
text we address, however, at the same time, being able to handle the
full scope of content generated in such context - i.e., any performance
of any symphonic orchestra. Specifically, instead of aiming to develop
generic HOI models via a supervised learning approach, we base our
solution on the clustering principle. We search for clusters ad-hoc, for
a given video of a performance. Thereby, we focus on the following
cluster categories in which we group the detected musicians’ images:
(i) musician identity, (ii) point of view and (iii) playing/non-playing
activity. Creating clusters for these categories, labeling them appro-
priately and propagating the labels to the individual video frames
will then automatically result in the targeted P/NP label sequences.
The advantage of this approach, as opposed to those based on train-
ing the HOI models, is that there is no dependence on the type of
instruments nor on the actual way how HOI is represented - i.e., in
which way a musician interacting with her instrument is depicted
in a particular recording, as long as HOI activity is depicted consis-
tently along the video. In our work context, consistency in general
can be assumed due to the following characteristics: (a) the number
of musicians is limited, (b) the setting of the orchestra on the stage
is constant within one performance, and (c) the variations by which
musicians appear in the video are limited by the limited number of
camera views.

In view of the above, our proposed approach can now conceptu-
ally be summarized as follows. By exploiting the redundancy of each
analyzed video recording (e.g., multiple occurrences of the same cam-
era angle), we accumulate information on the dominant appearances
of various musicians in terms of their instrument-playing activities.
These dominant appearances are then turned into clusters that co-
incide with P/NP activities to be labeled accordingly, through human
intervention. This combination aims to achieve high level of output
quality eliminating the need for extensive model training and mak-
ing the annotation problem more tractable. We refer to Section 6 for
a detailed explanation of the different steps of our method.

5. Notation, goals and assumptions

Given a multi-camera video recording of a symphonic music per-
formance, we aim at inferring for each performing musician the P/NP
labels over time. A label is assigned at regular intervals (e.g., every
second) at the time point t starting from the first frame in the video.
The videos generated by different cameras are denoted as the set
V = {v;(n)} wheren e N'={0...L — 1} denotes the frame index and
L is the total number of frames. All the videos are synchronized in
time and have the same length L. We further denote by Mgt the set
of performing musicians, where GT stands for “ground truth”, and by
|[Mcr| the set size.

In view of this notation, our goal is to learn the function PNP, (t) :
T — {P,NP, X}, which determines the P/NP label at the time points
t € T for each musician m € Mgr. The additional label X represents
the cases when the label is not determined. As discussed in Section 7,
we evaluate the accuracy of the learned PNP functions as well as the
amount of determined P/NP labels.

While we count on multi-camera recordings (see Section 2), the
minimum required number of cameras for our approach is one and
camera motion is allowed (e.g., panning, zoom-in, zoom-out). The
method does not require information about which instruments are
played during the performance. Furthermore, we do not make any
assumption regarding the timeline coverage. In other words, while
we do not require that every musician is continuously captured by
a camera during the performance, it can also happen that at a given
time point the same musician is captured by multiple cameras. We
only require that for each musician m € Mgy her corresponding
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Fig. 5. Illustration of the modular framework implementing the proposed method for extracting P/NP labels per musician from a video recording.

instrumental part is known. This knowledge allows to make a par-
tition of Mgt = hf M“T into H mutually disjoint subsets and to
recover part of the missing P/NP labels as described in Section 6.6.

6. Method description

In this section, we describe the framework representing the re-
alization of our proposed method and illustrated in Fig. 5. First, the
keyframes are extracted from the given multiple-camera recording
and processed to detect and isolate musicians in the scene (details re-
ported in Section 6.1). A musician diarization problem is then solved
by combining face clustering and human annotation (respectively
discussed in Sections 6.2 and 6.4.1). In this way, all the images belong-
ing to each performing musician will be effectively and efficiently iso-
lated and linked to the correspondent musician identity label.

At this point, instead of using pre-trained visual models which
independently infer playing and non-playing labels for each single
image, we rely on a novel unsupervised method for the reasons dis-
cussed in Section 3.1.4. Such method, described in Section 6.3, aims
at learning ad-hoc discriminative visual patterns for each performing
musician to be used for distinguishing playing activities from non-
playing ones. This approach produces sub-clusters of P/NP images
which will be manually labeled accordingly using the procedure de-
scribed in Section 6.4.2. Finally, the sought P/NP label sequences are
computed as described in Section 6.5.

6.1. Keyframe-based face detection and scene segmentation

For every video v;(n) € V, one keyframe ff is extracted at prede-
termined time points nf (e.g., at regular intervals) where ng‘ is the kth
time point for the ith video. The set of keyframes extracted from v;(n)
is denoted as F;, = {f¥}} .

For each keyframe we detect faces and estimate the head pose
angle. Regarding face detection, we rely on standard, off-the-shelf ap-
proaches, as described in detail in Section 7.3.1. In this way we build
the sets DX = {d:.‘" }, where di‘*’ is the Ith detection in the keyframe f.
Each detection d is defined as (b, 8) where b = (x, y, w, h) is the vec-
tor encoding the face bounding box geometry and 6 < [-90, +90] is
the estimated head pose.

Finally, we exploit the face bounding box geometry using simple
but effective heuristics to identify visual information supplementary
to the face that can be valuable for the subsequent clustering steps.
Here we focus in particular on the hair and upper body of the musi-
cian, and related to the latter, on those regions where the instrument
can be expected. Given a face detection d = (b, 0), the two additional
bounding boxes are inferred using the Vitruvian man ratios as done

in [9]. The hair bounding box is defined as (x,y — h/4, w, h/4). As for
the upper body segmentation, we extend the heuristic presented in
[9], which is limited to the frontal faces, in order to infer the region
of interest for any value of 6 € [-90, +90]. The upper body bound-
ing box is therefore computed as a function of b and 6. The under-
lying idea is to look at the region of the image in the direction of
the musician’s gaze where we expect to see the instrument. If 0 >
0*(< —6*), we look at the right(left) side of the face bounding box.
When 6 € [-6*, +0*], we center the face bounding box horizontally.
6* is the critical angle used to discriminate frontal and profile faces.
The upper body region includes the head and the torso. The torso has
a height of 2.6 x h and a width of 2.3 x w [9]. An illustration of the
results of this segmentation process is given in Fig. 6.

