

Deepali Singh

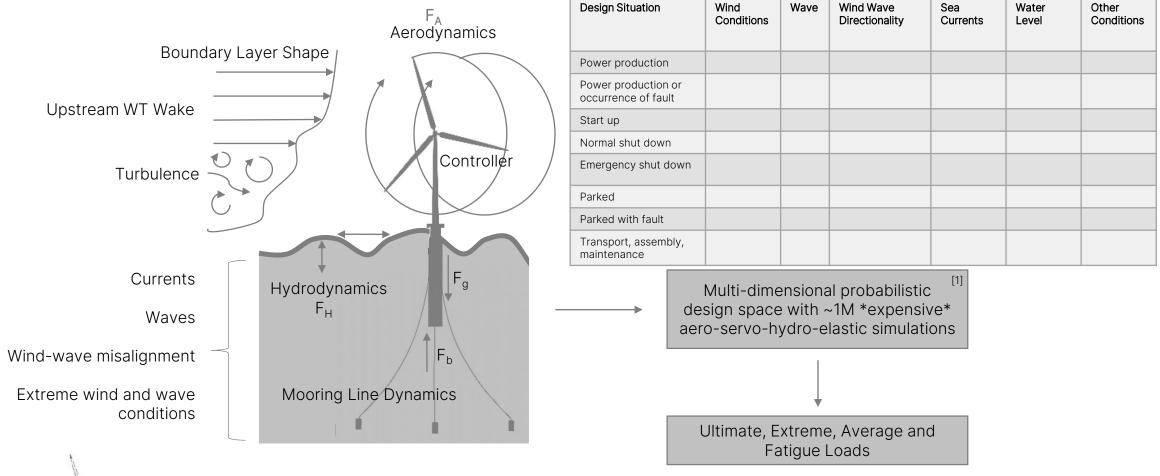
Richard P. Dwight, Laurent Beaudet, Kasper Laugesen, Paul Deglaire, Axelle Viré

SIEMENS Gamesa

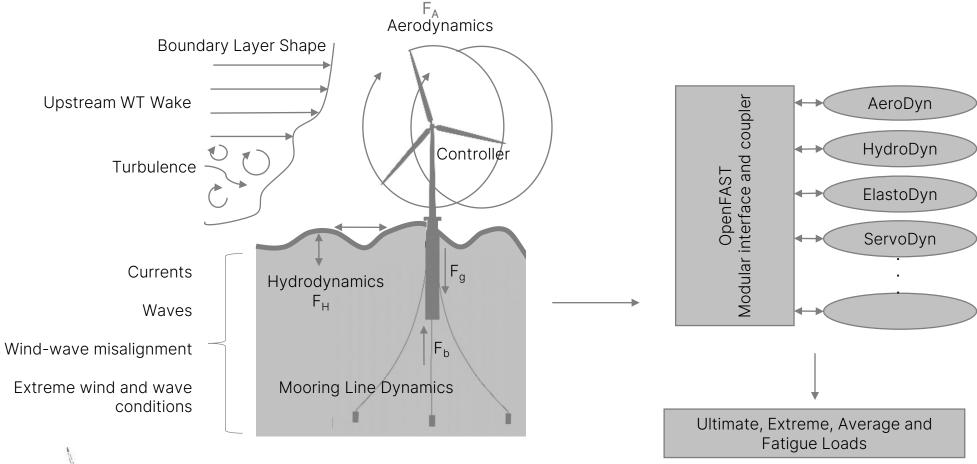
Structure

- WHAT and WHY: FOWT design challenges
- HOW: machine learning framework and stochastic models

