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Structure

WHAT and WHY: FOWT design challenges

HOW: machine learning framework and stochastic models
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Wind Turbine Design Challenges

* ok under grant agreement No, 860737,

Design Situation Wwind Wave Wind Wave Sea Water Other
I:A . Conditions Directionality Currents Level Conditions
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Boundary Layer ShapeJ E————
/ Power production or
> occurrence of fault
Upstream WT Wake 7
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O Emergency shut down
Turbulence \O °
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Currents : . : o
Hydrodynamics Multi-dimensional probabilistic
Waves Fuy —_ design space with ~1M *expensive*
aero-servo-hydro-elastic simulations
Wind-wave misalignment " T Fh
Extreme wind and wave Mooring Line’'Dynamics S l
conditions '/ N
- L " Ultimate, Extreme, Average and
‘ Fatigue Loads
T A Ref [1] IEC 61400-3
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Wind Turbine Design Challenges

Fa
Aerodynamics

Boundary Layer Shape/

Upstream WT Wake

Turbulence %’O

:
o
>
O
(@)
g
o
¢ 3
L. O
c D
T 58
1
E 0
Currents Hydrodynamics ' 3 '
O
Wind-wave misalignment ” TFb\\
Extreme wind and wave Mooring Liry/lf)yna ics \ l
conditions § A
| " Ultimate, Extreme, Average and

) Fatigue Loads

*
"; : research and innovation programme
* ok under grant agreement No. 860737.

p g
S E I i ‘ W I N D * This project has received funding from
x the European Union’s Horizon 2020
| 1




Data-Driven Surrogate Models for Offshore Wind Turbines — TWIND Summer School 2021

v
Proposed Solution
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4 ?:.?;- = Ref [1] Dimitrov, N. K., Kelly, M., Vignaroli, A., Berg, J., From wind to loads: wind turbine site-specific load estimation with surrogate models trained on
S E P z WI N D high-fidelity load databases (2018) Wind Energy Science TR v g o
: [2] Schréder, L., Dimitrov, N. K., Verelst, D. R., A surrogate model approach for associating wind farm load variations with turbine failures (2020) Wind ¥ U ;';:e;r'ghﬂpaiadﬂ ig;ﬂ*gg;%:ggzgé;";g
_ Energy Science *.t,t* under grant agreement No. 860737,

[3] Zhu, X., Sudret, B. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering &
Svstem Safety
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8
Machine Learning Framework
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Machine Learn'ng Framework
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System Behaviour

Deterministic Mg:x >y

System
D ={(x;,y)li=1,..,n}

M;:D, xQ - R

Stochastic (x,2) & M,(x, )1

|}

Ref [1] Zhu et. al., Replication-based emulation of the response distribution of stochastic simulators using generalized

S I E P,- | W I N D lambda distributions (2020) International Journal for Uncertainty Quantification PR | has received funding from
: ‘f‘* the European Union’s Horizon 2020
E‘T x e research and innovation programme

* ok under grant agreement No, 860737,
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Deterministic Mg:x >y
X
System
D ={(x;,y)li=1,..,n} | |
. M,: Dy X Q= R =
Stochastic (x,2) > My(x,2)1) >
If x = x: | X |
(Y|X = x¢) = Ms(xo,2)
If z = z,:
X MS(xJ ZO)
Ref [1] Zhu et. al., Replication-based emulation of the response distribution of stochastic simulators using generalized

S I E P/'/ ; W I N D lambda distributions (2020) International Journal for Uncertainty Quantification
* * he Eurcpean Union
= ‘; :‘ research and innovation programme
IR L5 A T_ * Kk under grant agreement No, 860737,
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Stochastic Models

Dataset D = {(x;,y;)li =1, ...,n}

Gaussian Process Regression/ Kriging!"