6.2. Musician diarization via face clustering

Grouping the detected faces into clusters of individual musicians
can be performed in different ways. We consider four possibilities
that we refer to as (i) unconstrained, (ii) context-assisted, (iii) con-
strained, and (iv) context-assisted and constrained. The unconstrained
method relies on the visual information only consisting of visual fea-
tures extracted from the face and hair regions. In addition to visual
information, context-assisted methods also rely on the visual context
of the detected face. The upper body region extracted for a face may
help discriminating between those musicians whose faces look sim-
ilar, but who play different instruments. Similarly, a scene descriptor
could be deployed to discriminate between similar faces belonging to
musicians placed in different parts of the orchestra. In the constrained
method, we again deploy face- and hair-related visual features, but
also exploit the fact that multiple face detections in the same frame
should belong to different identities. We build a sparse matrix of
cannot-link constraints CL for each pair of faces (df.‘*’, d;‘"/)ll £ 1" de-
tected in the same keyframe. CL is then used to ensure that multiple
detections in the same keyframe fall in different face clusters. An-
other type of constraint which could be deployed is the must-link
constraint. During a shot, the detected faces could namely be tracked
and therefore linked over time. However, taking this into account
would increase the complexity of the system and might not generate
exact constraints as in the case of the CL set (e.g., due to the mistakes
with crossing face tracks generating wrong must-link constraints). Fi-
nally, the context-assisted and constrained method exploits both visual
context information and the cannot-link constraints.

As for choosing a suitable number of clusters, we consider the
following information that can be reasonably defined a priori. The
number of musicians [Mqr| may vary, but a typical symphonic ensem-
ble ranges from 50 to 100 players. In addition to the orchestra, some
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Fig. 6. Example of keyframe segmentation. For each detected face, the upper body region is determined considering the estimated head pose. In this way, we find the region of the

image where the HOI is expected to be visible.

of the frames also show the conductor and the audience. Together,
the musicians, conductor and audience form the set E of “entities”
to be isolated. Furthermore, the same entity can be recorded from
different cameras/viewpoints, and also with variations (e.g., due to
camera zoom-in). Therefore, the number of expected clusters can be
estimated as [o x |E[], where @ > 1 is a factor which accounts for
the number of cameras and additional variations in the types of the
recorded visual material.

The values for @ and |E| can be chosen rather freely, as long as they
are large enough. This is due to the subsequent labeling step in which
all the detected clusters where musician m appears are merged to-
gether into one set S;,; containing all the detections d:."l of that musi-
cian, independent of the camera viewpoint, HOI activity or other vari-
ations. Therefore, while the detected clusters should be sufficiently
pure, over-segmentation is not problematic. The labeling step is per-
formed manually and is explained in Section 6.4.1.

6.3. Generating clusters of playing and non-playing HOI

Once the set S, is generated, we follow the hypothesis that the
images contained in there can be distinguished from each other using
two dominant dimensions: camera viewpoint and performed HOI ac-
tion. Under this assumption, we divide each set S, into sub-clusters.
Each sub-cluster should contain the images of the musician m with
one specific HOI action recorded from a specific camera viewpoint.
This results in a set of G mutually disjoint subsets S5, such that
Sm = Ug]sﬁn. We estimate the number of sub-clusters C,; by first es-
timating the number of camera viewpoints |PoV,| on the musician
m. Then, the number of sub-clusters corresponding to a playing or
non-playing HOI is 2 x |PoVp,|.

The number of viewpoints on a musician m is estimated as fol-
lows. To maximize the accuracy of the clustering process at this stage,
compared to Section 6.2, we choose for a more sophisticated method
for estimating |PoVy;|. We do this by analyzing how the bounding box
geometry b, the head pose 6 and the camera/video index i values are
distributed. By empirical evaluation, we found that the number of
dense regions formed by the set of (w x h, i) pairs, respectively the
face bounding box area and the camera/video index of each detected
face df" belonging to m, is a suitable and consistent choice.

Then, in order to generate the sub-clusters S¢,, we follow these
steps:

1. for each d;‘" < Sp, we extract an image lf” from the keyframe ff.‘

2. for each image l:f", we extract a vector x!‘*’
features

3. we build a descriptor matrix X, having |Sp,| rows, where each row
is a feature vector x\!

of visual appearance

cluster 1 (NP) cluster 2 (X)

3 AR

1

A 4 R A
cluster 7 (P) cluster 8 (NP)

Fig. 7. Example of labeled sub-clusters generated for a flute player (only a few repre-
sentative images per cluster are shown).

4. we cluster the detections in S;; by running a clustering algorithm
taking X;; as input and with the number of clusters to be gener-
ated being set to Cp,.

In order to assess the informativeness of different regions of the
image, we consider two options for extracting l{."l, which capture the
face and the upper body regions. As for the way we visually describe
the segmented images, we consider global and local features. As for
the latter, we aim at exploiting as much as possible the redundancy of
the images belonging to each musician. We therefore train one visual
word vocabulary for each set Sy, instead of training a vocabulary for
the whole recording. By training ad hoc vocabularies, we expect that
the discriminative power of the trained visual words is optimized for
each musician. In Section 7.1.2, we report the details about the used
features and the optimal parameters (e.g., number of visual words).

The obtained sub-clusters directly imply the P and NP labels to be
assigned to them and therefore the quality of sub-clusters also deter-
mines the quality of our P/NP annotation framework. We explain the
sub-cluster annotation process in Section 6.4.2. Examples of labeled
sub-clusters are shown in Fig. 7. Unlike in the case of face clusters
labeling, non-pure or otherwise ambiguous sub-clusters are not dis-
carded, but annotated using the label X (undetermined).
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(a) Type Al: the dominant mu-
sician in S is #06, the dominant
label is P and the image of #02 is
also P. NP.

(b) Type A2: the dominant mu-
sician in S < is #006, the dominant
label is P but the image of #02 is

#36
(c) Type B: the sub-cluster S§,
contains only images of #30,

however it is non 100% P/NP
pure.

Fig. 8. Examples of different types of error generated at the face and/or the PNP clustering steps. While the errors of type B have a direct negative impact on the accuracy, an error
of type A1 or A2 leads to a P/NP labeling error depending on the timestamp of the detection belonging to the “wrong” musician.

This clustering step is fundamental to make the subsequent hu-
man annotation process efficient. In fact, if every single detection
were manually annotated, the complexity of the human annotation
task would be O(|Mgr| x L) - i.e., linear to the number of musicians
multiplied with the temporal length of the recording. Since we as-
sumed that the number of points of view |PoV,| is limited, the com-
plexity of the human annotation task using our approach becomes
O(|Mgr]) - i.e., linear to the number of musicians.

6.4. Human annotation

Our proposed framework illustrated in Fig. 5 involves two manual
labeling steps, the first one annotating the face clusters by the corre-
sponding musician ID and the second one annotating the sub-clusters
in terms of P and NP labels.

In general, the annotation process of a cluster of images works as
follows. The annotator inspects the content of a given cluster which
is rendered, for instance, as a grid of images. Then, the purity of the
given cluster is evaluated. A cluster is pure if most of the images be-
long to one class. We call such class dominant. If there is a dominant
class, it is used as label for the cluster. Conversely, a non-pure cluster
is discarded in order to prevent that the labeling accuracy will be low.
We assume that: (i) human annotators are able to detect the pres-
ence of a dominant class, and (ii) human annotators can recognize
the dominant class (if present). More details about the two manual
labeling steps are reported below.