Wind Turbine Design Challenges

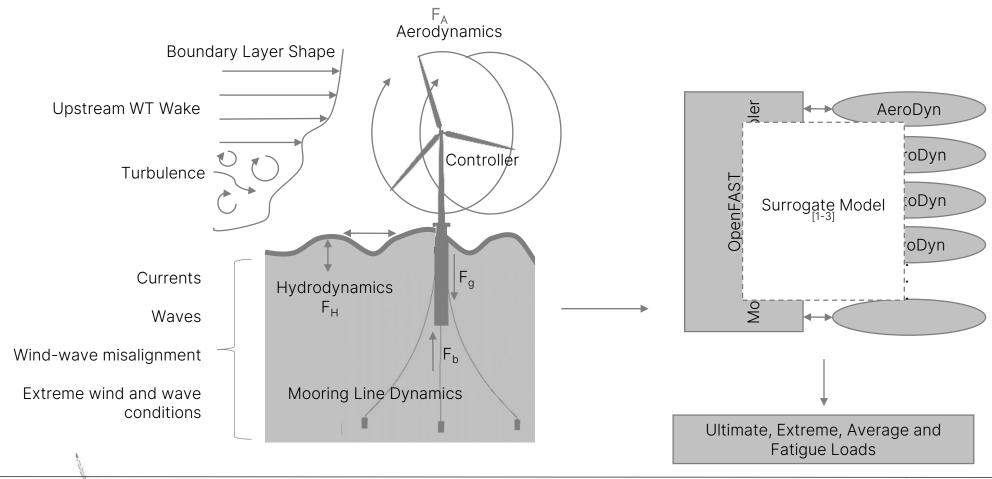


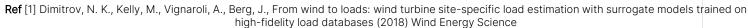
Wind Turbine Design Challenges



Proposed Solution

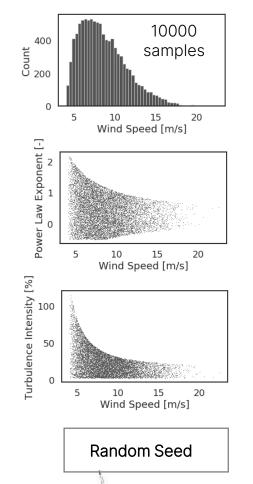
STEP-WIND

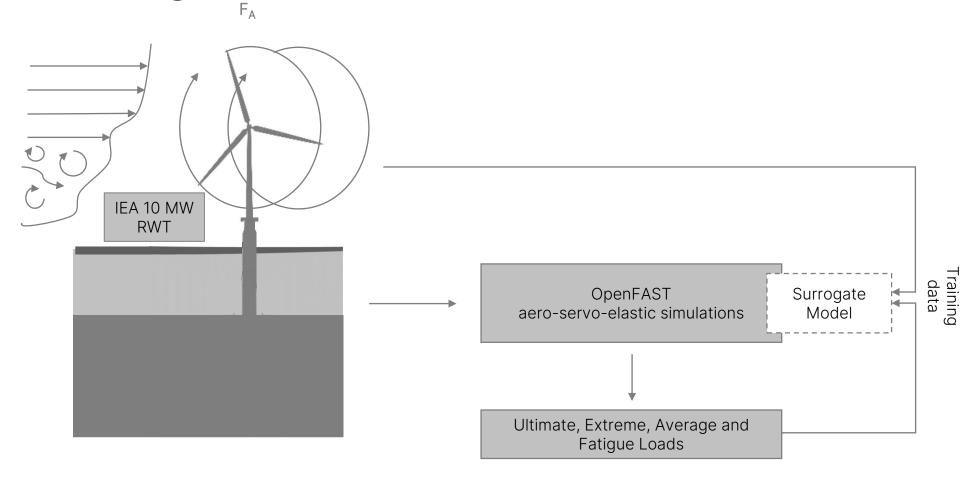




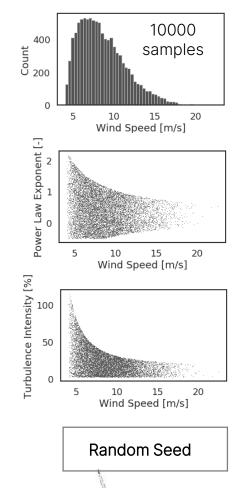
^[2] Schröder, L., Dimitrov, N. K., Verelst, D. R., A surrogate model approach for associating wind farm load variations with turbine failures (2020) Wind Energy Science