Gaussian process is a class of probability distribution over possible functions that fit a set of points, and represents prior
knowledge about f
yi = f(x) €

€, = N(0,0%)

1)x; —x;
cov(y;, y;) = n% exp —Elll—zjl ) +0%6;;
yID = N(@,%)

—— e

Gaussian Process with a latent variancel?!
Yi = f(xi) + €
7 = log (SD(e(x)) = r(x) +J;

Gaussian Process with a latent covariatel3!
yvi =9, z)+
fx) = g(x, Z)p(Z)dZ

1 |xi - le (Zl ZJ)

) = 2 _5P 25
cov(yyy;) =n* exp| =iy 5 B +02 ;) i
k p+1
)
Ref [1] C. E. Rasmussen & C. K. |. Williams, Gaussian Processes for Machine Learning (2006) MIT Press. ISBN 026218253X
S E P W I N D Useful: https://aerodynamics.Ir.tudelft.nl/~rdwight/cfdiv/Videos/04/index.html T This project has received funding from
2] Goldberg, P. W., Williams, C. K. I., Bishop, C. M., Regression with input dependent noise: A Gaussian process treatment (1998) Advances ¥ U rg:eair'ghﬂi’;d”mUnomonHﬂ;r';Zra;ﬂ;g
in neural information Processing Systems Sl e grant agreement No, 860737,

[3] Wang, C., Neal, R., Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals (2012) arXiv:1212.6246v1


https://aerodynamics.lr.tudelft.nl/~rdwight/cfdiv/Videos/04/index.html
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Stochastic Models

Dataset D = {(x;,y;)li =1, ...,n}
Stochastic gradient variational Bayes!!

Conditional generative modell2!
y = fo(x,2)
p(yIx) = | p(yIx, 2) p(zlx,y) dz
p(y|x, z) parametrized to pg(y|x,z) -> decoder
p(z|x,y) parametrized to q4(z|x,y) -> encoder

The model is trained by minimizing difference between the joint distribution of the generated data py(x, y) and the joint distribution of the observed data
q(x,y)

Replication based models(s!
Regression performed over the parameters of a generalizable PDF

Overwew of other interesting methods: referencel4

Ref [1] Kingma, D. P., Welling, M., Auto-encoding variational bayes (2014) 2nd International Conference on Learning Representations, Conference Track Proceedings
S E P WI N D [2 Yang, Y., Perdikaris, P., Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems (2019) Computational Mechanics ,*"*,, Tg;fgLfIUE;;ahnasufﬁﬁ";'dHfu"d'"gg;’;a
E 1 Zhu, X, Sudret B. Global sensmwty analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering & System Safety Balll rescarch and innovation programme
[4] Sudret B. and Zhu, X., Surrogate models for stochastic simulators: an overview with a focus on generalized lambda models (2021) MascotNum Workshop on T o s agreement No. 860737,

“Stochastic simulators” (online)
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Results - averaged loads

Tower Base Tower Top Blade
TwrBsMxt_[kN-m] mean YawBrMxn_[kN-m] mean RootMxbl [kN-m] mean
r? GPR = 1.00 r’ GPR = 1.00 r? GPR = 0.98
PR Rolling Moment . . GPR Rolling Moment . GPIREdgewise Moment
o 5 ! ’ o puee o
gz 3z 20
= L0 =
© =] =]
L 0 v v
o o —1 o
-2
-2 -2
-1 0 1 2 3 -1 0 1 -2 -1 0 1
True - OpenFAST True - OpenFAST True - OpenFAST
TwrBsMyt [kN-m] mean RootMyb1l [kN-m] mean YawBrMyn [kN-m] mean
r’ GPR = 1.00 r? GPR = 1.00 r? GPR = 1.00
GPR Pitching Moment s « GPR Pitching Moment « GPR Flapwise Moment
o b o ’ o -
2 e e
o 0 o 0 O
o o o 0
il v v
a & &
-2 -2 >
-2 -1 0 1 -2 -1 0 1 —2 -1 0 1 2
True - OpenFAST True - OpenFAST - True - OpenFAST
i v, R



Data-Driven Surrogate Models for Offshore Wind Turbines — TWIND Summer School 2021

Results — stddev loads
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Questions

d.singh-1@tudelft.nl
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