6.4.1. Face clusters annotation

The annotator is provided with a reference table of musician IDs
like the one in Fig. 9. The images within a face cluster are shown to
the annotator and the annotator decides first whether the cluster is
pure enough, that is whether the cluster has a dominant musician ID.

If the annotator finds the cluster to be pure enough, then she uses
the reference table to check whether the dominant identity belongs
to one of the musicians. If a musician is dominant in the face cluster,
then the corresponding label is chosen and automatically propagated
to all the face detections belonging to the given cluster. In the cases
of a non-musician dominant label (conductor, audience or non-face
images) and a non-pure cluster, the cluster is discarded and the face
detections belonging to it will not be used anymore.

A first type of error that can occur at this step is the error of type A
(e.g., Fig. 8 aand b): if a cluster is not discarded and therefore labeled
with m € Mgr, any image not belonging to the musician m will gen-
erate a musician labeling error. The impact of this error type on the
accuracy of P/NP labeling is discussed in more detail below.

6.4.2. P/NP clusters annotation

For this task, the annotator does not need any reference table and
we expect that no specific expertise is required in order to distinguish
playing and non-playing actions for any musical instrument. We also
assume that each sub-cluster can be annotated independently.

Given a sub-cluster S5, to be labeled, the annotator once again
decides first whether it is sufficiently pure. Differently from the

Fig. 9. Example of reference table provided to the face clusters’ annotators.

previous annotation task, the purity now has two dimensions. The
first one is related to the presence of a dominant P/NP class, that is
whether the majority of the images show either a playing or non-
playing HOI. When a dominant class is chosen, all the images not be-
longing to that class will generate a P/NP labeling error of type B (e.g.,
Fig. 8c). The second purity dimension deals with the error of type A
since a sub-cluster may contain images of other musicians due to er-
rors at the face clustering phase. Considering these two aspects, we
assume that a sub-cluster is discarded if it contains too many errors
of type A and/or B.

Finally, regarding the error of type A, we distinguish two cases oc-
curring when a P/NP cluster S, is not discarded and contains images
belonging to one or more musicians m’ # m. The error of type A1 oc-
curs when an image of a different musician m’ has the same P/NP
label as the one which is dominant in the sub-cluster (e.g., Fig. 8a).
The error of type A2 occurs when an image of a different musician
m’ has not the sub-cluster’'s dominant P/NP label (e.g., Fig. 8b). The
main impact of these types of error is that a spurious observation is
added to the musician m and removed from the musician m’. Then,
for the musician m, the system may generate an additional and even-
tually wrong P/NP label according to factors, which depend on the
way P/NP sequence are generated as explained in Section 6.5.

6.5. Generating sequences of P/NP labels

Taking the sub-clusters labeled as either P, NP or X and the
keyframe’s timestamps associated to the images belonging to the
sub-clusters as input, we now proceed with generating the function
PNP;,(t) : T — {P,NP, X} that produces the P/NP/X label sequence
for each musician m € Mgr.

As defined in Section 5, we aim at reconstructing the PNP se-
quence for every musician at regular time intervals (e.g., every sec-
ond). The reason why we do not extract the labels for every frame
lies in the inherent nature of the P/NP labels. As explained in [5], it
is not likely that two or more P/NP switches occur in a short period
of time, because during short musical rests musicians keep a playing
body pose. Hence, we adopt the same sliding window approach of
[5] and we derive P/NP labels periodically for every musician. A large
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Yy’ labeled sub-clusters for musician #39 N
N\
s39

(55

Fig. 10. Illustration of the process of creating the P/NP label sequences for a musician
m via majority voting. In this example, we focus on the case of two cameras recording
the musician m = 39 and we set the sliding window size to 1 second (for the sake of
simplicity). Given 8 labeled sub-clusters S5,, every second the available P/NP labels are
sought in the labeled sub-clusters. The retrieved labels are used to build the sets w to
which a majority voting is applied to determine the final label.

window size (e.g., 5 seconds) accounts for the time required to switch
from a playing to a non-playing body pose (and vice versa).

For each musician m, each label is generated through a voting pro-
cess illustrated in Fig. 10. At every timestamp t € 7, a set w is built
by exploiting the labeled sub-clusters S5, associated with the musi-
cian m as follows. We look for the images lf."l € S5, extracted within
the current sliding window time interval. This search can lead to a
variable number of results, depending on how many cameras record
m in the considered period of time. For each found image, one P/NP
label is added to w, inherited from the sub-cluster the image belongs
to. Discarded sub-clusters are ignored. Consequently, w is either an
empty set or contains one or more labels. In the former case, the la-
bel assigned at the timestamp t is X because there is no observation
of m in the considered time window. In the latter case, P(NP) is as-
signed if the number of P(NP) labels in w is greater than the number
of NP(P) labels. If the numbers of P and NP labels in w are equal, the
label X is assigned.

6.6. Dealing with missing observations

As pointed out in Section 5, there is no guarantee that each musi-
cian is always visible from at least one camera. If a musician does not
appear in a keyframe, no P/NP label can be inferred using the pro-
cedure explained above. However, the domain knowledge on the or-
chestral setting (Section 2) allows us to infer the labels for individual
musicians from all the other musicians playing the same instrumen-
tal part and thus belonging to the subset MET. In this case, for each
subset MZT, the expected sequence of labels is the same for every
musician m e MA...

We propose two different strategies to extrapolate the labels: (i)
highest timeline coverage (highest TC), and (ii) merging. Given MET, the
highest TC approach assigns one of the existing PNP functions to all
other musicians in MET. The optimal PNP function for a given instru-
mental part h is that computed for the musician m* such that m* =
arg minmeM’C"T |{t : PNPp(t) = X}|. The rationale behind this strategy

is to base the extrapolation on the musician for which the number
of observations is maximized. Differently, the merging strategy com-
putes a new PNP function for each instrumental part by combining
all the labeled sub-clusters S¢, belonging to the musicians perform-
ing the considered instrumental part. As opposed to relying on the
strongest evidence as in the previous strategy, here we combine all

the available evidence belonging to a certain instrumental part. For
this purpose, we deploy a modified version of the majority voting
approach described in Section 6.5. When w is populated, instead of
considering the sub-clusters S5, of a single musician, we consider all
the sub-clusters S, such thatm e M’éT.

7. Experimental setup

In this section, we detail how we implemented the proposed
framework, present our dataset, and explain how we conducted the
experimental evaluation.