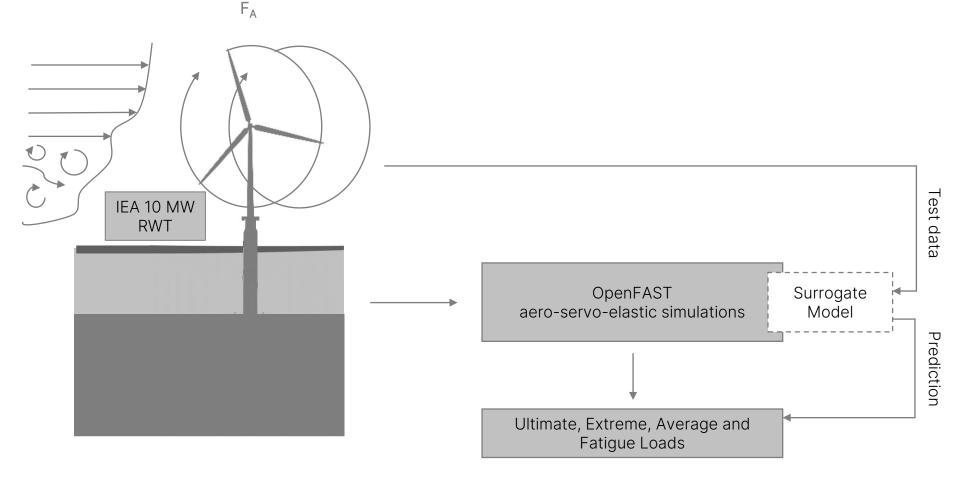
Machine Learning Framework



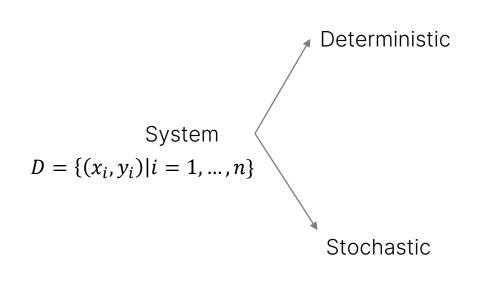


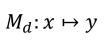
Machine Learning Framework

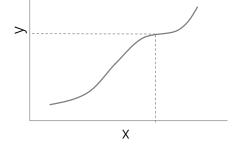




System Behaviour

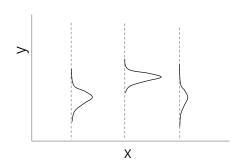




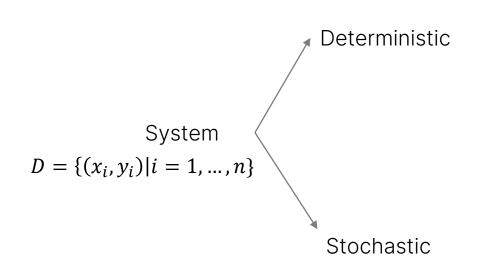


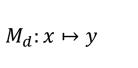
$$M_s: D_x \times \Omega \to \mathbb{R}$$

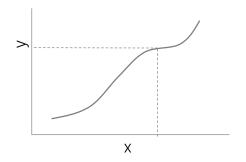
 $(x,z) \mapsto M_s(x,z)^{[1]}$



System Behaviour







$$M_s: D_x \times \Omega \to \mathbb{R}$$

 $(x,z) \mapsto M_s(x,z)^{[1]}$

If
$$x = x_0$$
:
 $(Y|X = x_0) \equiv M_s(x_0, z)$

$$(Y|X=x_0)\equiv M_S(x_0,z)$$
 If $z=z_0$:
$$x\mapsto M_S(x,z_0)$$

Stochastic Models

Dataset $D = \{(x_i, y_i) | i = 1, ..., n\}$

Gaussian Process Regression/ Kriging^[1]

Gaussian process is a class of probability distribution over possible functions that fit a set of points, and represents prior knowledge about f

$$y_{i} = f(x_{i}) + \epsilon_{i}$$

$$\epsilon_{i} = N(0, \sigma^{2})$$

$$cov(y_{i}, y_{j}) = \eta^{2} \exp\left(-\frac{1}{2} \frac{|x_{i} - x_{j}|^{2}}{l^{2}}\right) + \sigma^{2} \delta_{ij}$$

$$y|D = N(\hat{\mu}, \hat{\Sigma})$$

Gaussian Process with a latent variance^[2]

$$y_i = f(x_i) + \epsilon_i$$

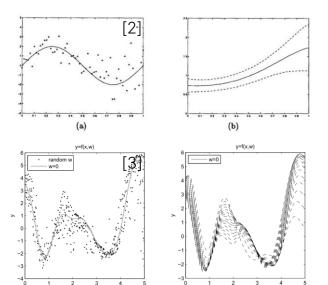
$$z_i = \log(SD(\epsilon(x_i))) = r(x_i) + J_i$$

Gaussian Process with a latent covariate^[3]

$$y_{i} = g(x_{i}, z_{i}) + \zeta_{i}$$

$$f(x) = \int g(x, z)p(z)dz$$

$$cov(y_{i}, y_{j}) = \eta^{2} \exp\left(-\sum_{k=1}^{p} \frac{1}{2} \frac{|x_{i} - x_{j}|^{2}}{l_{k}^{2}} - \frac{(z_{i} - z_{j})^{2}}{l_{p+1}^{2}}\right) + \sigma^{2} \delta_{ij}$$



Stochastic Models

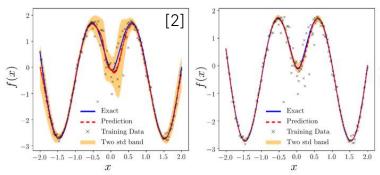
Dataset $D = \{(x_i, y_i) | i = 1, ..., n\}$