7.1. Framework implementation

The design choices and the parameter selection underlying the re-
alization of our framework (presented in Section 6) were informed
following the protocol described in Sections 7.1.1 and 7.1.2.

7.1.1. Musicians diarization

We describe the way we implemented the four face clustering
methods introduced in Section 6.2 and explain how we selected fea-
tures and parameters.

The B-cubed precision/recall [1] was adopted to assess the quality
of the produced clusters. We chose the number of face clusters by
approximating the number of entities |E| to the number of musicians.
In the case of the development set, |E| was set to 7. A suitable value
for factor o taking into account the variations of various types was
found by inspecting multiple options, namely 1, 1.5, 2, 2.5, 3, 4, 5, 10,
15 and 20 (generating from 7 to 140 face clusters).

For clustering itself, we used k-means in the unconstrained case
and COP k-means [36] in the constrained one. The constrained face
clustering methods were not assessed using the development set be-
cause COP k-means has no parameters to be tuned and the number
of cannot-link constraints generated for the development set was too
low.

As for the unconstrained face clustering, we considered two op-
tions, both relying on state-of-the-art visual features. In the first one,
we deployed Local Binary Patterns (LBP) and Histograms of Oriented
Gradients (HOG) from the face bounding box as done in [41]. In the
second one, we focused on the face bounding box extended to the hair
region from which we extracted Pyramid HOG (PHOG), Joint Compos-
ite Descriptor (JCD), Gabor texture (Gabor), Edge Histogram (Edge-
Hist) and Auto Color Correlogram (ACC) [17]. In both cases, we evalu-
ated the impact of applying the Principal Component Analysis (PCA)
[15] retaining 99% of the total variance.

In the context-assisted case, we included a description of the
scene and/or a description of the upper body region. As for the former,
given a detection d;“’, we extracted the JCD, PHOG and ACC global fea-

tures from a downsampled copy of the keyframe ff.‘. The upper body
region was always described by LBP, PHOG, JCD, Gabor, EdgeHist and
ACC. For both scene and upper body descriptors, we assessed the im-
pact of including and excluding this information and also the option
of including it by first applying PCA retaining a number of possible
ratios of total variance (namely, 50, 70 and 99%).

By inspecting the results summarized in Fig. 12, we found that
the optimal set of features to assess the face similarity is that ex-
tracted from the face-hair region and consisting of PHOG, JCD, Gabor,
EdgeHist and ACC applying the PCA (see Fig. 12a). By comparing the
plots in Fig. 12, we see how different combinations of contextual fea-
tures affect the performance. The upper body features leads to the
strongest improvement and the optimal ratio of retained variance for
the PCA is 99% (see Fig. 12c). The scene features, whose optimal ratio
of retained variance for the PCA is 70%, do not add a significant con-
tribution (see Fig. 12b and d). Finally, the optimal value of o we chose
was 15 because by increasing it to 20 we observe a saturation in the
performance.
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7.1.2. P/NP clustering

For each set S, of images belonging to one musician, we estimated
the number of points of view (see Section 6.3) as follows. The list of
(w x h, i) pairs derived from S;;; was first normalized (zero mean, unit
variance). Then, we used DBSCAN [10] to automatically estimate the
number of formed dense regions. We required that a dense region
had at least 10 samples and the dense region radius parameter € was
set to 0.4. Pairs not belonging to any dense region were ignored.

As discussed in Section 6.3, the P/NP clusters S, were produced
considering two possible image regions and two possible types of
feature. Evaluating on the dedicated development set, we found the
following optimized global feature sets: face images were best de-
scribed using Gabor, JCD and PHOG without applying the PCA, while
upper body images by EdgeHist, Gabor, PHOG and ACC retaining 95%
of the total variance. As for the local features, we considered two pos-
sible options, namely SIFT and OpponentSIFT [32], aggregating them
either via bag-of-words (BoW) [6] or via spatial pyramid (SP) [16]. We
also evaluated different visual words vocabulary sizes, namely 200,
400 and 1000 visual words (1000 only used with BoW). For each mu-
sician, that is for each set Sy;, the visual word vectors were assigned
via mini-batch k-means [26] applied to the visual words vocabulary
training set, built by randomly sampling 500,000 feature vectors from
the images in Sy;. Using the development set, we found that the op-
timal way of describing both face and upper body images was using
OpponentSIFT with 200 visual words, but aggregating the former via
SP and the latter via Bow.

Image clustering was performed using the k-means algorithm. In
order to assess the significance of the obtained results, we also in-
cluded a random baseline method which simply works by randomly
assigning the images in a given set Sy, to the sub-clusters S,.

7.2. Simulating the human annotation

In this work we address a number of research questions for which
the experiment has to be repeated several times using different
(types of) features and parameters. This is particularly true for the
research question RQ3, for which we want to assess the overall im-
pact of errors in different modules. In this context, deploying the two
human annotation task presented in Sections 6.4.1 and 6.4.2 for ev-
ery run is not feasible. In fact, in the full experiment we generate
dozens of thousands of image clusters to be annotated. Another rea-
son for not performing human annotation at this stage is that we do
not know yet how to instruct human annotators with respect to how
tolerant or strict they should be when coming across non-pure image
clusters. We therefore made a number of assumptions and simulated
human annotation using the available ground-truth information, also
quantifying the perceived purity of a cluster of images and assessing
the impact of different levels of strictness.

7.2.1. Modeling the human annotator

Following the annotation process and the assumptions reported
in Section 6.4, we modeled a human annotator as follows. The core
idea is to define a rejection threshold with which a cluster is discarded
if the frequency of the dominant class is below such threshold. For
each cluster, we compute a histogram of frequencies having one bin
per class. If the highest frequency is below the rejection threshold, the
cluster is discarded, otherwise it is kept and labeled with the domi-
nant label. In our experiments, we used a number of distinct thresh-
old values in order to study the impact on the overall performance.
A high threshold corresponds to a strict annotator (high precision),
while a lower value is a more tolerant one (balanced precision and
recall).

7.2.2. Simulating the face clusters annotation
When labeling face clusters, we assigned the histogram bins as
follows: one for each musician m € Mgr, one for the conductor, one

for the audience, and one for false positive face detections. We con-
sidered three types of human annotators by using the values 50, 70
and 90% for the rejection threshold. When the voted label did not
belong to a musician, the face cluster was discarded. In order to un-
derstand to what extent face clustering is a critical step, we also used
the face clustering ground-truth labels (ideal case).

7.2.3. Simulating the P/NP clusters annotation

When labeling a sub-cluster S5, we computed the histograms as-
signing three bins associated to playing, non-playing and outlier im-
ages. The latter was used when an image of a different musician oc-
curred, that is when an image belonged to a musician m’ # m. We
tested the following rejection thresholds: 50, 60, 70, 80 and 90%.

7.3. Dataset

We experimented on a dataset which in total consists of 29 videos
(about 7 hours) from which we extracted more than 100,000 de-
tections belonging to 105 different musicians. The dataset was built
based on video recordings of two symphonic music concerts per-
formed by two different professional orchestras and is representa-
tive for the context in which we operate, as described in Section 2.
The first recording contains the four movements of Beethoven’s Sym-
phony No. 3 Op. 55, performed by the Royal Concertgebouw Orches-
tra (Amsterdam, The Netherlands) and it is a multiple-camera record-
ing. The second one is a fixed, single-camera recording of the fourth
movement of Beethoven’s Ninth Symphony performed by the Sim-
fonica del Vallés Orchestra (Barcelona, Spain). The two recordings, re-
spectively referred to as “RCO” and “OSV”, are available on request. To
the best of our knowledge, there is no other available dataset consist-
ing of real world data that we could have used alternatively.

7.3.1. RCO dataset

The RCO dataset (Fig. 11a) is organized into 4 sets of 7 synchro-
nized videos where each set represents the multiple-camera record-
ing of a movement (6 h and 40 min in total). The number of per-
forming musicians is 54 and they are organized into 19 instrumental
parts and playing 11 different instruments. The recording also cap-
tures the audience and the conductor. From each video, we extracted
1 keyframe every second producing 24,234 keyframes in total.

For each keyframe we detected the faces and estimated the head
poses. This was done by combining a number of off-the-shelf multi-
pose face detectors [34,42] via non-maximum suppression (NMS).
The way we estimated the head pose is an adaptation of the method
described in [3]. The adaptation was required in order to integrate the
detector from [42] for which we initialized the confidence of its out-
put to the acceptance threshold level (see [3]) in order to maximize
the face detection recall. The choice of combining different types of
detectors has significantly increased the number of detected faces.
Overall, 66,380 face have been found which are distributed as fol-
lows: 1716 belonging to the conductor, 4539 to the audience, 3844
are false positives and the remaining 56,281 are distributed across
the 54 musicians.

7.3.2. OSV dataset

The OSV dataset is a fixed, single-camera recording in which the
performers appear at the same position throughout the whole event
(see Fig. 11b). Faces approximately cover an area of 20 x 20 pixels,
much smaller compared to those of the RCO dataset. The positions
of the faces were manually annotated using a random frame as ref-
erence and then the head poses were, again manually, assigned to
every face. Therefore, the face clustering step is not necessary for this
recording since the musician identity is only a function of the face
bounding box position in the reference keyframe. In this case, we ex-
tracted a keyframe every 2 s because, being the recording a fixed-
camera one, oversampling in time would have been unnecessary for
the goals of our experiment.
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RCO
- CAMERAS: 7 (professional)
- MOVEMENTS: 4 (58 minutes)
- TOTAL KEYFRAMES: 3462 x 7
- MUSICIANS: 54
- INSTRUMENTAL PARTS: 19
- RESOLUTION: 720p @ 25 FPS

DEVELOPMENT SET
3746 detections
FACE P/NP
CLUSTERING CLUSTERING
1575 detections 2171 detections

TEST SET

62634 detections
52 musicians

197

osv
- CAMERAS: 1 (fixed, entry level)
- MOVEMENTS: 1 (22 minutes)
- TOTAL KEYFRAMES: 668
- MUSICIANS: 63
- INSTRUMENTAL PARTS: 18
- RESOLUTION: 1080p @ 25 FPS

TEST SET

42084 detections
63 musicians

Fig. 11. Proposed datasets used in this work.
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Fig. 12. Face clustering evaluation on the dedicated development set. Each dot represented an evaluated combination of types of feature, amounts of retained variance while
applying the PCA and factors affecting the number of generated face clusters. The lines are used to highlight the chosen combinations and how the performance changes when the
number of generated cluster is changed (e.g., 10x means 10 times the number of musicians in the development set, namely 10 x 7).

7.3.3. Development set

As shown in Fig. 11a, part of the data extracted from the RCO
dataset was used as development set. The reason why we did not in-
clude data from the OSV dataset there is twofold. First, we wanted to
assess the general applicability of our method to an unseen record-
ing. Hence, we followed a leave-one-recording-out approach while
searching for visual features and parameters. Second, we find the RCO
concert a more general case than the OSV due to the additional vari-
ations caused by panning and zoom-in camera actions.

The face clustering development set was generated by randomly
sampling 1575 face detections belonging to the conductor, audience,
7 musicians performing different instrumental parts and also belong-
ing to the false detections.

The development set was used to inform the design choices and
select parameters of our framework. All the remaining data was used
at the evaluation step.

7.4. Ground truth

The ground truth for evaluating the face clustering method was
created by the authors, by annotating the 66,380 faces detected in
the RCO dataset. The true P/NP labels were derived using synchro-
nized symbolic information. As for the RCO dataset, we used four
MIDI files synchronized to the video files provided by Grachten et al.
[13], from which we extracted the P/NP labels with the method de-
scribed in [5]. The Music Technology Group (Pompeu Fabra Univer-
sity, Spain) provided us with the video recording and a set of files
encoding synchronized note onsets and offsets for each instrumen-
tal part. In both cases, each performing musician was bound to the
corresponding instrumental part / MIDI track in order to build the
corresponding ground truth P/NP sequence.

7.5. Evaluation approach

The goal of the experimental evaluation in this paper was three-
fold. First, we assessed the performance of the key-modules of our

framework, including P/NP labeling (Section 8.2) as well as face label-
ing - i.e., musician diarization (Section 8.1). The quality of P/NP label
sequences is the key result serving to demonstrate the effectiveness
of our proposed method. However, we also evaluated the face label-
ing step to understand how inevitable errors there affect the quality
of P/NP label sequences.

Second, as reported in Section 8, we assessed the quality of the ob-
tained P/NP label sequences also relatively, using a random baseline
as a reference. Relying on a random baseline was the only possible
choice here, and this for the following reasons. The related literature
does not offer a solution for yielding one sequence of P/NP labels for
each performing musician. In fact, as discussed in Section 3, existing
audio-based and visual-based classifiers cannot be directly applied
to the type of audio-visual content considered in this paper. Replac-
ing the semi-automatic framework modules described in Sections 6.3
and 6.4.2 is only theoretically possible. As explained in Section 3.1.4,
existing vision-based classifiers require input of a particular type and
are instrument-dependent.

Finally, in Section 8.6, we compared the efficiency of P/NP label-
ing using our method with the efficiency of the purely manual P/NP
labeling in order to determine how much human annotation can be
speeded up, while maintaining the same high quality of the P/NP la-
bel sequences.

7.6. Evaluation measures

In this section, we describe the evaluation measures used to assess
the quality of the labels produced after the human annotation steps
described in Sections 6.4.1 and 6.5.