- Stochastic gradient variational Bayes^[1]
- Conditional generative model^[2]

 $y = f_{\theta}(x,z)$ $p(y|x) = \int p(y|x,z) \ p(z|x,y) \ dz$ $p(y|x,z) \ \text{parametrized to} \ p_{\theta}(y|x,z) \ \text{-> decoder}$ $p(z|x,y) \ \text{parametrized to} \ q_{\phi}(z|x,y) \ \text{-> encoder}$

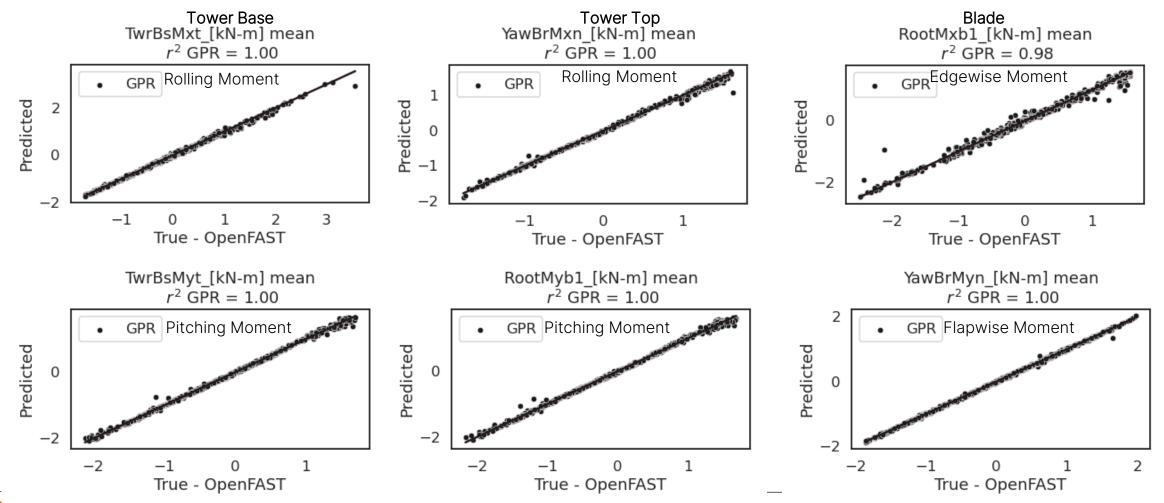
The model is trained by minimizing difference between the joint distribution of the generated data $p_{\theta}(x,y)$ and the joint distribution of the observed data q(x,y)

q(x,y)

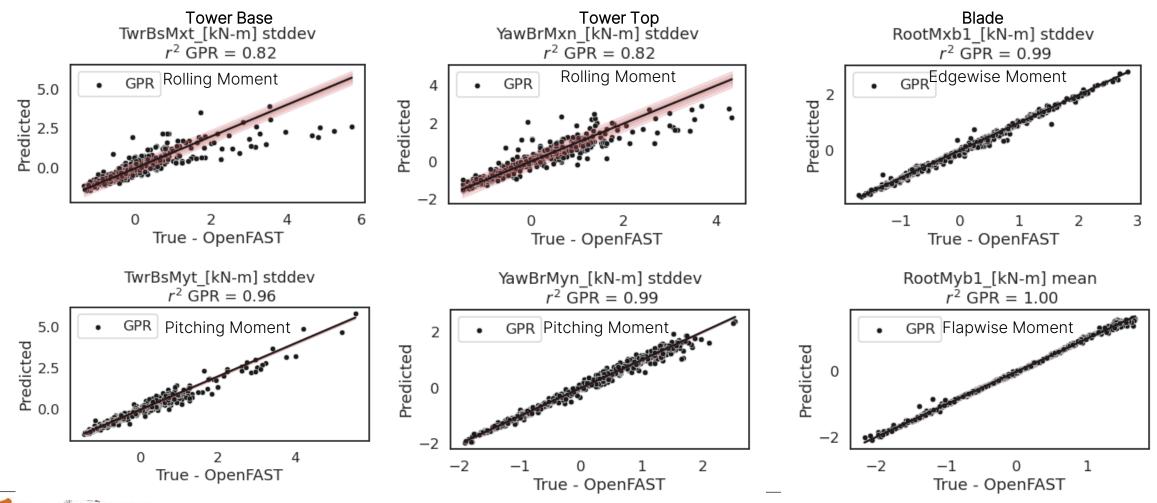


- Replication based models^[3]
 - Regression performed over the parameters of a generalizable PDF
- Overview of other interesting methods: reference^[4]

Results - averaged loads



Results – stddev loads



Questions d.singh-1@tudelft.nl