Once the face clusters had been generated and labeled, we jointly
evaluated precision, recall and number of labeled (or non-discarded)
face detections. The average precision and the average recall were
combined together into the average F1-score. The percentage of non-
discarded face detections was simply determined by counting how
many images inherit a label from non-discarded face clusters.
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Fig. 13. Example of how A and TC scores are computed for P/NP label sequence
assessment.

For each musician the system produces a sequence of P/NP/X la-
bels to be compared to the corresponding ground truth sequence.
As illustrated in Fig. 13, we evaluated the labeling performance in-
tegrally aggregating the results obtained for all the musicians. The
performance with respect to the grond truth was assessed using two
scores: accuracy (A) and timeline coverage (TC). The former is defined
as the percentage of matching labels and it is computed only consid-
ering the known labels, namely those for which the value is different
from X. The TC score is defined as the ratio between the number of
non X-valued labels and the ground truth sequence length. It is an in-
dicator of how many detections are used by the system and its upper
bound is defined by the percentage of available musician detections.

We recommend to use accuracy instead of other scores, like preci-
sion and recall, because we need to assess how well the system pro-
duces both playing and non-playing labels. The timeline coverage was
chosen to observe how many labels are effectively generated by the
system, but also to measure the impact of rejecting non-pure image
clusters.

8. Results

This section reports the results and provides the reader with
the answers to the research questions defined in Section 1. First,
we addressed RQ1 in Section 8.1, where we evaluated different op-
tions to solve the musician diarization problem. Then, in Section 8.2
we focused on the P/NP labeling problem addressing RQ2 and RQ3.
We added a failure analysis section (Section 8.3) in which we ex-
plained how the system fails. This provides insights about the in-
formativeness of static images (RQ4). The results obtained when
adopting the two proposed strategies dealing with missing observa-
tions are reported in Section 8.4. Then, we qualitatively compared
the ground truth and the generated P/NP sequences using the OSV
dataset (Section 8.5). Finally, we answered RQ5 by measuring the
achieved efficiency and effectiveness of the human annotation tasks
(Section 8.6).

8.1. Face labeling

We evaluated the proposed semi-automatic method producing
face labels on the RCO test set. This set consists of 64,805 detec-
tions belonging to 54 musicians. With these detections we generated
191,745 cannot-link constraints (see Section 6.2).

Fig. 14 shows that the most informative regions are the face and
the upper body. Including scene information does not significantly
improve the performance and the same holds for the cannot-link
constraints. While including scene information did not impact the
computation time, running the constrained version of k-means led
to a significantly longer execution time. In general, we see that our
method generates face labels with high average precision and recall.
However, this result was not obtained just via the face clustering step
but also using the human annotators’ ability to discarding non-pure
clusters. In fact, in the best case we already observe that about 20% of
the detections fell into discarded face clusters. This means that a part
of the clusters was not sufficiently pure.

face labeling (test set)
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Fig. 14. We compared four feature sets (represented by different markers) using ei-
ther the constrained clustering (filled markers) or the unconstrained one (empty mark-
ers). We also evaluated three different rejection thresholds (different colors). The plot
shows three results. First, combining face and upper body visual information produces
the best results. Second, adding scene visual information and/or using the cannot-link
constraints does not significantly improve. Third, a higher rejection threshold effec-
tively filters out non-pure clusters.

8.2. P/NP labeling

This section analyzes and compares the results obtained for the
RCO and the OSV datasets. The research questions RQ2 and RQ3 were
addressed in Section 8.2.3.

The plots reported in Sections 8.2.1 and 8.2.2 show the accuracy
and the timeline coverage for the different types of features and re-
gions of the image also including the results obtained with the ran-
dom baseline method. As for the adopted notation, each point corre-
sponds to the combination of an image region (upper body vs face),
of type of features (global vs local) and of rejection threshold used
when labeling the P/NP clusters (50, 60, 70, 80 and 90%). A dedicated
marker is used for the random baseline method.

8.2.1. Evaluation on the RCO dataset

The RCO dataset allowed us to assess the full system that is, we
could observe how different ways of generating the face labels af-
fected the performance at the P/NP labeling step. To this end, we eval-
uated four cases. First, we considered the case of ideal input, in which
the ground truth face labels were used. Then, we considered three
different ways of obtaining the face labels by varying the rejection
threshold used to label the generated face clusters. More specifically,
we used the RCO test data, which includes the detections of 52 musi-
cians. Setting o to 15 and approximating the entities set size |E| to the
number of musicians generated 780 face clusters. Then we simulated
the annotation using three different rejection thresholds: 50% (toler-
ant annotator), 70% and 90% (strict annotator). In this experiment we
used the unconstrained context-assisted face clustering method - i.e.,
we exploited face similarity and context information extracted from
the upper body and the scene (see Section 6.2). The overall numbers
of generated P/NP clusters were 530, 384, 354 and 342 for the face la-
bels input of the types “ideal”, 0.5, 0.7 and 0.9, respectively. In Fig. 15,
which summarizes the results, we observe four facts.

First, regardless of the input to the P/NP clustering step, there
is a consistent trade-off between accuracy and timeline coverage.
The stricter the annotator is (higher P/NP rejection threshold), the
lower the number of produced P/NP labels is. More in detail, the fig-
ures show that the timeline coverage decrease is much larger than
the accuracy increase. This means that quite often the purity of the
produced P/NP clusters is below the highest rejection thresholds. In
Section 8.3 we investigate the reasons why the P/NP clusters are not
always pure enough.

Second, global features always outperform local ones and the up-
per body region is more informative than the face region. What is
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Fig. 15. Evaluation of the P/NP labels produced by the system. The vertical dashed lines show the upper bound for the timeline coverage, which is limited by the availability of face
detections. The upper body region described with global features outperforms other combinations. Tuning the system for very high accuracy has a large negative impact on the
timeline coverage. This shows that discriminating playing and non-playing HOIs requires information beyond a global description of a static upper body image.
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Fig. 16. Informativeness of the face region: even when the torso region is not visible we can guess whether a musician is playing by analyzing the face expression.

surprising is that faces are already a good indicator to infer P/NP la-
bels. The advantage of this image region over the upper body one is
that occlusions here seldom occurs. When the instrument or the hu-
man body parts are not visible, face cues can be always exploited.
To show this, we give an example in Fig. 16. A relaxed, unfocused, or
contemplative expression (Fig. 16a-c) is likely to be linked to a non-
playing action, as opposed to a concentrated one (Fig. 16) that is likely
to indicate a playing activity.

Third, when the rejection threshold for the sub-cluster annota-
tion is set to 50%, the timeline coverage in Fig. 15 is always close to
its upper boundary (the markers in the four plots are close to the
vertical dashed lines). Such boundary is determined by the available
face detections and it shows the highest possible timeline coverage.
This result was expected because, by setting the rejection threshold
to 50% and having only two possible labels (P and NP), no cluster is
discarded. Still, a number of additional X labels can be generated by
the process explained in Section 6.5 due to conflicting cluster labels
in case of multiple views on the same musician. However, the plots
reveal that this seldom happens.

Finally, by setting again the rejection threshold to 50%, we also
observe that the accuracy is always above 75%. This happens because
the numbers of P and NP labels in the ground truth are not equal. For
this reason, in order to assess whether the proposed method is gen-
erating P/NP clusters at all, the random baseline method is included.
What we see is that the baseline always performs worse, both in
terms of timeline coverage and accuracy. This shows that our method
effectively discriminates playing and non-playing actions.

8.2.2. Evaluation on the OSV dataset

In the OSV dataset, 63 musicians are recorded by a fixed camera.
Compared to RCO, there is no point-of-view variability and all the
musicians are always visible. The number of P/NP clusters is 126. For
this recording we only evaluated local and global features extracted
from the upper body region. The made this choice because, as ex-
plained in Section 7.3.2, the face region in the OSV dataset is too small.
Even we could not use this recording to evaluate the full proposed
system, it is an additional test case to also assess whether and to what
extent other recordings and recordings of a different type can be ex-
ploited for P/NP detection.
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Fig. 17. Results for the OSV dataset. Even if the video resolution is low, with a fixed
camera we accumulate a sufficient number of images for each musician from the same
point of view. Due to this, playing and non-playing images can be discriminated with
high accuracy.

The OSV images are challenging because they have a low reso-
lution. However, the system is still able to well discriminate P/NP
actions as shown by the results in Fig. 17. This becomes evident by
comparing the random baseline performance with that of our image
clustering methods. Increasing the rejection threshold from 50% up to
80%, we see that the number of discarded images decreases linearly
at relatively small steps. This means that the majority of the gener-
ated P/NP clusters were pure enough. However, when we look at the
strictest rejection threshold, we observe that the accuracy increase
is small while the number of determined P/NP labels decreases at a
much higher rate. Therefore, as we did for the RCO dataset, we con-
clude that there are additional factors determining the playing/non-
playing status of musicians which are not taken into account in our
solution.

8.2.3. Overall judgment

By evaluating on the RCO and the OSV datasets, we answered to
the research questions RQ2 and RQ3.

We conclude that the most P/NP discriminative region is the up-
per body. However, we remark that faces by themselves are already
surprisingly informative. Regarding the accuracy of the system, we
see that it ranges between 70 and 94% depending on the strictness of
the annotators. However, targeting to a high accuracy has a significant
impact on the number of discarded detections especially in the case
of a multiple-camera recording in which it is hard to continuously
accumulate observations over time for each performing musician.

As for the impact of different modules, we have two conclusions.
First, we see that the overall timeline coverage is directly affected by
the number of available face detections. This indicates that the face
detectors should be tuned to perform with high recall in order to de-
termine as many P/NP labels as possible for each musician. Second,
we observe that the musician diarization module has a limited im-
pact on the overall accuracy because most of the face clusters are suf-
ficiently pure.

8.3. Failure Analysis

As pointed out in Sections 8.2.1 and 8.2.2, a fraction of the pro-
duced sub-clusters S, is not sufficiently pure. By inspecting the pro-
duced P/NP clusters, we found that subtle discriminative cues in the
images sometimes occur. For instance, in Fig. 18, we see that the
mouth region for the French horn player is the discriminative region.
However, our method has not been designed to explicitly take into

Fig. 18. Good P cluster containing some NP images, which are included because the
differences in the mouth region are not dominant, sufficiently influencing the cluster
formation.

account this part of the image, therefore the images are clustered ac-
cording to the overall appearance of the upper body.

The aforementioned error belongs to a larger class of errors,
namely the false positives. By inspecting the videos, we observed that
they occur for any type of instrument and that they are caused by
anticipation, which occurs when a musician gets ready to play in ad-
vance. This is also supported by the confusion matrices in Fig. 19. They
all show that the amount of false positives (false P labels) is greater
than the amount of false negatives (false NP labels). Even if the P/NP
ground truth has been generated taking into account anticipation [5],
the results reported in Fig. 19 let us believe that it starts much earlier
than expected.

Due to the aforementioned observations, we answer to RQ4 as fol-
lows. On the one hand, a more detailed analysis of the images can be
performed (e.g., including features extracted by the mouth region)
thanks to which a static image could be enough for P/NP labeling. On
the other hand, we cannot exclude that an image itself is partially in-
formative. For instance, we expect that musicians’ movements could
be informative as well. Additionally, timbral features from the audio
recording can be used in a multimodal fashion.

8.4. Evaluating the strategies for missing detections

In Section 6.6 we proposed two ways of dealing with the lim-
ited availability of observations (namely, highest TC and merging).
We evaluated the two strategies by considering the case of ideal face
clustering input, using global features extracted from the upper body
region and by setting the P/NP clustering rejection threshold to 80%.
The results summarized in Table 1 show that both strategies are ben-
eficial. In fact, when nothing is done (standard case), the timeline cov-
erage is always the lowest.

In the highest TC case, the result is a direct consequence of using
the labels from the most visible musician. While in the merging strat-
egy, the advantage comes from the availability of multiple P/NP labels
obtained by exploiting the musician redundancy within each instru-
mental part. Due to this redundancy, the voted labels can be inferred
with more confidence at the majority voting step (see Section 6.5).
Overall, the most effective strategy is merging.

8.5. Qualitative assessment

We also qualitatively assessed the P/NP labeling performance
generating a PNP matrix. This matrix shows all the P/NP sequences
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Fig. 19. The depicted confusion matrices show that the system has a bias towards false positives. Such a bias can be explained by the fact that the musicians usually get ready to

play sufficiently in advance.
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(a) Ground truth P/NP matrix.
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Fig. 20. Comparing the P/NP matrices for the OSV performance. The merging strategy has been applied. Therefore both matrices have one row per instrumental part.

Table 1

Comparing the standard method with two possible strategies deal-
ing with missing observations. The scores are computed consid-
ering the ground truth face labels, global features extracted from
the upper body region and adopting 80% as rejection thresh-
old for the PNP clusters. The merging strategy significantly im-
proves the performance in the RCO case, while it has lim-
ited benefit in the OSV case. This is expected since the lat-
ter is a fixed camera recording and every musician is always

visible.
Strategy Standard Highest TC Merging
Score A TC A TC A TC
RCO 0.890 0.262 0.884 0369 0.884 0429
osv 0926 0863 0927 0.867 0927 0.873

produced for different instrumental parts. In Fig. 20 compares the
ground truth matrix and the one generated for the OSV dataset. The
latter is generated using global features extracted from the upper
body region and by setting the P/NP clustering rejection threshold to
80%.

From this example, we observe that the dominant error is indeed
caused by the false positives and that for some instrumental parts a
significant number of labels are missing (in particular for the clarinet
and the horn).

8.6. Human annotation efficiency

We addressed the last research question (RQ5) by assessing the
balance between the efficiency and effectiveness of the human an-
notation required by our system. We evaluated whether the system
generates a close-to-optimal number of P/NP clusters and measured
the ratio between the amount of required human annotations and
the number of generated P/NP labels. As for the notation used here,
we refer to Section 6.3.

First, we assessed whether our method produces too many or too
few sub-clusters Sf,. Fig. 21a and b report the results for the RCO and
the OSV dataset, respectively. The plots show how the timeline cover-
age (TC) and the accuracy (A) change by varying the number of gen-
erated P/NP clusters. The results were obtained using the P/NP clus-
tering based on global features extracted from the upper body region.
To show the significance of the results, we also evaluated the random
baseline’s performance. In both cases, the ground truth face labels
are used and the P/NP clustering rejection threshold is set to 80%. For
each musician we estimated the number of points of view and we
considered twice as many sub-clusters (as explained in Section 6.3).
Then, we used an additional factor 8 applied to increase (or decrease)
the number of sub-clusters per musician. For instance, when g =5,
the number of sub-clusters is ten times the number of the estimated
points of view. When f = 0.5 the number of sub-clusters is exactly
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(a) RCO dataset (face ground truth labels used). By increasing the number of generated P/NP clusters (8 > 1) both the
A and the TC scores slightly increase (saturation of the performance). By contrast, when 8 < 1 our method generates
much less pure P/NP sub-clusters. This is an indicator that a suitable number of sub-clusters is chosen. Differently, in
the case of the random baseline method, increasing 8 leads to a substantial increase of the TC score. This shows that
the number of generated sub-clusters is optimal for the method we propose.
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(b) OSV dataset. In this case, there is only one point-of-view on every musician and therefore the estimated number
of sub-clusters is 2 for every musician. When 8 € {0.25,0.50}, only one sub-cluster per musician is generated. Due to
the P/NP rejection threshold set to 0.8, only those musicians who play for at least 80% of the performance timeline
will be labeled as always playing. For this reason, we observe a drop of the TC score and a decrease of the A score.
Differently, when 8 > 1, the performance slightly improves. This saturation shows once again that the dominant
difference in the images is the performed playing/non-playing action and therefore that two sub-clusters for each

point-of-view are enough.

Fig. 21. Assessing whether the amount of required human annotation by our system is optimal. We verify whether the system generates the optimal number of P/NP sub-clusters.
Generating too many clusters leads to unnecessary human labor, on the other hand the critical number of P/NP sub-clusters has to be generated in order to avoid too many non-pure
sub-clusters. We have added the horizontal dashed lines to compare the performance obtained by different values of 8 to that obtained when g is 1 - i.e., the default number of

generated P/NP clusters.

the number of points of view. In summary, the value set for g affects

the overall number of sub-clusters ZL’YS ' Cn.

In Fig. 21a, we see that on the left of § =1, the performance
quickly decreases. By contrast, on its right side the timeline cover-
age slowly increases. This pattern is even more evident for the OSV
concert (Fig. 21b). In this case there is a sharp transition from the
case in which there is only one sub-cluster per musician (namely
when S € {0.25, 0.50}) and a saturation of the performance for val-
ues of B bigger than the unity. Both results show that the way the
system chooses the number of sub-clusters is optimal to avoid un-
necessary over-segmentation. Adding too many clusters would lead
to extra manual annotation but with little advantage in terms of
accuracy and timeline coverage. Similarly, we see that the system
generates the critical number of sub-clusters which are necessary
to avoid that P and NP images consistently fall together into one
cluster.

Finally, we computed the ratios between the overall number of
detections and the number of produced sub-clusters. The former is
defined as Z,I?];/’jl |Sm|, while the latter is defined as Z‘,,’:/I:Gfl Cn. For
the RCO dataset, the ratio is equal to 52204/530 = 98.5 and for the
OSV dataset 42084/126 = 334. This means that on average one hu-
man label is propagated to about 100 detections in the RCO dataset
and more than 300 in the OSV one.

9. Discussion

In this final section, we report the limitations we have encoun-
tered while deploying a number of state-of-the-art methods hence
suggesting possible research directions for the future.

The face detection step is critical for our system since it directly af-
fects the timeline coverage. We found that off-the-shelf detectors are
optimized to achieve high precision and that the recall is not satisfy-
ing like evident, for instance, from the example of Fig. 6 in which ap-
proximately only one third of the musicians is detected. Our attempt
to overcome this problem by combining multiple heterogeneous de-
tectors helped, but it may be useful to investigate more how to im-
prove the face detection recall in videos.

When clustering the faces, it is important to limit the number of
generated clusters in order to reduce the amount of human annota-
tion. State-of-the-art face clustering solutions designed to limit the
number of produced clusters are available. However, they work as-
suming that the initial clusters are nearly 100% pure. What we found
in our experiments is that this does not always hold. More specifi-
cally, we observed either very pure face clusters or fuzzy ones and
that the latter usually contain images with lower resolution and/or
profile faces. In order to maximize the utility of each detected face,
and once again avoid negative impact on the timeline coverage, face
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clustering methods should be improved so that non-pure clusters are
detected and discarded or treated with alternative strategies.

Furthermore, a more detailed analysis of the image segmentation
process is needed. The idea of exploiting the head pose to determine
the upper body region of a musician seems to be effective. We evince
this by inspecting the results obtained at the P/NP clustering step
when upper body images are clustered - i.e., empirical evaluation of
the segmentation process. However, it may be the case that the opti-
mal size of the upper body bounding box changes for different types
of instruments. Hence, a more detailed analysis of the segmentation
process should be carried out, eventually measuring the performance
in analytical fashion rather than an empirical one.

Finally, by investigating the limitations of our approach, we
learned that there are cases in which a non-playing image is very
similar to a playing one due to the anticipation before the actual note
onsets. What we have observed shows that the playing/non-playing
information is not simply encoded in the spatial configuration be-
tween the musical instruments and the body parts as assumed by
state-of-the-art methods. Additional information has to be extracted
by, for instance, exploiting the richness in the face region, the musi-
cians’ movements and/or auditory features. A second issue to be con-
sidered is how to possibly label the discarded images. For instance,
using the non-discarded, and hence labeled, clusters of images, ad
hoc classifiers could be trained to relabel the discarded face detec-
tions and the images from the discarded sub-clusters. Future work
may also be directed towards the exploration of the additional infor-
mation resources mentioned above and the exploration of relabeling
strategies.
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